MHPM6B15N120SL [MOTOROLA]

Hybrid Power Module; 混合动力模块
MHPM6B15N120SL
型号: MHPM6B15N120SL
厂家: MOTOROLA    MOTOROLA
描述:

Hybrid Power Module
混合动力模块

文件: 总10页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MHPM6B10N120/D  
SEMICONDUCTOR TECHNICAL DATA  
Integrated Power Stage  
for 460 VAC Motor Drives  
These modules integrate a 3–phase inverter in a single  
convenient package. They are designed for 2.0, 3.0, and 5.0 hp  
motor drive applications. The inverter incorporates advanced  
insulated gate bipolar transistors (IGBT) matched with fast soft  
free–wheeling diodes to give optimum performance. The top  
connector pins are designed for easy interfacing to the user’s  
control board.  
Motorola Preferred Devices  
10, 15, 25 A, 1200 V  
Short Circuit Rated 10 µs @ 125°C, 720 V  
Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms)  
Compact Package Outline  
HYBRID POWER MODULES  
Access to Positive and Negative DC Bus  
SL SUFFIX  
CASE 464A–01  
Style 1  
UL  
Recognized  
ORDERING INFORMATION  
Device  
Current Rating  
Package  
MHPM6B10N120SL  
MHPM6B15N120SL  
MHPM6B25N120SL  
10  
15  
25  
464A–01  
Style 1  
MHPM6B10N120SS  
MHPM6B15N120SS  
MHPM6B25N120SS  
10  
15  
25  
464B–02  
Style 1  
SS SUFFIX  
CASE 464B–02  
Style 1  
MAXIMUM DEVICE RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
IGBT Reverse Voltage  
Symbol  
Value  
1200  
± 20  
Unit  
V
V
V
CES  
Gate-Emitter Voltage  
V
GES  
Continuous IGBT Collector Current (T = 80°C)  
10A120  
15A120  
25A120  
I
10  
15  
25  
A
C
Cmax  
(1)  
Repetitive Peak IGBT Collector Current  
10A120  
15A120  
25A120  
I
20  
30  
50  
A
A
C(pk)  
Fmax  
Continuous Diode Current (T = 25°C)  
10A120  
15A120  
25A120  
I
10  
15  
25  
C
Continuous Diode Current (T = 80°C)  
10A120  
15A120  
25A120  
I
8.3  
11  
14  
A
C
F80  
(1)  
Repetitive Peak Diode Current  
10A120  
15A120  
25A120  
I
20  
30  
50  
A
F(pk)  
IGBT Power Dissipation per die (T = 95°C)  
10A120  
15A120  
25A120  
P
41  
50  
65  
W
W
C
D
D
Diode Power Dissipation per die (T = 95°C)  
10A120  
15A120  
25A120  
P
16  
22  
27  
C
(1) 1.0 ms = 1.0% duty cycle  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Motorola, Inc. 1998  
MAXIMUM DEVICE RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
Symbol  
Value  
– 40 to +150  
10  
Unit  
°C  
Junction Temperature Range  
T
J
Short Circuit Duration (V  
= 720 V, T = 125°C)  
t
sc  
s
CE  
J
Isolation Voltage, Pin to Baseplate  
Operating Case Temperature Range  
Storage Temperature Range  
V
2500  
Vac  
°C  
ISO  
T
– 40 to +95  
– 40 to +150  
1.4  
C
T
°C  
stg  
Mounting Torque — Heat Sink Mounting Holes  
Nm  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
DC AND SMALL SIGNAL CHARACTERISTICS  
Gate-Emitter Leakage Current (V  
= 0 V, V  
= ± 20 V)  
I
GES  
5.0  
6.0  
± 20  
100  
7.0  
µA  
µA  
V
CE  
GE  
Collector-Emitter Leakage Current (V  
= 1200 V, V  
= 0 V)  
I
CES  
CE  
GE  
Gate-Emitter Threshold Voltage (V  
= V , I = 1.0 mA)  
V
GE(th)  
5.0  
CE  
GE  
C
Collector-Emitter Breakdown Voltage (I = 10 mA, V  
= 0 V)  
V
(BR)CES  
1200  
V
C
GE  
Collector-Emitter Saturation Voltage (I = I  
, V  
= 15 V)  
V
CE(SAT)  
1.7  
2.35  
2.69  
2.9  
V
C
Cmax GE  
T
J
= 125°C  
Forward Transconductance  
10A120  
15A120  
25A120  
g
fe  
8.3  
14  
19  
mho  
Diode Forward Voltage (I = I  
, V  
Fmax GE  
= 0 V)  
V
F
1.7  
2.35  
1.9  
3.1  
V
F
T
J
= 125°C  
Input Capacitance (V  
= 10 V, V  
= 0 V, f = 1.0 MHz) 10A120  
C
ies  
1880  
2620  
4770  
pF  
CE  
GE  
15A120  
25A120  
Input Gate Charge (V  
CE  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)10A120  
15A120  
Q
65  
87  
150  
nC  
C
T
25A120  
INDUCTIVE SWITCHING CHARACTERISTICS (T = 25°C)  
J
Recommended Gate Resistor (R  
G(on)  
= R  
)
R
G(off)  
G
10A120  
15A120  
25A120  
82  
82  
68  
Turn-On Delay Time (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
t
d(on)  
ns  
ns  
ns  
ns  
mJ  
CE  
C
10A120  
15A120  
25A120  
174  
240  
330  
Rise Time (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
t
r
CE  
C
10A120  
15A120  
25A120  
84  
105  
150  
Turn–Off Delay Time (V  
= 600 V, I = I  
, V  
= 15 V)  
t
d(off)  
CE  
C
Cmax GE  
10A120  
15A120  
25A120  
640  
780  
1060  
Fall Time (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
t
f
CE  
C
10A120  
15A120  
25A120  
39  
48  
70  
47  
58  
84  
Turn-On Energy (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
E
on  
CE  
C
10A120  
15A120  
25A120  
1.5  
2.7  
4.6  
1.8  
3.3  
5.6  
2
Motorola IGBT Device Data  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
INDUCTIVE SWITCHING CHARACTERISTICS (T = 25°C) – continued  
J
Turn-Off Energy (V  
= 600 V, I = I  
, V  
= 15 V) 10A120  
15A120  
E
t
1.1  
1.7  
3.0  
1.4  
2.1  
3.5  
mJ  
CE  
C
Cmax GE  
off  
rr  
25A120  
Diode Reverse Recovery Time (I = I  
, V = 600 V)  
10A120  
15A120  
25A120  
95  
110  
124  
ns  
A
F
Fmax  
Peak Reverse Recovery Current (I = I  
, V = 600 V) 10A120  
15A120  
I
8.0  
9.7  
11.5  
F
Fmax  
rrm  
25A120  
Diode Stored Charge (I = I  
, V = 600 V)  
10A120  
15A120  
25A120  
Q
rr  
550  
600  
740  
nC  
F
Fmax  
INDUCTIVE SWITCHING CHARACTERISTICS (T = 125°C)  
J
Characteristic  
Symbol  
t
Min  
Typ  
Max  
Unit  
Turn–On Delay Time (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
10A120  
ns  
CE  
C
d(on)  
160  
220  
310  
15A120  
25A120  
Rise Time (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
t
r
ns  
ns  
ns  
mJ  
mJ  
ns  
A
CE  
C
10A120  
15A120  
25A120  
93  
110  
160  
Turn–Off Delay Time (V  
= 600 V, I = I  
, V  
= 15 V)  
t
d(off)  
CE  
C
Cmax GE  
10A120  
15A120  
25A120  
680  
850  
1140  
Fall Time (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
t
f
CE  
C
10A120  
15A120  
25A120  
51  
60  
76  
Turn–On Energy (V  
Turn–Off Energy (V  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V)  
= 15 V)  
E
CE  
C
on  
off  
rr  
10A120  
15A120  
25A120  
2.0  
3.6  
6.1  
= 600 V, I = I  
, V  
Cmax GE  
E
t
CE  
C
10A120  
15A120  
25A120  
1.5  
2.4  
4.2  
Diode Reverse Recovery Time (I = I  
, V = 600 V)  
Fmax  
F
10A120  
15A120  
25A120  
160  
210  
250  
Peak Reverse Recovery Current (I = I  
, V = 600 V)  
I
rrm  
F
Fmax  
10A120  
15A120  
25A120  
11.0  
14.1  
17.4  
Diode Stored Charge (I = I  
, V = 600 V)  
10A120  
15A120  
25A120  
Q
995  
1770  
2460  
nC  
F
Fmax  
rr  
THERMAL CHARACTERISTICS (Each Die)  
Thermal Resistance — IGBT  
10A120  
15A120  
25A120  
R
R
1.1  
0.89  
0.68  
1.3  
1.1  
0.85  
°C/W  
°C/W  
JC  
JC  
Thermal Resistance — Diode  
Motorola IGBT Device Data  
10A120  
15A120  
25A120  
2.8  
2.0  
1.6  
3.5  
2.5  
2.0  
3
TYPICAL CHARACTERISTICS  
(see also application information)  
2.0  
2.0  
1.5  
1.0  
V
= 18 V  
12 V  
GE  
15 V  
T
= 25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
J
T
= 125°C  
J
25°C  
9.0 V  
4.0  
0.5  
0
0.2  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
0
0
0.5  
1.0  
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
1.5  
2.0  
2.5  
3.0  
3.5  
4.5  
160  
31.0  
V , FORWARD VOLTAGE (VOLTS)  
V
F
Figure 1. Forward Characteristics —  
Free–Wheeling Diode  
Figure 2. Forward Characteristics, T = 25°C  
J
16  
14  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
12 V  
V
= 18 V  
GE  
15 V  
10N120  
15N120  
T
= 125°C  
J
12  
25N120  
10  
8.0  
6.0  
4.0  
V
V
V
= 400 V  
= 500 V  
= 600 V  
CE  
CE  
CE  
9.0 V  
9.0  
2.0  
0
0.2  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
10  
20  
40  
60  
80  
100  
120  
140  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
Q , TOTAL GATE CHARGE (nC)  
CE  
g
Figure 3. Forward Characteristics, T = 125°C  
Figure 4. Gate–Emitter Voltage versus Total  
Gate Charge  
J
10  
10  
V
V
= 600 V  
= 15 V  
CE  
GE  
T
T
= 125°C  
= 25°C  
J
J
I
= I  
C
Cmax  
t
d(off)  
t
1.0  
1.0  
d(off)  
V
V
R
= 600 V  
= 15 V  
= R  
CE  
GE  
G
G(RECOMMENDED)  
0.1  
0.1  
t
f
t
f
T
T
= 125°C  
= 25°C  
J
J
0.01  
0.01  
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4  
1.6 1.8 2.0 2.2  
R
, GATE RESISTANCE  
G
I
, COLLECTOR CURRENT (NORMALIZED: I /I  
)
C Cmax  
C
(NORMALIZED: R /R  
)
G
G(RECOMMENDED)  
Figure 5. Inductive Switching Times versus  
Collector Current  
Figure 6. Inductive Switching Times versus  
Gate Resistance  
4
Motorola IGBT Device Data  
TYPICAL CHARACTERISTICS  
(see also application information)  
2.5  
2.0  
1.5  
1.0  
6.0  
25°C  
t
d(on)  
5.0  
4.0  
3.0  
2.0  
T
= 125°C  
J
25°C  
T
= 125°C  
J
T
= 125°C  
J
T
= 125°C  
J
25°C  
t
t
d(on)  
r
25°C  
V
V
R
= 600 V  
= 15 V  
= R  
CE  
GE  
G
0.5  
0
1.0  
0
t
r
G(RECOMMENDED)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
2.0 2.2  
)
C Cmax  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
R
, GATE RESISTANCE  
G
I
, COLLECTOR CURRENT (NORMALIZED: I /I  
C
(NORMALIZED: R /R  
)
G
G(RECOMMENDED)  
Figure 7. Inductive Switching Times versus  
Collector Current  
Figure 8. Inductive Switching Times versus  
Gate Resistance  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
E
, T = 125°C  
J
on  
E
, T = 125°C  
on  
J
E
, T = 25°C  
on  
J
E
, T = 125°C  
off  
J
E
, T = 25°C  
on  
J
E
, T = 125°C  
off  
J
E
, T = 25°C  
off  
J
E
, T = 25°C  
J
off  
V
V
= 600 V  
= 15 V  
V
V
R
= 600 V  
= 15 V  
CE  
GE  
CE  
GE  
G
0.5  
0
0.5  
0
I
= I  
= R  
C
Cmax  
G(RECOMMENDED)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
, COLLECTOR CURRENT (NORMALIZED: I /I  
2.0 2.2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
R
, GATE RESISTANCE  
G
I
)
C Cmax  
C
(NORMALIZED: R /R  
)
G
G(RECOMMENDED)  
Figure 9. Turn–On and Turn–Off Energy  
Losses versus Collector Current  
Figure 10. Turn–On and Turn–Off Energy  
Losses versus Gate Resistance  
1000  
100  
100  
10  
C
iss  
T
T
= 125  
°
C
C
J
J
I
25°C  
rr  
C
oss  
= 125  
°
t
rr  
1.0  
0.1  
10  
25°C  
V = 600 V  
C
rss  
1.0  
0
5.0  
10  
15  
20  
25  
30  
35  
40  
0
0.2 0.4 0.6 0.8 1.0 1.2  
1.4 1.6 1.8 2.0 2.2  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
I , FORWARD CURRENT (NORMALIZED: I /I  
)
F Fmax  
CE  
F
Figure 11. Reverse Recovery Characteristics  
— Free–Wheeling Diode  
Figure 12. Capacitance Variation  
Motorola IGBT Device Data  
5
TYPICAL CHARACTERISTICS  
(see also application information)  
70  
60  
50  
40  
30  
20  
1.0  
V
R
= 15 V  
GE  
= R  
G
G(RECOMMENDED)  
= 25  
T
°C  
J
DIODE  
25N120  
IGBT  
0.1  
15N120  
10N120  
0.01  
10  
0
0.001  
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
0.01  
0.1  
1.0  
10  
t, TIME (ms)  
100  
1000  
10,000  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
Figure 13. Reverse Biased Safe Operating  
Area (RBSOA)  
Figure 14. Thermal Response  
90%  
GATE DRIVE OUTPUT  
10%  
t
t
r
t
t
f
d(on)  
d(off)  
90%  
10%  
I
C
3%  
V
CE  
E
E
off  
on  
1.0  
s
Figure 15. Timing Definitions  
+15 V  
+15 V  
MBRS130LT3  
MBRS130LT3  
MBRS130LT3  
MBRS130LT3  
R
R
G(on)  
R
G
MC33153  
MC33153  
G(off)  
MBRS130LT3  
Figure 16. Common Gate Drive Circuit  
Figure 17. Recommended Gate Drive Circuit  
6
Motorola IGBT Device Data  
APPLICATION INFORMATION  
These modules are designed to be used as the power  
ommended value listed under “Electrical Characteristics.”  
The time axes are normalized exactly as for the correspond-  
stage of a three–phase AC induction motor drive. They may  
be used for up to 460 VAC applications. Switching frequen-  
cies up to 15 kHz were considered in the design.  
ing graphs showing variation with I .  
C
Similar transformations have been made for the next two  
Gate resistance recommendations have been listed.  
These choices were based on the common gate drive circuit  
shown in Figure 16. However, significant improvements in  
figures, showing E and E . Energies have been normal-  
on off  
ized to E at 25°C at I  
with the recommended R . I  
off Cmax G C  
has been normalized to I , and R has been normalized  
Cmax  
to the recommended value.  
Reverse recovery characteristics are also normalized. I  
G
E
may be gained by either of two methods: use of a nega-  
off  
tive gate bias, or use of the gate drive shown in Figure 17.  
Separate turn–on and turn–off gate resistors give the best re-  
C
has again been normalized to I  
. Reverse recovery time  
. Peak reverse  
Cmax  
sults; in this case, R  
should be chosen as small as pos-  
t
has been normalized to t at 25°C at I  
G(off)  
rr  
recovery current I  
rr  
Cmax  
has been normalized to I  
sible while limiting current to prevent damage to the gate  
drive IC. Designers should also note that turn–on and turn–  
off delay times are measured from the rising and falling  
edges of the gate drive output, not the gate voltage wave-  
form.  
at 25°C at  
rrm  
, then multiplied by 10.  
rrm  
I
Cmax  
Capacitance has been normalized to device rated I  
.
Cmax  
Since all modules are rated for the same voltage, the voltage  
scale on Figure 11 does not need to be normalized.  
Typical transient thermal impedance is shown for a diode  
and for an IGBT. All diodes behave quite similarly, as do all  
IGBTs.  
Since all three modules use similar technology, most of the  
graphs showing typical performance have been normalized.  
Actual values are listed for each size in the table, “Electrical  
Characteristics.” Data on the graphs reflect performance us-  
ing the common gate drive circuit shown in Figure 16.  
The first three curves, showing DC characteristics, are  
The last two graphs, V  
normalized.  
versus Q and RBSOA, are not  
GE  
G
Many issues beyond the ratings must be considered in a  
system design. Dynamic characteristics can all be affected  
by external circuit parameters. For example, excessive bus  
inductance can dramatically increase voltage overshoot dur-  
ing switching, increasing the switching energy. The choice of  
gate drive IC can have quite a large effect on rise and fall  
times, corresponding to differences in switching energies. In  
many cases, this can be compensated by simply changing  
the gate resistor accordingly — a gate driver with a lower  
drive capability requires a smaller gate resistor. Ultimately,  
the module must be tested in the final system to characterize  
its performance.  
normalized for I  
rated current. The curves extend to I  
lowable instantaneous current.  
. The devices all perform similarly at  
Cmax  
, the maximum al-  
C(pk)  
The next two graphs, turn–off and turn–on times versus I ,  
C
are also normalized for I  
. In addition, the time scales are  
normalized. Turn–off times are normalized to t at 25°C at  
Cmax  
d(off)  
rated current with recommended R , while turn–on times are  
normalized to t at 25°C at rated current with recommended  
G
r
R .  
G
The graphs showing switching times as a function of R  
are similarly normalized. R has been normalized to the rec-  
G
G
1
2
3
4
5
Q1  
Q3  
Q5  
D1  
D2  
D3  
D4  
D5  
D6  
Q2  
Q4  
Q6  
17 16  
15 14  
13 12  
11 10  
9
8
7
6
Figure 18. Schematic of Module, Showing Pin–Out  
Motorola IGBT Device Data  
7
RECOMMENDED PCB LAYOUT  
MODULE SIDE VIEW OF BOARD  
(Typical Dimensions in mm)  
107.75  
15.24  
16.0  
PIN 1  
1.65  
16.0  
5.8  
KEEP–OUT  
ZONES (x4)  
41.91  
32.0  
45.75  
11.0  
OPTIONAL  
NON–PLATED  
THRU–HOLES (x2)  
3.81  
16.0  
11.43  
PLATED THRU–HOLES (x17)  
Figure 19. Package Footprint  
NOTES:  
1. Package is symmetrical.  
2. Dimension of plated thru–holes indicates finished hole size after plating.  
3. Non–plated thru–holes shown for optional access to heat sink mounting screws.  
8
Motorola IGBT Device Data  
PACKAGE DIMENSIONS  
NOTES:  
A
U
Q4 PL  
Y 2 PL  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. LEAD LOCATION DIMENSIONS (ie: G, S, R, H, F...)  
ARE TO THE CENTER OF THE LEAD.  
F
4 PL  
MILLIMETERS  
MIN MAX  
––– 107.75  
INCHES  
MIN  
1
2
3
4
5
DIM  
A
B
C
D
E
MAX  
4.242  
1.801  
0.694  
0.060  
0.532  
0.615  
0.165  
1.665  
1.221  
0.288  
0.103  
0.453  
1.280  
0.103  
0.840  
0.645  
3.681  
4.151  
1.516  
0.655  
0.227  
0.465  
–––  
–––  
–––  
16.37  
0.77  
45.75  
17.64  
1.53  
0.644  
0.030  
0.492  
0.585  
0.135  
1.635  
1.181  
0.248  
0.063  
0.413  
1.240  
0.079  
0.810  
0.615  
3.641  
4.101  
1.476  
0.605  
0.207  
0.435  
N
H
P
B
12.49  
14.86  
3.43  
13.51  
15.62  
4.19  
F
G
H
K
L
M
N
P
Q
R
S
U
V
R
41.53  
29.99  
6.29  
42.29  
31.01  
7.31  
17 16  
15 14  
13 12  
11 10  
9
8
7
6
1.59  
2.61  
10.49  
31.49  
2.00  
11.51  
32.51  
2.60  
S
G 6 PL  
Z 5 PL  
M
20.57  
15.62  
92.49  
21.33  
16.38  
93.51  
104.17 105.44  
W
X
Y
37.49  
15.37  
5.25  
38.51  
16.64  
5.75  
D 17 PL  
Z
11.05  
11.81  
K
C
X
E
L
V
W
CASE 464A–01  
ISSUE A  
Motorola IGBT Device Data  
9
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. LEAD LOCATION DIMENSIONS (ie: G, S, R, H, F...)  
ARE TO THE CENTER OF THE LEAD.  
A
U
Q4 PL  
Y 2 PL  
F
4 PL  
MILLIMETERS  
MIN MAX  
––– 107.75  
INCHES  
MIN  
DIM  
A
B
C
D
E
MAX  
4.242  
1.801  
0.694  
0.060  
0.532  
0.615  
0.165  
1.665  
0.881  
0.288  
0.103  
0.453  
1.280  
0.103  
0.840  
0.645  
3.681  
4.151  
1.516  
0.655  
0.227  
0.465  
1
2
3
4
5
–––  
–––  
–––  
16.37  
0.77  
45.75  
17.64  
1.53  
0.644  
0.030  
0.492  
0.585  
0.135  
1.635  
0.780  
0.248  
0.063  
0.413  
1.240  
0.079  
0.810  
0.615  
3.641  
4.101  
1.476  
0.605  
0.207  
0.435  
12.49  
14.86  
3.43  
13.51  
15.62  
4.19  
N
H
F
P
B
G
H
K
L
M
N
P
Q
R
S
U
V
41.53  
19.81  
6.29  
42.29  
20.60  
7.31  
R
17 16  
15 14  
13 12  
11 10  
9
8
7
6
1.59  
2.61  
10.49  
31.49  
2.00  
11.51  
32.51  
2.60  
S
20.57  
15.62  
92.49  
21.33  
16.38  
93.51  
G 6 PL  
Z 5 PL  
M
104.17 105.44  
W
X
Y
37.49  
15.37  
5.25  
38.51  
16.64  
5.75  
Z
11.05  
11.81  
D 17 PL  
K
E
C
X
L
V
W
CASE 464B–02  
ISSUE A  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
– http://sps.motorola.com/mfax/  
HOME PAGE: http://motorola.com/sps/  
MHPM6B10N120/D  

相关型号:

MHPM6B15N120SS

Hybrid Power Module
MOTOROLA

MHPM6B20A60D

Insulated Gate Bipolar Transistor, 20A I(C), 600V V(BR)CES, N-Channel
MOTOROLA

MHPM6B20E60D3

Hybrid Power Module
MOTOROLA

MHPM6B25N120SL

Hybrid Power Module
MOTOROLA

MHPM6B25N120SS

Hybrid Power Module
MOTOROLA

MHPM6B2A60D

Hybrid Power Module
MOTOROLA

MHPM6B5A120D

Hybrid Power Module
MOTOROLA

MHPM6B7E60D3

Insulated Gate Bipolar Transistor, 7A I(C), 600V V(BR)CES, N-Channel
MOTOROLA

MHPM7A10E60DC3

Hybrid Power Module
MOTOROLA

MHPM7A10S120DC3

Hybrid Power Module
MOTOROLA

MHPM7A12A120A

Insulated Gate Bipolar Transistor, 12A I(C), 1200V V(BR)CES, N-Channel
MOTOROLA

MHPM7A15A60A

Hybrid Power Module
MOTOROLA