MHPM6B15A120D [MOTOROLA]

Hybrid Power Module; 混合动力模块
MHPM6B15A120D
型号: MHPM6B15A120D
厂家: MOTOROLA    MOTOROLA
描述:

Hybrid Power Module
混合动力模块

文件: 总10页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MHPM6B5A120D/D  
SEMICONDUCTOR TECHNICAL DATA  
Integrated Power Stage  
for 460 VAC Motor Drives  
Motorola Preferred Devices  
These modules integrate a 3–phase inverter in a single convenient package.  
They are designed for 1.0, 2.0 and 3.0 hp motor drive applications. The inverter  
incorporates advanced insulated gate bipolar transistors (IGBT) matched with  
free–wheeling diodes to give optimum performance. The top connector pins are  
designed for easy interfacing to the user’s control board.  
5.0, 10, 15 AMP, 1200 V  
HYBRID POWER MODULES  
Short Circuit Rated 10 µs @ 125°C  
Pin-to-Baseplate Isolation Exceeds 2500 Vac (rms)  
Compact Package Outline  
Access to Positive and Negative DC Bus  
UL  
Recognized  
PRELIMINARY  
MAXIMUM DEVICE RATINGS (T = 25°C unless otherwise noted)  
J
Rating  
IGBT Reverse Voltage  
Symbol  
Value  
1200  
± 20  
Unit  
V
V
V
V
A
CES  
Gate-Emitter Voltage  
GES  
Continuous IGBT Collector Current  
5A120  
10A120  
15A120  
I
5.0  
10  
15  
Cmax  
(1)  
Peak Repetitive IGBT Collector Current  
Continuous Diode Current  
5A120  
10A120  
15A120  
I
10  
20  
30  
A
A
C(pk)  
Fmax  
5A120  
10A120  
15A120  
I
5.0  
10  
15  
(1)  
Peak Repetitive Diode Current  
5A120  
10A120  
15A120  
I
10  
20  
30  
A
F(pk)  
IGBT Power Dissipation per die (T = 25°C)  
5A120  
10A120  
15A120  
P
D
P
D
P
D
P
D
43  
65  
82  
W
W
W
W
C
Diode Power Dissipation per die (T = 25°C)  
5A120  
10A120  
15A120  
19  
38  
38  
C
IGBT Power Dissipation per die (T = 95°C)  
5A120  
10A120  
15A120  
19  
29  
36  
C
Diode Power Dissipation per die (T = 95°C)  
5A120  
10A120  
15A120  
8.3  
17  
17  
C
Junction Temperature Range  
T
– 40 to +150  
10  
°C  
J
Short Circuit Duration (V  
= 600 V, T = 125°C)  
t
sc  
sec  
CC  
J
(1) 1.0 ms = 1.0% duty cycle  
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
REV 2  
Motorola, Inc. 1997  
MAXIMUM DEVICE RATINGS (T = 25°C unless otherwise noted) — continued  
J
Rating  
Symbol  
Value  
2500  
Unit  
V
Isolation Voltage  
V
ISO  
Operating Case Temperature Range  
Storage Temperature Range  
T
– 40 to +95  
– 40 to +125  
12  
°C  
C
T
stg  
°C  
Mounting Torque — Heat Sink Mounting Holes (#8 or M4 screws)  
lb–in  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Gate-Emitter Leakage Current (V = 0 V, V  
Symbol  
Min  
Typ  
Max  
± 20  
100  
Unit  
µA  
= ± 20 V)  
I
GES  
CE  
Collector-Emitter Leakage Current (V  
GE  
= 1200 V, V  
= 0 V)  
I
CES  
6.0  
2000  
µA  
CE  
GE  
T = 125°C  
J
Gate-Emitter Threshold Voltage (V  
= V , I = 1.0 mA)  
GE  
V
GE(th)  
4.0  
6.0  
8.0  
V
V
V
CE  
C
Collector-Emitter Breakdown Voltage (I = 10 mA, V  
= 0 V)  
V
(BR)CES  
1200  
C
GE  
Collector-Emitter Saturation Voltage (I = I  
, V  
= 15 V)  
V
CE(SAT)  
2.54  
2.33  
3.5  
C
Cmax GE  
T = 125°C  
J
Diode Forward Voltage (I = I  
, V  
Fmax GE  
= 0 V)  
V
F
1.67  
1.31  
2.0  
V
F
T = 125°C  
J
Input Capacitance (V  
= 10 V, V  
= 0 V, f = 1.0 Mhz)  
5A120  
10A120  
15A120  
C
ies  
930  
1200  
2800  
pF  
CE  
GE  
Input Gate Charge (V  
CE  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V) 5A120  
10A120  
Q
31  
65  
100  
nC  
C
T
15A120  
INDUCTIVE SWITCHING CHARACTERISTICS (T = 25°C)  
J
Recommended Gate Resistor  
Turn–On  
5A120  
10A120  
15A120  
R
270  
220  
220  
20  
G(on)  
Turn–Off  
R
G(off)  
Turn-On Delay Time  
t
ns  
ns  
ns  
d(on)  
(V  
CE  
= 600 V, I = I  
, V = 15 V, R as specified)  
Cmax GE G  
C
5A120  
10A120  
15A120  
255  
350  
425  
Rise Time  
(V = 600 V, I = I  
t
r
, V  
Cmax GE  
= 15 V, R as specified)  
G
CE  
C
5A120  
10A120  
15A120  
140  
250  
225  
Turn–Off Delay Time  
(V = 600 V, I = I  
t
d(off)  
, V  
Cmax GE  
= 15 V, R as specified)  
170  
290  
CE  
Fall Time (V  
C
G
= 600 V, I = I  
, V  
Cmax GE  
= 15 V, R as specified)  
t
f
500  
ns  
CE  
Turn-On Energy  
(V = 600 V, I = I  
C
G
E
mJ  
(on)  
, V  
Cmax GE  
= 15 V, R as specified)  
G
CE  
C
5A120  
10A120  
15A120  
0.96  
2.8  
4.0  
Turn-Off Energy  
(V = 600 V, I = I  
E
mJ  
ns  
(off)  
, V  
Cmax GE  
= 15 V, R as specified)  
G
CE  
C
5A120  
10A120  
15A120  
0.15  
0.39  
0.52  
1.0  
2.0  
2.5  
Diode Reverse Recovery Time  
(I = I , V = 600 V, R as specified)  
t
rr  
5A120  
10A120  
15A120  
130  
170  
165  
F
Fmax  
G
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
2
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
INDUCTIVE SWITCHING CHARACTERISTICS (T = 25°C) – continued  
J
Peak Reverse Recovery Current  
I
A
rrm  
(I = I  
, V = 600 V, R as specified)  
5A120  
10A120  
15A120  
5.0  
6.0  
9.6  
F
Fmax  
G
Diode Stored Charge  
(I = I , V = 600 V, R as specified)  
Q
nC  
rr  
5A120  
10A120  
15A120  
335  
575  
860  
F
Fmax  
G
INDUCTIVE SWITCHING CHARACTERISTICS (T = 125°C)  
J
Characteristic  
Symbol  
t
Min  
Typ  
Max  
Unit  
Turn–On Delay Time  
ns  
d(on)  
(V  
CE  
= 600 V, I = I  
, V  
Cmax GE  
= 15 V, R as specified)  
G
C
5A120  
10A120  
15A120  
230  
315  
375  
Rise Time  
(V = 600 V, I = I  
t
r
ns  
, V  
Cmax GE  
= 15 V, R as specified)  
G
CE  
C
5A120  
130  
220  
235  
10A120  
15A120  
Turn–Off Delay Time  
(V = 600 V, I = I  
t
d(off)  
ns  
ns  
, V  
Cmax GE  
= 15 V, R as specified)  
176  
676  
CE  
Fall Time  
(V  
C
G
t
f
= 600 V, I = I  
, V = 15 V, R as specified)  
Cmax GE G  
CE  
Turn–On Energy  
(V = 600 V, I = I  
C
E
(on)  
mJ  
, V  
Cmax GE  
= 15 V, R as specified)  
G
CE  
C
5A120  
10A120  
15A120  
1.3  
3.9  
5.5  
Turn–Off Energy  
(V = 600 V, I = I  
E
(off)  
mJ  
, V  
Cmax GE  
= 15 V, R as specified)  
G
CE  
C
5A120  
0.711  
1.290  
1.939  
10A120  
15A120  
Diode Reverse Recovery Time  
(I = I , V = 600 V, R as specified)  
t
ns  
A
rr  
5A120  
10A120  
15A120  
190  
375  
310  
F
Fmax  
G
Peak Reverse Recovery Current  
(I = I , V = 600 V, R as specified)  
I
rrm  
5A120  
10A120  
15A120  
8.4  
10  
15  
F
Fmax  
G
Diode Stored Charge  
(I = I , V = 600 V, R as specified)  
Q
nC  
rr  
5A120  
10A120  
15A120  
825  
2100  
2500  
F
Fmax  
G
THERMAL CHARACTERISTICS (Each Die)  
Thermal Resistance — IGBT  
5A120  
10A120  
15A120  
R
2.30  
1.54  
1.21  
2.88  
1.92  
1.52  
°C/W  
°C/W  
JC  
JC  
Thermal Resistance — Free–Wheeling Diode  
5A120  
10A120  
15A120  
R
5.28  
2.61  
2.61  
6.60  
3.26  
3.26  
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
3
TYPICAL CHARACTERISTICS  
2.0  
1.5  
1.0  
2.0  
V
= 18 V  
V
= 18 V  
12 V  
GE  
GE  
12 V  
1.5  
1.0  
15 V  
15 V  
9.0 V  
0.5  
0
0.5  
0
9.0 V  
0
0
0
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
6.0  
0
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
6.0  
V
V
CE  
CE  
Figure 1. Normalized I versus V , T = 25°C  
Figure 2. Normalized I versus V , T = 125°C  
CE  
C
CE  
J
C
J
1000  
800  
600  
400  
2.5  
2.0  
1.5  
1.0  
t
@ 125°C  
off  
I
(NORMALIZED), 125°C  
F
t @ 125  
°C  
f
t
t
off  
f
t
t
@ 125  
°C  
d
200  
0
0.5  
0
I
(NORMALIZED)  
2.0  
F
d
0.5  
1.0  
1.5  
2.5  
0
0.2  
0.4  
0.6  
/I  
0.8  
1.0  
1.2  
V
(V)  
I
F
C Cmax  
Figure 3. I versus V  
Figure 4. t  
, t , t  
d(off)  
versus Normalized I  
off C  
F
F
f
10  
1.0  
0.1  
1400  
1200  
1000  
800  
t
@ 125  
°C  
off  
t
on  
t
d(on)  
t @ 125  
°
C
f
600  
t
t
off  
t
r
t
@ 125°C  
d
400  
f
200  
0
@ 125  
°C  
t
d
0
0.2  
0.4  
0.6  
/I  
0.8  
1.0  
1.2  
20  
40  
60  
(
80  
100  
120  
I
R
)
C Cmax  
G
Figure 5. t  
, t , t , versus R  
off  
Figure 6. t , t , t versus I  
d(on) r on  
d(off)  
f
G
C
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
4
TYPICAL CHARACTERISTICS  
10  
6.0  
E
@ 125°C  
on  
t
t
on  
5.0  
4.0  
3.0  
2.0  
d(on)  
t
r
E
E
on  
1.0  
0.1  
@ 125°C  
off  
1.0  
0
@ 125  
°C  
E
off  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
120  
1.2  
0
2.0  
4.0  
6.0  
8.0  
, (A)  
10  
12  
14  
16  
2.5  
100  
R
/R (RECOMMENDED)  
I
C
G
G
Figure 7. t  
, t , t versus Normalized R  
d(on) r on  
Figure 8. E , E versus I  
on off C  
G
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
2.0  
1.5  
1.0  
E
, 125°C  
off  
E
, 125°C  
on  
E
on  
E
off  
0.5  
0
0.2  
0
20  
40  
60  
80  
100  
0
0.5  
1.0  
R /R (RECOMMENDED)  
G
1.5  
2.0  
R
(
)
G
G
Figure 9. E  
versus R  
at Rated I  
C
Figure 10. Normalized E versus Normalized  
on  
off  
G(off)  
R
G(on)  
1000  
100  
10  
10  
1.0  
0.1  
I
rr  
rr  
C
ies  
C
oes  
t
C
res  
1.0  
0.1  
@ 125  
°C  
0
20  
40  
60  
80  
0.2  
0.4  
0.6  
0.8  
1.0  
V
(V)  
I /I  
CE  
F Fmax  
Figure 11. t , I versus Normalized I  
rr rr  
Figure 12. Capacitance Variation  
F
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
5
TYPICAL CHARACTERISTICS  
15  
10  
100  
5A120  
10A120  
15A120  
15A120  
10A120  
5A120  
10  
+V  
–V  
R
= 15 V  
= 0 V  
= 220  
5.0  
0
1.0  
0.1  
GE  
GE  
G
V
= 500  
CC  
T
= 25  
°C  
J
0
20  
40  
60  
80  
(nC)  
100  
120  
140  
0
200  
400  
600  
800  
(V)  
1000  
1200  
1400  
Q
V
CE  
G
Figure 13. V  
versus Q  
Figure 14. Reverse Biased Safe  
Operating Area  
GE  
G
1.0  
0.8  
0.6  
0.4  
10A120 DIODE  
15A120 DIODE  
15A120 I  
GBT  
10A120 I  
5A120 DIODE  
GBT  
15A120 I  
10A120 I  
GBT  
GBT  
5A120 I  
GBT  
0.2  
0
0.01  
0.1  
1.0  
10  
TIME (ms)  
100  
1,000  
10,000  
Figure 15. Normalized r(t)  
+15 V  
R
R
G(on)  
t
t
on  
off  
t
d(on)  
t
MC33153  
t
t
f
d(off)  
r
90%  
90%  
OUTPUT, V  
INVERTED  
out  
G(off)  
10%  
90%  
50%  
50%  
INPUT, V  
in  
10%  
PULSE WIDTH  
Figure 16. Switching Waveforms  
Figure 17. Typical Gate Drive Circuit  
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
6
APPLICATION INFORMATION  
These modules are designed to be used as the power  
larger fraction of total turn–on time at 125°C, and in general,  
larger gate resistance results in slower switching.  
Graphs of switching energies follow a similar structure.  
The first of these graphs, showing variation due to current, is  
not normalized, as any of these devices operating within its  
stage of a three–phase AC induction motor drive. They may  
be used for up to 230 VAC applications. Switching frequen-  
cies up to 10 kHz have been considered in the design.  
Gate resistance recommendations have been listed.  
Separate turn–on and turn–off resistors are listed, to be used  
in a circuit resembling Figure 17. All switching characteristics  
are given based on following these recommendations, but  
appropriate graphs are shown for operation with different  
gate resistance. In order to equalize across the three different  
module ratings, a normalization process was used. Actual  
typical values are listed in the second section of this  
specification sheet, “Electrical Specifications,” but many of  
the graphs are given in normalized units.  
limits follows the same trend. E  
does not need to be  
off  
normalized to show variation with R  
, as all three are  
G(off)  
specified with the same nominal resistance. E , however,  
has been appropriately normalized. Gate resistance has  
on  
been normalized to the specified R  
. In order to show the  
G(on)  
effect of elevated temperature, all energies were normalized  
to E at 25°C using the recommended R  
.
G(on)  
on  
Reverse recovery characteristics are also normalized. I is  
normalized to rated maximum current. I  
rrm  
that at maximum current at either 25°C or 125°C, the graph  
F
is normalized so  
The first three graphs, the DC characteristics, are normal-  
ized for current. The devices are designed to operate the  
same at rated maximum current (10 and 20 A). The curves  
indicates “10”, while t is normalized to be “1” at maximum  
rr  
current at either temperature.  
extend to I  
current.  
, the maximum allowable instantaneous  
Capacitance values are normalized for I  
scaling, gate charge and thermal characteristics are shown  
separately for each module.  
. Due to poor  
Cmax  
Cpk  
The next graph, turn–off times versus current, is again  
normalized to the rated maximum current. The following  
graph, turn–off times versus R  
normalized, as all three modules behave similarly during  
turn–off.  
Turn–on times have been normalized. Again, the graph  
showing variation due to current has been normalized for  
rated maximum current. The graph showing variation due to  
gateresistancenormalizesagainsttherecommendedR  
G(on)  
for each module. In addition, the times are normalized to t at  
the appropriate temperature. For example, t for a 10 A  
module operating at 125°C at 4.0 A can be found by  
Many issues must be considered when doing PCB layout.  
Figure 19 shows the footprint of a module, allowing for  
reasonable tolerances. A polarizing post is provided near pin  
1 to ensure that the module is properly inserted during final  
assembly. When laying out traces, two issues are of primary  
importance: current carrying capacity and voltage clearance.  
Many techniques may be used to maximize both, including  
using traces on both sides of the PCB to double total copper  
thickness, providing cut–outs in high–current traces near  
high–voltage pins, and even removing portions of the board  
to increase “over–the–surface” creapage distance. Some  
additional advantage may be gained by potting the entire  
board assembly in a good dielectric. Consult appropriate  
regulatory standards, such as UL 840, for more details on  
high–voltage creapage and clearance.  
, is intentionally not  
G(off)  
r
d(on)  
multiplying the typical t for a 10 A module at 125°C (220 ns)  
r
by the value shown on the graph at a normalized current of  
0.4 (1.4) to get 308 ns. The most salient features demon-  
strated by these graphs are the general trends: rise time is a  
1
2
3
4
5
6
7
8
Q1  
Q3  
Q5  
D1  
D2  
D3  
D4  
D5  
D6  
Q2  
Q4  
Q6  
16  
15  
14  
13  
12  
11  
10  
9
Figure 18. Schematic of Internal Circuit, Showing Package Pin–Out  
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
7
RECOMMENDED PCB LAYOUT  
VIEW OF BOARD FROM HEAT SINK  
(All Dimensions Typical)  
KEEP–OUT ZONES (x4)  
NON–PLATED THRU–HOLE  
0.270  
0.140  
0.175  
0.265  
0.250  
0.625  
0.270  
PIN 1  
PLATED THRU–HOLES  
(x16)  
0.065  
0.250  
3.500  
PACKAGE “SHADOW”  
0.450  
0.175  
0.175  
0.625  
OPTIONAL NON–PLATED  
1.350  
1.530  
THRU–HOLES FOR ACCESS  
TO HEAT SINK MOUNTING  
SCREWS (x2)  
Figure 19. Package Footprint  
NOTES:  
1.  
2.  
3.  
Package is symmetrical, except for a polarizing plastic post near pin 1, indicated by a non–plated thru–hole in the footprint.  
Dimension of plated thru–holes indicates net size after plating.  
Access holes for mounting screws may or may not be necessary depending on assembly plan for finished product.  
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
8
PACKAGE DIMENSIONS  
3.500  
3.000  
1
2
3
4
5
6
7
8
9
0.154  
0.115  
1.000  
1.350  
1.530  
16  
15  
14  
13  
12  
11  
10  
0.250  
0.050  
0.150  
0.650  
0.350  
PRELIMINARY  
MOTOROLA  
MHPM6B5A120D MHPM6B10A120D MHPM6B15A120D  
9
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MHPM6B5A120D/D  

相关型号:

MHPM6B15E60D3

Hybrid Power Module
MOTOROLA

MHPM6B15N120SL

Hybrid Power Module
MOTOROLA

MHPM6B15N120SS

Hybrid Power Module
MOTOROLA

MHPM6B20A60D

Insulated Gate Bipolar Transistor, 20A I(C), 600V V(BR)CES, N-Channel
MOTOROLA

MHPM6B20E60D3

Hybrid Power Module
MOTOROLA

MHPM6B25N120SL

Hybrid Power Module
MOTOROLA

MHPM6B25N120SS

Hybrid Power Module
MOTOROLA

MHPM6B2A60D

Hybrid Power Module
MOTOROLA

MHPM6B5A120D

Hybrid Power Module
MOTOROLA

MHPM6B7E60D3

Insulated Gate Bipolar Transistor, 7A I(C), 600V V(BR)CES, N-Channel
MOTOROLA

MHPM7A10E60DC3

Hybrid Power Module
MOTOROLA

MHPM7A10S120DC3

Hybrid Power Module
MOTOROLA