MC68HC908EY16VFA [MOTOROLA]

Microcontrollers; 微控制器
MC68HC908EY16VFA
型号: MC68HC908EY16VFA
厂家: MOTOROLA    MOTOROLA
描述:

Microcontrollers
微控制器

微控制器 外围集成电路 时钟
文件: 总416页 (文件大小:2092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC68HC908EY16  
Advance Information  
M68HC08  
Microcontrollers  
MC68HC908EY16/D  
Rev. 2.0, 6/2002  
WWW.MOTOROLA.COM/SEMICONDUCTORS  
68HC908EY16  
Advance Information — Rev 2.0  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. "Typical" parameters which may be provided in Motorola data sheets and/or  
specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including "Typicals" must be validated for  
each customer application by customer’s technical experts. Motorola does not convey  
any license under its patent rights nor the rights of others. Motorola products are not  
designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Motorola product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Motorola products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal  
injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
Motorola and  
are registered trademarks of Motorola, Inc.  
DigitalDNA is a trademark of Motorola, Inc.  
© Motorola, Inc., 2002  
68HC908EY16 — Rev 2.0  
MOTOROLA  
Advance Information  
3
Advance Information  
4
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information 68HC908EY16  
List of Paragraphs  
List of Paragraphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Section 1. General Description . . . . . . . . . . . . . . . . . . . .33  
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Section 3. Random Access Memory (RAM) . . . . . . . . . .57  
Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . .59  
Section 5. Central Processor Unit (CPU) . . . . . . . . . . . .69  
Section 6. System Integration Module (SIM) . . . . . . . . .87  
Section 7. Internal Clock Generator (ICG) Module. . . .111  
Section 8. Configuration Registers (CONFIG1 &  
CONFIG2). . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Section 9. Break Module (BRK) . . . . . . . . . . . . . . . . . . .157  
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . .167  
Section 11. Computer Operating Properly (COP) Module  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
Section 12. Low-Voltage Inhibit (LVI) Module . . . . . . .187  
Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . .193  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
List of Paragraphs  
5
List of Paragraphs  
Section 14. Enhanced Serial Communications Interface  
(ESCI) Module . . . . . . . . . . . . . . . . . . . . . . .201  
Section 15. Serial Peripheral Interface (SPI) Module . .247  
Section 16. Timer Interface A (TIMA) Module . . . . . . . .279  
Section 17. Timer Interface B (TIMB) Module . . . . . . . .303  
Section 18. BEMF Module . . . . . . . . . . . . . . . . . . . . . . .327  
Section 19. Keyboard Interrupt (KBD) Module . . . . . . .329  
Section 20. Timebase Module (TBM). . . . . . . . . . . . . . .337  
Section 21. Analog-to-Digital Converter (ADC) Module  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
Section 22. Input/Output (I/O) Ports . . . . . . . . . . . . . . .363  
Section 23. Preliminary Electrical Specifications . . . .381  
Section 24. Mechanical Specifications . . . . . . . . . . . . .395  
Section 25. Ordering Information . . . . . . . . . . . . . . . . .397  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405  
Advance Information  
6
68HC908EY16 Rev 2.0  
List of Paragraphs  
MOTOROLA  
Advance Information 68HC908EY16  
Table of Contents  
List of Paragraphs  
Table of Contents  
List of Figures  
List of Tables  
Section 1. General Description  
1.1  
1.2  
1.3  
1.4  
1.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
1.6  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . .39  
Oscillator Pins (PTC4/OSC1 and PTC3/OSC2). . . . . . . . . .40  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .40  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .40  
Analog Power Supply/Reference Pins (VDDA, VREFH, VSSA  
and VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Port A I/O Pins (PTA6/SS, PTA5/SPSCK,  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
PTA4/KDB4PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Port B I/O Pins (PTB7/AD7/TBCH1, PTB6/AD6/TBCH0,  
PTB5/AD5PTB0/AD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Port C I/O Pins (PTC4/OSC1, PTC3/OSC2, PTC2/MCLK,  
PTC1/MOSI, PTC0/MISO) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Port D I/O Pins (PTD1/TACH1PTD0/TACH0) . . . . . . . . . .42  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
7
 
Table of Contents  
1.6.10 Port E I/O Pins (PTE1/RxDPTE0/TxD). . . . . . . . . . . . . . . .42  
Section 2. Memory Map  
2.1  
2.2  
2.3  
2.4  
2.5  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . .43  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Section 3. Random Access Memory (RAM)  
3.1  
3.2  
3.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Section 4. FLASH Memory  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .62  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .63  
FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .67  
4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Advance Information  
8
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 5. Central Processor Unit (CPU)  
5.1  
5.2  
5.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
5.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
5.7  
5.8  
5.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
Section 6. System Integration Module (SIM)  
6.1  
6.2  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
6.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .90  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . .90  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .91  
6.3.1  
6.3.2  
6.3.3  
6.4  
6.4.1  
6.4.2  
6.4.2.1  
6.4.2.2  
6.4.2.3  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .91  
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .93  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Computer Operating Properly (COP) Reset. . . . . . . . . . .95  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
9
Table of Contents  
6.4.2.4  
6.4.2.5  
6.4.2.6  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Forced Monitor Mode Entry Reset (MENRST). . . . . . . . .96  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .96  
6.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .96  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .97  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .97  
6.5.1  
6.5.2  
6.5.3  
6.6  
Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . .101  
6.6.1  
6.6.1.1  
6.6.1.2  
6.6.2  
6.6.3  
6.6.4  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
6.8  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .106  
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . .107  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .109  
6.8.1  
6.8.2  
6.8.3  
Section 7. Internal Clock Generator (ICG) Module  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
7.1  
7.2  
7.3  
7.4  
7.4.1  
7.4.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Clock Enable Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115  
Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . .116  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.3  
Digitally Controlled Oscillator. . . . . . . . . . . . . . . . . . . . .117  
Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . .117  
Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
External Clock Generator. . . . . . . . . . . . . . . . . . . . . . . . . .119  
Advance Information  
10  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
7.4.3.1  
7.4.3.2  
7.4.4  
7.4.4.1  
7.4.4.2  
7.4.4.3  
7.4.5  
External Oscillator Amplifier. . . . . . . . . . . . . . . . . . . . . .119  
External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .120  
Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
Clock Monitor Reference Generator . . . . . . . . . . . . . . .122  
Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . .123  
External Clock Activity Detector. . . . . . . . . . . . . . . . . . .124  
Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
Clock Selection Switches. . . . . . . . . . . . . . . . . . . . . . . .126  
Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . .126  
7.4.5.1  
7.4.5.2  
7.5  
7.5.1  
7.5.2  
7.5.3  
Usage Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . .128  
Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . .129  
Using Clock Monitor Interrupts. . . . . . . . . . . . . . . . . . . . . .130  
Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . .131  
Digitally Controlled Oscillator. . . . . . . . . . . . . . . . . . . . .131  
Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . .132  
Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . .132  
Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . .133  
Switching Internal Clock Frequencies . . . . . . . . . . . . . . . .133  
Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . .134  
Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . .135  
Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . .135  
Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Trimming Frequency on the Internal Clock Generator . . . .137  
7.5.4  
7.5.4.1  
7.5.4.2  
7.5.4.3  
7.5.4.4  
7.5.5  
7.5.6  
7.5.6.1  
7.5.6.2  
7.5.6.3  
7.5.7  
7.6  
7.6.1  
7.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
7.7  
CONFIG Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
External Clock Enable (EXTCLKEN) . . . . . . . . . . . . . . . . .139  
External Crystal Enable (EXTXTALEN) . . . . . . . . . . . . . . .139  
Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . .140  
Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . .140  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.8  
Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . .141  
ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
7.8.1  
7.8.2  
7.8.3  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
11  
Table of Contents  
7.8.4  
7.8.5  
ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . .147  
ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . .148  
Section 8. Configuration Registers (CONFIG1 &  
CONFIG2)  
8.1  
8.2  
8.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
Section 9. Break Module (BRK)  
9.1  
9.2  
9.3  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Flag Protection During Break Interrupts. . . . . . . . . . . . . . .160  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .160  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .160  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .160  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
9.6  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Break Status and Control Register. . . . . . . . . . . . . . . . . . .162  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .163  
SIM Break Status Register. . . . . . . . . . . . . . . . . . . . . . . . .163  
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . .165  
9.6.1  
9.6.2  
9.6.3  
9.6.4  
Section 10. Monitor ROM (MON)  
10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
Advance Information  
12  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.5 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.5.1 Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
10.5.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.6 Monitor Mode Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.7 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.8 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.9 Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.9.1 Force Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10.9.2 Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10.10 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10.11 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
Section 11. Computer Operating Properly (COP) Module  
11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.7 COPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.8 COPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
13  
Table of Contents  
11.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
11.9 COP Module During Break Interrupts. . . . . . . . . . . . . . . . . . .186  
Section 12. Low-Voltage Inhibit (LVI) Module  
12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
12.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
12.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .189  
12.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
12.4.4 LVI Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
12.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
12.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
12.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
Section 13. External Interrupt (IRQ)  
13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
13.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
13.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .198  
13.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .198  
Advance Information  
14  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Section 14. Enhanced Serial Communications Interface  
(ESCI) Module  
14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
14.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
14.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
14.5.2.1  
14.5.2.2  
14.5.2.3  
14.5.2.4  
14.5.2.5  
14.5.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .207  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .211  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .211  
14.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
14.5.3.1  
14.5.3.2  
14.5.3.3  
14.5.3.4  
14.5.3.5  
14.5.3.6  
14.5.3.7  
14.5.3.8  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .216  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.7 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . .221  
14.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
14.8.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .222  
14.8.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .222  
14.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
14.9.1 ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . .223  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
15  
Table of Contents  
14.9.2 ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . .226  
14.9.3 ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . .229  
14.9.4 ESCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
14.9.5 ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
14.9.6 ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
14.9.7 ESCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . .236  
14.9.8 ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . .238  
14.10 ESCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
14.10.1 ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . .242  
14.10.2 ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . .244  
14.10.3 Bit Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
14.10.4 Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
Section 15. Serial Peripheral Interface (SPI) Module  
15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
15.4 Pin Name and Register Name Conventions. . . . . . . . . . . . . .249  
15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
15.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
15.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
15.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
15.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .254  
15.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .255  
15.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .256  
15.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .257  
15.7 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
15.7.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
15.7.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
15.8 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
15.9 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .264  
15.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
Advance Information  
16  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
15.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
15.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
15.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
15.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .267  
15.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
15.13.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . .268  
15.13.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . .269  
15.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
15.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
15.13.5 VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .274  
15.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
Section 16. Timer Interface A (TIMA) Module  
16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
16.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .283  
16.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
16.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
16.4.3.1  
16.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .285  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .286  
16.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .286  
16.4.4.1  
16.4.4.2  
16.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .287  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .288  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
16.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
17  
Table of Contents  
16.7 TIMA During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .291  
16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
16.9.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . . . .293  
16.9.2 TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .295  
16.9.3 TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .296  
16.9.4 TIMA Channel Status and Control Registers . . . . . . . . . . .297  
16.9.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .301  
Section 17. Timer Interface B (TIMB) Module  
17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
17.4.3.1  
17.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .309  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .310  
17.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .310  
17.4.4.1  
17.4.4.2  
17.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .312  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .313  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.7 TIMB During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .316  
17.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
17.8.1 TIMB Channel I/O Pins (PTB7/TBCH1PTB6/TBCH0) . . .316  
17.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
17.9.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . . . .317  
Advance Information  
18  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
17.9.2 TIMB Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .320  
17.9.3 TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .321  
17.9.4 TIMB Channel Status and Control Registers . . . . . . . . . . .322  
17.9.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .326  
Section 18. BEMF Module  
18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.4 BEMF Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.5 Input Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
Section 19. Keyboard Interrupt (KBD) Module  
19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
19.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
19.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
19.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
19.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
19.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .334  
19.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.8.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . .335  
19.8.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .336  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
19  
Table of Contents  
Section 20. Timebase Module (TBM)  
20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
20.6 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
20.8 Timebase Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . .343  
Section 21. Analog-to-Digital Converter (ADC) Module  
21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .345  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
21.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
21.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
21.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.7.1 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .351  
21.7.2 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . .352  
21.7.3 ADC Voltage Reference Pin (VREFH) . . . . . . . . . . . . . . . . .352  
21.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . .352  
Advance Information  
20  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
21.7.5 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .352  
21.7.6 ADC External Connections. . . . . . . . . . . . . . . . . . . . . . . . .352  
21.7.6.1  
21.7.6.2  
21.7.6.3  
VREFH and VREFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
ANx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .354  
21.8.2 ADC Data Register High (ADRH) and Data Register Low  
(ADRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
21.8.2.1  
21.8.2.2  
21.8.2.3  
21.8.2.4  
Left Justified Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
Right Justified Mode . . . . . . . . . . . . . . . . . . . . . . . . . . .358  
Left Justified Signed Data Mode . . . . . . . . . . . . . . . . . .359  
Eight Bit Truncation Mode . . . . . . . . . . . . . . . . . . . . . . .360  
21.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
Section 22. Input/Output (I/O) Ports  
22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
22.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . .366  
22.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . .369  
22.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . .372  
22.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374  
22.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374  
22.6.2 Data Direction Register D . . . . . . . . . . . . . . . . . . . . . . . . .375  
22.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
22.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
22.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . .378  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
21  
Table of Contents  
Section 23. Preliminary Electrical Specifications  
23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .383  
23.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383  
23.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .384  
23.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386  
23.8 Internal Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . .387  
23.9 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . .387  
23.10 Trimmed Accuracy of the Internal Clock Generator . . . . . . . .388  
23.10.1 Trimmed Internal Clock Generator Characteristics . . . . . .388  
23.11 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .389  
23.12 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390  
23.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
Section 24. Mechanical Specifications  
24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395  
24.3 32-Pin QFP (Case Number 873) . . . . . . . . . . . . . . . . . . . . . .396  
Section 25. Ordering Information  
25.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
Advance Information  
22  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Table of Contents  
Revision History  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
Changes from Rev 1.0 published on 17 April 2002 to Rev 2.0 pub-  
lished in May 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
Changes from Rev 0.4 published internally on 9 April 2002 to Rev  
1.0 published on 17 April 2002 . . . . . . . . . . . . . . . . . . . . . . . .400  
Changes from Rev 0.3 published on 6 September 2001 to Rev  
0.4 published internally on 9 April 2002 . . . . . . . . . . . . . . . . .400  
Changes from Rev 0.2 published on 1 August 2001 to Rev 0.3  
published on 6 September 2001. . . . . . . . . . . . . . . . . . . . . . .401  
Changes from Rev 0.0 published on 17 July 2001 to Rev 0.2 pub-  
lished on 1 August 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
Glossary  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Table of Contents  
23  
Table of Contents  
Advance Information  
24  
68HC908EY16 Rev 2.0  
Table of Contents  
MOTOROLA  
Advance Information 68HC908EY16  
List of Figures  
Figure  
Title  
Page  
1-1  
1-2  
1-3  
2-1  
2-2  
4-1  
4-2  
4-3  
4-4  
5-1  
5-2  
5-3  
5-4  
5-5  
5-6  
6-1  
6-2  
6-3  
6-4  
6-5  
6-6  
6-7  
6-8  
6-9  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .47  
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Programming Flowchart. . . . . . . . . . . . . . . . . . . . . . . .66  
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . .67  
FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .67  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .75  
SIM Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
System Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93  
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Interrupt Entry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99  
6-10 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . .100  
6-11 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
6-12 Wait Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . . . . .103  
6-13 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . .104  
6-14 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
List of Figures  
25  
List of Figures  
6-15 Stop Mode Recovery from Interrupt . . . . . . . . . . . . . . . . . . . .105  
6-16 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .106  
6-17 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . .107  
6-18 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .109  
7-1  
7-2  
7-3  
7-4  
7-5  
7-6  
7-7  
7-8  
7-9  
ICG Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . .114  
Internal Clock Generator Block Diagram . . . . . . . . . . . . . . . .116  
External Clock Generator Block Diagram. . . . . . . . . . . . . . . .119  
Clock Monitor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .121  
Internal Clock Activity Detector. . . . . . . . . . . . . . . . . . . . . . . .123  
External Clock Activity Detector . . . . . . . . . . . . . . . . . . . . . . .124  
Clock Selection Circuit Block Diagram . . . . . . . . . . . . . . . . . .125  
Code Example for Switching Clock Sources . . . . . . . . . . . . .128  
Code Example for Enabling the Clock Monitor. . . . . . . . . . . .129  
7-10 ICG Module I/O Register Summary . . . . . . . . . . . . . . . . . . . .142  
7-11 ICG Control Register (ICGCR) . . . . . . . . . . . . . . . . . . . . . . . .144  
7-12 ICG Multiplier Register (ICGMR) . . . . . . . . . . . . . . . . . . . . . .146  
7-13 ICG Trim Register (ICGTR) . . . . . . . . . . . . . . . . . . . . . . . . . .147  
7-14 ICG DCO Divider Control Register (ICGDVR) . . . . . . . . . . . .147  
7-15 ICG DCO Stage Control Register (ICGDSR) . . . . . . . . . . . . .148  
8-1  
8-2  
9-1  
9-2  
9-3  
9-4  
9-5  
9-6  
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . .150  
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . .150  
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .159  
I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159  
Break Status and Control Register (BSCR) . . . . . . . . . . . . . .162  
Break Address Registers (BRKH and BRKL) . . . . . . . . . . . . .163  
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . .163  
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . .165  
10-1 Normal Monitor Mode Circuit . . . . . . . . . . . . . . . . . . . . . . . . .171  
10-2 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10-3 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10-4 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
10-5 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175  
10-6 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . .179  
10-7 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .180  
11-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11-2 COP Control Register (COPCTL). . . . . . . . . . . . . . . . . . . . . .185  
12-1 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
12-2 LVI Status Register (LVISR). . . . . . . . . . . . . . . . . . . . . . . . . .190  
Advance Information  
26  
68HC908EY16 Rev 2.0  
List of Figures  
MOTOROLA  
List of Figures  
13-1 IRQ Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
13-2 IRQ Interrupt Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196  
13-3 IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . .198  
14-1 ESCI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . .205  
14-2 ESCI I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . .206  
14-3 SCI Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
14-4 ESCI Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208  
14-5 ESCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .213  
14-6 Receiver Data Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
14-7 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217  
14-8 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218  
14-9 ESCI Control Register 1 (SCC1) . . . . . . . . . . . . . . . . . . . . . .224  
14-10 ESCI Control Register 2 (SCC2) . . . . . . . . . . . . . . . . . . . . . .227  
14-11 ESCI Control Register 3 (SCC3) . . . . . . . . . . . . . . . . . . . . . .229  
14-12 ESCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . .231  
14-13 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233  
14-14 ESCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . .235  
14-15 ESCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . . .236  
14-16 ESCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . .236  
14-17 ESCI Prescaler Register (SCPSC). . . . . . . . . . . . . . . . . . . . .238  
14-18 ESCI Arbiter Control Register (SCIACTL) . . . . . . . . . . . . . . .242  
14-19 ESCI Arbiter Data Register (SCIADAT) . . . . . . . . . . . . . . . . .244  
14-20 Bit Time Measurement with ACLK = 0 . . . . . . . . . . . . . . . . . .245  
14-21 Bit Time Measurement with ACLK = 1, Scenario A . . . . . . . .245  
14-22 Bit Time Measurement with ACLK = 1, Scenario B . . . . . . . .245  
15-1 SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .251  
15-2 Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . .252  
15-3 Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . .255  
15-4 Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . .256  
15-5 Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . .258  
15-6 Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . .260  
15-7 Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . .261  
15-8 SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . .264  
15-9 SPRF/SPTE CPU Interrupt Timing. . . . . . . . . . . . . . . . . . . . .265  
15-10 CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270  
15-11 SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . .272  
15-12 SPI Status and Control Register (SPSCR). . . . . . . . . . . . . . .275  
15-13 SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .278  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
List of Figures  
27  
List of Figures  
16-1 TIMA Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281  
16-2 TIMA I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . .281  
16-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .287  
16-4 TIMA Status and Control Register (TASC). . . . . . . . . . . . . . .293  
16-5 TIMA Counter Registers (TACNTH and TACNTL) . . . . . . . . .295  
16-6 TIMA Counter Modulo Registers (TMODH and TMODL) . . . .296  
16-7 TIMA Channel Status and Control Registers (TASC0TASC1)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297  
16-8 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301  
16-9 TIMA Channel Registers (TACH0H/LTACH1H/L) . . . . . . . .302  
17-1 TIMB Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305  
17-2 TIMB I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . .305  
17-3 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . .311  
17-4 TIMB Status and Control Register (TBSC). . . . . . . . . . . . . . .318  
17-5 TIMB Counter Registers (TBCNTH and TBCNTL) . . . . . . . . .320  
17-6 TIMB Counter Modulo Registers (TMODH and TMODL) . . . .321  
17-7 TIMB Channel Status and Control Registers (TBSC0TBSC1)  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322  
17-8 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325  
17-9 TIMB Channel Registers (TBCH0H/LTBCH1H/L) . . . . . . . .326  
18-1 BEMF Register (BEMF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
19-1 Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . . .331  
19-2 KBD I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . .331  
19-3 Keyboard Status and Control Register (KBSCR) . . . . . . . . . .335  
19-4 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . .336  
20-1 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .339  
20-2 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . .343  
21-1 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
21-2 8-Bit Truncation Mode Error . . . . . . . . . . . . . . . . . . . . . . . . . .350  
21-3 ADC Status and Control Register (ADSCR). . . . . . . . . . . . . .354  
21-4 ADC Data Register High (ADRH) and Low (ADRL) . . . . . . . .357  
21-5 ADC Data Register High (ADRH) and Low (ADRL) . . . . . . . .358  
21-6 ADC Data Register High (ADRH) and Low (ADRL) . . . . . . . .359  
21-7 ADC Data Register High (ADRH) and Low (ADRL) . . . . . . . .360  
21-8 ADC Clock Register (ADCLK) . . . . . . . . . . . . . . . . . . . . . . . .361  
22-1 68HC908EY16 I/O Port Register Summary . . . . . . . . . . . . . .364  
22-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . .366  
Advance Information  
28  
68HC908EY16 Rev 2.0  
List of Figures  
MOTOROLA  
List of Figures  
22-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
22-5 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22-6 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . .369  
22-7 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370  
22-8 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . .371  
22-9 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . .372  
22-10 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373  
22-11 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . .374  
22-12 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . .375  
22-13 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375  
22-14 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . .377  
22-15 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . .378  
22-16 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379  
23-1  
23-2  
SPI Master Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391  
SPI Slave Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .392  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
List of Figures  
29  
List of Figures  
Advance Information  
30  
68HC908EY16 Rev 2.0  
List of Figures  
MOTOROLA  
Advance Information 68HC908EY16  
List of Tables  
Table  
Title  
Page  
2-1  
4-1  
5-1  
5-2  
6-1  
6-2  
6-3  
7-1  
7-2  
7-3  
7-4  
8-1  
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Protect Start Address Examples. . . . . . . . . . . . . . . . . . . . . . . .68  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106  
Correction Sizes from DLF to DCO . . . . . . . . . . . . . . . . . . . .118  
Quantization Error in ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . .131  
Typical Settling Time Examples . . . . . . . . . . . . . . . . . . . . . . .136  
ICG Module Register Bit Interaction Summary. . . . . . . . . . . .143  
External Clock Option Settings. . . . . . . . . . . . . . . . . . . . . . . .152  
10-1 Mode Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169  
10-2 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
10-3 Monitor Mode Vector Relocation . . . . . . . . . . . . . . . . . . . . . .172  
10-4 Normal Monitor Mode Baud Rate Selection . . . . . . . . . . . . . .174  
10-5 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . .176  
10-6 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . .176  
10-7 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . .177  
10-8 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . .177  
10-9 READSP (Read Stack Pointer) Command. . . . . . . . . . . . . . .178  
10-10 RUN (Run User Program) Command. . . . . . . . . . . . . . . . . . .178  
12-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
14-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14-2 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
14-3 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215  
14-4 Stop Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
14-5 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . .225  
14-6 ESCI LIN Control Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
List of Tables  
31  
List of Tables  
14-7 ESCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . .237  
14-8 ESCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . .238  
14-9 ESCI Prescaler Division Ratio . . . . . . . . . . . . . . . . . . . . . . . .239  
14-10 ESCI Prescaler Divisor Fine Adjust . . . . . . . . . . . . . . . . . . . .239  
14-11 ESCI Baud Rate Selection Examples. . . . . . . . . . . . . . . . . . .241  
14-12 ESCI Arbiter Selectable Modes . . . . . . . . . . . . . . . . . . . . . . .242  
15-1 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
15-2 I/O Register Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249  
15-3 SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
15-4 SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
15-5 SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15-6 SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . .277  
16-1 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294  
16-2 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .299  
17-1 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319  
17-2 Mode, Edge, and Level Selection. . . . . . . . . . . . . . . . . . . . . .324  
20-1 Timebase Divider Selection . . . . . . . . . . . . . . . . . . . . . . . . . .340  
21-1 Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .356  
21-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
22-1 Port A Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367  
22-2 Port B Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .370  
22-3 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373  
22-4 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376  
22-5 Port E Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379  
25-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
Advance Information  
32  
68HC908EY16 Rev 2.0  
List of Tables  
MOTOROLA  
Advance Information 68HC908EY16  
Section 1. General Description  
1.1 Contents  
1.2  
1.3  
1.4  
1.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
1.6  
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Power Supply Pins (VDD and VSS). . . . . . . . . . . . . . . . . . . .40  
Oscillator Pins (PTC4/OSC1 and PTC3/OSC2). . . . . . . . . .40  
External Reset Pin (RST). . . . . . . . . . . . . . . . . . . . . . . . . . .40  
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . .40  
Analog Power Supply/Reference Pins (VDDA, VREFH, VSSA  
and VREFL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Port A I/O Pins (PTA6/SS, PTA5/SPSCK,  
1.6.1  
1.6.2  
1.6.3  
1.6.4  
1.6.5  
1.6.6  
1.6.7  
1.6.8  
1.6.9  
PTA4/KBD4PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Port B I/O Pins (PTB7/AD7/TBCH1, PTB6/AD6/TBCH0,  
PTB5/AD5PTB0/AD0) . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Port C I/O Pins (PTC4/OSC1, PTC3/OSC2, PTC2/MCLK,  
PTC1/MOSI, PTC0/MISO) . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Port D I/O Pins (PTD1/TACH1PTD0/TACH0) . . . . . . . . . .42  
1.6.10 Port E I/O Pins (PTE1/RxDPTE0/TxD). . . . . . . . . . . . . . . .42  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
General Description  
33  
General Description  
1.2 Introduction  
The 68HC908EY16 is a member of the low-cost, high-performance  
M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the  
family use the enhanced M68HC08 central processor unit (CPU08) and  
are available with a variety of modules, memory sizes and types, and  
package types.  
1.3 Features  
For convenience, features have been organized to reflect:  
Standard features of the 68HC908EY16  
Features of the CPU08  
Standard features of the MC68HC908EY16 include:  
High-performance M68HC08 architecture optimized for  
C-compilers  
Fully upward-compatible object code with M6805, M146805, and  
M68HC05 Families  
8-MHz internal bus frequency at 5V  
Internal oscillator requiring no external components:  
Software selectable bus frequencies  
25 percent accuracy with trim capability to 2 percent  
Clock monitor  
Option to allow use of external clock source or external  
crystal/ceramic resonator  
15,872 bytes of on-chip FLASH memory with in-circuit  
programming  
FLASH program memory security1  
512 bytes of on-chip random-access memory (RAM)  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Advance Information  
34  
68HC908EY16 Rev 2.0  
General Description  
MOTOROLA  
General Description  
Features  
Low voltage inhibit (LVI) module  
Internal clock generator module (ICG)  
Two 16-bit, 2-channel timer (TIMA and TIMB) interface modules  
with selectable input capture, output compare, and pulse-width  
modulation (PWM) capability on each channel  
8-channel, 10-bit successive approximation analog-to-digital  
converter (ADC)  
Enhanced serial communications interface module (ESCI) for  
local interconnect network (LIN) connectivity  
Serial peripheral interface (SPI)  
Timebase Module (TBM)  
5-bit keyboard interrupt (KBI) with wakeup feature  
24 general-purpose input/output (I/O) pins  
External asynchronous interrupt pin with internal pullup (IRQ)  
System protection features:  
Optional computer operating properly (COP) reset  
Illegal opcode detection with reset  
Illegal address detection with reset  
32-pin quad flat pack (QFP) package  
Low-power design; fully static with stop and wait modes  
Internal pullups on IRQ and RST to reduce customer system cost  
Standard low-power modes of operation:  
Wait mode  
Stop mode  
Master reset pin (RST) and power-on reset (POR)  
BREAK module (BRK) to allow single breakpoint setting during  
in-circuit debugging  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
General Description  
35  
General Description  
Higher current source capability on nine port lines for LED drive  
(PTA6/SS, PTA5/SPSCK, PTA4/KDB4, PTA3/KBD3,  
PTA2/KBD2, PTA1/KBD1, PTA0/KBD0, PTC1/MOSI, and  
PTC0/MISO)  
Features of the CPU08 include:  
Enhanced HC05 programming model  
Extensive loop control functions  
16 addressing modes (eight more than the HC05)  
16-bit index register and stack pointer  
Memory-to-memory data transfers  
Fast 8 × 8 multiply instruction  
Fast 16 ÷ 8 divide instruction  
Binary-coded decimal (BCD) instructions  
Optimization for controller applications  
Third party C language support  
1.4 MCU Block Diagram  
Figure 1-1 shows the structure of the MC68HC908EY16.  
Advance Information  
36  
68HC908EY16 Rev 2.0  
MOTOROLA  
General Description  
INTERNAL BUS  
M68HC08 CPU  
PTA6/SS  
PTA5/SPSCK  
PTA4/KDB4  
SINGLE BREAKPOINT  
BREAK MODULE  
CPU  
REGISTERS  
ARITHMETIC/LOGIC  
UNIT (ALU)  
PTA3/KBD3  
PTA2/KBD2  
5-BIT KEYBOARD  
CONTROL AND STATUS REGISTERS — 64 BYTES  
USER FLASH — 15,872 BYTES  
INTERRUPT MODULE  
PTA1/KBD1  
PTA0/KBD0  
2-CHANNEL TIMER INTERFACE  
MODULE A  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
USER RAM — 512 BYTES  
2-CHANNEL TIMER INTERFACE  
MODULE B  
MONITOR ROM — 310 BYTES  
PTB5/AD5  
PTB4/AD4  
FLASH PROGRAMMING (BURN-IN) ROM — 1024 BYTES  
USER FLASH VECTOR SPACE — 36 BYTES  
PTB3/AD3  
ENHANCED  
SERIAL COMMUNICATION  
INTERFACE MODULE  
PTB2/AD2  
PTB1/AD1  
PTB0/AD0  
COMPUTER OPERATING  
PROPERLY MODULE  
PTC4/OSC1  
PTC3/OSC2  
INTERNAL CLOCK  
OSC2  
OSC1  
PTC2/MCLK  
PTC1/MOSI  
GENERATOR MODULE  
SERIAL PERIPHERAL  
INTERFACE MODULE  
PTC0/MISO  
PTD1/TACH1  
PTD0/TACH0  
CONFIGURATION REGISTER  
MODULE  
24 INTERNAL SYSTEM  
INTEGRATION MODULE  
RST  
IRQ  
PTE1/RxD  
PTE0/TxD  
PERIODIC WAKEUP  
TIMEBASE MODULE  
SINGLE EXTERNAL IRQ  
MODULE  
V
V
REFH  
DDA  
POWER-ON RESET  
ARBITER  
MODULE  
10-BIT ANALOG-TO-DIGITAL  
CONVERTER MODULE  
MODULE  
V
REFL  
V
SSA  
SECURITY  
MODULE  
PRESCALER  
MODULE  
V
DD  
POWER  
V
SS  
9-PIN TEST MODE  
MODULE  
BEMF MODULE  
Figure 1-1. MCU Block Diagram  
General Description  
1.5 Pin Assignments  
Figure 1-2 shows the pin assignments for the MC68HC908EY16.  
24  
23  
22  
21  
20  
19  
18  
17  
PTA2/KBD2  
PTA1/KBD1  
1
PTE1/RxD  
PTE0/TxD  
PTC0/MISO  
PTC1/MOSI  
PTA5/SPSCK  
PTA6/SS  
2
3
4
5
6
7
8
PTA0/KBD0  
PTB7/AD7/TBCH1  
PTB6/AD6/TBCH0  
PTC4/OSC1  
PTC3/OSC2  
PTB0/AD0  
IRQ  
PTC2/MCLK  
Figure 1-2. Pin Assignments  
Advance Information  
38  
68HC908EY16 Rev 2.0  
General Description  
MOTOROLA  
 
General Description  
Pin Functions  
1.6 Pin Functions  
Descriptions of the pin functions are provided here.  
1.6.1 Power Supply Pins (VDD and VSS)  
VDD and VSS are the power supply and ground pins. The MCU operates  
from a single power supply.  
Fast signal transitions on MCU pins place high, short-duration current  
demands on the power supply. To prevent noise problems, take special  
care to provide power supply bypassing at the MCU as Figure 1-3  
shows. Place the C1 bypass capacitor as close to the MCU as possible.  
Use a high-frequency-response ceramic capacitor for C1. C2 is an  
optional bulk current bypass capacitor for use in applications that require  
the port pins to source high current levels.  
MCU  
V
V
SS  
DD  
C1  
0.1 µF  
+
C2  
V
DD  
Note: Component values shown represent typical applications.  
Figure 1-3. Power Supply Bypassing  
68HC908EY16 Rev 2.0  
Advance Information  
39  
MOTOROLA  
General Description  
 
General Description  
1.6.2 Oscillator Pins (PTC4/OSC1 and PTC3/OSC2)  
The OSC1 and OSC2 pins are available through programming options  
in the configuration register. These pins then become the connections to  
an external clock source or crystal/ceramic resonator.  
When selecting PTC4 and PTC3 as I/O, OSC1 and OSC2 functions are  
not available.  
1.6.3 External Reset Pin (RST)  
A logic 0 on the RST pin forces the MCU to a known startup state. RST  
is bidirectional, allowing a reset of the entire system. It is driven low when  
any internal reset source is asserted. This pin contains an internal pullup  
resistor that is always activated, even when the reset pin is pulled low.  
See Section 6. System Integration Module (SIM).  
1.6.4 External Interrupt Pin (IRQ)  
IRQ is an asynchronous external interrupt pin. This pin contains an  
internal pullup resistor that is always activated, even when the IRQ pin  
is pulled low. See Section 13. External Interrupt (IRQ).  
1.6.5 Analog Power Supply/Reference Pins (VDDA, VREFH, VSSA and VREFL  
)
VDDA and VSSA are the power supply pins for the analog-to-digital  
converter (ADC). Decoupling of these pins should be as per the digital  
supply.  
NOTE: VREFH is the high reference supply for the ADC. VDDA should be tied to  
the same potential as VDD via separate traces.  
VREFL is the low reference supply for the ADC. VSSA should be tied to the  
same potential as VSS via separate traces.  
See Section 21. Analog-to-Digital Converter (ADC) Module.  
Advance Information  
40  
68HC908EY16 Rev 2.0  
General Description  
MOTOROLA  
General Description  
Pin Functions  
1.6.6 Port A I/O Pins (PTA6/SS, PTA5/SPSCK, PTA4/KDB4PTA0/KBD0)  
Port A input/output (I/O) pins (PTA6/SS, PTA5/SPSCK, PTA4/KDB4,  
PTA3/KBD3, PTA2/KBD2, PTA1/KBD1, and PTA0/KBD0) are special-  
function, bidirectional I/O port pins. PTA5 and PTA6 are shared with the  
serial peripheral interface (SPI). PTA4-PTA0 can be programmed to  
serve as keyboard interrupt pins.  
See Section 22. Input/Output (I/O) Ports and Section 13. External  
Interrupt (IRQ).  
1.6.7 Port B I/O Pins (PTB7/AD7/TBCH1, PTB6/AD6/TBCH0, PTB5/AD5PTB0/AD0)  
PTB7/AD7/TBCH1, PTB6/AD6/TBCH0, and PTB5/AD5PTB0/AD0 are  
special-function, bidirectional I/O port pins that can also be used for ADC  
inputs. PTB7/AD7/TBCH1 and PTB6/AD6/TBCH0 are special function  
bidirectional I/O port pins that can also be used for timer interface pins.  
See Section 16. Timer Interface A (TIMA) Module and Section 21.  
Analog-to-Digital Converter (ADC) Module.  
1.6.8 Port C I/O Pins (PTC4/OSC1, PTC3/OSC2, PTC2/MCLK, PTC1/MOSI, PTC0/MISO)  
PTC4/OSC1PTC0/MISO are special-function, bidirectional I/O port  
pins. See Section 22. Input/Output (I/O) Ports. PTC3/OSC2 and  
PTC4/OSC1 are shared with the on-chip oscillator circuit through  
configuration options. See Section 7. Internal Clock Generator (ICG)  
Module.  
When applications require:  
PTC3/OSC2 can be programmed to be OSC2  
PTC4/OSC1 can be programmed to be OSC1  
PTC2/MCLK is software selectable to be MCLK, or bus clock out.  
PTC1/MOSI can be programmed to be the MOSI signal for the SPI.  
PTC0/MISO can be programmed to be the MISO signal for the SPI.  
68HC908EY16 Rev 2.0  
Advance Information  
41  
MOTOROLA  
General Description  
General Description  
1.6.9 Port D I/O Pins (PTD1/TACH1PTD0/TACH0)  
PTD1/TACH1PTD0/TACH0 are special-function, bidirectional I/O port  
pins that can also be programmed to be timer pins.  
See Section 16. Timer Interface A (TIMA) Module and Section 22.  
Input/Output (I/O) Ports.  
1.6.10 Port E I/O Pins (PTE1/RxDPTE0/TxD)  
PTE1/RxDPTE0/TxD are special-function, bidirectional I/O port pins  
that can also be programmed to be enhanced serial communication  
interface (ESCI) pins.  
See Section 14. Enhanced Serial Communications Interface (ESCI)  
Module and Section 22. Input/Output (I/O) Ports.  
NOTE: Any unused inputs and I/O ports should be tied to an appropriate logic  
level (either VDD or VSS). Although the I/O ports of the 68HC908EY16 do  
not require termination, termination is recommended to reduce the  
possibility of electro-static discharge damage.  
Advance Information  
42  
68HC908EY16 Rev 2.0  
General Description  
MOTOROLA  
Advance Information 68HC908EY16  
Section 2. Memory Map  
2.1 Contents  
2.2  
2.3  
2.4  
2.5  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . .43  
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
2.2 Introduction  
The M68HC08 central processor unit (CPU08) can address 64 Kbytes of  
memory space. The memory map, shown in Figure 2-1, includes:  
16 Kbytes of FLASH memory, 15, 872 bytes of user space  
512 bytes of random-access memory (RAM)  
36 bytes of user-defined vectors  
310 bytes of monitor routines in read-only memory (ROM)  
1024 bytes of integrated FLASH burn-in routines in ROM  
2.3 Unimplemented Memory Locations  
Accessing an unimplemented location can cause an illegal address  
reset. In the memory map (Figure 2-1) and in register figures in this  
document, unimplemented locations are shaded.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Memory Map  
43  
 
 
Memory Map  
2.4 Reserved Memory Locations  
Accessing a reserved location can have unpredictable effects on  
microcontroller unit (MCU) operation. In the Figure 2-1 and in register  
figures in this document, reserved locations are marked with the word  
reserved or with the letter R.  
2.5 Input/Output (I/O) Section  
Most of the control, status, and data registers are in the zero page area  
of $0000$003F. Additional I/O registers have these addresses:  
$FE00; SIM break status register, SBSR  
$FE01; SIM reset status register, SRSR  
$FE03; SIM break flag control register, SBFCR  
$FE08; FLASH control register, FLCR  
$FE09; break address register high, BRKH  
$FE0A; break address register low, BRKL  
$FE0B; break status and control register, BRKSCR  
$FE0C; LVI status register, LVISR  
$FF7E; FLASH block protect register, FLBPR  
Data registers are shown in Figure 2-2. and Table 2-1 is a list of vector  
locations.  
Advance Information  
44  
68HC908EY16 Rev 2.0  
Memory Map  
MOTOROLA  
Memory Map  
Input/Output (I/O) Section  
$0000  
I/O Registers  
64 Bytes  
$003F  
$0040  
RAM  
512 Bytes  
$023F  
$0240  
Unimplemented  
3520 Bytes  
$0FFF  
$1000  
Reserved for Integrated FLASH Burn-in Routines  
1024 Bytes  
$13FF  
$1400  
Unimplemented  
44,032 Bytes  
$BFFF  
$C000  
FLASH Memory  
15,872 Bytes  
$FDFF  
$FE00  
$FE01  
$FE02  
$FE03  
$FE04  
$FE05  
$FE06  
$FE07  
$FE08  
$FE09  
$FE0A  
SIM Break Status Register (SBSR)  
SIM Reset Status Register (SRSR)  
Reserved  
SIM Break Flag Control Register (SBFCR)  
RESERVED  
RESERVED  
RESERVED  
Reserved for FLASH Test Control Register (FLTCR)  
FLASH Control Register (FLCR)  
Break Address Register High (BRKH)  
Break Address Register Low (BRKL)  
Figure 2-1. Memory Map  
68HC908EY16 Rev 2.0  
Advance Information  
45  
MOTOROLA  
Memory Map  
Memory Map  
$FE0B  
$FE0C  
$FE0D  
Break Status and Control Register (BRKSCR)  
LVI Status Register (LVISR)  
Reserved  
3 Bytes  
$FE0F  
$FE10  
Reserved  
16 Bytes  
Reserved for Compatibility with Monitor Code  
for A-Family Parts  
$FE1F  
$FE20  
Monitor ROM 310 Bytes  
FF55  
FF56  
Unimplemented  
40 Bytes  
FF7D  
$FF7E  
$FF7F  
FLASH Block Protect Register (FLBPR)  
Unimplemented  
93 Bytes  
$FFDB  
$FFDC  
FLASH Vectors  
36 Bytes  
$FFFF  
Note: Locations $FFF6$FFFD are reserved for eight security bytes.  
Figure 2-1. Memory Map (Continued)  
Advance Information  
46  
68HC908EY16 Rev 2.0  
MOTOROLA  
Memory Map  
Memory Map  
Input/Output (I/O) Section  
Addr. Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
Port A Data Register  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
(PTA) Write:  
See 365.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB5  
0
PTB2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
(PTB) Write:  
See 368.  
Reset:  
Read:  
Port C Data Register  
PTC2  
0
(PTC) Write:  
See 371.  
Reset:  
Read:  
Write:  
Reset:  
Read:  
0
0
0
0
0
0
Port D Data Register  
(PTD)  
See 374.  
Unaffected by reset  
Data Direction  
Register A (DDRA) Write:  
DDRA6  
0
DDRA5  
0
DDRA4  
0
DDRA3  
0
DDRA2  
DDRA1  
DDRA0  
See 366.  
Reset:  
0
0
DDRB2  
0
0
DDRB1  
0
0
DDRB0  
0
Read:  
Data Direction  
Register B (DDRB) Write:  
DDRB7  
0
DDRB6  
DDRB5  
DDRB4  
0
DDRB3  
0
See 369.  
Reset:  
0
0
0
0
Read:  
Data Direction  
Register C (DDRC) Write:  
MCLKEN  
DDRC4  
DDRC3  
DDRC2 DDRC1 DDRC0  
See 372.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Write:  
Reset:  
Read:  
Data Direction  
Register D (DDRD)  
See 375.  
DDRD1 DDRD0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Port E Data Register  
PTE1  
PTE0  
(PTE) Write:  
See 377.  
Reset:  
Unaffected by reset  
R = Reserved  
= Unimplemented  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 9)  
68HC908EY16 Rev 2.0  
Advance Information  
47  
MOTOROLA  
Memory Map  
Memory Map  
Addr. Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
$0009  
Reserved  
R
R
R
R
R
R
R
R
Read:  
0
0
0
0
0
0
Data Direction  
DDRE1  
DDRE0  
$000A  
Register E (DDRE) Write:  
See 378.  
Reset:  
0
0
0
0
0
0
0
0
Read: BEMF7  
Write:  
BEMF6  
BEMF5  
BEMF4  
BEMF3  
BEMF2  
BEMF1  
BEMF0  
BEMF Register (BEMF)  
See 328.  
$000B  
$000C  
Reset:  
0
0
0
0
0
0
0
0
Reserved  
R
R
R
R
R
R
R
R
Read:  
SPI Control Register  
SPRIE  
0
R
0
SPMSTR CPOL  
CPHA  
SPWOM  
0
SPE  
0
SPTIE  
0
$000D  
$000E  
$000F  
$0010  
$0011  
$0012  
(SPCR) Write:  
See 271.  
Reset:  
1
0
1
Read: SPRF  
OVRF  
MODF  
SPTE  
SPI Status and Control  
ERRIE  
MODFEN SPR1  
SPR0  
Register (SPSCR) Write:  
See 274.  
Reset:  
0
0
0
0
1
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR) Write:  
See 277.  
Reset:  
Indeterminate after reset  
Read:  
ESCI Control Register 1  
LOOPS  
0
ENSCI  
TXINV  
M
0
WAKE  
ILTY  
0
PEN  
0
PTY  
0
(SCC1) Write:  
See 224.  
Reset:  
0
TCIE  
0
0
0
TE  
0
Read:  
ESCI Control Register 2  
SCTIE  
SCRIE  
ILIE  
0
RE  
0
RWU  
0
SBK  
0
(SCC2) Write:  
See 227.  
Reset:  
0
0
R
0
Read:  
R8  
ESCI Control Register 3  
T8  
0
R
ORIE  
0
NEIE  
0
FEIE  
0
PEIE  
0
(SCC3) Write:  
See 229.  
Reset:  
U
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 9)  
Advance Information  
48  
68HC908EY16 Rev 2.0  
Memory Map  
MOTOROLA  
Memory Map  
Input/Output (I/O) Section  
Addr. Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
$001A  
$001B  
(SCS1) Write:  
See 231.  
Reset:  
Read:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See 235.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
ESCI Data Register  
(SCDR) Write:  
See 236.  
Reset:  
Unaffected by reset  
Read:  
ESCI Baud Rate  
R
0
LINR  
0
SCP1  
0
SCP0  
0
R
0
SCR2  
SCR1  
SCR0  
Register (SCBR) Write:  
See 236.  
Reset:  
0
PSSB2  
0
0
PSSB1  
0
0
PSSB0  
0
Read:  
ESCI Prescale Register  
PDS2  
0
PDS1  
PDS0  
0
PSSB4  
0
PSSB3  
(SCPSC) Write:  
See 238.  
Reset:  
0
0
Read:  
Write:  
Reset:  
ALOST  
AFIN  
ARUN AROVFL ARD8  
ESCII Arbiter Control  
Register  
AM1  
AM0  
ACLK  
(SCIACTL)  
See 242.  
0
0
0
0
0
0
0
0
Read: ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
ESCI Arbiter Data  
Register (SCIACTL) Write:  
See 244.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
KEYF  
0
ACKK  
0
Keyboard Status  
and Control Register  
(INTKBSCR)  
IMASKK MODEK  
See 335.  
0
0
0
0
0
0
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Keyboard Interrupt  
Enable Register  
(INTKBIER)  
KBIE4  
KBIE2  
See 336.  
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9)  
68HC908EY16 Rev 2.0  
Advance Information  
49  
MOTOROLA  
Memory Map  
Memory Map  
Addr. Register Name  
Bit 7  
Read: TBIF  
Write:  
6
5
4
3
0
2
1
Bit 0  
TBR2  
TBR1  
TBR0  
TBIE  
TBON  
R
Timebase Control  
TACK  
$001C  
$001D  
$001E  
$001F  
Register (TBCR)  
See 343.  
Reset:  
Read:  
0
0
0
0
0
0
0
0
0
0
0
0
IRQF  
0
ACK  
0
IRQ Status and Control  
IMASK  
0
MODE  
0
Register (INTSCR) Write:  
See 198.  
Reset:  
0
0
0
0
0
Read:  
ESCI  
EXT-  
EXT-  
EXT-  
CLKEN CLKSEL  
TMB- OSCENIN- SSB-  
R
Configuration Register 2  
BDSRC XTALEN SLOW  
STOP  
PUENB  
Write:  
(CONFIG2)  
See 150.  
Reset:  
0
0
0
0
0
0
0
0
1
Read:  
Configuration Register 1  
COPRS LVISTOP LVIRSTD LVIPWRD  
SSREC  
0
STOP  
0
COPD  
0
(CONFIG1) Write:  
See 150.  
Reset:  
0
0
0
0
0
1. The LVI5OR3 bit is cleared only by a power-on reset (POR).  
Read:  
TOF  
0
0
Timer A Status and  
TOIE  
TSTOP  
R
PS2  
PS1  
PS0  
$0020 Control Register (TASC) Write:  
TRST  
0
See 293.  
Reset:  
0
0
1
0
0
0
0
Read: BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Timer A Counter  
$0021 Register High (TACNTH) Write:  
See 295.  
Reset:  
0
0
0
0
0
0
0
0
Read: BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Timer A Counter  
$0022 Register Low (TACNTL) Write:  
See 295.  
Reset:  
0
BIT 15  
1
0
BIT 14  
1
0
BIT 13  
1
0
0
BIT 11  
1
0
BIT 10  
1
0
BIT 9  
1
0
BIT 8  
1
Read:  
Write:  
Reset:  
Timer A Counter Modulo  
Register High  
(TAMODH)  
BIT 12  
$0023  
See 296.  
1
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 9)  
Advance Information  
50  
68HC908EY16 Rev 2.0  
Memory Map  
MOTOROLA  
 
Memory Map  
Input/Output (I/O) Section  
Addr. Register Name  
Bit 7  
BIT 7  
1
6
BIT 6  
1
5
BIT 5  
1
4
BIT 4  
1
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
Timer A Counter Modulo  
$0024 Register Low (TAMODL) Write:  
See 296.  
Reset:  
Read: CH0F  
Timer A Channel 0  
Status and Control  
Register (TASC0)  
See 297.  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
$0025  
Write:  
Reset:  
Read:  
0
0
Timer A Channel 0  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0026 Register High (TACH0H) Write:  
See 302.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
Timer A Channel 0  
$0027 Register Low (TACH0L) Write:  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
See 302.  
Reset:  
Read: CH1F  
0
R
0
Timer A Channel 1  
Status and Control  
Register (TASC1)  
See 302.  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
$0028  
Write:  
Reset:  
Read:  
0
0
Timer A Channel 1  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0029 Register High (TACH1H) Write:  
See 302.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Read:  
Timer A Channel 1  
$002A Register Low (TACH1L) Write:  
BIT 7  
BIT 6  
TOIE  
BIT 5  
BIT 2  
PS2  
BIT 1  
PS1  
BIT 0  
PS0  
See 302.  
Reset:  
Indeterminate after reset  
Read:  
TOF  
0
0
Timer B Status and  
$002B Control Register (TBSC) Write:  
TSTOP  
R
TRST  
See 318.  
Reset:  
0
0
1
0
0
0
0
0
Read: BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Timer B Counter  
$002C Register High (TBCNTH) Write:  
See 320.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 9)  
68HC908EY16 Rev 2.0  
Advance Information  
51  
MOTOROLA  
Memory Map  
Memory Map  
Addr. Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read: BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Timer B Counter  
$002D Register Low (TBCNTL) Write:  
See 320.  
Reset:  
0
BIT 15  
1
0
BIT 14  
1
0
BIT 13  
1
0
BIT 12  
1
0
BIT 11  
1
0
BIT 10  
1
0
BIT 9  
1
0
BIT 8  
1
Read:  
Write:  
Reset:  
Read:  
Timer B Counter Modulo  
Register High  
(TBMODH)  
$002E  
See 321.  
Timer B Counter Modulo  
$002F Register Low (TBMODL) Write:  
BIT 7  
BIT 6  
1
BIT 5  
1
BIT 4  
1
BIT 3  
1
BIT 2  
1
BIT 1  
1
BIT 0  
1
See 321.  
Reset:  
1
Read: CH0F  
Timer B Channel 0  
Status and Control  
Register (TBSC0)  
See 322.  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
$0030  
Write:  
Reset:  
Read:  
0
0
Timer B Channel 0  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0031 Register High (TBCH0H) Write:  
See 326.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
Timer B Channel 0  
$0032 Register Low (TBCH0L) Write:  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
See 326.  
Reset:  
Read: CH1F  
0
R
0
Timer B Channel 1  
Status and Control  
Register (TBSC1)  
See 322.  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
$0033  
Write:  
Reset:  
Read:  
0
0
Timer B Channel 1  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
$0034 Register High (TBCH1H) Write:  
See 326.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Read:  
Timer B Channel 1  
$0035 Register Low (TBCH1L) Write:  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
See 326.  
Reset:  
Indeterminate after reset  
R = Reserved  
= Unimplemented  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 9)  
Advance Information  
52  
68HC908EY16 Rev 2.0  
Memory Map  
MOTOROLA  
Memory Map  
Input/Output (I/O) Section  
Addr. Register Name  
Bit 7  
CMIE  
0
6
CMF  
0
5
4
CS  
0
3
ICGON  
1
2
1
ECGON  
0
Bit 0  
Read:  
ICGS  
ECGS  
ICG Control Register  
CMON  
$0036  
$0037  
$0038  
$0039  
(ICGCR) Write:  
See 144.  
Reset:  
0
0
N5  
0
N2  
0
N0  
Read:  
ICG Multiplier Register  
N6  
N4  
1
N3  
N1  
(ICGMR) Write:  
See 146.  
Reset:  
0
TRIM7  
1
0
TRIM6  
0
0
0
1
0
1
Read:  
ICG Trim Register  
TRIM5  
0
TRIM4  
0
TRIM3  
TRIM2  
TRIM1  
TRIM0  
(ICGTR) Write:  
See 147.  
Reset:  
0
0
0
0
Read:  
Write:  
Reset:  
DDIV3  
DDIV2  
DDIV1  
DDIV0  
ICG Divider Control  
Register  
(ICGDVR)  
See 147.  
0
0
DSTG6  
R
0
DSTG5  
R
0
U
U
U
DSTG1  
R
U
DSTG0  
R
Read: DSTG7  
DSTG4 DDSTG3 DSTG2  
ICG DCO Stage Control  
$003A  
$003B  
Register (ICGDSR) Write:  
R
U
R
R
U
R
R
U
R
R
U
R
See 148.  
Reset:  
U
U
U
U
Reserved  
R
R
R
R
Read:  
Write:  
Reset:  
Read:  
Analog-to-Digital Status  
and Control Register  
(ADSCR)  
COCO  
AIEN  
ADCO  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
$003C  
See 354.  
0
0
0
0
0
0
1
0
1
0
1
0
1
1
ADCH9  
ADCH8  
Analog-to-Digital Data  
$003D Register High (ADRH) Write:  
See 357.  
Reset:  
Unaffected by reset  
AD4 AD3  
Read:  
AD7  
AD6  
AD5  
AD2  
AD1  
AD0  
Analog-to-Digital Data  
$003E  
Register Low (ADRL) Write:  
See 361.  
Reset:  
Unaffected by reset  
R = Reserved  
= Unimplemented  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 9)  
68HC908EY16 Rev 2.0  
Advance Information  
53  
MOTOROLA  
Memory Map  
Memory Map  
Addr. Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
Analog-to-Digital Clock  
ADIV2  
ADIV1  
ADIV0  
ADICLK MODE1  
MODE0  
R
$003F  
$FE00  
Register (ADCLK) Write:  
See 361.  
Reset:  
0
R
0
0
R
0
0
R
0
0
R
0
0
R
0
1
R
0
0
0
R
0
Read:  
SBSW  
NOTE  
0
SIM Break Status  
Write:  
Register (SBSR)  
Reset:  
Note: Writing a logic 0 clears SBSW.  
Read: POR  
PIN  
0
COP  
0
ILOP  
0
ILAD  
0
MENRST  
0
LVI  
0
0
0
SIM Reset Status  
$FE01  
Register (SRSR) Write:  
See 107.  
POR:  
1
$FE02  
Reserved  
BCFE  
R
R
R
R
R
R
R
SIM Break Flag Control  
$FE03  
Register (SBFCR)  
$FE04  
Reserved  
$FE07  
Reserved  
Read:  
0
0
0
0
FLASH Control Register  
HVEN  
MASS  
0
ERASE  
PGM  
0
$FE08  
$FE09  
$FE0A  
(FLCR) Write:  
See 60.  
Reset:  
0
BIT 15  
0
0
BIT 14  
0
0
BIT 13  
0
0
BIT 12  
0
0
BIT 11  
0
0
BIT 9  
0
Read:  
Break Address Register  
BIT 10  
0
BIT 8  
0
High (BRKH) Write:  
See 163.  
Reset:  
Read:  
Break Address Register  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
BIT 3  
0
BIT 2  
0
BIT 1  
0
BIT 0  
0
Low (BRKL) Write:  
See 163.  
Reset:  
0
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 9)  
Advance Information  
54  
68HC908EY16 Rev 2.0  
Memory Map  
MOTOROLA  
Memory Map  
Input/Output (I/O) Section  
Addr. Register Name  
Bit 7  
BRKE  
0
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
0
Break Status and Control  
BRKA  
$FE0B  
$FE0C  
$FF7E  
Register (BRKSCR) Write:  
See 162.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read: LVIOUT  
LVI Status Register  
(LVISR) Write:  
See 190.  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
FLASH Block Protect  
Register (FLBPR)  
BPR7  
BPR6  
BPR5  
BPR4  
BPR3  
BPR2  
BPR1  
BPR0  
(1)  
See 67.  
Unaffected by reset  
1. Non-volatile FLASH register  
COP Control Register  
Read:  
Low byte of reset vector  
$FFFF  
(COPCTL) Write:  
Writing clears COP counter (any value)  
Unaffected by reset  
See 185.  
Reset:  
= Unimplemented  
R = Reserved  
U = Unaffected  
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 9)  
68HC908EY16 Rev 2.0  
Advance Information  
55  
MOTOROLA  
Memory Map  
Memory Map  
Table 2-1. Vector Addresses  
Vector Priority Vector Address  
Lowest  
Vector  
$FFDC  
$FFDD  
$FFDE  
$FFDF  
$FFE0  
$FFE1  
$FFE2  
$FFE3  
$FFE4  
$FFE5  
$FFE6  
$FFE7  
$FFE8  
$FFE9  
$FFEA  
$FFEB  
$FFEC  
$FFED  
$FFEE  
$FFEF  
$FFF0  
$FFF1  
$FFF2  
$FFF3  
$FFF4  
$FFF5  
$FFF6  
$FFF7  
$FFF8  
$FFF9  
$FFFA  
$FFFB  
$FFFC  
$FFFD  
$FFFE  
$FFFF  
Timebase interrupt vector (high)  
Timebase interrupt vector (low)  
SPI transmit vector (high)  
SPI transmit vector (low)  
SPI receive vector (high)  
SPI receive vector (low)  
ADC conversion complete vector (high)  
ADC conversion complete vector (low)  
Keyboard vector (high)  
IF15  
IF15  
IF14  
IF13  
IF12  
IF11  
IF10  
IF9  
Keyboard vector (low)  
ESCI error vector (high)  
ESCI error vector (low)  
ESCI transmit vector (high)  
ESCI transmit vector (low)  
ESCI receive vector (high)  
ESCI receive vector (low)  
TIMB overflow vector (high)  
TIMB overflow vector (low)  
TIMB channel 1 vector (high)  
TIMB channel 1 vector (low)  
TIMB channel 0 vector (high)  
TIMB channel 0 vector (low)  
TIMA overflow vector (high)  
TIMA overflow vector (low)  
TIMA channel 1 vector (high)  
TIMA channel 1 vector (low)  
TIMA channel 0 vector (high)  
TIMA channel 0 vector (low)  
CMIREQ (high)  
IF8  
IF7  
IF6  
IF5  
IF4  
IF3  
IF2  
CMIREQ (low)  
IRQ vector (high)  
IF1  
IRQ vector (low)  
SWI vector (high)  
SWI vector (low)  
Reset vector (high)  
Highest  
Reset vector (low)  
Advance Information  
56  
68HC908EY16 Rev 2.0  
Memory Map  
MOTOROLA  
Advance Information 68HC908EY16  
Section 3. Random Access Memory (RAM)  
3.1 Contents  
3.2  
3.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
3.2 Introduction  
This section describes the 512 bytes of random-access memory (RAM).  
3.3 Functional Description  
Addresses $0040$00FF and $0100$023F are RAM locations. The  
location of the stack RAM is programmable with the reset stack pointer  
instruction (RSP). The 16-bit stack pointer allows the stack RAM to be  
anywhere in the 64K-byte memory space.  
NOTE: For correct operation, the stack pointer must point only to RAM  
locations.  
Within page zero are 192 bytes of RAM. Because the location of the  
stack RAM is programmable, all page zero RAM locations can be used  
for input/output (I/O) control and user data or code. When the stack  
pointer is moved from its reset location at $00FF, direct addressing  
mode instructions can access all page zero RAM locations efficiently.  
Page zero RAM, therefore, provides ideal locations for frequently  
accessed global variables.  
Before processing an interrupt, the CPU uses five bytes of the stack to  
save the contents of the central processor unit (CPU) registers.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
57  
Random Access Memory (RAM)  
 
Random Access Memory (RAM)  
NOTE: For M6805, M146805, and M68HC05 compatibility, the H register is not  
stacked.  
During a subroutine call, the CPU uses two bytes of the stack to store  
the return address. The stack pointer decrements during pushes and  
increments during pulls.  
NOTE: Be careful when using nested subroutines. The CPU could overwrite  
data in the RAM during a subroutine or during the interrupt stacking  
operation.  
Advance Information  
58  
68HC908EY16 Rev 2.0  
Random Access Memory (RAM)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 4. FLASH Memory  
4.1 Contents  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .62  
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . .63  
FLASH Program/Read Operation. . . . . . . . . . . . . . . . . . . . . . .64  
FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . .67  
4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
4.2 Introduction  
This section describes the operation of the embedded FLASH memory.  
This memory can be read, programmed, and erased from a single  
external supply. The program, erase, and read operations are enabled  
through the use of an internal charge pump.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
FLASH Memory  
59  
FLASH Memory  
4.3 Functional Description  
The FLASH memory is an array of 15,872 bytes with an additional 36  
bytes of user vectors and one byte used for block protection.  
NOTE: An erased bit reads as logic 1 and a programmed bit reads as logic 0.  
The program and erase operations are facilitated through control bits in  
the FLASH control register (FLCR). See 4.4 FLASH Control Register.  
The FLASH is organized internally as an 16,384-word by 8-bit  
complementary metal-oxide semiconductor (CMOS) page erase, byte  
(8-bit) program embedded FLASH memory. Each page consists of 64  
bytes. The page erase operation erases all words within a page. A page  
is composed of two adjacent rows.  
A security feature prevents viewing of the FLASH contents.1  
4.4 FLASH Control Register  
The FLASH control register (FLCR) controls FLASH program and erase  
operations.  
Address: $FE08  
Bit 7  
0
6
0
5
0
4
0
3
HVEN  
0
2
MASS  
0
1
ERASE  
0
Bit 0  
PGM  
0
Read:  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
Figure 4-1. FLASH Control Register (FLCR)  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Advance Information  
60  
68HC908EY16 Rev 2.0  
FLASH Memory  
MOTOROLA  
 
FLASH Memory  
FLASH Control Register  
HVEN High-Voltage Enable Bit  
This read/write bit enables the charge pump to drive high voltages for  
program and erase operations in the array. HVEN can be set only if  
either PGM = 1 or ERASE = 1 and the proper sequence for program  
or erase is followed.  
1 = High voltage enabled to array and charge pump on  
0 = High voltage disabled to array and charge pump off  
MASS Mass Erase Control Bit  
Setting this read/write bit configures the 16-Kbyte FLASH array for  
mass or page erase operation.  
1 = Mass erase operation selected  
0 = Page erase operation selected  
ERASE Erase Control Bit  
This read/write bit configures the memory for erase operation.  
ERASE is interlocked with the PGM bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Erase operation selected  
0 = Erase operation unselected  
PGM Program Control Bit  
This read/write bit configures the memory for program operation.  
PGM is interlocked with the ERASE bit such that both bits cannot be  
equal to 1 or set to 1 at the same time.  
1 = Program operation selected  
0 = Program operation unselected  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
FLASH Memory  
61  
FLASH Memory  
4.5 FLASH Page Erase Operation  
Use this step-by-step procedure to erase a page (64 bytes) of FLASH  
memory to read as logic 1:  
1. Set the ERASE bit and clear the MASS bit in the FLASH control  
register.  
2. Read the FLASH block protect register.  
3. Write any data to any FLASH address within the page address  
range desired.  
4. Wait for a time, tNVS (minimum of 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tErase (minimum of 1 ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tNVH (minimum of 5 µs).  
9. Clear the HVEN bit.  
10. After a time, tRCV (typically 1 µs), the memory can be accessed  
again in read mode.  
NOTE: While these operations must be performed in the order shown, other  
unrelated operations may occur between the steps.  
NOTE: Due to the security feature (Section 10. Monitor ROM (MON)) the last  
page of the FLASH (0xFFDC0xFFFF), which contains the security  
bytes, cannot be erased by Page Erase Operation. It can only be erased  
with the Mass Erase Operation.  
Advance Information  
62  
68HC908EY16 Rev 2.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Mass Erase Operation  
4.6 FLASH Mass Erase Operation  
Use this step-by-step procedure to erase entire FLASH memory to read  
as logic 1:  
1. Set both the ERASE bit and the MASS bit in the FLASH control  
register.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address1 within the FLASH memory  
address range.  
4. Wait for a time, tNVS (minimum of 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tMErase (minimum of 4 ms).  
7. Clear the ERASE bit.  
8. Wait for a time, tNVHL (minimum of 100 µs).  
9. Clear the HVEN bit.  
10. After a time, tRCV (minimum of 1 µs), the memory can be accessed  
again in read mode.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps.  
1. When in monitor mode, with security sequence failed (see Section 10. Monitor ROM (MON)),  
write to the FLASH block protect register instead of any FLASH address.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
63  
FLASH Memory  
FLASH Memory  
4.7 FLASH Program/Read Operation  
Programming of the FLASH memory is done on a row basis. A row  
consists of 32 consecutive bytes starting from addresses $XX00,  
$XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, and $XXE0. Use this  
step-by-step procedure to program a row of FLASH memory  
(Figure 4-2 is a flowchart representation).  
NOTE: To avoid program disturbs, the row must be erased before any byte on  
that row is programmed.  
1. Set the PGM bit. This configures the memory for program  
operation and enables the latching of address and data for  
programming.  
2. Read from the FLASH block protect register.  
3. Write any data to any FLASH address within the row address  
range desired.  
4. Wait for a time, tNVS (minimum of 10 µs).  
5. Set the HVEN bit.  
6. Wait for a time, tPGS (minimum of 5 µs).  
7. Write data to the FLASH address1 to be programmed.  
8. Wait for a time, tPROG (minimum of 30 µs).  
9. Repeat steps 7 and 8 until all the bytes within the row are  
programmed.  
10. Clear the PGM bit.(1)  
11. Wait for a time, tNVH (minimum of 5 µs).  
12. Clear the HVEN bit.  
13. After a time, tRCV (minimum of 1 µs), the memory can be accessed  
in read mode again.  
1. The time between each FLASH address change, or the time between the last FLASH address  
programmed to clearing the PGM bit, must not exceed the maximum programming time,  
tPROG maximum.  
Advance Information  
64  
68HC908EY16 Rev 2.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Block Protection  
This program sequence is repeated throughout the memory until all data  
is programmed.  
NOTE: Programming and erasing of FLASH locations cannot be performed by  
code being executed from the FLASH memory. While these operations  
must be performed in the order shown, other unrelated operations may  
occur between the steps. Do not exceed tPROG maximum.  
4.8 FLASH Block Protection  
Due to the ability of the on-board charge pump to erase and program the  
FLASH memory in the target application, provision is made for protecting  
a block of memory from unintentional erase or program operations due  
to system malfunction. This protection is done by using the FLASH block  
protect register (FLBPR). The FLBPR determines the range of the  
FLASH memory which is to be protected. The range of the protected  
area starts from a location defined by FLBPR and ends at the bottom of  
the FLASH memory ($FFFF). When the memory is protected, the HVEN  
bit cannot be set in either erase or program operations.  
NOTE: In performing a program or erase operation, FLBPR must be read after  
setting the PGM or ERASE bit and before asserting the HVEN bit.  
When FLBPR is programmed with all 0s, the entire memory is protected  
from being programmed and erased. When all the bits are erased  
(all 1s), the entire memory is accessible for program and erase.  
When bits within the FLBPR are programmed, they lock a block of  
memory address ranges as shown in 4.9 FLASH Block Protect  
Register. If FLBPR is programmed with a value other than $FF, any  
erase or program of the FLBPR or the protected block of FLASH memory  
is prohibited. FLBPR itself can then be erased or programmed only with  
an external voltage Vtst present on the IRQ pin.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
65  
FLASH Memory  
FLASH Memory  
1
2
Algorithm for programming  
a row (32 bytes) of FLASH memory  
SET PGM BIT  
READ THE FLASH BLOCK  
PROTECT REGISTER  
WRITE ANY DATA TO ANY FLASH ADDRESS  
WITHIN THE ROW ADDRESS RANGE DESIRED  
3
4
5
6
WAIT FOR A TIME, t  
SET HVEN BIT  
NVS  
WAIT FOR A TIME, t  
PGS  
7
8
WRITE DATA TO THE FLASH ADDRESS  
TO BE PROGRAMMED  
WAIT FOR A TIME, t  
PROG  
COMPLETED  
YES  
PROGRAMMING  
THIS ROW?  
NO  
10  
CLEAR PGM BIT  
11  
12  
13  
WAIT FOR A TIME, t  
NVH  
Notes:  
CLEAR HVEN BIT  
The time between each FLASH address change (step 7 to step 7),  
or the time between the last FLASH address programmed  
to clearing PGM bit (step 7 to step 10)  
must not exceed the maximum programming  
time, tPROG maximum.  
WAIT FOR A TIME, t  
RCV  
This row program algorithm assumes the row/s  
to be programmed are initially erased.  
END OF PROGRAMMING  
Figure 4-2. FLASH Programming Flowchart  
Advance Information  
66  
68HC908EY16 Rev 2.0  
FLASH Memory  
MOTOROLA  
FLASH Memory  
FLASH Block Protect Register  
4.9 FLASH Block Protect Register  
The FLASH block protect register (FLBPR) is implemented as a byte  
within the FLASH memory, and therefore can be written only during a  
programming sequence of the FLASH memory. The value in this register  
determines the starting location of the protected range within the FLASH  
memory.  
Address: $FF7E  
Bit 7  
BPR7  
U
6
BPR6  
U
5
BPR5  
U
4
BPR4  
U
3
BPR3  
U
2
BPR2  
U
1
BPR1  
U
Bit 0  
BPR0  
U
Read:  
Write:  
Reset:  
U = Unaffected by reset. Initial value from factory is $FF.  
Write to this register is by a programming sequence to the FLASH memory.  
Figure 4-3. FLASH Block Protect Register (FLBPR)  
BPR7BPR0 FLASH Block Protect Bits  
These eight bits represent bits 136 of a 16-bit memory address.  
Bits 15 and 14 are logic 1s and bits 50 are logic 0s.  
The resultant 16-bit address is used for specifying the start address  
of the FLASH memory for block protection. The FLASH is protected  
from this start address to the end of FLASH memory, at $FFFF. With  
this mechanism, the protect start address can be $XX00, $XX40, etc.,  
(64 bytes page boundaries) within the FLASH memory. See  
Figure 4-4 and Table 4-1.  
16-BIT MEMORY ADDRESS  
START ADDRESS OF FLASH  
FLBPR VALUE  
0
0
0
0
0
0
1
1
BLOCK PROTECT  
Figure 4-4. FLASH Block Protect Start Address  
68HC908EY16 Rev 2.0  
Advance Information  
67  
MOTOROLA  
FLASH Memory  
 
FLASH Memory  
Table 4-1. Protect Start Address Examples  
Start of Address of Protect Range(1)  
The entire FLASH memory is protected.  
$C040 (1100 0000 0100 0000)  
$C080 (1100 0000 1000 0000)  
and so on...  
BPR7BPR0  
$00  
$01 (0000 0001)  
$02 (0000 0010)  
$FE (1111 1110)  
$FF80 (1111 1111 1000 0000)  
The entire FLASH memory is not protected.  
$FF  
1. The end address of the protected range is always $FFFF.  
4.10 Wait Mode  
Putting the microcontroller unit (MCU) into wait mode while the FLASH  
is in read mode does not affect the operation of the FLASH memory  
directly, but there will not be any memory activity since the CPU is  
inactive.  
The WAIT instruction should not be executed while performing a  
program or erase operation on the FLASH, or the operation will  
discontinue and the FLASH will be on standby mode.  
4.11 Stop Mode  
Putting the MCU into stop mode while the FLASH is in read mode does  
not affect the operation of the FLASH memory directly, but there will not  
be any memory activity since the CPU is inactive.  
The STOP instruction should not be executed while performing a  
program or erase operation on the FLASH, or the operation will  
discontinue and the FLASH will be on standby mode  
NOTE: Standby mode is the power-saving mode of the FLASH module in which  
all internal control signals to the FLASH are inactive and the current  
consumption of the FLASH is at a minimum.  
Advance Information  
68  
68HC908EY16 Rev 2.0  
FLASH Memory  
MOTOROLA  
Advance Information 68HC908EY16  
Section 5. Central Processor Unit (CPU)  
5.1 Contents  
5.2  
5.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
5.4  
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.5  
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
5.6  
5.6.1  
5.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
5.7  
5.8  
5.9  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Central Processor Unit (CPU)  
69  
Central Processor Unit (CPU)  
5.2 Introduction  
The M68HC08 central processor unit (CPU) is an enhanced and fully  
object-code-compatible version of the M68HC05 CPU. The CPU08  
Reference Manual (Motorola document number CPU08RM/AD)  
contains a description of the CPU instruction set, addressing modes,  
and architecture.  
5.3 Features  
Features of the CPU include:  
Object code fully upward-compatible with M68HC05 Family  
16-bit stack pointer with stack manipulation instructions  
16-bit index register with x-register manipulation instructions  
8-MHz CPU internal bus frequency  
64-Kbyte program/data memory space  
16 addressing modes  
Memory-to-memory data moves without using accumulator  
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions  
Enhanced binary-coded decimal (BCD) data handling  
Modular architecture with expandable internal bus definition for  
extension of addressing range beyond 64 Kbytes  
Low-power stop and wait modes  
Advance Information  
70  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
5.4 CPU Registers  
Figure 5-1 shows the five CPU registers. CPU registers are not part of  
the memory map.  
7
0
0
0
0
0
ACCUMULATOR (A)  
15  
15  
15  
H
X
INDEX REGISTER (H:X)  
STACK POINTER (SP)  
PROGRAM COUNTER (PC)  
7
V 1  
1
H
I
N Z C CONDITION CODE REGISTER (CCR)  
CARRY/BORROW FLAG  
ZERO FLAG  
NEGATIVE FLAG  
INTERRUPT MASK  
HALF-CARRY FLAG  
TWOS COMPLEMENT OVERFLOW FLAG  
Figure 5-1. CPU Registers  
5.4.1 Accumulator  
The accumulator is a general-purpose 8-bit register. The CPU uses the  
accumulator to hold operands and the results of arithmetic/logic  
operations.  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Unaffected by Reset  
Figure 5-2. Accumulator (A)  
68HC908EY16 Rev 2.0  
Advance Information  
71  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
5.4.2 Index Register  
The 16-bit index register allows indexed addressing of a 64-Kbyte  
memory space. H is the upper byte of the index register, and X is the  
lower byte. H:X is the concatenated 16-bit index register.  
In the indexed addressing modes, the CPU uses the contents of the  
index register to determine the conditional address of the operand.  
The index register can serve also as a temporary data storage location.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X = Indeterminate  
Figure 5-3. Index Register (H:X)  
Advance Information  
72  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
5.4.3 Stack Pointer  
The stack pointer is a 16-bit register that contains the address of the next  
location on the stack. During a reset, the stack pointer is preset to  
$00FF. The reset stack pointer (RSP) instruction sets the least  
significant byte (LSB) to $FF and does not affect the most significant  
byte (MSB). The stack pointer decrements as data is pushed onto the  
stack and increments as data is pulled from the stack.  
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the  
stack pointer can function as an index register to access data on the  
stack. The CPU uses the contents of the stack pointer to determine the  
conditional address of the operand.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Figure 5-4. Stack Pointer (SP)  
NOTE: The location of the stack is arbitrary and may be relocated anywhere in  
random-access memory (RAM). Moving the SP out of page 0 ($0000 to  
$00FF) frees direct address (page 0) space. For correct operation, the  
stack pointer must point only to RAM locations.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
73  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
5.4.4 Program Counter  
The program counter is a 16-bit register that contains the address of the  
next instruction or operand to be fetched.  
Normally, the program counter automatically increments to the next  
sequential memory location every time an instruction or operand is  
fetched. Jump, branch, and interrupt operations load the program  
counter with an address other than that of the next sequential location.  
During reset, the program counter is loaded with the reset vector  
address located at $FFFE and $FFFF. The vector address is the  
address of the first instruction to be executed after exiting the reset state.  
Bit  
15  
Bit  
0
14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Read:  
Write:  
Reset:  
Loaded with vector from $FFFE and $FFFF  
Figure 5-5. Program Counter (PC)  
Advance Information  
74  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
CPU Registers  
5.4.5 Condition Code Register  
The 8-bit condition code register (CCR) contains the interrupt mask and  
five flags that indicate the results of the instruction just executed. Bits 6  
and 5 are set permanently to logic 1. The functions of the CCR are  
described here.  
Bit 7  
V
6
1
1
5
1
1
4
3
I
2
1
Bit 0  
C
Read:  
Write:  
Reset:  
H
X
N
X
Z
X
X
1
X
X = Indeterminate  
Figure 5-6. Condition Code Register (CCR)  
V Overflow Flag  
The CPU sets the overflow flag when a two's complement overflow  
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use  
the overflow flag.  
1 = Overflow  
0 = No overflow  
H Half-Carry Flag  
The CPU sets the half-carry flag when a carry occurs between  
accumulator bits 3 and 4 during an add-without-carry (ADD) or add-  
with-carry (ADC) operation. The half-carry flag is required for binary-  
coded decimal (BCD) arithmetic operations. The decimal adjust A  
(DAA) instruction uses the states of the H and C flags to determine  
the appropriate correction factor.  
1 = Carry between bits 3 and 4  
0 = No carry between bits 3 and 4  
I Interrupt Mask  
When the interrupt mask is set, all maskable CPU interrupts are  
disabled. CPU interrupts are enabled when the interrupt mask is  
cleared. When a CPU interrupt occurs, the interrupt mask is set  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Central Processor Unit (CPU)  
75  
Central Processor Unit (CPU)  
automatically after the CPU registers are saved on the stack, but  
before the interrupt vector is fetched.  
1 = Interrupts disabled  
0 = Interrupts enabled  
NOTE: To maintain M6805 compatibility, the upper byte of the index register (H)  
is not stacked automatically. If the interrupt service routine modifies H,  
then the user must stack and unstack H using the push H onto stack  
(PSHH) and pull H from stack (PULH) instructions.  
After the I bit is cleared, the highest-priority interrupt request is  
serviced first.  
A return-from-interrupt (RTI) instruction pulls the CPU registers from  
the stack and restores the interrupt mask from the stack. After any  
reset, the interrupt mask is set and can only be cleared by the clear  
interrupt mask software instruction (CLI).  
N Negative flag  
The CPU sets the negative flag when an arithmetic operation, logic  
operation, or data manipulation produces a negative result, setting  
bit 7 of the result.  
1 = Negative result  
0 = Non-negative result  
Z Zero flag  
The CPU sets the zero flag when an arithmetic operation, logic  
operation, or data manipulation produce a result of $00.  
1 = Zero result  
0 = Non-zero result  
C Carry/Borrow Flag  
The CPU sets the carry/borrow flag when an addition operation  
produces a carry out of bit 7 of the accumulator or when a subtraction  
operation requires a borrow. Some instructions such as bit test and  
branch, shift, and rotate also clear or set the carry/borrow flag.  
1 = Carry out of bit 7  
0 = No carry out of bit 7  
Advance Information  
76  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Arithmetic/Logic Unit (ALU)  
5.5 Arithmetic/Logic Unit (ALU)  
The arithmetic/logic unit (ALU) performs the arithmetic and logic  
operations defined by the instruction set.  
Refer to the CPU08 Reference Manual (Motorola document number  
CPU08RM/AD) for a description of the instructions and addressing  
modes and more detail about the architecture of the CPU.  
5.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-consumption  
standby modes.  
5.6.1 Wait Mode  
The WAIT instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling interrupts. After exit from wait mode by interrupt, the I bit  
remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock.  
5.6.2 Stop Mode  
The STOP instruction:  
Clears the interrupt mask (I bit) in the condition code register,  
enabling external interrupts. After exit from stop mode by external  
interrupt, the I bit remains clear. After exit by reset, the I bit is set.  
Disables the CPU clock.  
After exiting stop mode, the CPU clock begins running after the oscillator  
stabilization delay.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Central Processor Unit (CPU)  
77  
Central Processor Unit (CPU)  
5.7 CPU During Break Interrupts  
If the break module is enabled, a break interrupt causes the CPU to  
execute the software interrupt instruction (SWI) at the completion of the  
current CPU instruction (see Section 9. Break Module (BRK)). The  
program counter vectors to $FFFC$FFFD ($FEFC$FEFD in monitor  
mode).  
A return-from-interrupt instruction (RTI) in the break routine ends the  
break interrupt and returns the MCU to normal operation if the break  
interrupt has been deasserted.  
5.8 Instruction Set Summary  
Table 5-1 provides a summary of the M68HC08 instruction set.  
Table 5-1. Instruction Set Summary (Sheet 1 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ADC #opr  
IMM  
DIR  
EXT  
IX2  
A9 ii  
B9 dd  
C9 hh ll  
D9 ee ff  
E9 ff  
2
3
4
4
3
2
4
5
ADC opr  
ADC opr  
ADC opr,X  
ADC opr,X  
ADC ,X  
Add with Carry  
A (A) + (M) + (C)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
F9  
ADC opr,SP  
ADC opr,SP  
9EE9 ff  
9ED9 ee ff  
ADD #opr  
ADD opr  
IMM  
DIR  
EXT  
IX2  
AB ii  
BB dd  
CB hh ll  
DB ee ff  
EB ff  
2
3
4
4
3
2
4
5
ADD opr  
ADD opr,X  
ADD opr,X  
ADD ,X  
ADD opr,SP  
ADD opr,SP  
Add without Carry  
A (A) + (M)  
↕ ↕ ↕ ↕ ↕  
IX1  
IX  
SP1  
SP2  
FB  
9EEB ff  
9EDB ee ff  
AIS #opr  
AIX #opr  
Add Immediate Value (Signed) to SP  
Add Immediate Value (Signed) to H:X  
SP (SP) + (16 « M)  
H:X (H:X) + (16 « M)  
– – – – – – IMM  
– – – – – – IMM  
A7 ii  
AF ii  
2
2
AND #opr  
AND opr  
IMM  
DIR  
A4 ii  
B4 dd  
C4 hh ll  
D4 ee ff  
E4 ff  
2
3
4
4
3
2
4
5
AND opr  
EXT  
AND opr,X  
AND opr,X  
AND ,X  
AND opr,SP  
AND opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Logical AND  
A (A) & (M)  
IX  
SP1  
SP2  
F4  
9EE4 ff  
9ED4 ee ff  
Advance Information  
78  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
 
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 5-1. Instruction Set Summary (Sheet 2 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
ASL opr  
DIR  
INH  
INH  
IX1  
38 dd  
48  
4
1
1
4
3
5
ASLA  
ASLX  
Arithmetic Shift Left  
58  
C
0
– – ↕ ↕ ↕  
ASL opr,X  
ASL ,X  
(Same as LSL)  
68 ff  
78  
9E68 ff  
b7  
b7  
b0  
b0  
IX  
ASL opr,SP  
SP1  
ASR opr  
ASRA  
ASRX  
ASR opr,X  
ASR opr,X  
ASR opr,SP  
DIR  
INH  
INH  
IX1  
IX  
SP1  
37 dd  
47  
4
1
1
4
3
5
57  
C
Arithmetic Shift Right  
– – ↕ ↕ ↕  
67 ff  
77  
9E67 ff  
BCC rel  
Branch if Carry Bit Clear  
PC (PC) + 2 + rel ? (C) = 0  
– – – – – – REL  
24 rr  
3
DIR (b0) 11 dd  
DIR (b1) 13 dd  
DIR (b2) 15 dd  
DIR (b3) 17 dd  
DIR (b4) 19 dd  
DIR (b5) 1B dd  
DIR (b6) 1D dd  
DIR (b7) 1F dd  
4
4
4
4
4
4
4
4
BCLR n, opr  
Clear Bit n in M  
Mn 0  
– – – – – –  
BCS rel  
BEQ rel  
Branch if Carry Bit Set (Same as BLO)  
Branch if Equal  
PC (PC) + 2 + rel ? (C) = 1  
PC (PC) + 2 + rel ? (Z) = 1  
– – – – – – REL  
– – – – – – REL  
25 rr  
27 rr  
3
3
Branch if Greater Than or Equal To  
(Signed Operands)  
BGE opr  
BGT opr  
PC (PC) + 2 + rel ? (N V) = 0  
– – – – – – REL  
90 rr  
92 rr  
3
Branch if Greater Than  
(Signed Operands)  
PC (PC) + 2 + rel ? (Z) | (N V) = 0 – – – – – – REL  
3
3
BHCC rel  
BHCS rel  
BHI rel  
Branch if Half Carry Bit Clear  
Branch if Half Carry Bit Set  
Branch if Higher  
PC (PC) + 2 + rel ? (H) = 0  
PC (PC) + 2 + rel ? (H) = 1  
PC (PC) + 2 + rel ? (C) | (Z) = 0  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
28 rr  
29 rr  
22 rr  
3
3
3
Branch if Higher or Same  
(Same as BCC)  
BHS rel  
PC (PC) + 2 + rel ? (C) = 0  
– – – – – – REL  
24 rr  
BIH rel  
BIL rel  
– – – – – – REL  
– – – – – – REL  
2F rr  
2E rr  
3
3
Branch if IRQ Pin High  
Branch if IRQ Pin Low  
PC (PC) + 2 + rel ? IRQ = 1  
PC (PC) + 2 + rel ? IRQ = 0  
BIT #opr  
BIT opr  
IMM  
DIR  
A5 ii  
B5 dd  
C5 hh ll  
D5 ee ff  
E5 ff  
2
3
4
4
3
2
4
5
BIT opr  
EXT  
BIT opr,X  
BIT opr,X  
BIT ,X  
BIT opr,SP  
BIT opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Bit Test  
(A) & (M)  
IX  
SP1  
SP2  
F5  
9EE5 ff  
9ED5 ee ff  
Branch if Less Than or Equal To  
(Signed Operands)  
BLE opr  
BLO rel  
PC (PC) + 2 + rel ? (Z) | (N V) = 1 – – – – – – REL  
93 rr  
25 rr  
3
3
Branch if Lower (Same as BCS)  
PC (PC) + 2 + rel ? (C) = 1  
– – – – – – REL  
68HC908EY16 Rev 2.0  
Advance Information  
79  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 5-1. Instruction Set Summary (Sheet 3 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
BLS rel  
Branch if Lower or Same  
Branch if Less Than (Signed Operands)  
Branch if Interrupt Mask Clear  
Branch if Minus  
PC (PC) + 2 + rel ? (C) | (Z) = 1  
PC (PC) + 2 + rel ? (N V) =1  
PC (PC) + 2 + rel ? (I) = 0  
PC (PC) + 2 + rel ? (N) = 1  
PC (PC) + 2 + rel ? (I) = 1  
PC (PC) + 2 + rel ? (Z) = 0  
PC (PC) + 2 + rel ? (N) = 0  
PC ¨ (PC) + 2 + rel  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
– – – – – – REL  
23 rr  
91 rr  
2C rr  
2B rr  
2D rr  
26 rr  
2A rr  
20 rr  
3
3
3
3
3
3
3
3
BLT opr  
BMC rel  
BMI rel  
BMS rel  
BNE rel  
BPL rel  
BRA rel  
Branch if Interrupt Mask Set  
Branch if Not Equal  
Branch if Plus  
Branch Always  
DIR (b0) 01 dd rr  
DIR (b1) 03 dd rr  
DIR (b2) 05 dd rr  
DIR (b3) 07 dd rr  
DIR (b4) 09 dd rr  
DIR (b5) 0B dd rr  
DIR (b6) 0D dd rr  
DIR (b7) 0F dd rr  
5
5
5
5
5
5
5
5
BRCLR n,opr,rel Branch if Bit n in M Clear  
PC (PC) + 3 + rel ? (Mn) = 0  
PC (PC) + 2  
– – – – – ↕  
BRN rel  
Branch Never  
– – – – – – REL  
21 rr  
3
DIR (b0) 00 dd rr  
DIR (b1) 02 dd rr  
DIR (b2) 04 dd rr  
DIR (b3) 06 dd rr  
DIR (b4) 08 dd rr  
DIR (b5) 0A dd rr  
DIR (b6) 0C dd rr  
DIR (b7) 0E dd rr  
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set  
PC (PC) + 3 + rel ? (Mn) = 1  
– – – – – ↕  
DIR (b0) 10 dd  
DIR (b1) 12 dd  
DIR (b2) 14 dd  
DIR (b3) 16 dd  
DIR (b4) 18 dd  
DIR (b5) 1A dd  
DIR (b6) 1C dd  
DIR (b7) 1E dd  
4
4
4
4
4
4
4
4
BSET n,opr  
BSR rel  
Set Bit n in M  
Mn 1  
– – – – – –  
PC (PC) + 2; push (PCL)  
SP (SP) 1; push (PCH)  
SP (SP) 1  
Branch to Subroutine  
– – – – – – REL  
AD rr  
4
PC (PC) + rel  
CBEQ opr,rel  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 3 + rel ? (X) (M) = $00  
PC (PC) + 3 + rel ? (A) (M) = $00  
PC (PC) + 2 + rel ? (A) (M) = $00  
PC (PC) + 4 + rel ? (A) (M) = $00  
DIR  
31 dd rr  
41 ii rr  
51 ii rr  
61 ff rr  
71 rr  
5
4
4
5
4
6
CBEQA #opr,rel  
CBEQX #opr,rel  
CBEQ opr,X+,rel  
CBEQ X+,rel  
IMM  
IMM  
– – – – – –  
IX1+  
Compare and Branch if Equal  
IX+  
SP1  
CBEQ opr,SP,rel  
9E61 ff rr  
CLC  
CLI  
Clear Carry Bit  
C 0  
I 0  
– – – – – 0 INH  
– – 0 – – – INH  
98  
1
2
Clear Interrupt Mask  
9A  
Advance Information  
80  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 5-1. Instruction Set Summary (Sheet 4 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
CLR opr  
M $00  
A $00  
X $00  
H $00  
M $00  
M $00  
M $00  
DIR  
INH  
INH  
3F dd  
4F  
3
1
1
1
3
2
4
CLRA  
CLRX  
CLRH  
CLR opr,X  
CLR ,X  
CLR opr,SP  
5F  
Clear  
0 – – 0 1 INH  
8C  
IX1  
IX  
SP1  
6F ff  
7F  
9E6F ff  
CMP #opr  
CMP opr  
IMM  
DIR  
A1 ii  
B1 dd  
C1 hh ll  
D1 ee ff  
E1 ff  
2
3
4
4
3
2
4
5
CMP opr  
EXT  
CMP opr,X  
CMP opr,X  
CMP ,X  
CMP opr,SP  
CMP opr,SP  
IX2  
– – ↕ ↕ ↕  
IX1  
Compare A with M  
(A) (M)  
IX  
SP1  
SP2  
F1  
9EE1 ff  
9ED1 ee ff  
COM opr  
COMA  
M (M) = $FF (M)  
A (A) = $FF (M)  
X (X) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
M (M) = $FF (M)  
DIR  
INH  
33 dd  
43  
4
1
1
4
3
5
COMX  
INH  
0 – – ↕ ↕ 1  
IX1  
53  
Complement (Ones Complement)  
COM opr,X  
COM ,X  
COM opr,SP  
63 ff  
73  
9E63 ff  
IX  
SP1  
CPHX #opr  
CPHX opr  
IMM  
– – ↕ ↕ ↕  
DIR  
65 ii ii+1  
75 dd  
3
4
Compare H:X with M  
(H:X) (M:M + 1)  
CPX #opr  
CPX opr  
IMM  
DIR  
A3 ii  
B3 dd  
C3 hh ll  
D3 ee ff  
E3 ff  
2
3
4
4
3
2
4
5
CPX opr  
EXT  
CPX ,X  
IX2  
– – ↕ ↕ ↕  
IX1  
Compare X with M  
(X) (M)  
CPX opr,X  
CPX opr,X  
CPX opr,SP  
CPX opr,SP  
IX  
SP1  
SP2  
F3  
9EE3 ff  
9ED3 ee ff  
(A)10  
DAA  
Decimal Adjust A  
U – – ↕ ↕ ↕INH  
72  
2
A (A) 1 or M (M) 1 or X (X) 1  
PC (PC) + 3 + rel ? (result) ¼ 0  
PC (PC) + 2 + rel ? (result) ¼ 0  
PC (PC) + 2 + rel ? (result) ¼ 0  
PC (PC) + 3 + rel ? (result) ¼ 0  
PC (PC) + 2 + rel ? (result) ¼ 0  
PC (PC) + 4 + rel ? (result) ¼ 0  
5
3
3
5
4
6
DBNZ opr,rel  
DBNZA rel  
DIR  
3B dd rr  
4B rr  
INH  
DBNZX rel  
Decrement and Branch if Not Zero  
– – – – – – INH  
5B rr  
DBNZ opr,X,rel  
DBNZ X,rel  
DBNZ opr,SP,rel  
IX1  
IX  
SP1  
6B ff rr  
7B rr  
9E6B ff rr  
DEC opr  
DECA  
M M) 1  
A A) 1  
X (X) 1  
M (M) 1  
M (M) 1  
M (M) 1  
DIR  
INH  
3A dd  
4A  
4
1
1
4
3
5
DECX  
INH  
– – ↕ ↕ –  
IX1  
5A  
Decrement  
Divide  
DEC opr,X  
DEC ,X  
DEC opr,SP  
6A ff  
7A  
9E6A ff  
IX  
SP1  
A (H:A)/(X)  
H Remainder  
DIV  
– – – – ↕ ↕INH  
52  
7
68HC908EY16 Rev 2.0  
Advance Information  
81  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 5-1. Instruction Set Summary (Sheet 5 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
EOR #opr  
IMM  
DIR  
EXT  
IX2  
A8 ii  
B8 dd  
C8 hh ll  
D8 ee ff  
E8 ff  
2
3
4
4
3
2
4
5
EOR opr  
EOR opr  
EOR opr,X  
EOR opr,X  
EOR ,X  
Exclusive OR M with A  
A (A M)  
0 – – ↕ ↕ –  
IX1  
IX  
SP1  
SP2  
F8  
EOR opr,SP  
EOR opr,SP  
9EE8 ff  
9ED8 ee ff  
INC opr  
INCA  
M M) + 1  
A (A) + 1  
X X) + 1  
M (M) + 1  
M (M) + 1  
M (M) + 1  
DIR  
INH  
INH  
IX1  
3C dd  
4C  
4
1
1
4
3
5
INCX  
5C  
Increment  
– – ↕ ↕ –  
INC opr,X  
INC ,X  
INC opr,SP  
6C ff  
7C  
9E6C ff  
IX  
SP1  
JMP opr  
JMP opr  
JMP opr,X  
JMP opr,X  
JMP ,X  
DIR  
BC dd  
CC hh ll  
DC ee ff  
EC ff  
FC  
2
3
4
3
2
EXT  
Jump  
PC Jump Address  
– – – – – – IX2  
IX1  
IX  
JSR opr  
JSR opr  
JSR opr,X  
JSR opr,X  
JSR ,X  
DIR  
BD dd  
CD hh ll  
DD ee ff  
ED ff  
FD  
4
5
6
5
4
PC (PC) + n (n = 1, 2, or 3)  
Push (PCL); SP (SP) 1  
Push (PCH); SP (SP) 1  
PC Unconditional Address  
EXT  
Jump to Subroutine  
– – – – – – IX2  
IX1  
IX  
LDA #opr  
LDA opr  
IMM  
DIR  
A6 ii  
B6 dd  
C6 hh ll  
D6 ee ff  
E6 ff  
2
3
4
4
3
2
4
5
LDA opr  
EXT  
LDA opr,X  
LDA opr,X  
LDA ,X  
LDA opr,SP  
LDA opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Load A from M  
Load H:X from M  
Load X from M  
A (M)  
H:X (M:M + 1)  
X (M)  
IX  
SP1  
SP2  
F6  
9EE6 ff  
9ED6 ee ff  
LDHX #opr  
LDHX opr  
IMM  
0 – – ↕ ↕ –  
DIR  
45 ii jj  
55 dd  
3
4
LDX #opr  
LDX opr  
LDX opr  
LDX opr,X  
LDX opr,X  
LDX ,X  
LDX opr,SP  
LDX opr,SP  
IMM  
DIR  
EXT  
AE ii  
BE dd  
CE hh ll  
DE ee ff  
EE ff  
FE  
9EEE ff  
9EDE ee ff  
2
3
4
4
3
2
4
5
IX2  
0 – – ↕ ↕ –  
IX1  
IX  
SP1  
SP2  
LSL opr  
LSLA  
DIR  
INH  
38 dd  
48  
4
1
1
4
3
5
LSLX  
Logical Shift Left  
(Same as ASL)  
INH  
– – ↕ ↕ ↕  
IX1  
58  
C
0
LSL opr,X  
LSL ,X  
LSL opr,SP  
68 ff  
78  
9E68 ff  
b7  
b0  
IX  
SP1  
Advance Information  
82  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Instruction Set Summary  
Table 5-1. Instruction Set Summary (Sheet 6 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
LSR opr  
DIR  
INH  
INH  
IX1  
34 dd  
44  
4
1
1
4
3
5
LSRA  
LSRX  
54  
0
C
Logical Shift Right  
– – 0 ↕ ↕  
LSR opr,X  
LSR ,X  
64 ff  
74  
9E64 ff  
b7  
b0  
IX  
LSR opr,SP  
SP1  
MOV opr,opr  
MOV opr,X+  
MOV #opr,opr  
MOV X+,opr  
DD  
4E dd dd  
5E dd  
5
4
4
4
(M)Destination (M)Source  
DIX+  
IMD  
IX+D  
Move  
0 – – ↕ ↕ –  
6E ii dd  
7E dd  
H:X (H:X) + 1 (IX+D, DIX+)  
X:A ¨ (X) × (A)  
MUL  
Unsigned multiply  
0 – – – 0 INH  
42  
5
NEG opr  
NEGA  
DIR  
INH  
30 dd  
40  
4
1
1
4
3
5
M (M) = $00 (M)  
A (A) = $00 (A)  
X (X) = $00 (X)  
M (M) = $00 (M)  
M (M) = $00 (M)  
NEGX  
INH  
– – ↕ ↕ ↕  
IX1  
50  
Negate (Twos Complement)  
NEG opr,X  
NEG ,X  
NEG opr,SP  
60 ff  
70  
9E60 ff  
IX  
SP1  
NOP  
NSA  
No Operation  
None  
– – – – – – INH  
– – – – – – INH  
9D  
62  
1
3
Nibble Swap A  
A (A[3:0]:A[7:4])  
ORA #opr  
ORA opr  
IMM  
DIR  
AA ii  
BA dd  
CA hh ll  
DA ee ff  
EA ff  
2
3
4
4
3
2
4
5
ORA opr  
EXT  
ORA opr,X  
ORA opr,X  
ORA ,X  
ORA opr,SP  
ORA opr,SP  
IX2  
0 – – ↕ ↕ –  
IX1  
Inclusive OR A and M  
A (A) | (M)  
IX  
SP1  
SP2  
FA  
9EEA ff  
9EDA ee ff  
PSHA  
PSHH  
PSHX  
PULA  
PULH  
PULX  
Push A onto Stack  
Push H onto Stack  
Push X onto Stack  
Pull A from Stack  
Pull H from Stack  
Pull X from Stack  
Push (A); SP (SP) 1  
Push (H); SP (SP) 1  
Push (X); SP (SP) 1  
SP (SP + 1); Pull (A)  
SP (SP + 1); Pull (H)  
SP (SP + 1); Pull (X)  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
87  
8B  
89  
86  
8A  
88  
2
2
2
2
2
2
ROL opr  
ROLA  
DIR  
INH  
39 dd  
49  
4
1
1
4
3
5
ROLX  
INH  
– – ↕ ↕ ↕  
IX1  
59  
C
Rotate Left through Carry  
ROL opr,X  
ROL ,X  
ROL opr,SP  
69 ff  
79  
9E69 ff  
b7  
b0  
IX  
SP1  
ROR opr  
RORA  
DIR  
INH  
36 dd  
46  
4
1
1
4
3
5
RORX  
INH  
– – ↕ ↕ ↕  
IX1  
56  
C
Rotate Right through Carry  
Reset Stack Pointer  
ROR opr,X  
ROR ,X  
ROR opr,SP  
66 ff  
76  
9E66 ff  
b7  
b0  
IX  
SP1  
RSP  
SP $FF  
– – – – – – INH  
9C  
1
68HC908EY16 Rev 2.0  
Advance Information  
83  
MOTOROLA  
Central Processor Unit (CPU)  
Central Processor Unit (CPU)  
Table 5-1. Instruction Set Summary (Sheet 7 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
SP SP) + 1; Pull (CCR)  
SP (SP) + 1; Pull (A)  
SP (SP) + 1; Pull (X)  
SP (SP) + 1; Pull (PCH)  
SP (SP) + 1; Pull (PCL)  
RTI  
Return from Interrupt  
↕ ↕ ↕ ↕ ↕ ↕INH  
80  
81  
7
4
SP SP + 1; Pull (PCH)  
SP SP + 1; Pull (PCL)  
RTS  
Return from Subroutine  
Subtract with Carry  
– – – – – – INH  
SBC #opr  
SBC opr  
SBC opr  
SBC opr,X  
SBC opr,X  
SBC ,X  
SBC opr,SP  
SBC opr,SP  
IMM  
DIR  
EXT  
A2 ii  
B2 dd  
C2 hh ll  
D2 ee ff  
E2 ff  
2
3
4
4
3
2
4
5
IX2  
– – ↕ ↕ ↕  
IX1  
A (A) (M) (C)  
IX  
SP1  
SP2  
F2  
9EE2 ff  
9ED2 ee ff  
SEC  
SEI  
Set Carry Bit  
C 1  
I 1  
– – – – – 1 INH  
– – 1 – – – INH  
99  
1
2
Set Interrupt Mask  
9B  
STA opr  
DIR  
B7 dd  
C7 hh ll  
D7 ee ff  
E7 ff  
3
4
4
3
2
4
5
STA opr  
EXT  
STA opr,X  
STA opr,X  
STA ,X  
STA opr,SP  
STA opr,SP  
IX2  
Store A in M  
M (A)  
0 – – ↕ ↕ IX1  
IX  
SP1  
SP2  
F7  
9EE7 ff  
9ED7 ee ff  
STHX opr  
Store H:X in M  
(M:M + 1) (H:X)  
0 – – ↕ ↕ DIR  
– – 0 – – – INH  
35 dd  
8E  
4
1
STOP  
I 0; Stop Oscillator  
Enable IRQ Pin; Stop Oscillator  
STX opr  
DIR  
BF dd  
CF hh ll  
DF ee ff  
EF ff  
3
4
4
3
2
4
5
STX opr  
EXT  
STX opr,X  
STX opr,X  
STX ,X  
STX opr,SP  
STX opr,SP  
IX2  
Store X in M  
M (X)  
0 – – ↕ ↕ IX1  
IX  
SP1  
SP2  
FF  
9EEF ff  
9EDF ee ff  
SUB #opr  
SUB opr  
IMM  
DIR  
A0 ii  
B0 dd  
C0 hh ll  
D0 ee ff  
E0 ff  
2
3
4
4
3
2
4
5
SUB opr  
EXT  
SUB opr,X  
SUB opr,X  
SUB ,X  
SUB opr,SP  
SUB opr,SP  
IX2  
– – ↕ ↕ ↕  
IX1  
Subtract  
A (A) (M)  
IX  
SP1  
SP2  
F0  
9EE0 ff  
9ED0 ee ff  
PC (PC) + 1; Push (PCL)  
SP (SP) 1; Push (PCH)  
SP (SP) 1; Push (X)  
SP (SP) 1; Push (A)  
SWI  
Software Interrupt  
– – 1 – – – INH  
83  
9
SP (SP) 1; Push (CCR)  
SP ¨ (SP) 1; I ¨ 1  
PCH Interrupt Vector High Byte  
PCL Interrupt Vector Low Byte  
Advance Information  
84  
68HC908EY16 Rev 2.0  
Central Processor Unit (CPU)  
MOTOROLA  
Central Processor Unit (CPU)  
Opcode Map  
Table 5-1. Instruction Set Summary (Sheet 8 of 8)  
Effect  
on CCR  
Source  
Form  
Operation  
Description  
V H I N Z C  
TAP  
TAX  
TPA  
Transfer A to CCR  
CCR (A)  
X (A)  
↕ ↕ ↕ ↕ ↕ ↕INH  
– – – – – – INH  
– – – – – – INH  
84  
97  
85  
2
1
1
Transfer A to X  
Transfer CCR to A  
A (CCR)  
TST opr  
TSTA  
DIR  
INH  
3D dd  
4D  
3
1
1
3
2
4
TSTX  
INH  
0 – – ↕ ↕ –  
IX1  
5D  
Test for Negative or Zero  
(A) $00 or (X) $00 or (M) $00  
TST opr,X  
TST ,X  
TST opr,SP  
6D ff  
7D  
9E6D ff  
IX  
SP1  
TSX  
TXA  
TXS  
Transfer SP to H:X  
H:X (SP) + 1  
A (X)  
– – – – – – INH  
– – – – – – INH  
– – – – – – INH  
– – 0 – – – INH  
95  
9F  
94  
8F  
2
1
2
1
Transfer X to A  
Transfer H:X to SP  
(SP) (H:X) 1  
I bit 0  
WAIT  
Enable Interrupts; Stop Processor  
A
C
Accumulator  
Carry/borrow bit  
n
Any bit  
opr Operand (one or two bytes)  
PC Program counter  
PCH Program counter high byte  
PCL Program counter low byte  
REL Relative addressing mode  
CCR Condition code register  
dd Direct address of operand  
dd rr Direct address of operand and relative offset of branch instruction  
DD  
DIR  
DIX+ Direct to indexed with post increment addressing mode  
ee ff High and low bytes of offset in indexed, 16-bit offset addressing  
EXT Extended addressing mode  
ff  
H
H
Direct to direct addressing mode  
Direct addressing mode  
rel  
rr  
Relative program counter offset byte  
Relative program counter offset byte  
SP1 Stack pointer, 8-bit offset addressing mode  
SP2 Stack pointer 16-bit offset addressing mode  
SP Stack pointer  
U
V
X
Z
&
|
Offset byte in indexed, 8-bit offset addressing  
Half-carry bit  
Index register high byte  
Undefined  
Overflow bit  
Index register low byte  
Zero bit  
Logical AND  
Logical OR  
hh ll High and low bytes of operand address in extended addressing  
I
ii  
Interrupt mask  
Immediate operand byte  
IMD Immediate source to direct destination addressing mode  
IMM Immediate addressing mode  
Logical EXCLUSIVE OR  
Contents of  
( ) Negation (twos complement)  
INH  
IX  
Inherent addressing mode  
Indexed, no offset addressing mode  
Indexed, no offset, post increment addressing mode  
( )  
IX+  
#
Immediate value  
IX+D Indexed with post increment to direct addressing mode  
IX1 Indexed, 8-bit offset addressing mode  
IX1+ Indexed, 8-bit offset, post increment addressing mode  
«
?
Sign extend  
Loaded with  
If  
IX2  
M
N
Indexed, 16-bit offset addressing mode  
Memory location  
Negative bit  
:
Concatenated with  
Set or cleared  
Not affected  
5.9 Opcode Map  
The opcode map is provided in Table 5-2.  
68HC908EY16 Rev 2.0  
Advance Information  
85  
MOTOROLA  
Central Processor Unit (CPU)  
Table 5-2. Opcode Map  
Bit Manipulation Branch  
Read-Modify-Write  
Control  
Register/Memory  
DIR  
DIR  
REL  
DIR  
3
INH  
4
INH  
IX1  
SP1  
9E6  
IX  
7
INH  
INH  
IMM  
A
DIR  
B
EXT  
C
IX2  
SP2  
IX1  
E
SP1  
9EE  
IX  
F
MSB  
0
1
2
5
6
8
9
D
9ED  
LSB  
5
4
3
4
1
NEGA  
INH  
1
NEGX  
INH  
4
5
3
NEG  
IX  
4
CBEQ  
IX+  
2
DAA  
INH  
3
COM  
IX  
3
LSR  
IX  
4
CPHX  
DIR  
3
ROR  
IX  
3
ASR  
IX  
3
LSL  
IX  
3
ROL  
IX  
3
DEC  
IX  
4
DBNZ  
IX  
3
INC  
IX  
2
TST  
IX  
7
3
2
3
4
4
5
3
4
2
SUB  
IX  
2
CMP  
IX  
2
SBC  
IX  
2
CPX  
IX  
2
AND  
IX  
2
BIT  
IX  
2
LDA  
IX  
2
STA  
IX  
2
EOR  
IX  
2
ADC  
IX  
2
ORA  
IX  
2
ADD  
IX  
2
JMP  
IX  
4
JSR  
IX  
2
LDX  
IX  
0
BRSET0 BSET0  
BRA  
NEG  
NEG  
NEG  
RTI  
BGE  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUB  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
2
REL 2 DIR  
3
BRN  
REL 3 DIR  
3
BHI  
REL  
3
BLS  
REL 2 DIR  
3
BCC  
REL 2 DIR  
3
BCS  
REL 2 DIR  
3
BNE  
REL 2 DIR  
3
BEQ  
REL 2 DIR  
3
1
1
2
IX1 3 SP1  
5
1
2
1
1
1
2
1
1
1
1
1
2
1
1
2
1
1
1
INH  
4
RTS  
INH  
2
2
2
2
1
1
REL 2 IMM 2 DIR  
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
EXT 3 IX2  
4
CMP  
EXT 3 IX2  
4
SBC  
EXT 3 IX2  
4
CPX  
EXT 3 IX2  
4
AND  
EXT 3 IX2  
4
BIT  
EXT 3 IX2  
4
LDA  
EXT 3 IX2  
4
STA  
EXT 3 IX2  
4
EOR  
EXT 3 IX2  
4
ADC  
EXT 3 IX2  
4
ORA  
EXT 3 IX2  
4
ADD  
EXT 3 IX2  
3
JMP  
EXT 3 IX2  
5
JSR  
EXT 3 IX2  
4
LDX  
EXT 3 IX2  
4
STX  
EXT 3 IX2  
4
4
4
4
4
4
4
4
4
4
4
4
SP2 2 IX1  
5
CMP  
SP2 2 IX1  
5
SBC  
SP2 2 IX1  
5
CPX  
SP2 2 IX1  
5
AND  
SP2 2 IX1  
5
BIT  
SP2 2 IX1  
5
LDA  
SP2 2 IX1  
5
STA  
SP2 2 IX1  
5
EOR  
SP2 2 IX1  
3
3
3
3
3
3
3
3
3
3
3
3
SP1  
4
CMP  
SP1  
4
SBC  
SP1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
4
4
6
CBEQ  
SP1  
2
CMP  
3
4
3
CMP  
1
2
BRCLR0 BCLR0  
CBEQ CBEQA CBEQX CBEQ  
BLT  
CMP  
CMP  
3
DIR  
5
2
DIR  
4
3
IMM 3 IMM 3 IX1+  
4
REL 2 IMM 2 DIR  
5
7
3
3
BGT  
2
SBC  
3
SBC  
4
SBC  
3
SBC  
BRSET1 BSET1  
MUL  
INH  
DIV  
INH  
NSA  
3
DIR  
5
2
DIR  
4
1
1
1
2
2
3
2
2
2
2
2
INH  
REL 2 IMM 2 DIR  
3
BLE  
REL 2 IMM 2 DIR  
2
TXS  
INH  
2
TSX  
INH  
4
1
1
4
COM  
IX1  
4
LSR  
IX1  
3
CPHX  
IMM  
4
ROR  
IX1  
4
ASR  
IX1  
4
LSL  
IX1  
4
ROL  
IX1  
4
DEC  
IX1  
5
COM  
SP1  
5
LSR  
SP1  
9
2
CPX  
3
CPX  
4
CPX  
3
CPX  
4
3
BRCLR1 BCLR1  
COM  
COMA  
COMX  
SWI  
CPX  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
1
1
1
1
1
1
1
1
1
1
INH  
SP1  
4
LSR  
1
LSRA  
INH  
1
LSRX  
INH  
2
2
AND  
IMM 2 DIR  
2
BIT  
IMM 2 DIR  
2
LDA  
IMM 2 DIR  
2
AIS  
IMM 2 DIR  
2
EOR  
IMM 2 DIR  
2
ADC  
IMM 2 DIR  
2
ORA  
IMM 2 DIR  
2
ADD  
IMM 2 DIR  
3
AND  
4
AND  
3
AND  
4
4
BRSET2 BSET2  
TAP  
AND  
3
DIR  
5
2
DIR  
4
1
3
1
INH  
2
2
2
2
2
2
2
2
SP1  
4
3
4
1
TPA  
INH  
3
BIT  
4
BIT  
3
BIT  
4
BIT  
SP1  
5
BRCLR2 BCLR2  
STHX  
LDHX  
LDHX  
3
DIR  
5
2
DIR  
4
IMM 2 DIR  
4
1
1
5
ROR  
SP1  
5
ASR  
SP1  
5
LSL  
SP1  
5
ROL  
SP1  
5
DEC  
SP1  
6
DBNZ  
SP1  
5
INC  
SP1  
4
TST  
SP1  
2
PULA  
INH  
2
PSHA  
INH  
2
PULX  
INH  
2
PSHX  
INH  
2
PULH  
INH  
2
PSHH  
INH  
1
CLRH  
INH  
3
LDA  
4
LDA  
3
LDA  
4
6
BRSET3 BSET3  
ROR  
RORA  
RORX  
LDA  
3
DIR  
5
2
DIR  
4
1
INH  
1
INH  
3
3
3
3
3
4
3
3
SP1  
4
ASR  
1
ASRA  
INH  
1
LSLA  
INH  
1
ROLA  
INH  
1
DECA  
INH  
1
ASRX  
INH  
1
LSLX  
INH  
1
ROLX  
INH  
1
DECX  
INH  
1
3
STA  
4
STA  
3
STA  
4
7
BRCLR3 BCLR3  
TAX  
STA  
3
DIR  
5
2
DIR  
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
INH  
SP1  
4
LSL  
1
3
EOR  
4
EOR  
3
EOR  
4
8
BRSET4 BSET4 BHCC  
CLC  
EOR  
3
DIR  
5
2
DIR  
4
2
REL 2 DIR  
3
INH  
SP1  
4
ROL  
1
3
ADC  
4
ADC  
5
ADC  
SP2 2 IX1  
5
ORA  
SP2 2 IX1  
5
ADD  
SP2 2 IX1  
3
ADC  
4
9
BRCLR4 BCLR4 BHCS  
SEC  
ADC  
3
DIR  
5
2
DIR  
4
2
2
2
2
2
2
2
REL 2 DIR  
3
BPL  
REL 2 DIR  
3
BMI  
REL 3 DIR  
INH  
SP1  
4
DEC  
2
CLI  
INH  
2
SEI  
INH  
3
ORA  
4
ORA  
3
ORA  
4
A
B
C
D
E
F
BRSET5 BSET5  
ORA  
3
DIR  
5
2
DIR  
4
SP1  
5
3
3
5
3
ADD  
4
ADD  
3
ADD  
4
BRCLR5 BCLR5  
DBNZ DBNZA DBNZX DBNZ  
ADD  
3
DIR  
5
2
DIR  
4
2
1
1
3
1
INH  
1
2
1
1
2
1
INH  
1
3
2
2
3
2
IX1  
4
INC  
IX1  
3
SP1  
3
4
INC  
1
2
JMP  
4
JMP  
3
JMP  
BRSET6 BSET6  
BMC  
INCA  
INCX  
RSP  
3
DIR  
5
2
DIR  
4
REL 2 DIR  
INH  
1
TSTA  
INH  
5
MOV  
DD  
1
CLRA  
INH  
INH  
1
TSTX  
INH  
4
MOV  
DIX+  
1
CLRX  
INH  
INH  
2
DIR  
4
2
2
IX1  
5
3
BMS  
REL 2 DIR  
3
BIL  
3
TST  
1
4
BSR  
REL 2 DIR  
2
LDX  
IMM 2 DIR  
2
AIX  
IMM 2 DIR  
6
JSR  
BRCLR6 BCLR6  
TST  
IX1  
NOP  
JSR  
JSR  
3
DIR  
5
2
DIR  
4
INH  
2
2
2
IX1  
3
4
MOV  
IMD  
3
CLR  
IX1  
4
1
STOP  
INH  
1
WAIT  
INH  
3
LDX  
4
LDX  
5
LDX  
SP2 2 IX1  
5
STX  
SP2 2 IX1  
4
LDX  
SP1  
BRSET7 BSET7  
MOV  
IX+D  
LDX  
*
1
TXA  
INH  
3
DIR  
5
2
DIR  
4
REL  
3
BIH  
1
1
4
4
3
3
3
CLR  
4
CLR  
SP1  
2
CLR  
IX  
3
STX  
4
STX  
3
STX  
4
2
STX  
IX  
BRCLR7 BCLR7  
DIR DIR  
STX  
3
2
REL 2 DIR  
3
1
SP1  
INH Inherent  
IMM Immediate  
DIR Direct  
EXT Extended  
DD Direct-Direct  
IX+D Indexed-Direct DIX+ Direct-Indexed  
*Pre-byte for stack pointer indexed instructions  
REL Relative  
SP1 Stack Pointer, 8-Bit Offset  
SP2 Stack Pointer, 16-Bit Offset  
IX+ Indexed, No Offset with  
Post Increment  
IX1+ Indexed, 1-Byte Offset with  
Post Increment  
MSB  
LSB  
0
High Byte of Opcode in Hexadecimal  
Cycles  
IX  
Indexed, No Offset  
IX1 Indexed, 8-Bit Offset  
IX2 Indexed, 16-Bit Offset  
IMD Immediate-Direct  
5
Low Byte of Opcode in Hexadecimal  
0
BRSET0 Opcode Mnemonic  
DIR Number of Bytes / Addressing Mode  
3
Advance Information 68HC908EY16  
Section 6. System Integration Module (SIM)  
6.1 Contents  
6.2  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
6.3  
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . .90  
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . .90  
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . .91  
6.3.1  
6.3.2  
6.3.3  
6.4  
6.4.2  
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . .91  
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . .93  
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94  
Computer Operating Properly (COP) Reset. . . . . . . . . . .95  
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . .95  
Forced Monitor Mode Entry Reset (MENRST). . . . . . . . .96  
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .96  
6.4.2.1  
6.4.2.2  
6.4.2.3  
6.4.2.4  
6.4.2.5  
6.4.2.6  
6.5  
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96  
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . .96  
SIM Counter During Stop Mode Recovery. . . . . . . . . . . . . .97  
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . .97  
6.5.1  
6.5.2  
6.5.3  
6.6  
Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97  
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . .100  
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101  
6.6.1  
6.6.1.1  
6.6.1.2  
6.6.2  
6.7  
6.7.1  
6.7.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104  
6.8.2 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . .107  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
System Integration Module (SIM)  
87  
System Integration Module (SIM)  
6.2 Introduction  
This section describes the system integration module (SIM), which  
supports up to 24 external and/or internal interrupts. The SIM is a system  
state controller that coordinates the central processor unit (CPU) and  
exception timing. Together with the CPU, the SIM controls all  
microcontroller unit (MCU) activities. A block diagram of the SIM is  
shown in Figure 6-1.  
The SIM is responsible for:  
Bus clock generation and control for CPU and peripherals:  
Stop/wait/reset entry and recovery  
Internal clock control  
Master reset control, including power-on reset (POR) and  
computer operating properly (COP) timeout  
Interrupt control:  
Acknowledge timing  
Arbitration control timing  
Vector address generation  
CPU enable/disable timing  
Modular architecture expandable to 128 interrupt sources  
Table 6-1 shows the internal signal names used in this section.  
Table 6-1. Signal Name Conventions  
Signal Name  
Description  
CGMXCLK  
Selected clock source from internal clock generator module (ICG)  
Clock output from ICG module  
(bus clock = CGMOUT divided by two)  
CGMOUT  
IAB  
IDB  
Internal address bus  
Internal data bus  
PORRST  
IRST  
Signal from the power-on reset (POR) module to the SIM  
Internal reset signal  
R/W  
Read/write signal  
Advance Information  
88  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
Introduction  
MODULE STOP  
MODULE WAIT  
CPU STOP (FROM CPU)  
CPU WAIT (FROM CPU)  
STOP/WAIT  
CONTROL  
SIMOSCEN (TO ICG)  
SIM  
COUNTER  
COP CLOCK  
CGMXCLK (FROM ICG)  
CGMOUT (FROM ICG)  
÷ 2  
CLOCK  
CONTROL  
CLOCK GENERATORS  
INTERNAL CLOCKS  
FORCED MON MODE ENTRY  
(FROM MENRST MODULE)  
POR CONTROL  
LVI (FROM LVI MODULE)  
ILLEGAL OPCODE (FROM CPU)  
ILLEGAL ADDRESS (FROM ADDRESS  
MAP DECODERS)  
MASTER  
RESET  
CONTROL  
SIM RESET STATUS REGISTER  
COP (FROM COP MODULE)  
RESET  
INTERRUPT SOURCES  
CPU INTERFACE  
INTERRUPT CONTROL  
AND PRIORITY DECODE  
Figure 6-1. SIM Block Diagram  
68HC908EY16 Rev 2.0  
Advance Information  
89  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
6.3 SIM Bus Clock Control and Generation  
The bus clock generator provides system clock signals for the CPU and  
peripherals on the MCU. The system clocks are generated from an  
incoming clock, CGMOUT, as shown in Figure 6-2. This clock originates  
from either an external oscillator or from the internal clock generator.  
CGMXCLK  
SIM COUNTER  
ECLK  
ICLK  
SELECT  
CIRCUIT  
A
B
CGMOUT  
BUS CLOCK  
GENERATORS  
÷ 2  
÷ 2  
S*  
*WHEN S = 1,  
CGMOUT = B  
ICG  
GENERATOR  
CS  
SIM  
MONITOR MODE  
USER MODE  
ICG  
Figure 6-2. System Clock Signals  
6.3.1 Bus Timing  
In user mode, the internal bus frequency is the internal clock generator  
output (CGMXCLK) divided by four.  
6.3.2 Clock Startup from POR or LVI Reset  
When the power-on reset (POR) module or the low-voltage inhibit (LVI)  
module generates a reset, the clocks to the CPU and peripherals are  
inactive and held in an inactive phase until after 4096 CGMXCLK cycles.  
The MCU is held in reset by the SIM during this entire period. The bus  
clocks start upon completion of the timeout.  
Advance Information  
90  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
Reset and System Initialization  
6.3.3 Clocks in Stop Mode and Wait Mode  
Upon exit from stop mode by an interrupt or reset, the SIM allows  
CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do  
not become active until after the stop delay timeout. Stop mode recovery  
timing is discussed in detail in 6.7.2 Stop Mode.  
In wait mode, the CPU clocks are inactive. Refer to the wait mode  
subsection of each module to see if the module is active or inactive in  
wait mode. Some modules can be programmed to be active in wait  
mode.  
6.4 Reset and System Initialization  
The MCU has these internal reset sources:  
Power-on reset (POR) module  
Computer operating properly (COP) module  
Low-voltage inhibit (LVI) module  
Illegal opcode  
Illegal address  
Forced monitor mode entry reset (MENRST) module  
All of these resets produce the vector $FFFE$FFFF ($FEFE$FEFF in  
monitor mode) and assert the internal reset signal (IRST). IRST causes  
all registers to be returned to their default values and all modules to be  
returned to their reset states.  
These internal resets clear the SIM counter and set a corresponding bit  
in the SIM reset status register (SRSR). See 6.5 SIM Counter and  
6.8.2 SIM Reset Status Register.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
System Integration Module (SIM)  
91  
System Integration Module (SIM)  
6.4.1 External Pin Reset  
The RST pin circuit includes an internal pullup device. Pulling the  
asynchronous RST pin low halts all processing. The PIN bit of the SIM  
reset status register (SRSR) is set as long as RST is held low for a  
minimum of 67 CGMXCLK cycles, assuming that neither the POR nor  
the LVI was the source of the reset. See Table 6-2 for details. Figure 6-  
3 shows the relative timing.  
Table 6-2. PIN Bit Set Timing  
Reset Type  
POR/LVI  
Number of Cycles Required to set PIN  
4163 (4096 + 64 + 3)  
All Others  
67 (64 + 3)  
CGMOUT  
RST  
IAB  
VECT H VECT L  
PC  
Figure 6-3. External Reset Timing  
Advance Information  
92  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
 
 
System Integration Module (SIM)  
Reset and System Initialization  
6.4.2 Active Resets from Internal Sources  
An internal reset can be caused by an illegal address, illegal opcode,  
COP timeout, LVI, POR, or MENRST as shown in Figure 6-4.  
NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles  
during which the SIM asserts IRST. The internal reset signal then follows  
with the 64-cycle phase as shown in Figure 6-5.  
The COP reset is asynchronous to the bus clock.  
ILLEGAL ADDRESS RESET  
ILLEGAL OPCODE RESET  
COP RESET  
INTERNAL RESET  
LVI  
POR  
MENRST  
Figure 6-4. Sources of Internal Reset  
IRST  
64 CYCLES  
CGMXCLK  
IAB  
VECTOR HIGH  
Figure 6-5. Internal Reset Timing  
68HC908EY16 Rev 2.0  
Advance Information  
93  
MOTOROLA  
System Integration Module (SIM)  
 
 
 
System Integration Module (SIM)  
6.4.2.1 Power-On Reset  
When power is first applied to the MCU, the power-on reset (POR)  
module generates a pulse to indicate that power-on has occurred. The  
MCU is held in reset while the SIM counter counts out 4096 CGMXCLK  
cycles. Another 64 CGMXCLK cycles later, the CPU and memories are  
released from reset to allow the reset vector sequence to occur.  
At power-on, these events occur:  
A POR pulse is generated.  
The internal reset signal is asserted.  
The SIM enables CGMOUT.  
Internal clocks to the CPU and modules are held inactive for 4096  
CGMXCLK cycles to allow stabilization of the internal clock  
generator.  
The POR bit of the SIM reset status register (SRSR) is set and all  
other bits in the register are cleared.  
PORRST  
4096  
CYCLES  
64  
CYCLES  
CGMXCLK  
CGMOUT  
IRST  
IAB  
$FFFE  
$FFFF  
Figure 6-6. POR Recovery  
Advance Information  
94  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Reset and System Initialization  
6.4.2.2 Computer Operating Properly (COP) Reset  
An input to the SIM is reserved for the COP reset signal. The overflow of  
the COP counter causes an internal reset and sets the COP bit in the  
reset status register (SRSR).  
To prevent a COP module timeout, write any value to location $FFFF.  
Writing to location $FFFF clears the COP counter and stages 125 of the  
SIM counter. The SIM counter output, which occurs at least every  
21224 CGMXCLK cycles, drives the COP counter. The COP should be  
serviced as soon as possible out of reset to guarantee the maximum  
amount of time before the first timeout.  
The COP module is disabled if the IRQ pin is held at VTST while the MCU  
is in monitor mode. The COP module can be disabled only through  
combinational logic conditioned with the high-voltage signal on the IRQ  
pin. This prevents the COP from becoming disabled as a result of  
external noise.  
6.4.2.3 Illegal Opcode Reset  
The SIM decodes signals from the CPU to detect illegal instructions. An  
illegal instruction sets the ILOP bit in the SIM reset status register  
(SRSR) and causes a reset.  
If the stop enable bit, STOP, in the configuration register (CONFIG1) is  
logic 0, the SIM treats the STOP instruction as an illegal opcode and  
causes an illegal opcode reset.  
6.4.2.4 Illegal Address Reset  
An opcode fetch from an unmapped address generates an illegal  
address reset. The SIM verifies that the CPU is fetching an opcode prior  
to asserting the ILAD bit in the SIM reset status register (SRSR) and  
resetting the MCU. A data fetch from an unmapped address does not  
generate a reset.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
System Integration Module (SIM)  
95  
System Integration Module (SIM)  
6.4.2.5 Forced Monitor Mode Entry Reset (MENRST)  
The MENRST module is monitoring the reset vector fetches and will  
assert an internal reset if it detects that the reset vectors are erased  
($00). When the MCU comes out of reset, it is forced into monitor mode.  
See Section 10. Monitor ROM (MON).  
6.4.2.6 Low-Voltage Inhibit (LVI) Reset  
The low-voltage inhibit module (LVI) asserts its output to the SIM when  
the VDD voltage falls to the VTRIPF voltage. The LVI bit in the SIM reset  
status register (SRSR) is set and a chip reset is asserted if the LVIPWRD  
and LVIRSTD bits in the CONFIG register are at logic 0. The MCU is  
held in reset until VDD rises above VTRIPR. The MCU remains in reset  
until the SIM counts 4096 CGMXCLK to begin a reset recovery. Another  
64 CGMXCLK cycles later, the CPU is released from reset to allow the  
reset vector sequence to occur. See Section 12. Low-Voltage Inhibit  
(LVI) Module.  
6.5 SIM Counter  
The SIM counter is used by the power-on reset module (POR) and in  
stop mode recovery to allow the oscillator time to stabilize before  
enabling the internal bus (IBUS) clocks. The SIM counter also serves as  
a prescaler for the computer operating properly module (COP). The SIM  
counter overflow supplies the clock for the COP module. The SIM  
counter is 12 bits long and is clocked by the falling edge of CGMXCLK.  
6.5.1 SIM Counter During Power-On Reset  
The power-on reset module (POR) detects power applied to the MCU.  
At power-on, the POR circuit asserts the signal PORRST. Once the SIM  
is initialized, it enables the internal clock generator to drive the bus clock  
state machine.  
Advance Information  
96  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Program Exception Control  
6.5.2 SIM Counter During Stop Mode Recovery  
The SIM counter also is used for stop mode recovery. The STOP  
instruction clears the SIM counter. After an interrupt or reset, the SIM  
senses the state of the short stop recovery bit, SSREC, in the  
configuration register. If the SSREC bit is a logic 1, then the stop  
recovery is reduced from the normal delay of 4096 CGMXCLK cycles  
down to 32 CGMXCLK cycles.  
6.5.3 SIM Counter and Reset States  
The SIM counter is free-running after all reset states. See 6.4.2 Active  
Resets from Internal Sources for counter control and internal reset  
recovery sequences.  
6.6 Program Exception Control  
Normal, sequential program execution can be changed in two ways:  
1. Interrupts  
a. Maskable hardware CPU interrupts  
b. Non-maskable software interrupt instruction (SWI)  
2. Reset  
6.6.1 Interrupts  
At the beginning of an interrupt, the CPU saves the CPU register  
contents on the stack and sets the interrupt mask (I bit) to prevent  
additional interrupts. At the end of an interrupt, the return-from-interrupt  
(RTI) instruction recovers the CPU register contents from the stack so  
that normal processing can resume. Figure 6-7 shows interrupt entry  
timing. Figure 6-8 shows interrupt recovery timing.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
System Integration Module (SIM)  
97  
System Integration Module (SIM)  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
DUMMY  
SP  
SP 1  
SP 2  
SP 3  
SP 4  
VECT H  
VECT L START ADDR  
DUMMY PC 1[7:0] PC 1[15:8]  
X
A
CCR  
V DATA H V DATA L OPCODE  
R/W  
Figure 6-7. Interrupt Entry  
MODULE  
INTERRUPT  
I BIT  
IAB  
IDB  
SP 4  
SP 3  
SP 2  
SP 1  
SP  
PC  
PC + 1  
CCR  
A
X
PC 1 [7:0] PC 1 [15:8] OPCODE OPERAND  
R/W  
Figure 6-8. Interrupt Recovery  
Interrupts are latched, and arbitration is performed in the SIM at the start  
of interrupt processing. The arbitration result is a constant that the CPU  
uses to determine which vector to fetch. As shown in Figure 6-9, once  
an interrupt is latched by the SIM, no other interrupt can take  
precedence, regardless of priority, until the latched interrupt is serviced  
or the I bit is cleared.  
Advance Information  
98  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Program Exception Control  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
YES  
IRQ  
INTERRUPT  
?
NO  
ICG CLK MON  
INTERRUPT  
?
NO  
OTHER  
INTERRUPTS  
YES  
?
NO  
STACK CPU REGISTERS  
SET I BIT  
LOAD PC WITH INTERRUPT VECTOR  
FETCH NEXT  
INSTRUCTION  
SWI  
INSTRUCTION  
?
YES  
YES  
NO  
RTI  
UNSTACK CPU REGISTERS  
EXECUTE INSTRUCTION  
INSTRUCTION  
?
NO  
Figure 6-9. Interrupt Processing  
68HC908EY16 Rev 2.0  
Advance Information  
99  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
6.6.1.1 Hardware Interrupts  
A hardware interrupt does not stop the current instruction. Processing of  
a hardware interrupt begins after completion of the current instruction.  
When the current instruction is complete, the SIM checks all pending  
hardware interrupts. If interrupts are not masked (I bit clear in the  
condition code register), and if the corresponding interrupt enable bit is  
set, the SIM proceeds with interrupt processing; otherwise, the next  
instruction is fetched and executed.  
If more than one interrupt is pending at the end of an instruction  
execution, the highest priority interrupt is serviced first. Figure 6-10  
demonstrates what happens when two interrupts are pending. If an  
interrupt is pending upon exit from the original interrupt service routine,  
the pending interrupt is serviced before the load-accumulator- from-  
memory (LDA) instruction is executed.  
CLI  
BACKGROUND  
LDA #$FF  
ROUTINE  
INT1  
PSHH  
INT1 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
INT2  
PSHH  
INT2 INTERRUPT SERVICE ROUTINE  
PULH  
RTI  
Figure 6-10. Interrupt Recognition Example  
Advance Information  
100  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
 
System Integration Module (SIM)  
Program Exception Control  
The LDA opcode is prefetched by both the INT1 and INT2 RTI  
instructions. However, in the case of the INT1 RTI prefetch, this is a  
redundant operation.  
NOTE: To maintain compatibility with the M6805, M146805, and MC68HC05  
Families the H register is not pushed on the stack during interrupt entry.  
If the interrupt service routine modifies the H register or uses the indexed  
addressing mode, software should save the H register and then restore  
it prior to exiting the routine.  
6.6.1.2 SWI Instruction  
The SWI instruction is a non-maskable instruction that causes an  
interrupt regardless of the state of the interrupt mask (I bit) in the  
condition code register.  
NOTE: A software interrupt pushes PC onto the stack. A software interrupt does  
not push PC 1, as a hardware interrupt does.  
6.6.2 Reset  
All reset sources always have higher priority than interrupts and cannot  
be arbitrated.  
6.6.3 Break Interrupts  
The break module can stop normal program flow at a software-  
programmable break point by asserting its break interrupt output. See  
Section 22. Break Module (BRK). The SIM puts the CPU into the break  
state by forcing it to the SWI vector location. Refer to the break interrupt  
subsection of each module to see how each module is affected by the  
break state.  
6.6.4 Status Flag Protection in Break Mode  
The SIM controls whether status flags contained in other modules can  
be cleared during break mode. The user can select whether flags are  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
System Integration Module (SIM)  
101  
System Integration Module (SIM)  
protected from being cleared by properly initializing the break clear flag  
enable bit (BCFE) in the SIM break flag control register (SBFCR).  
Protecting flags in break mode ensures that set flags will not be cleared  
while in break mode. This protection allows registers to be freely read  
and written during break mode without losing status flag information.  
Setting the BCFE bit enables the clearing mechanisms. Once cleared in  
break mode, a flag remains cleared even when break mode is exited.  
Status flags with a two-step clearing mechanism for example, a read  
of one register followed by the read or write of another are protected,  
even when the first step is accomplished prior to entering break mode.  
Upon leaving break mode, execution of the second step will clear the flag  
as normal.  
6.7 Low-Power Modes  
Executing the WAIT or STOP instruction puts the MCU in a low power-  
consumption mode for standby situations. The SIM holds the CPU in a  
non-clocked state. Both STOP and WAIT clear the interrupt mask (I) in  
the condition code register, allowing interrupts to occur. Low-power  
modes are exited via an interrupt or reset.  
Advance Information  
102  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
6.7.1 Wait Mode  
In wait mode, the CPU clocks are inactive while one set of peripheral  
clocks continues to run. Figure 6-11 shows the timing for wait mode  
entry.  
A module that is active during wait mode can wake up the CPU with an  
interrupt if the interrupt is enabled. Stacking for the interrupt begins one  
cycle after the WAIT instruction during which the interrupt occurred.  
Refer to the wait mode subsection of each module to see if the module  
is active or inactive in wait mode. Some modules can be programmed to  
be active in wait mode.  
Wait mode can also be exited by a reset. If the COP disable bit, COPD,  
in the configuration register is logic 0, then the computer operating  
properly module (COP) is enabled and remains active in wait mode.  
IAB  
IDB  
WAIT ADDR  
WAIT ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction.  
Figure 6-11. Wait Mode Entry Timing  
Figure 6-12 and Figure 6-13 show the timing for WAIT recovery.  
IAB  
IDB  
$DE0B  
$A6  
$DE0C  
$00FF  
$00FE  
$00FD  
$00FC  
$A6  
$A6  
$01  
$0B  
$DE  
EXITSTOPWAIT  
Note: EXITSTOPWAIT = CPU interrupt  
Figure 6-12. Wait Recovery from Interrupt  
68HC908EY16 Rev 2.0  
Advance Information  
103  
MOTOROLA  
System Integration Module (SIM)  
 
System Integration Module (SIM)  
64  
CYCLES  
IAB  
$DE0B  
RST VCT H RST VCT L  
IDB $A6  
IRST  
$A6  
$A6  
CGMXCLK  
Figure 6-13. Wait Recovery from Internal Reset  
6.7.2 Stop Mode  
In stop mode, the SIM counter is held in reset and the CPU and  
peripheral clocks are held inactive. If the STOPOSCEN bit in the  
configuration register is not enabled, the SIM also disables the internal  
clock generator module outputs (CGMOUT and CGMXCLK).  
The CPU and peripheral clocks do not become active until after the stop  
delay timeout. Stop mode is exited via an interrupt request from a  
module that is still active in stop mode or from a system reset.  
An interrupt request from a module that is still active in stop mode can  
cause an exit from stop mode. Stop recovery time is selectable using the  
SSREC bit in the configuration register. If SSREC is set, stop recovery  
is reduced from the normal delay of 4096 CGMXCLK cycles down to 32.  
Stacking for interrupts begins after the selected stop recovery time has  
elapsed.  
When stop mode is exited due to a reset condition, the SIM forces a long  
stop recovery time of 4096 CGMXCLK cycles.  
NOTE: Short stop recovery is ideal for applications using canned oscillators that  
do not require long startup times for stop mode. External crystal  
applications should use the full stop recovery time by clearing the  
SSREC bit.  
Advance Information  
104  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
Low-Power Modes  
The SIM counter is held in reset from the execution of the STOP  
instruction until the beginning of stop recovery. It is then used to time the  
recovery period. Figure 6-14 shows stop mode entry timing.  
CPUSTOP  
IAB  
IDB  
STOP ADDR  
STOP ADDR + 1  
SAME  
SAME  
PREVIOUS DATA  
NEXT OPCODE  
SAME  
SAME  
R/W  
Note: Previous data can be operand data or the STOP opcode, depending on the last instruction.  
Figure 6-14. Stop Mode Entry Timing  
STOP RECOVERY PERIOD  
CGMXCLK  
INT  
IAB  
STOP + 2  
STOP + 2  
SP  
SP 1  
SP 2  
SP 3  
STOP +1  
Figure 6-15. Stop Mode Recovery from Interrupt  
68HC908EY16 Rev 2.0  
Advance Information  
105  
MOTOROLA  
System Integration Module (SIM)  
 
System Integration Module (SIM)  
6.8 SIM Registers  
The SIM has three memory mapped registers. Table 6-3 shows the  
mapping of these registers.  
Table 6-3. SIM Registers  
Address  
$FE00  
$FE01  
$FE03  
Register  
SBSR  
Access Mode  
User  
SRSR  
User  
SBFCR  
User  
6.8.1 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from stop or wait mode.  
Address: $FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
=Reserved  
Note: 1. Writing a logic 0 clears SBSW  
Figure 6-16. SIM Break Status Register (SBSR)  
SBSW SIM Break STOP/WAIT  
This status bit is useful in applications requiring a return to stop or wait  
mode after exiting from a break interrupt. SBSW can be cleared by  
writing a logic 0 to it. Reset clears SBSW.  
1 = Stop or wait mode was exited by break interrupt  
0 = Stop or wait mode was not exited by break interrupt  
SBSW can be read within the break state SWI routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this:  
Advance Information  
106  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
; This code works if the H register has been pushed onto the stack  
; in the breakservice routine software. This code should be  
; executed at the end of the break service routine software.  
HIBYTE  
LOBYTE  
;
EQU  
EQU  
5
6
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
; See if STOP or  
; WAIT mode was  
; exited by break.  
TST  
BNE  
LOBYTE,SP  
DOLO  
; If RETURNLO is not 0,  
; then just decrement low  
; byte.  
DEC  
HIBYTE,SP  
LOBYTE,SP  
; Else deal with high byte,  
; too.  
; Point to STOP/WAIT opcode.  
DOLO  
DEC  
RETURN  
PULH  
RTI  
; Restore H register.  
6.8.2 SIM Reset Status Register  
This register contains seven bits that show the source of the last reset.  
The status register will clear automatically after reading it. A power-on  
reset sets the POR bit and clears all other bits in the register.  
Address: $FE01  
Bit 7  
POR  
6
5
4
3
2
1
Bit 0  
0
Read:  
Write:  
POR:  
PIN  
COP  
ILOP  
ILAD  
MENRST  
LVI  
1
0
0
0
0
0
0
0
= Unimplemented  
Figure 6-17. SIM Reset Status Register (SRSR)  
POR Power-On Reset Bit  
1 = Last reset caused by POR circuit  
0 = Read of SRSR  
68HC908EY16 Rev 2.0  
Advance Information  
107  
MOTOROLA  
System Integration Module (SIM)  
System Integration Module (SIM)  
PIN External Reset Bit  
1 = Last reset caused by external reset pin RST  
0 = POR or read of SPSR  
COP Computer Operating Properly Reset Bit  
1 = Last reset caused by COP counter  
0 = POR or read of SRSR  
ILOP Illegal Opcode Reset Bit  
1 = Last reset caused by an illegal opcode  
0 = POR or read of SRSR  
ILAD Illegal Address Reset Bit (opcode fetches only)  
1 = Last reset caused by an opcode fetch from an illegal address  
0 = POR or read of SRSR  
MENRST Forced Monitor Mode Entry Reset Bit  
1 = Last reset was caused by the MENRST circuit  
0 = POR or read of SRSR  
LVI Low-Voltage Inhibit Reset Bit  
1 = Last reset was caused by the LVI circuit  
0 = POR or read of SRSR  
Advance Information  
108  
68HC908EY16 Rev 2.0  
System Integration Module (SIM)  
MOTOROLA  
System Integration Module (SIM)  
SIM Registers  
6.8.3 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
0
0
0
R
=Reserved  
Figure 6-18. SIM Break Flag Control Register (SBFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit enables software to clear status bits by accessing  
status registers while the MCU is in a break state. To clear status bits  
during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
System Integration Module (SIM)  
109  
System Integration Module (SIM)  
Advance Information  
68HC908EY16 Rev 2.0  
110  
System Integration Module (SIM)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 7. Internal Clock Generator (ICG) Module  
7.1 Contents  
7.2  
7.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
7.4  
7.4.1  
7.4.2  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113  
Clock Enable Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . .116  
Digitally Controlled Oscillator. . . . . . . . . . . . . . . . . . . . .117  
Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117  
Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . .117  
Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118  
External Clock Generator. . . . . . . . . . . . . . . . . . . . . . . . . .119  
External Oscillator Amplifier. . . . . . . . . . . . . . . . . . . . . .119  
External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .120  
Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121  
External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .120  
Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . .123  
External Clock Activity Detector. . . . . . . . . . . . . . . . . . .124  
Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .125  
Clock Selection Switches. . . . . . . . . . . . . . . . . . . . . . . .126  
Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . .126  
7.4.2.1  
7.4.2.2  
7.4.2.3  
7.4.2.4  
7.4.3  
7.4.3.1  
7.4.3.2  
7.4.4  
7.4.4.1  
7.4.4.2  
7.4.4.3  
7.4.5  
7.4.5.1  
7.4.5.2  
7.5  
7.5.1  
7.5.2  
7.5.3  
Usage Notes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127  
Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . .128  
Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . .129  
Using Clock Monitor Interrupts. . . . . . . . . . . . . . . . . . . . . .130  
Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . .131  
Digitally Controlled Oscillator. . . . . . . . . . . . . . . . . . . . .131  
Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . .132  
Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . .132  
Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . .133  
7.5.4  
7.5.4.1  
7.5.4.2  
7.5.4.3  
7.5.4.4  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
111  
 
Internal Clock Generator (ICG) Module  
7.5.5  
Switching Internal Clock Frequencies . . . . . . . . . . . . . . . .133  
7.5.6  
Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . .134  
Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . .135  
Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . .135  
Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136  
Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . .131  
7.5.6.1  
7.5.6.2  
7.5.6.3  
7.5.7  
7.6  
7.6.1  
7.6.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138  
7.7  
CONFIG Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139  
Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . .139  
Switching Internal Clock Frequencies . . . . . . . . . . . . . . . .139  
Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . .140  
Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . .140  
7.7.1  
7.7.2  
7.7.3  
7.7.4  
7.8  
Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . .141  
ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144  
ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .146  
ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147  
ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . .147  
ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . .148  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
7.8.5  
7.2 Introduction  
The internal clock generator module (ICG) is used to create a stable  
clock source for the microcontroller without using any external  
components. The ICG generates the oscillator output clock  
(CGMXCLK), which is used by the computer operating properly (COP),  
low-voltage inhibit (LVI), and other modules. The ICG also generates the  
clock generator output (CGMOUT), which is fed to the system  
integration module (SIM) to create the bus clocks. The bus frequency will  
be one-fourth the frequency of CGMXCLK and one-half the frequency of  
CGMOUT. Finally, the ICG generates the timebase clock (TBMCLK),  
which is used in the timebase module (TBM).  
Advance Information  
112  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Features  
7.3 Features  
The ICG has these features:  
Selectable external clock generator, either 1-pin external source  
or 2-pin crystal, multiplexed with port pins  
Internal clock generator with programmable frequency output in  
integer multiples of a nominal frequency (307.2 kHz ± 25 percent)  
Frequency adjust (trim) register to improve variability  
to ±2 percent  
Bus clock software selectable from either internal or external clock  
(bus frequency range from 76.8 kHz ± 25 percent  
to 9.75 MHz ± 25 percent in 76.8-kHz increments)  
NOTE: For the 68HC908EY16, do not exceed the maximum bus frequency of 8  
MHz at 5.0 V.  
Timebase clock automatically selected from external clock if  
external clock is available  
Clock monitor for both internal and external clocks  
7.4 Functional Description  
The ICG, shown in Figure 7-1, contains these major submodules:  
Clock enable circuit  
Internal clock generator  
External clock generator  
Clock monitor circuit  
Clock selection circuit  
68HC908EY16 Rev 2.0  
Advance Information  
113  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
CS  
CGMOUT  
CGMXCLK  
TBMCLK  
RESET  
CLOCK  
SELECTION  
CIRCUIT  
IOFF  
EOFF  
CMON  
ECGS  
ICGS  
CLOCK  
MONITOR  
CIRCUIT  
FICGS  
DDIV[3:0]  
DSTG[7:0]  
ICLK  
INTERNAL CLOCK  
GENERATOR  
N[6:0}  
TRIM[7:0]  
IBASE  
ICGEN  
SIMOSCEN  
CLOCK/PIN  
ENABLE  
OSCENINSTOP  
EXTCLKEN  
ECGON  
CIRCUIT  
ICGON  
ECGEN  
ECLK  
EXTXTALEN  
EXTSLOW  
EXTERNAL CLOCK  
GENERATOR  
PTC4  
PTC3  
INTERNAL  
TO MCU  
LOGIC  
LOGIC  
OSC1  
PTC4  
OSC2  
PTC3  
EXTERNAL  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 7-1. ICG Module Block Diagram  
Advance Information  
114  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Functional Description  
7.4.1 Clock Enable Circuit  
The clock enable circuit is used to enable the internal clock (ICLK) or  
external clock (ECLK) and the port logic which is shared with the  
oscillator pins (OSC1 and OSC2). The clock enable circuit generates an  
ICG stop (ICGSTOP) signal which stops all clocks (ICLK, ECLK, and the  
low-frequency base clock, IBASE). ICGSTOP is set and the ICG is  
disabled in stop mode if the oscillator enable stop bit (OSCENINSTOP)  
in the configuration (CONFIG) register is clear. The ICG clocks will be  
enabled in stop mode if OSCENINSTOP is high.  
The internal clock enable signal (ICGEN) turns on the internal clock  
generator which generates ICLK. ICGEN is set (active) whenever the  
ICGON bit is set and the ICGSTOP signal is clear. When ICGEN is clear,  
ICLK and IBASE are both low.  
The external clock enable signal (ECGEN) turns on the external clock  
generator which generates ECLK. ECGEN is set (active) whenever the  
ECGON bit is set and the ICGSTOP signal is clear. ECGON cannot be  
set unless the external clock enable (EXTCLKEN) bit in the CONFIG is  
set. when ECGEN is clear, ECLK is low.  
The port C4 enable signal (PC4EN) turns on the port C4 logic. Since port  
C4 is on the same pin as OSC1, this signal is only active (set) when the  
external clock function is not desired. Therefore, PC4EN is clear when  
ECGON is set. PC4EN is not gated with ICGSTOP, which means that if  
the ECGON bit is set, the port C4 logic will remain disabled in stop mode.  
The port C3 enable signal (PC3EN) turns on the port C3 logic. Since port  
C3 is on the same pin as OSC2, this signal is only active (set) when  
2-pin oscillator function is not desired. Therefore, PC3EN is clear when  
ECGON and the external crystal enable (EXTXTALEN) bit in the  
CONFIG are both set. PC4EN is not gated with ICGSTOP, which means  
that if ECGON and EXTXTALEN are set, the port C3 logic will remain  
disabled in stop mode.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
115  
 
Internal Clock Generator (ICG) Module  
7.4.2 Internal Clock Generator  
The internal clock generator, shown in Figure 7-2, creates a low  
frequency base clock (IBASE), which operates at a nominal frequency  
(fNOM) of 307.2 kHz ± 25 percent, and an internal clock (ICLK) which is  
an integer multiple of IBASE. This multiple is the ICG multiplier  
factor (N), which is programmed in the ICG multiplier register (ICGMR).  
The internal clock generator is turned off and the output clocks (IBASE  
and ICLK) are held low when the internal clock generator enable signal  
(ICGEN) is clear.  
The internal clock generator contains:  
A digitally controlled oscillator  
A modulo N divider  
A frequency comparator, which contains voltage and current  
references, a frequency to voltage converter, and comparators  
A digital loop filter  
ICGEN  
FICGS  
VOLTAGE AND  
++  
CURRENT  
REFERENCES  
DSTG[7:0]  
+
DDIV[3:0]  
DIGITAL  
LOOP  
FILTER  
DIGITALLY  
ICLK  
CONTROLLED  
OSCILLATOR  
– –  
N[6:0]  
TRIM[7:0]  
FREQUENCY  
COMPARATOR  
CLOCK GENERATOR  
MODULO  
N
DIVIDER  
IBASE  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 7-2. Internal Clock Generator Block Diagram  
Advance Information  
116  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
 
Internal Clock Generator (ICG) Module  
Functional Description  
7.4.2.1 Digitally Controlled Oscillator  
The digitally controlled oscillator (DCO) is an inaccurate oscillator which  
generates the internal clock (ICLK). The clock period of ICLK is  
dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]).  
Because of only a limited number of bits in DDIV and DSTG, the  
precision of the output (ICLK) is restricted to a precision of approximately  
±0.202 percent to ±0.368 percent when measured over several cycles  
(of the desired frequency). Additionally, since the propagation delays of  
the devices used in the DCO ring oscillator are a measurable fraction of  
the bus clock period, reaching the long-term precision may require  
alternately running faster and slower than desired, making the worst  
case cycle-to-cycle frequency variation ±6.45 percent to ±11.8 percent  
(of the desired frequency). The valid values of DDIV:DSTG range from  
$000 to $9FF. For more information on the quantization error in the  
DCO, see 7.5.4 Quantization Error in DCO Output.  
7.4.2.2 Modulo N Divider  
The modulo N divider creates the low-frequency base clock (IBASE) by  
dividing the internal clock (ICLK) by the ICG multiplier factor (N),  
contained in the ICG multiplier register (ICGMR). When N is  
programmed to a $01 or $00, the divider is disabled and ICLK is passed  
through to IBASE undivided. When the internal clock generator is stable,  
the frequency of IBASE will be equal to the nominal frequency (fNOM) of  
307.2 kHz ± 25 percent.  
7.4.2.3 Frequency Comparator  
The frequency comparator effectively compares the low-frequency base  
clock (IBASE) to a nominal frequency, fNOM. First, the frequency  
comparator converts IBASE to a voltage by charging a known capacitor  
with a current reference for a period dependent on IBASE. This voltage  
is compared to a voltage reference with comparators, whose outputs are  
fed to the digital loop filter. The dependence of these outputs on the  
capacitor size, current reference, and voltage reference causes up to  
±25 percent error in fNOM  
.
68HC908EY16 Rev 2.0  
Advance Information  
117  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
7.4.2.4 Digital Loop Filter  
The digital loop filter (DLF) uses the outputs of the frequency comparator  
to adjust the internal clock (ICLK) clock period. The DLF generates the  
DCO divider control bits (DDIV[3:0]) and the DCO stage control bits  
(DSTG[7:0]), which are fed to the DCO. The DLF first concatenates the  
DDIV and DSTG registers (DDIV[3:0]:DSTG[7:0]) and then adds or  
subtracts a value dependent on the relative error in the low-frequency  
base clocks period, as shown in Table 7-1. In some extreme error  
conditions, such as operating at a VDD level which is out of specification,  
the DLF may attempt to use a value above the maximum ($9FF) or  
below the minimum ($000). In both cases, the value for DDIV will be  
between $A and $F. In this range, the DDIV value will be interpreted the  
same as $9 (the slowest condition). Recovering from this condition  
requires subtracting (increasing frequency) in the normal fashion until  
the value is again below $9FF. (If the desired value is $9xx, the value  
may settle at $Axx through $Fxx. This is an acceptable operating  
condition.) If the error is less than ±5 percent, the internal clock  
generators filter stable indicator (FICGS) is set, indicating relative  
frequency accuracy to the clock monitor.  
Table 7-1. Correction Sizes from DLF to DCO  
Frequency Error  
of IBASE Compared  
to fNOM  
Current to New  
DDIV[3:0]:DSTG[7:0](1)  
DDVI[3:0]:DSTG[7:0]  
Correction  
Relative Correction  
in DCO  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
Minimum  
Maximum  
$xFF to $xDF  
$x20 to $x00  
$xFF to $xF7  
$x08 to $x00  
$xFF to $xFE  
$x01 to $x00  
$xFE to $xFF  
$x00 to $x01  
$xF7 to $xFF  
$x00 to $x08  
$xDF to $xFF  
$x00 to $x20  
2/31  
2/19  
6.45%  
IBASE < 0.85 fNOM  
32 ($020)  
8 ($008)  
1 ($001)  
+1 (+$001)  
+8 (+$008)  
+32 (+$020)  
10.5%  
1.61%  
2.86%  
0.202%  
0.366%  
+0.202%  
+0.368%  
+1.64%  
+2.94%  
+6.90%  
+11.8%  
0.85 fNOM < IBASE  
IBASE < 0.95 fNOM  
0.5/31  
0.5/17.5  
0.0625/31  
0.0625/17.0625  
+0.0625/30.9375  
+0.0625/17  
+0.5/30.5  
+0.5/17  
0.95 fNOM < IBASE  
IBASE < fNOM  
fNOM < IBASE  
IBASE < 1.05 fNOM  
1.05 fNOM < IBASE  
IBASE < 1.15 fNOM  
+2/29  
1.15 fNOM < IBASE  
+2/17  
1. x = Maximum error is independent of value in DDIV[3:0]. DDIV increments or decrements when an addition to DSTG[7:0]  
carries or borrows.  
Advance Information  
118  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
 
Internal Clock Generator (ICG) Module  
Functional Description  
7.4.3 External Clock Generator  
The ICG also provides for an external oscillator or external clock source,  
if desired. The external clock generator, shown in Figure 7-3, contains  
an external oscillator amplifier and an external clock input path.  
ECGEN  
ECLK  
INPUT PATH  
EXTXTALEN  
AMPLIFIER  
EXTERNAL  
CLOCK  
GENERATOR  
EXTSLOW  
OSC1  
PTC4  
OSC2  
PTC3  
INTERNAL TO MCU  
EXTERNAL  
R
B
NAME  
NAME  
CONFIGURATION BIT  
TOP LEVEL SIGNAL  
R *  
S
*R can be 0 (shorted)  
S
when used with higher-  
frequency crystals. Refer  
to manufacturers data.  
X
1
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
C
C
2
1
These components are required  
for external crystal use only.  
Figure 7-3. External Clock Generator Block Diagram  
7.4.3.1 External Oscillator Amplifier  
The external oscillator amplifier provides the gain required by an  
external crystal connected in a Pierce oscillator configuration. The  
amount of this gain is controlled by the slow external (EXTSLOW) bit in  
the CONFIG. When EXTSLOW is set, the amplifier gain is reduced for  
operating low-frequency crystals (32 kHz to 100 kHz). When EXTSLOW  
is clear, the amplifier gain will be sufficient for 1-MHz to 8-MHz crystals.  
EXTSLOW must be configured correctly for the given crystal or the  
circuit may not operate.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
119  
 
Internal Clock Generator (ICG) Module  
The amplifier is enabled when the external clock generator enable  
(ECGEN) signal is set and when the external crystal enable  
(EXTXTALEN) bit in the CONFIG is set. ECGEN is controlled by the  
clock enable circuit (see 7.4.1 Clock Enable Circuit) and indicates that  
the external clock function is desired. When enabled, the amplifier will be  
connected between the PTB6/(OSC1) and PTB7/(OSC2) pins.  
Otherwise, the PTB7/(OSC2) pin reverts to its port function.  
In its typical configuration, the external oscillator requires five external  
components:  
1. Crystal, X1  
2. Fixed capacitor, C1  
3. Tuning capacitor, C2 (can also be a fixed capacitor)  
4. Feedback resistor, RB  
5. Series resistor, RS (included in Figure 7-3 to follow strict Pierce  
oscillator guidelines and may not be required for all ranges of  
operation, especially with high frequency crystals. Refer to the  
crystal manufacturers data for more information.)  
7.4.3.2 External Clock Input Path  
The external clock input path is the means by which the microcontroller  
uses an external clock source. The input to the path is the PTB6/(OSC1)  
pin and the output is the external clock (ECLK). The path, which contains  
input buffering, is enabled when the external clock generator enable  
signal (ECGEN) is set. When not enabled, the PTB6/(OSC1) pin reverts  
to its port function.  
Advance Information  
120  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Functional Description  
7.4.4 Clock Monitor Circuit  
The ICG contains a clock monitor circuit which, when enabled, will  
continuously monitor both the external clock (ECLK) and the internal  
clock (ICLK) to determine if either clock source has been corrupted. The  
clock monitor circuit, shown in Figure 7-4, contains these blocks:  
Clock monitor reference generator  
Internal clock activity detector  
External clock activity detector  
IOFF  
CMON  
FICGS  
IOFF  
ICGS  
CMON  
FICGS  
ICLK  
ACTIVITY  
DETECTOR  
IBASE  
ICGEN  
IBASE  
ICGEN  
EREF  
ICGS  
IBASE  
EREF  
ICGON  
EXTXTALEN  
EXTSLOW  
ECGS  
EXTXTALEN  
EXTSLOW  
REFERENCE  
GENERATOR  
ESTBCLK  
ECLK  
ECGEN  
IREF  
ESTBCLK  
IREF  
ECGS  
ECGS  
ECLK  
ACTIVITY  
DETECTOR  
ECGEN  
ECLK  
ECGEN  
ECLK  
EOFF  
CMON  
EOFF  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 7-4. Clock Monitor Block Diagram  
68HC908EY16 Rev 2.0  
Advance Information  
121  
MOTOROLA  
Internal Clock Generator (ICG) Module  
 
Internal Clock Generator (ICG) Module  
7.4.4.1 Clock Monitor Reference Generator  
The clock monitor uses a reference based on one clock source to  
monitor the other clock source. The clock monitor reference generator  
generates the external reference clock (EREF) based on the external  
clock (ECLK) and the internal reference clock (IREF) based on the  
internal clock (ICLK). To simplify the circuit, the low-frequency base  
clock (IBASE) is used in place of ICLK because it always operates at or  
near 307.2 kHz. For proper operation, EREF must be at least twice as  
slow as IBASE and IREF must be at least twice as slow as ECLK.  
To guarantee that IREF is slower than ECLK and EREF is slower than  
IBASE, one of the signals is divided down. Which signal is divided and  
by how much is determined by the external slow (EXTSLOW) and  
external crystal enable (EXTXTALEN) bits in the CONFIG, according to  
the rules in Table 7-2.  
NOTE: Each signal (IBASE and ECLK) is always divided by four. A longer  
divider is used on either IBASE or ECLK based on the EXTSLOW bit.  
To conserve size, the long divider (divide by 4096) is also used as an  
external crystal stabilization divider. The divider is reset when the  
external clock generator is turned off or in stop mode (ECGEN is clear).  
When the external clock generator is first turned on, the external clock  
generator stable bit (ECGS) will be clear. This condition automatically  
selects ECLK as the input to the long divider. The external stabilization  
clock (ESTBCLK) will be ECLK divided by 16 when EXTXTALEN is low  
or 4096 when EXTXTALEN is high. This timeout allows the crystal to  
stabilize. The falling edge of ESTBCLK is used to set ECGS, which will  
set after a full 16 or 4096 cycles. When ECGS is set, the divider returns  
to its normal function. ESTBCLK may be generated by either IBASE or  
ECLK, but any clocking will only reinforce the set condition. If ECGS is  
cleared because the clock monitor determined that ECLK was inactive,  
the divider will revert to a stabilization divider. Since this will change the  
EREF and IREF divide ratios, it is important to turn the clock monitor off  
(CMON = 0) after inactivity is detected to ensure valid recovery.  
Advance Information  
122  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Functional Description  
7.4.4.2 Internal Clock Activity Detector  
The internal clock activity detector, shown in Figure 7-5, looks for at least  
one falling edge on the low-frequency base clock (IBASE) every time the  
external reference (EREF) is low. Since EREF is less than half the  
frequency of IBASE, this should occur every time. If it does not occur two  
consecutive times, the internal clock inactivity indicator (IOFF) is set.  
IOFF will be cleared the next time there is a falling edge of IBASE while  
EREF is low.  
The internal clock stable bit (ICGS) is also generated in the internal clock  
activity detector. ICGS is set when the internal clock generators filter  
stable signal (FICGS) indicates that IBASE is within about 5 percent of  
the target 307.2 kHz ± 25 percent for two consecutive measurements.  
ICGS is cleared when FICGS is clear, the internal clock generator is  
turned off or is in stop mode (ICGEN is clear), or when IOFF is set.  
CMON  
IOFF  
CK  
Q
EREF  
1/4  
R
R
R
R
D
D
Q
D
Q
ICGS  
DFFRS  
CK  
DFFRR  
CK  
DFFRR  
CK  
Q
IBASE  
S
R
R
DLF MEASURE  
OUTPUT CLOCK  
ICGEN  
FICGS  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 7-5. Internal Clock Activity Detector  
68HC908EY16 Rev 2.0  
Advance Information  
123  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
7.4.4.3 External Clock Activity Detector  
The external clock activity detector, shown in Figure 7-6, looks for at  
least one falling edge on the external clock (ECLK) every time the  
internal reference (IREF) is low. Since IREF is less than half the  
frequency of ECLK, this should occur every time. If it does not occur two  
consecutive times, the external clock inactivity indicator (EOFF) is set.  
EOFF will be cleared the next time there is a falling edge of ECLK while  
IREF is low.  
The external clock stable bit (ECGS) is also generated in the external  
clock activity detector. ECGS is set on a falling edge of the external  
stabilization clock (ESTBCLK). This will be 4096 ECLK cycles after the  
external clock generator on bit is set, or the MCU exits stop mode  
(ECGEN = 1) if the external crystal enable (EXTXTALEN) in the  
CONFIG is set, or 16 cycles when EXTXTALEN is clear. ECGS is  
cleared when the external clock generator is turned off or in stop mode  
(ECGEN is clear) or when EOFF is set.  
CMON  
EOFF  
CK  
Q
IREF  
1/4  
R
R
R
D
D
DFFRS  
DFFRR  
CK  
CK  
Q
Q
EGGS  
ECLK  
S
R
ESTBCLK  
ECGEN  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 7-6. External Clock Activity Detector  
Advance Information  
124  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Functional Description  
7.4.5 Clock Selection Circuit  
The clock selection circuit, shown in Figure 7-7, contains two clock  
switches which generate the oscillator output clock (CGMXCLK) and the  
timebase clock (TBMCLK) from either the internal clock (ICLK) or the  
external clock (ECLK). The clock selection circuit also contains a divide-  
by-two circuit which creates the clock generator output clock  
(CGMOUT), which generates the bus clocks.  
CS  
CGMXCLK  
OUTPUT  
SELECT  
ICLK  
ICLK  
ECLK  
IOFF  
ECLK  
DIV2  
SYNCHRONIZING  
IOFF  
CLOCK  
SWITCHER  
EOFF  
EOFF  
CGMOUT  
TBMCLK  
FORCE_I  
FORCE_E  
RESET  
V
SS  
OUTPUT  
SELECT  
ECGON  
ICLK  
ECLK  
SYNCHRONIZING  
CLOCK  
SWITCHER  
IOFF  
EOFF  
FORCE_I  
FORCE_E  
NAME  
NAME  
CONFIGURATION REGISTER BIT  
TOP LEVEL SIGNAL  
NAME  
NAME  
REGISTER BIT  
MODULE SIGNAL  
Figure 7-7. Clock Selection Circuit Block Diagram  
68HC908EY16 Rev 2.0  
Advance Information  
125  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
7.4.5.1 Clock Selection Switches  
The first switch creates the oscillator output clock (CGMXCLK) from  
either the internal clock (ICLK) or the external clock (ECLK), based on  
the clock select bit (CS; set selects ECLK, clear selects ICLK). When  
switching the CS bit, both ICLK and ECLK must be on (ICGON and  
ECGON set). The clock being switched to also must be stable (ICGS or  
ECGS set).  
The second switch creates the timebase clock (TBMCLK) from ICLK or  
ECLK based on the external clock on bit. When ECGON is set, the  
switch automatically selects the external clock, regardless of the state of  
the ECGS bit.  
7.4.5.2 Clock Switching Circuit  
To robustly switch between the internal clock (ICLK) and the external  
clock (ECLK), the switch assumes the clocks are completely  
asynchronous, so a synchronizing circuit is required to make the  
transition. When the select input (the clock select bit for the oscillator  
output clock switch or the external clock on bit for the timebase clock  
switch) is changed, the switch will continue to operate off the original  
clock for between one and two cycles as the select input is transitioned  
through one side of the synchronizer. Next, the output will be held low for  
between one and two cycles of the new clock as the select input  
transitions through the other side. Then the output starts switching at the  
new clocks frequency. This transition guarantees that no glitches will be  
seen on the output even though the select input may change  
asynchronously to the clocks. The unpredictably of the transition period  
is a necessary result of the asynchronicity.  
The switch automatically selects ICLK during reset. When the clock  
monitor is on (CMON is set) and it determines one of the clock sources  
is inactive (as indicated by the IOFF or EOFF signals), the circuit is  
forced to select the active clock. There are no clocks for the inactive side  
of the synchronizer to properly operate, so that side is forced deselected.  
However, the active side will not be selected until one to two clock cycles  
after the IOFF or EOFF signal transitions.  
Advance Information  
126  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Usage Notes  
7.5 Usage Notes  
The ICG has several features which can provide protection to the  
microcontroller if properly used. Other features can greatly simplify  
usage of the ICG if certain techniques are employed. This section  
describes several possible ways to use the ICG and its features. These  
techniques are not the only ways to use the ICG and may not be  
optimum for all environments. In any case, these techniques should be  
used only as a template, and the user should modify them according to  
the applications requirements.  
These notes include:  
Switching clock sources  
Enabling the clock monitor  
Using clock monitor interrupts  
Quantization error in digitally controlled oscillator (DCO) output  
Switching internal clock frequencies  
Nominal frequency settling time  
Improving frequency settling time  
Trimming frequency  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
127  
Internal Clock Generator (ICG) Module  
7.5.1 Switching Clock Sources  
Switching from one clock source to another requires both clock sources  
to be enabled and stable. A simple flow requires:  
Enable desired clock source  
Wait for it to become stable  
Switch clocks  
Disable previous clock source  
The key point to remember in this flow is that the clock source cannot be  
switched (CS cannot be written) unless the desired clock is on and  
stable. A short assembly code example of how to employ this flow is  
shown in Figure 7-8. This code is for illustrative purposes only and does  
not represent valid syntax for any particular assembler.  
;Clock Switching Code Example  
;This code switches from Internal to External clock  
;Clock Monitor and interrupts are not enabled  
;Mask for CS, ECGON, ECGS  
; If switching from External to Internal, mask is $0C.  
;Other code here, such as writing the COP, since ECGS may  
; take some time to set  
start lda  
#$13  
**  
loop  
**  
sta  
icgcr  
;Try to set CS, ECGON and clear ICGON. ICGON will not  
; clear until CS is set, and CS will not set until  
; ECGON and ECGS are set.  
cmpa  
bne  
icgcr  
loop  
;Check to see if ECGS set, then CS set, then ICGON clear  
;Keep looping until ICGON is clear.  
Figure 7-8. Code Example for Switching Clock Sources  
Advance Information  
128  
68HC908EY16 Rev 2.0  
MOTOROLA  
Internal Clock Generator (ICG) Module  
 
 
Internal Clock Generator (ICG) Module  
Usage Notes  
7.5.2 Enabling the Clock Monitor  
Many applications require the clock monitor to determine if one of the  
clock sources has become inactive, so the other can be used to recover  
from a potentially dangerous situation. Using the clock monitor requires  
both clocks to be active (ECGON and ICGON both set). To enable the  
clock monitor, both clocks also must be stable (ECGS and ICGS both  
set). This is to prevent the use of the clock monitor when a clock is first  
turned on and potentially unstable.  
Enabling the clock monitor and clock monitor interrupts requires a flow  
similar to this:  
Enable the alternate clock source  
Wait for both clock sources to be stable  
Switch to the desired clock source if necessary  
Enable the clock monitor  
Enable clock monitor interrupts  
These events must happen in sequence. A short assembly code  
example of how to employ this flow is shown in Figure 7-9. This code is  
for illustrative purposes only and does not represent valid syntax for any  
particular assembler.  
;Clock Monitor Enabling Code Example  
;This code turns on both clocks, selects the desired  
; one, then turns on the Clock Monitor and Interrupts  
;Mask for CMIE, CMON, ICGON, ICGS, ECGON, ECGS  
; If Internal Clock desired, mask is $AF  
start lda  
#$AF  
; If External Clock desired, mask is $BF  
; If interrupts not desired mask is $2F int; $3F ext  
;Other code here, such as writing the COP, since ECGS  
; and ICGS may take some time to set.  
loop  
**  
**  
sta  
icgcr  
;Try to set CMIE. CMIE wont set until CMON set; CMON  
; won’t set until ICGON, ICGS, ECGON, ECGS set.  
brset 6,ICGCR,error ;Verify CMF is not set  
cmpa  
bne  
icgcr  
loop  
;Check if ECGS set, then CMON set, then CMIE set  
;Keep looping until CMIE is set.  
Figure 7-9. Code Example for Enabling the Clock Monitor  
68HC908EY16 Rev 2.0  
Advance Information  
129  
MOTOROLA  
Internal Clock Generator (ICG) Module  
 
 
Internal Clock Generator (ICG) Module  
7.5.3 Using Clock Monitor Interrupts  
The clock monitor circuit can be used to recover from perilous situations  
such as crystal loss. To use the clock monitor effectively, these points  
should be observed:  
Enable the clock monitor and clock monitor interrupts.  
The first statement in the clock monitor interrupt service routine  
(CMISR) should be a read to the ICG control register (ICGCR) to  
verify that the clock monitor flag (CMF) is set. This is also the first  
step in clearing the CMF bit.  
The second statement in the CMISR should be a write to the  
ICGCR to clear the CMF bit (write the bit low). Writing the bit high  
will not affect it. This statement does not need to immediately  
follow the first, but must be contained in the CMISR.  
The third statement in the CMISR should be to clear the CMON bit.  
This is required to ensure proper reconfiguration of the reference  
dividers. This statement also must be contained in the CMISR.  
Although the clock monitor can be enabled only when both clocks  
are stable (ICGS is set or ECGS is set), it will remain set if one of  
the clocks goes unstable.  
The clock monitor only works if the external slow (EXTSLOW) bit  
in the CONFIG is set to the correct value.  
The internal and external clocks must both be enabled and  
running to use the clock monitor.  
When the clock monitor detects inactivity, the inactive clock is  
automatically deselected and the active clock selected as the  
source for CGMXCLK and TBMCLK. The CMISR can use the  
state of the CS bit to check which clock is inactive.  
When the clock monitor detects inactivity, the application may  
have been subjected to extreme conditions which may have  
affected other circuits. The CMISR should take any appropriate  
precautions.  
Advance Information  
130  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Usage Notes  
7.5.4 Quantization Error in DCO Output  
The digitally controlled oscillator (DCO) is comprised of three major sub-  
blocks:  
1. Binary weighted divider  
2. Variable-delay ring oscillator  
3. Ring oscillator fine-adjust circuit  
Each of these blocks affects the clock period of the internal clock (ICLK).  
Since these blocks are controlled by the digital loop filter (DLF) outputs  
DDIV and DSTG, the output of the DCO can change only in quantized  
steps as the DLF increments or decrements its output. The following  
sections describe how each block will affect the output frequency.  
7.5.4.1 Digitally Controlled Oscillator  
The digitally controlled oscillator (DCO) is an inaccurate oscillator which  
generates the internal clock (ICLK), whose clock period is dependent on  
the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of the  
digital nature of the DCO, the clock period of ICLK will change in  
quantized steps. This will create a clock period difference or quantization  
error (Q-ERR) from one cycle to the next. Over several cycles or for  
longer periods, this error is divided out until it reaches a minimum error  
of 0.202 percent to 0.368 percent. The dependence of this error on the  
DDIV[3:0] value and the number of cycles the error is measured over is  
shown in Table 7-2.  
Table 7-2. Quantization Error in ICLK  
τICLK Q-ERR  
DDIV[3:0]  
%0000 (min)  
%0000 (min)  
%0000 (min)  
%0001  
ICLK Cycles  
Bus Cycles  
1
4
NA  
1
6.45%11.8%  
1.61%2.94%  
0.202%0.368%  
3.23%5.88%  
0.806%1.47%  
0.202%0.368%  
32  
1
8  
NA  
1
%0001  
4
%0001  
16  
4  
68HC908EY16 Rev 2.0  
Advance Information  
131  
MOTOROLA  
Internal Clock Generator (ICG) Module  
 
Internal Clock Generator (ICG) Module  
Table 7-2. Quantization Error in ICLK (Continued)  
τICLK Q-ERR  
DDIV[3:0]  
%0010  
ICLK Cycles  
Bus Cycles  
1
4
NA  
1
1.61%2.94%  
0.403%0.735%  
0.202%0.368%  
0.806%1.47%  
0.202%0.368%  
0.403%0.735%  
0.202%0.368%  
0.202%0.368%  
%0010  
%0010  
8  
1
2  
NA  
1  
NA  
1  
1  
%0011  
%0011  
4  
1
%0100  
%0100  
2  
1  
%0101%1001 (max)  
7.5.4.2 Binary Weighted Divider  
The binary weighted divider divides the output of the ring oscillator by a  
power of two, specified by the DCO divider control bits (DDIV[3:0]). DDIV  
maximizes at %1001 (values of %1010 through %1111 are interpreted  
as %1001), which corresponds to a divide by 512. When DDIV is %0000,  
the ring oscillators output is divided by 1. Incrementing DDIV by one will  
double the period; decrementing DDIV will halve the period. The DLF  
cannot directly increment or decrement DDIV; DDIV is only incremented  
or decremented when an addition or subtraction to DSTG carries or  
borrows.  
7.5.4.3 Variable-Delay Ring Oscillator  
The variable-delay ring oscillators period is adjustable from 17 to 31  
stage delays, in increments of two, based on the upper three DCO stage  
control bits (DSTG[7:5]). A DSTG[7:5] of %000 corresponds to 17 stage  
delays; DSTG[7:5] of %111 corresponds to 31 stage delays. Adjusting  
the DSTG[5] bit has a 6.45 percent to 11.8 percent effect on the output  
frequency. This also corresponds to the size correction made when the  
frequency error is greater than ±15 percent. The value of the binary  
weighted divider does not affect the relative change in output clock  
period for a given change in DSTG[7:5].  
Advance Information  
132  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Usage Notes  
7.5.4.4 Ring Oscillator Fine-Adjust Circuit  
The ring oscillator fine-adjust circuit causes the ring oscillator to  
effectively operate at non-integer numbers of stage delays by operating  
at two different points for a variable number of cycles specified by the  
lower five DCO stage control bits (DSTG[4:0]). For example:  
When DSTG[7:5] is %011, the ring oscillator nominally operates at  
23 stage delays.  
When DSTG[4:0] is %00000, the ring will always operate at 23  
stage delays.  
When DSTG[4:0] is %00001, the ring will operate at 25 stage  
delays for one of 32 cycles and at 23 stage delays for 31 of 32  
cycles.  
Likewise, when DSTG[4:0] is %11111, the ring operates at 25  
stage delays for 31 of 32 cycles and at 23 stage delays for one of  
32 cycles.  
When DSTG[7:5] is %111, similar results are achieved by  
including a variable divide-by-two, so the ring operates at 31  
stages for some cycles and at 17 stage delays, with a divide-by-  
two for an effective 34 stage delays, for the remainder of the  
cycles.  
Adjusting the DSTG[0] bit has a 0.202 percent to 0.368 percent effect on  
the output clock period. This corresponds to the minimum size correction  
made by the DLF, and the inherent, long-term quantization error in the  
output frequency.  
7.5.5 Switching Internal Clock Frequencies  
The frequency of the internal clock (ICLK) may need to be changed for  
some applications. For example, if the reset condition does not provide  
the correct frequency, or if the clock is slowed down for a low-power  
mode (or sped up after a low-power mode), the frequency must be  
changed by programming the internal clock multiplier factor (N). The  
frequency of ICLK is N times the frequency of IBASE, which is 307.2 kHz  
±25 percent.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
133  
Internal Clock Generator (ICG) Module  
Before switching frequencies by changing the N value, the clock monitor  
must be disabled. This is because when N is changed, the frequency of  
the low-frequency base clock (IBASE) will change proportionally until the  
digital loop filter has corrected the error. Since the clock monitor uses  
IBASE, it could erroneously detect an inactive clock. The clock monitor  
cannot be re-enabled until the internal clock is stable again (ICGS is set).  
The following flow is an example of how to change the clock frequency:  
Verify there is no clock monitor interrupt by reading the CMF bit.  
Turn off the clock monitor.  
If desired, switch to the external clock (see 7.5.1 Switching Clock  
Sources).  
Change the value of N.  
Switch back to internal (see 7.5.1 Switching Clock Sources),  
if desired.  
Turn on the clock monitor (see 7.5.2 Enabling the Clock  
Monitor), if desired.  
7.5.6 Nominal Frequency Settling Time  
Because the clock period of the internal clock (ICLK) is dependent on the  
digital loop filter outputs (DDIV and DSTG) which cannot change  
instantaneously, ICLK temporarily will operate at an incorrect clock  
period when any operating condition changes. This happens whenever  
the part is reset, the ICG multiply factor (N) is changed, the ICG trim  
factor (TRIM) is changed, or the internal clock is enabled after inactivity  
(stop mode or disabled operation). The time that the ICLK takes to adjust  
to the correct period is known as the settling time.  
Settling time depends primarily on how many corrections it takes to  
change the clock period and the period of each correction. Since the  
corrections require four periods of the low-frequency base clock  
(4*τIBASE), and since ICLK is N (the ICG multiply factor for the desired  
frequency) times faster than IBASE, each correction takes 4*N*τICLK  
.
The period of ICLK, however, will vary as the corrections occur.  
Advance Information  
134  
68HC908EY16 Rev 2.0  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
Usage Notes  
7.5.6.1 Settling to Within 15 Percent  
When the error is greater than 15 percent, the filter takes eight  
corrections to double or halve the clock period. Due to how the DCO  
increases or decreases the clock period, the total period of these eight  
corrections is approximately 11 times the period of the fastest correction.  
(If the corrections were perfectly linear, the total period would be 11.5  
times the minimum period; however, the ring must be slightly nonlinear.)  
Therefore, the total time it takes to double or halve the clock period is  
44*N*τICLKFAST  
.
If the clock period needs more than doubled or halved, the same  
relationship applies, only for each time the clock period needs doubled,  
the total number of cycles doubles. That is, when transitioning from fast  
to slow, going from the initial speed to half speed takes 44*N*τICLKFAST  
from half speed to quarter speed takes 88*N*τICLKFAST; going from  
;
quarter speed to eighth speed takes 176*N*τICLKFAST; and so on. This  
series can be expressed as (2x1)*44*N*τICLKFAST, where x is the  
number of times the speed needs doubled or halved. Since 2x happens  
to be equal to τICLKSLOW ICLKFAST  
/τ  
, the equation reduces to  
44*N*(τICLKSLOWτICLKFAST).  
Note that increasing speed takes much longer than decreasing speed  
since N is higher. This can be expressed in terms of the initial clock  
period (τ1) minus the final clock period (τ2) as such:  
τ15 = abs[44N1 τ2)]  
7.5.6.2 Settling to Within 5 Percent  
Once the clock period is within 15 percent of the desired clock period,  
the filter starts making smaller adjustments. When between 15 percent  
and 5 percent error, each correction will adjust the clock period between  
1.61 percent and 2.94 percent. In this mode, a maximum of eight  
corrections will be required to get to less than 5 percent error. Since the  
clock period is relatively close to desired, each correction takes  
approximately the same period of time, or 4*τIBASE. At this point, the  
internal clock stable bit (ICGS) will be set and the clock frequency is  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
135  
Internal Clock Generator (ICG) Module  
usable, although the error will be as high as 5 percent. The total time to  
this point is:  
τ5 = abs[44N1 τ2)] + 32τIBASE  
7.5.6.3 Total Settling Time  
Once the clock period is within 5 percent of the desired clock period, the  
filter starts making minimum adjustments. In this mode, each correction  
will adjust the frequency between 0.202 percent and 0.368 percent. A  
maximum of 24 corrections will be required to get to the minimum error.  
Each correction takes approximately the same period of time, or  
4*τIBASE. Added to the corrections for 15 percent to 5 percent, this  
makes 32 corrections (128*τIBASE) to get from 15 percent to the  
minimum error. The total time to the minimum error is:  
τ
= abs[44N1 τ2)] + 128τIBASE  
tot  
The equations for τ15, τ5, and τtot are dependent on the actual initial and  
final clock periods τ1 and τ2, not the nominal. This means the variability  
in the ICLK frequency due to process, temperature, and voltage must be  
considered. Additionally, other process factors and noise can affect the  
actual tolerances of the points at which the filter changes modes. This  
means a worst case adjustment of up to 35 percent (ICLK clock period  
tolerance plus 10 percent) must be added. This adjustment can be  
reduced with trimming. Table 7-3 shows some typical values for settling  
time.  
Table 7-3. Typical Settling Time Examples  
τ1  
τ2  
τ15  
τ5  
τtot  
N
84  
21  
1
1/ (6.45 MHz)  
1/ (25.8 MHz)  
1/ (25.8 MHz)  
1/ (307.2 kHz)  
1/ (25.8 MHz)  
1/ (6.45 MHz)  
1/ (307.2 kHz)  
1/ (25.8 MHz)  
430 µs  
107 µs  
141 µs  
11.9 ms  
535 µs  
212 µs  
246 µs  
12.0 ms  
850 µs  
525 µs  
560 µs  
12.3 ms  
84  
Advance Information  
136  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
 
Internal Clock Generator (ICG) Module  
Low-Power Modes  
7.5.7 Trimming Frequency on the Internal Clock Generator  
The unadjusted frequency of the low-frequency base clock (IBASE),  
when the comparators in the frequency comparator indicate zero error,  
will vary as much as ±25 percent due to process, temperature, and  
voltage dependencies. These dependencies are in the voltage and  
current references, the offset of the comparators, and the internal  
capacitor. The voltage and temperature dependencies have been  
designed to be a maximum of approximately ±1 percent error. The  
process dependencies account for the rest.  
The method of changing the unadjusted operating point is by changing  
the size of the capacitor. This capacitor is designed with 639 equally  
sized units. Of that number, 384 of these units are always connected.  
The remaining 255 units are put in by adjusting the ICG trim factor  
(TRIM). The default value for TRIM is $80, or 128 units, making the  
default capacitor size 512. Each unit added or removed will adjust the  
output frequency by about ±0.195 percent of the unadjusted frequency  
(adding to TRIM will decrease frequency). Therefore, the frequency of  
IBASE can be changed to ±25 percent of its unadjusted value, which is  
enough to cancel the process variability mentioned before.  
The best way to trim the internal clock is to use the timer to measure the  
width of an input pulse on an input capture pin (this pulse must be  
supplied by the application and should be as long or wide as possible).  
Considering the prescale value of the timer and the theoretical (zero  
error) frequency of the bus (307.2 kHz *N/4), the error can be calculated.  
This error, expressed as a percentage, can be divided by 0.195 percent  
and the resultant factor added or subtracted from TRIM. This process  
should be repeated to eliminate any residual error.  
7.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
68HC908EY16 Rev 2.0  
Advance Information  
137  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
7.6.1 Wait Mode  
The ICG remains active in wait mode. If enabled, the ICG interrupt to the  
CPU can bring the MCU out of wait mode.  
In some applications, low power-consumption is desired in wait mode  
and a high-frequency clock is not needed. In these applications, reduce  
power consumption by either selecting a low-frequency external clock  
and turn the internal clock generator off or reduce the bus frequency by  
minimizing the ICG multiplier factor (N) before executing the WAIT  
instruction.  
7.6.2 Stop Mode  
The value of the oscillator enable in stop (OSCENINSTOP) bit in the  
CONFIG determines the behavior of the ICG in stop mode. If  
OSCENINSTOP is low, the ICG is disabled in stop and, upon execution  
of the STOP instruction, all ICG activity will cease and the output clocks  
(CGMXCLK, CGMOUT, and TBMCLK) will be held low. Power  
consumption will be minimal.  
If OSCENINSTOP is high, the ICG is enabled in stop and activity will  
continue. This is useful if the timebase module (TBM) is required to bring  
the MCU out of stop mode. ICG interrupts will not bring the MCU out of  
stop mode in this case.  
During stop mode, if OSCENINSTOP is low, several functions in the ICG  
are affected. The stable bits (ECGS and ICGS) are cleared, which will  
enable the external clock stabilization divider upon recovery. The clock  
monitor is disabled (CMON = 0) which will also clear the clock monitor  
interrupt enable (CMIE) and clock monitor flag (CMF) bits. The CS,  
ICGON, ECGON, N, TRIM, DDIV, and DSTG bits are unaffected.  
Advance Information  
138  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
CONFIG Options  
7.7 CONFIG Options  
Four CONFIG options affect the functionality of the ICG. These options  
are:  
1. EXTCLKEN, external clock enable  
2. EXTXTALEN, external crystal enable  
3. EXTSLOW, slow external clock  
4. OSCENINSTOP, oscillator enable in stop  
All CONFIG options will have a default setting. Refer to  
Section 8. Configuration Registers (CONFIG1 & CONFIG2) on how  
the CONFIG is used.  
7.7.1 External Clock Enable (EXTCLKEN)  
External clock enable (EXTCLKEN), when set, enables the ECGON bit  
to be set. ECGON turns on the external clock input path through the  
PTB6/(OSC1) pin. When EXTCLKEN is clear, ECGON cannot be set  
and PTB6/(OSC1) will always perform the PTC4 function.  
The default state for this option is clear.  
7.7.2 External Crystal Enable (EXTXTALEN)  
External crystal enable (EXTXTALEN), when set, will enable an amplifier  
to drive the PTB7/(OSC2) pin from the PTB6/(OSC1) pin. The amplifier  
will drive only if the external clock enable (EXTCLKEN) bit and the  
ECGON bit are also set. If EXTCLKEN or ECGON are clear,  
PTB7/(OSC2) will perform the PTC3 function. When EXTXTALEN is  
clear, PTB7/(OSC2) will always perform the PTC3 function.  
EXTXTALEN, when set, also configures the clock monitor to expect an  
external clock source in the valid range of crystals (30 kHz to 100 kHz or  
1 MHz to 8 MHz). When EXTXTALEN is clear, the clock monitor will  
expect an external clock source in the valid range for externally  
generated clocks when using the clock monitor (60 Hz to 32 MHz).  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
139  
Internal Clock Generator (ICG) Module  
EXTXTALEN, when set, also configures the external clock stabilization  
divider in the clock monitor for a 4096 cycle timeout to allow the proper  
stabilization time for a crystal. When EXTXTALEN is clear, the  
stabilization divider is configured to 16 cycles since an external clock  
source does not need a startup time.  
The default state for this option is clear.  
7.7.3 Slow External Clock (EXTSLOW)  
Slow external clock (EXTSLOW), when set, will decrease the drive  
strength of the oscillator amplifier, enabling low-frequency crystal  
operation (30 kHz100 kHz) if properly enabled with the external clock  
enable (EXTCLKEN) and external crystal enable (EXTXTALEN) bits.  
When clear, EXTSLOW enables high-frequency crystal operation  
(1 MHz to 8 MHz).  
EXTSLOW, when set, also configures the clock monitor to expect an  
external clock source that is slower than the low-frequency base clock  
(60 Hz to 307.2 kHz). When EXTSLOW is clear, the clock monitor will  
expect an external clock faster than the low-frequency base clock  
(307.2 kHz to 32 MHz).  
The default state for this option is clear.  
7.7.4 Oscillator Enable In Stop (OSCENINSTOP)  
Oscillator enable in stop (OSCENINSTOP), when set, will enable the  
ICG to continue to generate clocks (either CGMXCLK, CGMOUT, or  
TBMCLK) in stop mode. This function is used to keep the timebase  
running while the rest of the microcontroller stops. When  
OSCENINSTOP is clear, all clock generation will cease and CGMXCLK,  
CGMOUT, and TBMCLK will be forced low during stop mode.  
The default state for this option is clear.  
Advance Information  
140  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Input/Output (I/O) Registers  
7.8 Input/Output (I/O) Registers  
The ICG contains five registers, summarized in Figure 7-10. These  
registers are:  
1. ICG control register, ICGCR  
2. ICG multiplier register, ICGMR  
3. ICG trim register, ICGTR  
4. ICG DCO divider control register, ICGDVR  
5. ICG DCO stage control register, ICGDSR  
Several of the bits in these registers have interaction where the state of  
one bit may force another bit to a particular state or prevent another bit  
from being set or cleared. A summary of this interaction is shown in  
Table 7-4.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
141  
Internal Clock Generator (ICG) Module  
Addr.  
Register Name  
Bit 7  
CMIE  
0
6
CMF  
0*  
5
CMON  
0
4
CS  
0
3
ICGON  
1
2
1
ECGON  
0
Bit 0  
Read:  
ICGS  
ECGS  
ICG Control Register  
$0036  
(ICGCR) Write:  
See 144.  
Reset:  
0
0
0
*See 7.8.1 ICG Control Register for method of clearing the CMF bit.  
Read:  
ICG Multiply Register  
N6  
0
N5  
0
N4  
1
N3  
0
N2  
1
N1  
0
N0  
1
$0037  
$0038  
$0039  
$003A  
(ICGMR) Write:  
See 146.  
Reset:  
Read:  
0
ICG Trim Register  
TRIM7  
1
TRIM6  
0
TRIM5  
0
TRIM4  
0
TRIM3  
TRIM2  
TRIM1  
TRIM0  
(ICGTR) Write:  
See 147.  
Reset:  
0
0
0
0
Read:  
DDIV3  
DDIV2  
DDIV1  
DDIV0  
ICG Divider Control  
Register (ICGDVR) Write:  
See 147.  
Reset:  
0
0
0
0
U
U
U
U
Read: DSTG7  
DSTG6  
DSTG5  
DSTG4  
DSTG3  
DSTG2  
DSTG1  
DSTG0  
ICG DCO Stage Control  
Register (ICGDSR) Write:  
R
U
R
U
R
U
R
U
R
U
R
U
R
U
R
U
See 148.  
Reset:  
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 7-10. ICG Module I/O Register Summary  
Advance Information  
142  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Input/Output (I/O) Registers  
Table 7-4. ICG Module Register Bit Interaction Summary  
Register Bit Results for Given Condition  
Condition  
Reset  
0
0
0
0
0
0
0
1
0
0
0
0
0
$15 $80  
OSCENINSTOP = 0,  
STOP = 1  
EXTCLKEN = 0  
CMF = 1  
0
0
0
(1)  
0
0
0
(0)  
(1)  
1
1
1
0
0
1
0
0
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
uw  
1
CMON = 0  
CMON = 1  
CS = 0  
(0)  
(1)  
0
1
1
0
0
uw  
uw  
uw  
uw  
1
1
CS = 1  
(0)  
(1)  
1
ICGON = 0  
ICGON = 1  
ICGS = 0  
1
us  
0
0
us  
0
uc  
0
(0)  
0
(0)  
(1)  
(1)  
uw  
uw  
ECGON = 0  
ECGS = 0  
IOFF = 1  
uw  
uw  
us  
(0)  
(0)  
1*  
1*  
(0)  
(0)  
us  
(1)  
(1)  
(0)  
(0)  
us  
1
(1)  
(1)  
(0)  
0
uw  
uw  
uw  
uw  
EOFF = 1  
N = written  
TRIM = written  
0
0*  
0*  
0, 1  
Register bit is unaffected by the given condition.  
Register bit is forced clear or set (respectively) in the given condition.  
0*, 1*  
(0), (1)  
Register bit is temporarily forced clear or set (respectively) in the given condition.  
Register bit must be clear or set (respectively) for the given condition to occur.  
us, uc, uw Register bit cannot be set, cleared, or written (respectively) in the given condition.  
68HC908EY16 Rev 2.0  
Advance Information  
143  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Internal Clock Generator (ICG) Module  
7.8.1 ICG Control Register  
The ICG control register (ICGCR) contains the control and status bits for  
the internal clock generator, external clock generator, and clock monitor  
as well as the clock select and interrupt enable bits.  
Address: $0036  
Bit 7  
6
CMF  
0*  
5
CMON  
0
4
CS  
0
3
ICGON  
1
2
1
ECGON  
0
Bit 0  
Read:  
Write:  
Reset:  
ICGS  
ECGS  
CMIE  
0
0
0
0
*See CMF bit description for method of clearing CMF bit.  
= Unimplemented  
Figure 7-11. ICG Control Register (ICGCR)  
CMIE Clock Monitor Interrupt Enable Bit  
This read/write bit enables clock monitor interrupts. An interrupt will  
occur when both CMIE and CMF are set. CMIE can be set when the  
CMON bit has been set for at least one cycle. CMIE is forced clear  
when CMON is clear or during reset.  
1 = Clock monitor interrupts enabled  
0 = Clock monitor interrupts disabled  
CMF Clock Monitor Interrupt Flag  
This read-only bit is set when the clock monitor determines that either  
ICLK or ECLK becomes inactive and the CMON bit is set. This bit is  
cleared by first reading the bit while it is set, followed by writing the bit  
low. This bit is forced clear when CMON is clear or during reset.  
1 = Either ICLK or ECLK has become inactive.  
0 = ICLK and ECLK have not become inactive since the last read  
of the ICGCR, or the clock monitor is disabled.  
CMON Clock Monitor On Bit  
This read/write bit enables the clock monitor. CMON can be set when  
both ICLK and ECLK have been on and stable for at least one bus  
cycle. (ICGON, ECGON, ICGS, and ECGS are all set.) CMON is  
Advance Information  
144  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Input/Output (I/O) Registers  
forced set when CMF is set, to avoid inadvertent clearing of CMF.  
CMON is forced clear when either ICGON or ECGON is clear, during  
stop mode with OSCENINSTOP low, or during reset.  
1 = Clock monitor output enabled  
0 = Clock monitor output disabled  
CS Clock Select Bit  
This read/write bit determines which clock will generate the oscillator  
output clock (CGMXCLK). This bit can be set when ECGON and  
ECGS have been set for at least one bus cycle and can be cleared  
when ICGON and ICGS have been set for at least one bus cycle. This  
bit is forced set when the clock monitor determines the internal clock  
(ICLK) is inactive or when ICGON is clear. This bit is forced clear  
when the clock monitor determines that the external clock (ECLK) is  
inactive, when ECGON is clear, or during reset.  
1 = External clock (ECLK) sources CGMXCLK  
0 = Internal clock (ICLK) sources CGMXCLK  
ICGON Internal Clock Generator On Bit  
This read/write bit enables the internal clock generator. ICGON can  
be cleared when the CS bit has been set and the CMON bit has been  
clear for at least one bus cycle. ICGON is forced set when the CMON  
bit is set, the CS bit is clear, or during reset.  
1 = Internal clock generator enabled  
0 = Internal clock generator disabled  
ICGS Internal Clock Generator Stable Bit  
This read-only bit indicates when the internal clock generator has  
determined that the internal clock (ICLK) is within about 5 percent of  
the desired value. This bit is forced clear when the clock monitor  
determines the ICLK is inactive, when ICGON is clear, when the ICG  
multiplier register (ICGMR) is written, when the ICG TRIM register  
(ICGTR) is written, during stop mode with OSCENINSTOP low, or  
during reset.  
1 = Internal clock is within 5 percent of the desired value.  
0 = Internal clock may not be within 5 percent of the desired value.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
145  
Internal Clock Generator (ICG) Module  
ECGON External Clock Generator On Bit  
This read/write bit enables the external clock generator. ECGON can  
be cleared when the CS and CMON bits have been clear for at least  
one bus cycle. ECGON is forced set when the CMON bit or the CS bit  
is set. ECGON is forced clear during reset.  
1 = External clock generator enabled  
0 = External clock generator disabled  
ECGS External Clock Generator Stable Bit  
This read-only bit indicates when at least 4096 external clock (ECLK)  
cycles have elapsed since the external clock generator was enabled.  
This is not an assurance of the stability of ECLK but is meant to  
provide a startup delay. This bit is forced clear when the clock monitor  
determines ECLK is inactive, when ECGON is clear, during stop  
mode with OSCENINSTOP low, or during reset.  
1 = 4096 ECLK cycles have elapsed since ECGON was set.  
0 = External clock is unstable, inactive, or disabled.  
7.8.2 ICG Multiplier Register  
Address: $0037  
Bit 7  
6
N6  
0
5
N5  
0
4
N4  
1
3
N3  
0
2
N2  
1
1
N1  
0
Bit 0  
N0  
1
Read:  
Write:  
Reset:  
0
= Unimplemented  
Figure 7-12. ICG Multiplier Register (ICGMR)  
N6:N0 ICG Multiplier Factor Bits  
These read/write bits change the multiplier used by the internal clock  
generator. The internal clock (ICLK) will be:  
(307.2 kHz ± 25 percent) * N  
A value of $00 in this register is interpreted the same as a value of  
$01. This register cannot be written when the CMON bit is set. Reset  
sets this factor to $15 (decimal 21) for default frequency of 6.45 MHz  
± 25 percent (1.613 MHz ± 25 percent bus).  
Advance Information  
146  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Internal Clock Generator (ICG) Module  
Input/Output (I/O) Registers  
7.8.3 ICG Trim Register  
Address: $0038  
Bit 7  
6
TRIM6  
0
5
TRIM5  
0
4
TRIM4  
0
3
TRIM3  
0
2
TRIM2  
0
1
TRIM1  
0
Bit 0  
TRIM0  
0
Read:  
Write:  
Reset:  
TRIM7  
1
Figure 7-13. ICG Trim Register (ICGTR)  
TRIM7:TRIM0 ICG Trim Factor Bits  
These read/write bits change the size of the internal capacitor used  
by the internal clock generator. By testing the frequency of the internal  
clock and incrementing or decrementing this factor accordingly, the  
accuracy of the internal clock can be improved to ± 2 percent.  
Incrementing this register by one decreases the frequency by 0.195  
percent of the unadjusted value. Decrementing this register by one  
increases the frequency by 0.195 percent. This register cannot be  
written when the CMON bit is set. Reset sets these bits to $80,  
centering the range of possible adjustment.  
7.8.4 ICG DCO Divider Register  
Address: $0039  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDIV3  
DDIV2  
DDIV1  
DDIV0  
0
U
U
U
U
= Unimplemented  
U = Unaffected  
Figure 7-14. ICG DCO Divider Control Register (ICGDVR)  
DDIV3:DDIV0 ICG DCO Divider Control Bits  
These bits indicate the number of divide-by-twos (DDIV) that follow  
the digitally controlled oscillator. When ICGON is set, DDIV is  
controlled by the digital loop filter. The range of valid values for DDIV  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Internal Clock Generator (ICG) Module  
147  
Internal Clock Generator (ICG) Module  
is from $0 to $9. Values of $A through $F are interpreted the same as  
$9. Since the DCO is active during reset, reset has no effect on DSTG  
and the value may vary.  
7.8.5 ICG DCO Stage Register  
Address: $003A  
Bit 7  
6
DSTG6  
R
5
DSTG5  
R
4
DSTG4  
R
3
DSTG3  
R
2
DSTG2  
R
1
DSTG1  
R
Bit 0  
DSTG0  
R
Read: DSTG7  
Write:  
R
U
R
Reset:  
U
U
U
U
U
U
U
= Reserved  
U = Unaffected  
Figure 7-15. ICG DCO Stage Control Register (ICGDSR)  
DSTG7:DSTG0 ICG DCO Stage Control Bits  
These bits indicate the number of stages (above the minimum) in the  
digitally controlled oscillator. The total number of stages is  
approximately equal to $1FF, so changing DSTG from $00 to $FF will  
approximately double the period. Incrementing DSTG will increase  
the period (decrease the frequency) by 0.202 percent to 0.368  
percent (decrementing has the opposite effect). DSTG cannot be  
written when ICGON is set to prevent inadvertent frequency shifting.  
When ICGON is set, DSTG is controlled by the digital loop filter. Since  
the DCO is active during reset, reset has no effect on DSTG and the  
value may vary.  
Advance Information  
148  
68HC908EY16 Rev 2.0  
Internal Clock Generator (ICG) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 8. Configuration Registers (CONFIG1 & CONFIG2)  
8.1 Contents  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150  
8.2 Introduction  
This section describes the configuration registers, CONFIG1 and  
CONFIG2. The configuration registers control these options:  
Stop mode recovery time, 32 CGMXCLK cycles or 4096  
CGMXCLK cycles  
Computer operating properly (COP) timeout period, 21824 or  
21324 CGMXCLK cycles  
STOP instruction  
Computer operating properly (COP) module  
Low-voltage inhibit (LVI) module control and voltage trip point  
selection  
Enable/disable the oscillator (OSC) during stop mode  
External clock/crystal source control  
Enhanced SCI clock source selection  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Configuration Registers (CONFIG1 & CONFIG2)  
149  
 
Configuration Registers (CONFIG1 & CONFIG2)  
8.3 Functional Description  
The configuration registers are used in the initialization of various  
options and can be written once after each reset. All of the configuration  
register bits are cleared during reset. Since the various options affect the  
operation of the microcontroller unit (MCU), it is recommended that  
these registers be written immediately after reset. The configuration  
registers are located at $001E and $001F. For compatibility, a write to a  
read-only memory (ROM) version of the MCU at this location will have  
no effect. The configuration register may be read at anytime.  
NOTE: The CONFIG module is known as an MOR (mask option register) on a  
ROM device. On a ROM device, the options are fixed at the time of  
device fabrication and are neither writable nor changeable by the user.  
On a FLASH device, the CONFIG registers are special registers  
containing one-time writable latches after each reset. Upon a reset, the  
CONFIG registers default to predetermined settings as shown in  
Figure 8-1 and Figure 8-2.  
Address: $001E  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
ESCIBD-  
SRC  
EXT-  
XTALEN  
EXT-  
SLOW  
EXT-  
CLKEN  
TMB-  
CLKSEL  
OSCENIN-  
STOP  
SSB-  
PUENB  
R
0
0
0
0
0
0
0
1
= Unimplemented  
R
= Reserved  
Figure 8-1. Configuration Register 2 (CONFIG2)  
Address: $001F  
Bit 7  
6
5
4
3
R
1
2
SSREC  
0
1
STOP  
0
Bit 0  
COPD  
0
Read:  
COPRS LVISTOP LVIRSTD LVIPWRD  
Write:  
Reset:  
0
0
0
0
= Unimplemented  
R = Reserved  
Figure 8-2. Configuration Register 1 (CONFIG1)  
Advance Information  
150  
68HC908EY16 Rev 2.0  
Configuration Registers (CONFIG1 & CONFIG2)  
MOTOROLA  
 
 
Configuration Registers (CONFIG1 & CONFIG2)  
Functional Description  
ESCIBDSRC ESCI Baud Rate Clock Source Bit  
ESCIBDSRC controls the clock source used for the ESCI. The setting  
of the bit affects the frequency at which the ESCI operates.  
1 = Internal data bus clock used as clock source for ESCI  
0 = CGMXCLK used as clock source for ESCI  
EXTXTALEN External Crystal Enable Bit  
EXTXTALEN enables the external oscillator circuits to be configured  
for a crystal configuration where the PTC4/OSC1 and PTC3/OSC2  
pins are the connections for an external crystal.  
NOTE: This bit does not function without setting the EXTCLKEN bit also.  
Clearing the EXTXTALEN bit (default setting) allows the PTC3/OSC2  
pin to function as a general-purpose I/O pin. Refer to Table 8-1 for  
configuration options for the external source. See Section 7. Internal  
Clock Generator (ICG) Module for a more detailed description of the  
external clock operation.  
EXTXTALEN, when set, also configures the clock monitor to expect  
an external clock source in the valid range of crystals (30 kHz to  
100 kHz or 1 MHz to 8 MHz). When EXTXTALEN is clear, the clock  
monitor will expect an external clock source in the valid range for  
externally generated clocks when using the clock monitor (60 Hz to  
32 MHz).  
EXTXTALEN, when set, also configures the external clock  
stabilization divider in the clock monitor for a 4096-cycle timeout to  
allow the proper stabilization time for a crystal. When EXTXTALEN is  
clear, the stabilization divider is configured to 16 cycles since an  
external clock source does not need a startup time.  
1 = Allows PTC3/OSC2 to be an external crystal connection.  
0 = PTC3/OSC2 functions as an I/O port pin (default).  
EXTSLOW Slow External Crystal Enable Bit  
The EXTSLOW bit has two functions. It configures the ICG module for  
a fast (1 MHz to 8 MHz) or slow (30 kHz to 100 kHz) speed crystal.  
The option also configures the clock monitor operation in the ICG  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
151  
Configuration Registers (CONFIG1 & CONFIG2)  
Configuration Registers (CONFIG1 & CONFIG2)  
module to expect an external frequency higher (307.2 kHz to 32 MHz)  
or lower (60 Hz to 307.2 kHz) than the base frequency of the internal  
oscillator. See Section 7. Internal Clock Generator (ICG) Module.  
1 = ICG set for slow external crystal operation  
0 = ICG set for fast external crystal operation  
Table 8-1. External Clock Option Settings  
External Clock  
Configuration Bits  
Pin Function  
Description  
EXTCLKEN EXTXTALEN  
PTC4/OSC1  
PTC3/OSC2  
0
0
0
1
Default setting external oscillator disabled  
PTC4  
PTC3  
External oscillator disabled since EXTCLKEN  
not set  
PTC4  
OSC1  
PTC3  
PTC3  
External oscillator configured for an external  
clock source input (square wave) on OSC1  
1
1
0
1
External oscillator configured for an external  
crystal configuration on OSC1 and OSC2.  
System will also operate with square-wave  
clock source in OSC1.  
OSC1  
OSC2  
EXTCLKEN External Clock Enable Bit  
EXTCLKEN enables an external clock source or crystal/ceramic  
resonator to be used as a clock input. Setting this bit enables  
PTC4/OSC1 pin to be a clock input pin. Clearing this bit (default  
setting) allows the PTC4/OSC1 and PTC3/OSC2 pins to function as  
general-purpose input/output (I/O) pins. Refer to Table 8-1 for  
configuration options for the external source. See Section 7. Internal  
Clock Generator (ICG) Module for a more detailed description of the  
external clock operation.  
1 = Allows PTC4/OSC1 to be an external clock connection  
0 = PTC4/OSC1 and PTC3/OSC2 function as I/O port pins  
(default).  
Advance Information  
152  
68HC908EY16 Rev 2.0  
Configuration Registers (CONFIG1 & CONFIG2)  
MOTOROLA  
 
Configuration Registers (CONFIG1 & CONFIG2)  
Functional Description  
TMBCLKSEL Timebase Clock Select Bit  
TMBCLKSEL enables an enable the extra divide by 128 prescaler in  
the timebase module. Setting this bit enables the extra prescaler and  
clearing this bit disables it. Refer to Table 20-1 for timebase divider  
selection details.  
1 = Enables extra divide by 128 prescaler in timebase module.  
0 = Disables extra divide by 128 prescaler in timebase module.  
OSCENINSTOP Oscillator Enable In Stop Mode Bit  
OSCENINSTOP, when set, will enable the internal clock generator  
module to continue to generate clocks (either internal, ICLK, or  
external, ECLK) in stop mode. See Section 7. Internal Clock  
Generator (ICG) Module. This function is used to keep the timebase  
running while the rest of the microcontroller stops. When clear, all  
clock generation will cease and both ICLK and ECLK will be forced  
low during stop mode. The default state for this option is clear,  
disabling the ICG in stop mode.  
1 = Oscillator enabled to operate during stop mode  
0 = Oscillator disabled during stop mode (default)  
NOTE: This bit has the same functionality as the OSCSTOPENB CONFIG bit in  
MC68HC908GP20 and MC68HC908GR8 parts.  
SSBPUENB SS Pull-up Enable Bit  
Clearing SSBPUENB enables the SS pull-up resistor.  
1 = Disables SS pull-up resistor.  
0 = Enables SS pull-up resistor.  
COPRS COP Rate Select Bit  
COPD selects the COP timeout period. Reset clears COPRS. See  
Section 11. Computer Operating Properly (COP) Module.  
1 = COP timeout period = 213 24 CGMXCLK cycles  
0 = COP timeout period = 218 24 CGMXCLK cycles  
LVISTOP LVI Enable in Stop Mode Bit  
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the  
LVI to operate during stop mode. Reset clears LVISTOP.  
1 = LVI enabled during stop mode  
0 = LVI disabled during stop mode  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
153  
Configuration Registers (CONFIG1 & CONFIG2)  
Configuration Registers (CONFIG1 & CONFIG2)  
LVIRSTD LVI Reset Disable Bit  
LVIRSTD disables the reset signal from the LVI module.  
See Section 12. Low-Voltage Inhibit (LVI) Module.  
1 = LVI module resets disabled  
0 = LVI module resets enabled  
LVIPWRD LVI Power Disable Bit  
LVIPWRD disables the LVI module. See Section 12. Low-Voltage  
Inhibit (LVI) Module.  
1 = LVI module power disabled  
0 = LVI module power enabled  
BIT 3  
Bit 3 is reserved for factory test. The reset state is a logic "1". Always  
write this bit back to its reset state.  
NOTE: Bit 3 is set by a power-on reset (POR) only. Other resets will leave this  
bit unaffected. Do not clear this bit or write it to a logic "0".  
SSREC Short Stop Recovery Bit  
SSREC enables the CPU to exit stop mode with a delay of 32  
CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay.  
1 = Stop mode recovery after 32 CGMXCLK cycles  
0 = Stop mode recovery after 4096 CGMXCLCK cycles  
NOTE: Exiting stop mode by an LVI reset will result in the long stop recovery.  
If the system clock source selected is the internal oscillator or the  
external crystal and the OSCENINSTOP configuration bit is not set,  
the oscillator will be disabled during stop mode. The short stop  
recovery does not provide enough time for oscillator stabilization and  
thus the SSREC bit should not be set.  
When using the LVI during normal operation but disabling during stop  
mode, the LVI will have an enable time of tEN. The system  
stabilization time for power-on reset and long stop recovery (both  
4096 CGMXCLK cycles) gives a delay longer than the LVI enable  
time for these startup scenarios. There is no period where the MCU is  
not protected from a low-power condition. However, when using the  
Advance Information  
154  
68HC908EY16 Rev 2.0  
Configuration Registers (CONFIG1 & CONFIG2)  
MOTOROLA  
Configuration Registers (CONFIG1 & CONFIG2)  
Functional Description  
short stop recovery configuration option, the 32-CGMXCLK delay  
must be greater than the LVIs turn on time to avoid a period in startup  
where the LVI is not protecting the MCU.  
STOP STOP Instruction Enable Bit  
STOP enables the STOP instruction.  
1 = STOP instruction enabled  
0 = STOP instruction treated as illegal opcode  
COPD COP Disable Bit  
COPD disables the COP module. See Section 11. Computer  
Operating Properly (COP) Module.  
1 = COP module disabled  
0 = COP module enabled  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Configuration Registers (CONFIG1 & CONFIG2)  
155  
Configuration Registers (CONFIG1 & CONFIG2)  
Advance Information  
68HC908EY16 Rev 2.0  
156  
Configuration Registers (CONFIG1 & CONFIG2)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 9. Break Module (BRK)  
9.1 Contents  
9.2  
9.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
9.4  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158  
Flag Protection During Break Interrupts. . . . . . . . . . . . . . .160  
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .160  
TIM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . .160  
COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .160  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.5  
9.5.1  
9.5.2  
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
9.6  
9.6.1  
9.6.2  
Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161  
Break Status and Control Register. . . . . . . . . . . . . . . . . . .162  
Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . .163  
9.2 Introduction  
The break module (BRK) can generate a break interrupt that stops  
normal program flow at a defined address to enter a background  
program.  
68HC908EY16 Rev 2.0  
Advance Information  
157  
MOTOROLA  
Break Module (BRK)  
 
Break Module (BRK)  
9.3 Features  
Features include:  
Accessible input/output (I/O) registers during break interrupts  
Central processor unit (CPU) generated break interrupts  
Software generated break interrupts  
Computer operating properly (COP) disabling during break  
interrupts  
9.4 Functional Description  
When the internal address bus matches the value written in the break  
address registers, the break module issues a breakpoint signal to the  
CPU. The CPU then loads the instruction register with a software  
interrupt instruction (SWI) after completion of the current CPU  
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC  
and $FEFD in monitor mode).  
These events can cause a break interrupt to occur:  
A CPU generated address (the address in the program counter)  
matches the contents of the break address registers.  
Software writes a logic 1 to the BRKA bit in the break status and  
control register.  
When a CPU generated address matches the contents of the break  
address registers, the break interrupt begins after the CPU completes its  
current instruction. A return-from-interrupt instruction (RTI) in the break  
routine ends the break interrupt and returns the MCU to normal  
operation. Figure 9-1 shows the structure of the break module.  
Advance Information  
158  
68HC908EY16 Rev 2.0  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Functional Description  
IAB[15:8]  
BREAK ADDRESS REGISTER HIGH  
8-BIT COMPARATOR  
IAB[15:0]  
CONTROL  
BREAK  
8-BIT COMPARATOR  
BREAK ADDRESS REGISTER LOW  
IAB[7:0]  
Figure 9-1. Break Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
NOTE  
0
R
0
R
R
R
R
R
SIM Break Status Register  
(SBSR)  
$FE00  
0
0
R
0
R
0
R
0
R
0
SIM Break Flag COntrol  
Register (SBFCR)  
$FE03  
BCFE  
0
R
0
R
0
R
Reset:  
Read:  
0
0
0
0
0
Break Address Register  
BIT 15  
0
BIT 14  
0
BIT 13  
0
BIT 12  
0
BIT 11  
0
BIT 10  
0
BIT 9  
0
BIT 8  
0
$FE09  
$FE0A  
$FE0B  
High (BRKH) Write:  
See 163.  
Reset:  
Read:  
Break Address Register  
BIT 7  
0
BIT 6  
0
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Low (BRKL) Write:  
See 163.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Break Status and Control  
BRKE  
0
BRKA  
0
Register (BSCR) Write:  
See 162.  
Reset:  
0
0
0
0
0
0
= Unimplemented  
R = Reserved  
Figure 9-2. I/O Register Summary  
68HC908EY16 Rev 2.0  
Advance Information  
159  
MOTOROLA  
Break Module (BRK)  
Break Module (BRK)  
9.4.1 Flag Protection During Break Interrupts  
The BCFE bit in the break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
9.4.2 CPU During Break Interrupts  
The CPU starts a break interrupt by:  
Loading the instruction register with the SWI instruction  
Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD  
in monitor mode)  
The break interrupt begins after completion of the CPU instruction in  
progress. If the break address register match occurs on the last cycle of  
a CPU instruction, the break interrupt begins immediately.  
9.4.3 TIM During Break Interrupts  
A break interrupt stops the timer counter.  
9.4.4 COP During Break Interrupts  
The COP is disabled during a break interrupt when VDD + VHi is present  
on the RST pin.  
Advance Information  
160  
68HC908EY16 Rev 2.0  
Break Module (BRK)  
MOTOROLA  
 
Break Module (BRK)  
Low-Power Modes  
9.5 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
9.5.1 Wait Mode  
If enabled, the break module is active in wait mode. The SIM break  
stop/wait bit (SBSW) in the SIM break status register indicates whether  
wait was exited by a break interrupt. If so, the user can modify the return  
address on the stack by subtracting one from it. See 9.6.1 Break Status  
and Control Register.  
9.5.2 Stop Mode  
The break module is inactive in stop mode. The STOP instruction does  
not affect break module register states.  
9.6 Break Module Registers  
These registers control and monitor operation of the break module:  
Break address register high, BRKH  
Break address register low, BRKL  
Break status and control register, BSCR  
68HC908EY16 Rev 2.0  
Advance Information  
161  
MOTOROLA  
Break Module (BRK)  
Break Module (BRK)  
9.6.1 Break Status and Control Register  
The break status and control register contains break module enable and  
status bits.  
Address: $FE0B  
Bit 7  
6
BRKA  
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read:  
BRKE  
Write:  
Reset:  
0
0
0
0
0
0
0
= Unimplemented  
Figure 9-3. Break Status and Control Register (BSCR)  
BRKE Break Enable Bit  
This read/write bit enables breaks on break address register matches.  
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.  
1 = Breaks enabled on 16-bit address match  
0 = Breaks disabled on 16-bit address match  
BRKA Break Active Bit  
This read/write status and control bit is set when a break address  
match occurs. Writing a logic 1 to BRKA generates a break interrupt.  
Clear BRKA by writing a logic 0 to it before exiting the break routine.  
Reset clears the BRKA bit.  
1 = (When read) Break address match  
0 = (When read) No break address match  
Advance Information  
162  
68HC908EY16 Rev 2.0  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Break Module Registers  
9.6.2 Break Address Registers  
The break address registers contain the high and low bytes of the  
desired breakpoint address. Reset clears the break address registers.  
Address: Break Address Register High $FE09  
Break Address Register Low $FE0A  
Bit 7  
BIT 15  
0
6
BIT 14  
0
5
BIT 13  
0
4
BIT 12  
0
3
BIT 11  
0
2
BIT 10  
0
1
BIT 9  
0
Bit 0  
BIT 8  
0
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
BIT 7  
0
BIT 6  
0
BIT 5  
0
BIT 4  
0
BIT 3  
0
BIT 2  
0
BIT 1  
0
BIT 0  
0
Figure 9-4. Break Address Registers (BRKH and BRKL)  
9.6.3 SIM Break Status Register  
The SIM break status register (SBSR) contains a flag to indicate that a  
break caused an exit from wait mode.The flag is useful in applications  
requiring a return to wait mode after exiting from a break interrupt.  
Address: $FE00  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
Bit 0  
R
Read:  
Write:  
Reset:  
SBSW  
Note(1)  
0
R
R
0
0
0
R
=Reserved  
Note: 1. Writing a logic 0 clears SBSW  
Figure 9-5. SIM Break Status Register (SBSR)  
68HC908EY16 Rev 2.0  
Advance Information  
163  
MOTOROLA  
Break Module (BRK)  
Break Module (BRK)  
SBSW SIM Break STOP/WAIT  
This status bit is useful in applications requiring a return to stop or wait  
mode after exiting from a break interrupt. SBSW can be cleared by  
writing a logic 0 to it. Reset clears SBSW.  
1 = Stop or wait mode was exited by break interrupt  
0 = Stop or wait mode was not exited by break interrupt  
SBSW can be read within the break interrupt routine. The user can  
modify the return address on the stack by subtracting one from it. The  
following code is an example of this:  
; This code works if the H register has been pushed onto the stack  
; in the breakservice routine software. This code should be  
; executed at the end of the break service routine software.  
HIBYTE  
LOBYTE  
;
EQU  
EQU  
5
6
If not SBSW, do RTI  
BRCLR  
SBSW,SBSR, RETURN  
; See if STOP or  
; WAIT mode was  
; exited by break.  
TST  
BNE  
LOBYTE,SP  
DOLO  
; If RETURNLO is not 0,  
; then just decrement low  
; byte.  
DEC  
HIBYTE,SP  
LOBYTE,SP  
; Else deal with high byte,  
; too.  
; Point to STOP/WAIT opcode.  
DOLO  
DEC  
RETURN  
PULH  
RTI  
; Restore H register.  
Advance Information  
164  
68HC908EY16 Rev 2.0  
Break Module (BRK)  
MOTOROLA  
Break Module (BRK)  
Break Module Registers  
9.6.4 SIM Break Flag Control Register  
The SIM break flag control register (SBFCR) contains a bit that enables  
software to clear status bits while the MCU is in a break state.  
Address: $FE03  
Bit 7  
6
5
R
0
4
R
0
3
R
0
2
R
0
1
R
0
Bit 0  
R
Read:  
Write:  
Reset:  
BCFE  
R
0
0
0
R
=Reserved  
Figure 9-6. SIM Break Flag Control Register (SBFCR)  
BCFE Break Clear Flag Enable Bit  
This read/write bit is enables software to clear status bits by  
accessing status registers while the MCU is in a break state. To clear  
status bits during the break state, the BCFE bit must be set.  
1 = Status bits clearable during break  
0 = Status bits not clearable during break  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Break Module (BRK)  
165  
Break Module (BRK)  
Advance Information  
166  
68HC908EY16 Rev 2.0  
Break Module (BRK)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 10. Monitor ROM (MON)  
10.1 Contents  
10.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167  
10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.5 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168  
10.5.1 Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .170  
10.5.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.6 Monitor Mode Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172  
10.7 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.8 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.9 Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173  
10.9.1 Force Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10.9.2 Normal Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10.10 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174  
10.11 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179  
10.2 Introduction  
This section describes the monitor read-only memory (ROM). The  
monitor ROM (MON) allows complete testing of the microcontroller unit  
(MCU) through a single-wire interface with a host computer.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Monitor ROM (MON)  
167  
Monitor ROM (MON)  
10.3 Features  
Features of the monitor ROM include:  
Normal user-mode pin functionality  
One pin dedicated to serial communication between monitor ROM  
and host computer  
Standard mark/space non-return-to-zero (NRZ) communication  
with host computer  
Execution of code in random-access memory (RAM) or FLASH  
FLASH memory security1  
FLASH memory programming interface  
10.4 Functional Description  
The monitor ROM receives and executes commands from a host  
computer via a standard RS-232 interface. Simple monitor commands  
can access any memory address. In monitor mode, the microcontroller  
unit (MCU) can execute host-computer code in RAM while all MCU pins  
retain normal operating mode functions. All communication between the  
host computer and the MCU is through the PTA0 pin. A level-shifting and  
multiplexing interface is required between PTA0 and the host computer.  
PTA0 is used in a wired-OR configuration and requires a pullup resistor.  
10.5 Monitor Mode Entry  
There are two methods for entering monitor mode. The first is the  
traditional M68HC08 method where VTST is applied to IRQ and the mode  
pins are configured appropriately. A second method, intended for in-  
circuit programming applications, will force entry into monitor mode  
without requiring high voltage on the IRQ pin when the reset vector  
locations of the FLASH are erased ($FF).  
1. No security feature is absolutely secure. However, Motorolas strategy is to make reading or  
copying the FLASH difficult for unauthorized users.  
Advance Information  
168  
68HC908EY16 Rev 2.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Monitor Mode Entry  
Both of these methods require that the PTA1 pin be pulled low for the  
first 24 CGMXCLK cycles after the part comes out of reset. This check  
is used by the monitor code to configure the MCU for serial  
communication.  
In forced monitor mode, the IGC will be selected to clock the device if  
IRQ = VDD.  
The mode selection conditions are summarised in Table 10-1.  
Table 10-1. Mode Selection  
For Serial  
Comm.  
$FFFE/  
FFFF  
EXT  
CLK FREQ  
BUS  
IRQ RST  
ICG PTB4 PTB3  
COP  
Comments  
Baud  
PTA0  
Rate  
No operation until RST  
goes high  
X
GND  
X
X
X
X
1
X
0
X
0
Disabled  
Disabled  
Disabled  
X
0
VDD or  
VTST  
VTST  
9.8304 2.4576  
MHz MHz  
OFF  
OFF  
1
1
9600  
9600  
$FF  
(blank)  
9.8304 2.4576  
MHz  
External frequency  
always divided by 4  
VDD VDD  
X
X
MHz  
Nominal  
2.45 Disabled  
MHz  
$FF  
(blank)  
Nominal  
9600  
VDD  
GND  
VDD  
ON  
X
X
X
1
ICG enabled  
Enters user mode –  
will encounter an illegal  
address reset  
$FF  
(blank)  
VTST  
OFF  
X
X
X
X
X
X
-
Enabled  
Enabled  
X
X
or  
GND  
VDD  
or  
GND  
Not $FF  
(progra ON  
mmed)  
VDD or  
VTST  
Nominal  
1.6 MHz  
Enters User mode  
68HC908EY16 Rev 2.0  
Advance Information  
169  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
10.5.1 Normal Monitor Mode  
Normal monitor mode is useful for MCU evaluation, factory testing, and  
development tool programming operation. Figure 10-1 shows an  
example circuit used for normal monitor mode. Table 10-2 shows the pin  
conditions for entering this mode.  
Table 10-2. Monitor Mode Entry  
Bus  
IRQ  
Pin  
PTB3 Pin  
(PTXMOD1)  
PTB4 Pin  
(PTXMOD0)  
PTA1 PTA0  
Frequency  
(fOP  
CGMOUT  
Pin  
Pin  
)
CGMXCLK  
-----------------------------  
2
CGMOUT  
--------------------------  
2
VTST  
0
1
0
1
NOTE: PTA1 = 0 and PTA0 = 1 allow normal serial communications. Parallel  
communication is available for factory test only.  
The MCU initially comes out of reset using the external clock for its clock  
source. This overrides the user mode operation of the oscillator circuits  
where the part comes up using the internally generated oscillator.  
Running from an external clock allows the MCU, using an appropriate  
frequency clock source, to communicate with host software at standard  
baud rates.  
NOTE: While the voltage on IRQ is at VTST, the internal clock generator (ICG)  
module is bypassed and the external square-wave clock becomes the  
clock source. Dropping IRQ to below VTST will remove the bypass and  
the MCU will revert to the clock source selected by the ICG (as  
determined by the settings in the ICG registers).  
Advance Information  
170  
68HC908EY16 Rev 2.0  
Monitor ROM (MON)  
MOTOROLA  
 
Monitor ROM (MON)  
Monitor Mode Entry  
V
DD  
68HC908EY16  
10 kΩ  
RST  
0.1 µF  
V
TST  
V
HI  
1 KΩ  
IRQ  
9.1V  
1
20  
MC145407  
+
+
+
+
10 µF  
10 µF  
10 µF  
10 µF  
V
DD  
3
4
18  
17  
V
DD  
0.1 µF  
V
SS  
V
DD  
9.8304-MHz  
2
19  
OSC1/PTC4  
CANNED  
0.1 µF  
OSCILLATOR  
DB-25  
2
V
DD  
5
6
16  
15  
V
DD  
1
2
6
4
14  
3
MC74HC125  
3
7
10 kΩ  
PTA0  
5
PTB3 (PTXMOD1)  
7
V
DD  
10 kΩ  
PTB4 (PTXMOD0)  
PTA1 (SERIAL SELECT)  
Figure 10-1. Normal Monitor Mode Circuit  
The computer operating properly (COP) module is disabled in normal  
monitor mode whenever VTST is applied to the IRQ pin. If the voltage on  
IRQ is less than VTST, the COP module is controlled by the COPD  
configuration bit.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Monitor ROM (MON)  
171  
Monitor ROM (MON)  
10.5.2 Forced Monitor Mode  
If the voltage applied to the IRQ is less than VTST, the MCU will come  
out of reset in user mode. The MENRST module is monitoring the reset  
vector fetches and will assert an internal reset if it detects that the reset  
vectors are erased ($FF). When the MCU comes out of reset, it is forced  
into monitor mode without requiring high voltage on the IRQ pin.  
Once out of reset, the monitor code is initially executing off the internal  
clock at its default frequency. The monitor code reconfigures the ICG  
module to use the external square-wave clock source. Switching to an  
external clock source allows the MCU, using an appropriate clock  
frequency, to communicate with host software at standard baud rates.  
The COP module is disabled in forced monitor mode. Any reset other  
than a power-on reset (POR) will automatically force the MCU to come  
back to the forced monitor mode.  
10.6 Monitor Mode Vectors  
Monitor mode uses alternate vectors for reset and SWI interrupts. The  
alternate vectors are in the $FE page instead of the $FF page and allow  
code execution from the internal monitor firmware instead of user code.  
Table 10-3 shows vector differences between user mode and monitor  
mode.  
Table 10-3. Monitor Mode Vector Relocation  
Reset Vector  
High  
Reset Vector  
Low  
SWI Vector  
High  
SWI Vector  
Low  
Modes  
User  
$FFFE  
$FEFE  
$FFFF  
$FEFF  
$FFFC  
$FEFC  
$FFFD  
$FEFD  
Monitor  
Advance Information  
172  
68HC908EY16 Rev 2.0  
Monitor ROM (MON)  
MOTOROLA  
 
Monitor ROM (MON)  
Data Format  
10.7 Data Format  
The MCU waits for the host to send eight security bytes  
(see 10.11 Security). After the security bytes, the MCU sends a break  
signal (10 consecutive logic 0s) to the host computer, indicating that it is  
ready to receive a command.  
Communication with the monitor ROM is in standard non-return-to-zero  
(NRZ) mark/space data format. Transmit and receive baud rates must  
be identical.  
NEXT  
START  
BIT  
START  
BIT  
BIT 6  
STOP  
BIT  
BIT 0  
BIT 1  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 7  
Figure 10-2. Monitor Data Format  
10.8 Break Signal  
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When  
the monitor receives a break signal, it drives the PTA0 pin high for the  
duration of two bits and then echoes back the break signal.  
MISSING STOP BIT  
2-STOP BIT DELAY BEFORE ZERO ECHO  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-3. Break Transaction  
10.9 Baud Rate  
The communication baud rate is controlled by the CGMXCLK frequency  
output of the internal clock generator module.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Monitor ROM (MON)  
173  
Monitor ROM (MON)  
10.9.1 Force Monitor Mode  
In forced monitor mode, the baud rate is fixed at CGMXCLK/1024. A  
CMGXCLK frequency of 4.9152 MHz results in a 4800 baud rate. A  
9.8304-MHz frequency produces a 9600 baud rate.  
10.9.2 Normal Monitor Mode  
In normal monitor mode, the communication baud rate is controlled by  
the CGMXCLK frequency output of the internal clock generator module.  
Table 10-4 lists CGMXCLK frequencies required to achieve standard  
baud rates. Other standard baud rates can be accomplished using other  
clock frequencies. The internal clock can be used as the clock source by  
programming the internal clock generator registers however, monitor  
mode will always be entered using the external clock as the clock  
source.  
Table 10-4. Normal Monitor Mode  
Baud Rate Selection  
CGMXCLK Frequency  
Baud Rate  
(MHz)  
9.8304  
9600  
10.10 Commands  
The monitor ROM firmware uses these commands:  
READ, read memory  
WRITE, write memory  
IREAD, indexed read  
IWRITE, indexed write  
READSP, read stack pointer  
RUN, run user program  
Advance Information  
174  
68HC908EY16 Rev 2.0  
MOTOROLA  
Monitor ROM (MON)  
 
Monitor ROM (MON)  
Commands  
The monitor ROM firmware echoes each received byte back to the PTA0  
pin for error checking. An 11-bit delay at the end of each command  
allows the host to send a break character to cancel the command. A  
delay of two bit times occurs before each echo and before READ,  
IREAD, or READSP data is returned. The data returned by a read  
command appears after the echo of the last byte of the command.  
NOTE: Wait one bit time after each echo before sending the next byte.  
FROM  
HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
READ  
READ  
DATA  
HIGH  
HIGH  
LOW  
LOW  
4
4
1
1
4
1
3, 2  
4
RETURN  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
2 = Data return delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 10-4. Read Transaction  
FROM  
HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
DATA  
DATA  
WRITE  
WRITE  
HIGH  
HIGH  
LOW  
LOW  
4
4
1
1
4
1
4
1
3, 4  
ECHO  
Notes:  
1 = Echo delay, 2 bit times  
3 = Cancel command delay, 11 bit times  
4 = Wait 1 bit time before sending next byte.  
Figure 10-5. Write Transaction  
68HC908EY16 Rev 2.0  
Advance Information  
175  
MOTOROLA  
Monitor ROM (MON)  
Monitor ROM (MON)  
A brief description of each monitor mode command is given here.  
Table 10-5. READ (Read Memory) Command  
Description Read byte from memory  
Operand  
2-byte address in high byte:low byte order  
Returns contents of specified address  
Data  
returned  
Opcode  
$4A  
Command Sequence  
SENT TO  
MONITOR  
ADDRESS ADDRESS ADDRESS  
HIGH HIGH LOW  
ADDRESS  
LOW  
READ  
ECHO  
READ  
DATA  
RETURN  
Table 10-6. WRITE (Write Memory) Command  
Description Write byte to memory  
2-byte address in high byte:low byte order; low byte followed by  
data byte  
Operand  
Data  
returned  
None  
$49  
Opcode  
Command Sequence  
FROM  
HOST  
ADDRESS ADDRESS ADDRESS ADDRESS  
DATA  
DATA  
WRITE  
ECHO  
WRITE  
HIGH  
HIGH  
LOW  
LOW  
Advance Information  
176  
68HC908EY16 Rev 2.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Commands  
Table 10-7. IREAD (Indexed Read) Command  
Description Read next 2 bytes in memory from last address accessed  
Operand  
2-byte address in high byte:low byte order  
Returns contents of next two addresses  
Data  
returned  
Opcode  
$1A  
Command Sequence  
FROM  
HOST  
IREAD  
IREAD  
DATA  
DATA  
ECHO  
RETURN  
Table 10-8. IWRITE (Indexed Write) Command  
Description Write to last address accessed + 1  
Operand  
Single data byte  
Data  
returned  
None  
$19  
Opcode  
Command Sequence  
FROM  
HOST  
DATA  
DATA  
IWRITE IWRITE  
A sequence of IREAD or IWRITE commands can access a block of  
memory sequentially over the full 64-Kbyte memory map.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Monitor ROM (MON)  
177  
Monitor ROM (MON)  
Table 10-9. READSP (Read Stack Pointer) Command  
Description Reads stack pointer  
Operand  
None  
Data  
returned  
Returns incremented stack pointer value (SP + 1) in high byte:low  
byte order  
Opcode  
$0C  
Command Sequence  
FROM  
HOST  
SP  
HIGH  
SP  
LOW  
READSP  
READSP  
ECHO  
RETURN  
Table 10-10. RUN (Run User Program) Command  
Description Executes PULH and RTI instructions  
Operand  
None  
None  
$28  
Data  
returned  
Opcode  
Command Sequence  
FROM  
HOST  
RUN  
RUN  
ECHO  
Advance Information  
178  
68HC908EY16 Rev 2.0  
Monitor ROM (MON)  
MOTOROLA  
Monitor ROM (MON)  
Security  
The MCU executes the SWI and PSHH instructions when it enters  
monitor mode. The RUN command tells the MCU to execute the PULH  
and RTI instructions. Before sending the RUN command, the host can  
modify the stacked CPU registers to prepare to run the host program.  
The READSP command returns the incremented stack pointer value,  
SP + 1. The high and low bytes of the program counter are at addresses  
SP + 5 and SP + 6.  
SP  
HIGH BYTE OF INDEX REGISTER  
CONDITION CODE REGISTER  
ACCUMULATOR  
SP + 1  
SP + 2  
SP + 3  
SP + 4  
SP + 5  
SP + 6  
SP + 7  
LOW BYTE OF INDEX REGISTER  
HIGH BYTE OF PROGRAM COUNTER  
LOW BYTE OF PROGRAM COUNTER  
Figure 10-6. Stack Pointer at Monitor Mode Entry  
10.11 Security  
A security feature discourages unauthorized reading of FLASH locations  
while in monitor mode. The host can bypass the security feature at  
monitor mode entry by sending eight security bytes that match the bytes  
at locations $FFF6$FFFD. Locations $FFF6$FFFD contain user-  
defined data.  
NOTE: Do not leave locations $FFF6$FFFD blank. For security reasons,  
program locations $FFF6$FFFD even if they are not used for vectors.  
If FLASH is erased, the eight security byte values to be sent to the MCU  
are $FF, the unprogrammed state of the FLASH.  
During monitor mode entry, a reset must be asserted. PTA1 must be  
held low during the reset and 24 CGMXCLK cycles after the end of the  
reset. Then the MCU will wait for eight security bytes on PTA0. Each  
byte will be echoed back to the host. See Figure 10-7.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
179  
Monitor ROM (MON)  
Monitor ROM (MON)  
V
DD  
4096 +32 CGMXCLK CYCLES  
24 CGMXCLK CYCLES  
RST  
PTA1  
256 CGMXCLK CYCLES (ONE BIT TIME)  
FROM HOST  
FROM MCU  
PTA0  
1
4
1
2
4
1
1
Notes: 1 = Echo delay (2 bit times)  
2 = Data return delay (2 bit times)  
4 = Wait 1 bit time before sending next byte.  
Figure 10-7. Monitor Mode Entry Timing  
If the received bytes match those at locations $FFF6$FFFD, the host  
bypasses the security feature and can read all FLASH locations and  
execute code from FLASH. Security remains bypassed until a reset  
occurs. After any reset, security will be locked. To bypass security again,  
the host must resend the eight security bytes on PTA0.  
If the received bytes do not match the data at locations $FFF6$FFFD,  
the host fails to bypass the security feature. The MCU remains in monitor  
mode, but reading FLASH locations returns undefined data, and trying  
to execute code from FLASH causes an illegal address reset.  
After receiving the eight security bytes from the host, the MCU transmits  
a break character signalling that it is ready to receive a command.  
NOTE: The MCU does not transmit a break character until after the host sends  
the eight security bytes.  
Advance Information  
180  
68HC908EY16 Rev 2.0  
Monitor ROM (MON)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 11. Computer Operating Properly (COP) Module  
11.1 Contents  
11.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182  
11.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.4.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183  
11.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.5 Internal Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.7 COPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.4.8 COPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184  
11.5 COP Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185  
11.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186  
11.9 COP Module During Break Interrupts. . . . . . . . . . . . . . . . . . .186  
68HC908EY16 Rev 2.0  
Advance Information  
181  
MOTOROLA  
Computer Operating Properly (COP) Module  
Computer Operating Properly (COP) Module  
11.2 Introduction  
The computer operating properly (COP) module contains a free-running  
counter that generates a reset if allowed to overflow. The COP module  
helps software recover from runaway code. Prevent a COP reset by  
periodically clearing the COP counter.  
11.3 Functional Description  
12-BIT COP PRESCALER  
CGMXCLK  
STOP INSTRUCTION  
INTERNAL RESET SOURCES  
RESET VECTOR FETCH  
COPCTL WRITE  
RESET  
RESET STATUS  
REGISTER  
6-BIT COP COUNTER  
COPD FROM CONFIG-1  
RESET  
CLEAR COP  
COUNTER  
COPCTL WRITE  
COPL FROM CONFIG-1  
Figure 11-1. COP Block Diagram  
Advance Information  
182  
68HC908EY16 Rev 2.0  
Computer Operating Properly (COP) Module  
MOTOROLA  
Computer Operating Properly (COP) Module  
I/O Signals  
The COP counter is a free-running 6-bit counter preceded by a 12-bit  
prescaler. If not cleared by software, the COP counter overflows and  
generates an asynchronous reset after 213 24 or 218 24 CGMXCLK  
cycles, depending on the state of the COP long timeout bit, COPL, in the  
CONFIG-1. When COPL = 1, a 4.9152-MHz crystal gives a COP timeout  
period of 53.3 ms. Writing any value to location $FFFF before an  
overflow occurs prevents a COP reset by clearing the COP counter and  
stages 412 of the SIM counter.  
NOTE: Service the COP immediately after reset and before entering or after  
exiting stop mode to guarantee the maximum time before the first COP  
counter overflow.  
A COP reset pulls the RST pin low for 32 CGMXCLK cycles and sets the  
COP bit in the reset status register (RSR).  
In monitor mode, the COP is disabled if the RST pin or the IRQ pin is held  
at VTST. During the break state, VTST on the RST pin disables the COP.  
NOTE: Place COP clearing instructions in the main program and not in an  
interrupt subroutine. Such an interrupt subroutine could keep the COP  
from generating a reset even while the main program is not working  
properly.  
11.4 I/O Signals  
The following paragraphs describe the signals shown in Figure 11-1.  
11.4.1 CGMXCLK  
CGMXCLK is the crystal oscillator output signal. CGMXCLK frequency  
is equal to the crystal frequency.  
11.4.2 STOP Instruction  
The STOP instruction signal clears the COP prescaler.  
68HC908EY16 Rev 2.0  
Advance Information  
183  
MOTOROLA  
Computer Operating Properly (COP) Module  
Computer Operating Properly (COP) Module  
11.4.3 COPCTL Write  
Writing any value to the COP control register (COPCTL) (see 11.5 COP  
Control Register) clears the COP counter and clears stages 12 through  
4 of the COP prescaler. Reading the COP control register returns the  
reset vector.  
11.4.4 Power-On Reset  
The power-on reset (POR) circuit clears the COP prescaler 4096  
CGMXCLK cycles after power-up.  
11.4.5 Internal Reset  
An internal reset clears the COP prescaler and the COP counter.  
11.4.6 Reset Vector Fetch  
A reset vector fetch occurs when the vector address appears on the data  
bus. A reset vector fetch clears the COP prescaler.  
11.4.7 COPD  
11.4.8 COPL  
The COPD signal reflects the state of the COP disable bit (COPD) in the  
configuration register. See Section 8. Configuration Registers  
(CONFIG1 & CONFIG2).  
The COPL signal reflects the state of the COP rate select bit (COPL) in  
the configuration register. See Section 8. Configuration Registers  
(CONFIG1 & CONFIG2).  
Advance Information  
184  
68HC908EY16 Rev 2.0  
Computer Operating Properly (COP) Module  
MOTOROLA  
Computer Operating Properly (COP) Module  
COP Control Register  
11.5 COP Control Register  
The COP control register is located at address $FFFF and overlaps the  
reset vector. Writing any value to $FFFF clears the COP counter and  
starts a new timeout period. Reading location $FFFF returns the low  
byte of the reset vector.  
Address: $FFFF  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Low byte of reset vector  
Clear COP counter  
Unaffected by reset  
Figure 11-2. COP Control Register (COPCTL)  
11.6 Interrupts  
The COP does not generate CPU interrupt requests.  
11.7 Monitor Mode  
The COP is disabled in monitor mode when VDD = VTST is present on  
the IRQ1 pin or on the RST pin.  
11.8 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
11.8.1 Wait Mode  
The COP remains active in wait mode. To prevent a COP reset during  
wait mode, periodically clear the COP counter in a CPU interrupt routine.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Computer Operating Properly (COP) Module  
185  
Computer Operating Properly (COP) Module  
11.8.2 Stop Mode  
Stop mode turns off the CGMXCLK input to the COP and clears the COP  
prescaler. Service the COP immediately before entering or after exiting  
stop mode to ensure a full COP timeout period after entering or exiting  
stop mode.  
The STOP bit in the configuration register (CONFIG) enables the STOP  
instruction. To prevent inadvertently turning off the COP with a STOP  
instruction, disable the STOP instruction by clearing the STOP bit.  
11.9 COP Module During Break Interrupts  
The COP is disabled during a break interrupt when VTST is present on  
the RST pin.  
Advance Information  
186  
68HC908EY16 Rev 2.0  
Computer Operating Properly (COP) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 12. Low-Voltage Inhibit (LVI) Module  
12.1 Contents  
12.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187  
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188  
12.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
12.4.2 Forced Reset Operation. . . . . . . . . . . . . . . . . . . . . . . . . . .189  
12.4.3 False Reset Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . .189  
12.4.4 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190  
12.5 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
12.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
12.7 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191  
12.2 Introduction  
12.3 Features  
This section describes the low-voltage inhibit (LVI) module, which  
monitors the voltage on the VDD pin and can force a reset when the VDD  
voltage falls to the LVI trip voltage.  
Features of the LVI module include:  
Programmable LVI reset  
Programmable power consumption  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Low-Voltage Inhibit (LVI) Module  
187  
 
Low-Voltage Inhibit (LVI) Module  
12.4 Functional Description  
Figure 12-1 shows the structure of the LVI module. The LVI is enabled  
out of reset. The LVI module contains a bandgap reference circuit and  
comparator. The LVI power bit, LVIPWRD, enables the LVI to monitor  
VDD voltage. The LVI reset bit, LVIRSTD, enables the LVI module to  
generate a reset when VDD falls below a voltage, LVITRIPF. LVISTOP,  
enables the LVI module during stop mode. This will ensure when the  
STOP instruction is implemented, the LVI will continue to monitor the  
voltage level on VDD. LVIPWRD, LVISTOP, and LVIRSTD are in the  
configuration register (CONFIG-1). See Section 8. Configuration  
Registers (CONFIG1 & CONFIG2).  
Once an LVI reset occurs, the MCU remains in reset until VDD rises  
above a voltage, LVITRIPR. VDD must be above LVITRIPR for only one  
CPU cycle to bring the MCU out of reset (see 12.4.2 Forced Reset  
Operation). The output of the comparator controls the state of the  
LVIOUT flag in the LVI status register (LVISR).  
An LVI reset also drives the RST pin low to provide low-voltage  
protection to external peripheral devices.  
V
DD  
STOP INSTRUCTION  
LVISTOP  
FROM CONFIG-1  
FROM CONFIG-1  
LVIRSTD  
LVIPWRD  
FROM CONFIG-1  
V
> LVI  
= 0  
= 1  
LVI RESET  
DD  
TRIPR  
LOW V  
DETECTOR  
DD  
V
< LVI  
TRIPF  
DD  
LVI5OR3  
FROM CONFIG-1  
LVIOUT  
Figure 12-1. LVI Module Block Diagram  
Advance Information  
188  
68HC908EY16 Rev 2.0  
MOTOROLA  
Low-Voltage Inhibit (LVI) Module  
 
Low-Voltage Inhibit (LVI) Module  
Functional Description  
12.4.1 Polled LVI Operation  
In applications that can operate at VDD levels below the LVITRIPF level,  
software can monitor VDD by polling the LVIOUT bit. In the configuration  
register, the LVIPWRD bit must be at logic 1 to enable the LVI module,  
and the LVIRSTD bit must be at logic 0 to disable LVI resets.  
12.4.2 Forced Reset Operation  
In applications that require VDD to remain above the LVITRIPF level,  
enabling LVI resets allows the LVI module to reset the MCU when VDD  
falls to the LVITRIPF level. In the configuration register, the LVIPWRD  
and LVIRSTD bits must be at logic 1 to enable the LVI module and to  
enable LVI resets.  
12.4.3 False Reset Protection  
False reset protection is provided by the hysteresis in the LVI trip circuit.  
Please refer to Table 12-1. Please refer to the Electrical Specifications  
for hysteresis value (VHYS) and rising and falling LVI trip values.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Low-Voltage Inhibit (LVI) Module  
189  
Low-Voltage Inhibit (LVI) Module  
12.4.4 LVI Status Register  
The LVI status register flags VDD voltages below the LVITRIPF level.  
Address: $FE0C  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
0
Bit 0  
0
Read: LVIOUT  
Write:  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 12-2. LVI Status Register (LVISR)  
LVIOUT LVI Output Bit  
This read-only flag becomes set when the VDD voltage falls below the  
LVITRIPF voltage for 32 to 40 CGMXCLK cycles. (See Table 12-1.)  
Reset clears the LVIOUT bit.  
Table 12-1. LVIOUT Bit Indication  
VDD  
LVIOUT  
At Level:  
V
> LVI  
0
DD  
TRIPR  
V
< LVI  
1
DD  
TRIPF  
LVI  
TRIPF  
< V  
< LVI  
Previous Value  
DD  
TRIPR  
Advance Information  
190  
68HC908EY16 Rev 2.0  
Low-Voltage Inhibit (LVI) Module  
MOTOROLA  
 
Low-Voltage Inhibit (LVI) Module  
LVI Interrupts  
12.5 LVI Interrupts  
12.6 Wait Mode  
The LVI module does not generate interrupt requests.  
The WAIT instruction puts the MCU in low power-consumption standby  
mode.  
With the LVIPWRD bit in the configuration register programmed to logic  
1, the LVI module is active after a WAIT instruction.  
With the LVIRSTD bit in the configuration register programmed to logic  
1, the LVI module can generate a reset and bring the MCU out of wait  
mode.  
12.7 Stop Mode  
The STOP instruction puts the MCU in low power-consumption mode.  
With the LVISTOP and LVIPWRD bits in the configuration register  
programmed to a logic 1, the LVI module will be active after a STOP  
instruction.  
With the LVIPWRD bit in the configuration register programmed to logic  
1 and the LVISTOP bit at a logic 0, the LVI module will be inactive after  
a STOP instruction.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Low-Voltage Inhibit (LVI) Module  
191  
Low-Voltage Inhibit (LVI) Module  
Advance Information  
68HC908EY16 Rev 2.0  
192  
Low-Voltage Inhibit (LVI) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 13. External Interrupt (IRQ)  
13.1 Contents  
13.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193  
13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194  
13.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197  
13.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . .198  
13.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . .198  
13.2 Introduction  
13.3 Features  
This section describes the non-maskable external interrupt (IRQ) input.  
Features include:  
Dedicated external interrupt pin (IRQ)  
Hysteresis buffer  
Programmable edge-only or edge- and level-interrupt sensitivity  
Automatic interrupt acknowledge  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
External Interrupt (IRQ)  
193  
 
External Interrupt (IRQ)  
13.4 Functional Description  
A logic 0 applied to the external interrupt pin can latch a central  
processor unit (CPU) interrupt request. Figure 13-1 shows the structure  
of the IRQ module.  
Interrupt signals on the IRQ1 pin are latched into the IRQ latch. An  
interrupt latch remains set until one of these actions occurs:  
Vector fetch A vector fetch automatically generates an interrupt  
acknowledge signal that clears the latch that caused the vector  
fetch.  
Software clear Software can clear an interrupt latch by writing  
to the appropriate acknowledge bit in the interrupt status and  
control register (ISCR). Writing a logic 1 to the ACK bit clears the  
IRQ latch.  
Reset A reset automatically clears both interrupt latches.  
ACK  
TO CPU FOR  
BIL/BIH  
INSTRUCTIONS  
VECTOR  
FETCH  
DECODER  
V
DD  
IRQF  
CLR  
D
Q
SYNCHRO-  
NIZER  
IRQ  
INTERRUPT  
REQUEST  
IRQ1  
CK  
IRQ  
LATCH  
IMASK  
MODE  
HIGH  
VOLTAGE  
DETECT  
TO MODE  
SELECT  
LOGIC  
Figure 13-1. IRQ Block Diagram  
Advance Information  
194  
68HC908EY16 Rev 2.0  
External Interrupt (IRQ)  
MOTOROLA  
 
External Interrupt (IRQ)  
Functional Description  
The external interrupt pin is falling-edge triggered and is software-  
configurable to be both falling-edge and low-level triggered. The MODE  
bit in the ISCR controls the triggering sensitivity of the IRQ1 pin.  
When an interrupt pin is edge-triggered only, the interrupt latch remains  
set until a vector fetch, software clear, or reset occurs.  
When an interrupt pin is both falling-edge and low-level-triggered, the  
interrupt latch remains set until both of these occur:  
Vector fetch or software clear  
Return of the interrupt pin to logic 1  
The vector fetch or software clear may occur before or after the interrupt  
pin returns to logic 1. As long as the pin is low, the interrupt request  
remains pending. A reset will clear the latch and the MODE control bit,  
thereby clearing the interrupt even if the pin stays low.  
When set, the IMASK bit in the ISCR masks all external interrupt  
requests. A latched interrupt request is not presented to the interrupt  
priority logic unless the corresponding IMASK bit is clear.  
NOTE: The interrupt mask (I) in the condition code register (CCR) masks all  
interrupt requests, including external interrupt requests.  
See Figure 13-2.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
195  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
FROM RESET  
YES  
I BIT SET?  
NO  
YES  
INTERRUPT?  
NO  
STACK CPU REGISTERS.  
SET I BIT.  
LOAD PC WITH INTERRUPT VECTOR.  
FETCH NEXT  
INSTRUCTION.  
SWI  
INSTRUCTION?  
YES  
YES  
NO  
RTI  
UNSTACK CPU REGISTERS.  
EXECUTE INSTRUCTION.  
INSTRUCTION?  
NO  
Figure 13-2. IRQ Interrupt Flowchart  
Advance Information  
196  
68HC908EY16 Rev 2.0  
MOTOROLA  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
IRQ Pin  
13.5 IRQ Pin  
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.  
A vector fetch, software clear, or reset clears the IRQ latch.  
If the MODE bit is set, the IRQ pin is both falling-edge sensitive and low-  
level sensitive. With MODE set, both of these actions must occur to clear  
the IRQ latch:  
Vector fetch or software clear A vector fetch generates an  
interrupt acknowledge signal to clear the latch. Software may  
generate the interrupt acknowledge signal by writing a logic 1 to  
the ACK bit in the interrupt status and control register (ISCR). The  
ACK bit is useful in applications that poll the IRQ pin and require  
software to clear the IRQ latch. Writing to the ACK bit can also  
prevent spurious interrupts due to noise. Setting ACK does not  
affect subsequent transitions on the IRQ pin. A falling edge on IRQ  
that occurs after writing to the ACK bit latches another interrupt  
request. If the IRQ mask bit, IMASK, is clear, the CPU loads the  
program counter with the vector address at locations $FFFA and  
$FFFB.  
Return of the IRQ pin to logic 1 As long as the IRQ pin is at logic  
0, the IRQ latch remains set.  
The vector fetch or software clear and the return of the IRQ pin to logic 1  
can occur in any order. The interrupt request remains pending as long  
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE  
control bit, thereby clearing the interrupt even if the pin stays low.  
If the MODE bit is clear, the IRQ pin is falling-edge sensitive only. With  
MODE clear, a vector fetch or software clear immediately clears the IRQ  
latch.  
The IRQF bit in the ISCR register can be used to check for pending  
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it  
useful in applications where polling is preferred.  
Use the BIH or BIL instruction to read the logic level on the IRQ pin.  
NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by  
masking interrupt requests in the interrupt routine.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
197  
External Interrupt (IRQ)  
External Interrupt (IRQ)  
13.6 IRQ Module During Break Interrupts  
The system integration module (SIM) controls whether the IRQ interrupt  
latch can be cleared during the break state. The BCFE bit in the SIM  
break flag control register (SBFCR) enables software to clear the latches  
during the break state.  
To allow software to clear the IRQ latch during a break interrupt, write a  
logic 1 to the BCFE bit. If a latch is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the latch during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the  
IRQ status and control register during the break state has no effect on  
the IRQ latch.  
13.7 IRQ Status and Control Register  
The IRQ status and control register (ISCR) controls and monitors  
operation of the IRQ module. The ISCR has these functions:  
Shows the state of the IRQ interrupt flag  
Clears the IRQ interrupt latch  
Masks IRQ interrupt request  
Controls triggering sensitivity of the IRQ interrupt pin  
Address: $001D  
Bit 7  
0
6
5
0
4
0
3
IRQF  
R
2
0
1
IMASK  
0
Bit 0  
MODE  
0
Read:  
Write:  
Reset:  
0
R
R
R
0
R
0
ACK  
0
0
0
0
R
=Reserved  
Figure 13-3. IRQ Status and Control Register (ISCR)  
Advance Information  
198  
68HC908EY16 Rev 2.0  
External Interrupt (IRQ)  
MOTOROLA  
External Interrupt (IRQ)  
IRQ Status and Control Register  
IRQF IRQ Flag Bit  
This read-only status bit is high when the IRQ interrupt is pending.  
1 = IRQ interrupt pending  
0 = IRQ interrupt not pending  
ACK IRQ Interrupt Request Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always  
reads as logic 0. Reset clears ACK.  
IMASK IRQ Interrupt Mask Bit  
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.  
Reset clears IMASK.  
1 = IRQ interrupt requests disabled  
0 = IRQ interrupt requests enabled  
MODE IRQ Edge/Level Select Bit  
This read/write bit controls the triggering sensitivity of the IRQ pin.  
Reset clears MODE.  
1 = IRQ interrupt requests on falling edges and low levels  
0 = IRQ interrupt requests on falling edges only  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
External Interrupt (IRQ)  
199  
External Interrupt (IRQ)  
Advance Information  
200  
68HC908EY16 Rev 2.0  
External Interrupt (IRQ)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 14. Enhanced Serial Communications Interface  
(ESCI) Module  
14.1 Contents  
14.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202  
14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203  
14.4 Pin Name Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204  
14.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
14.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
14.5.2.1  
14.5.2.2  
14.5.2.3  
14.5.2.4  
14.5.2.5  
14.5.2.6  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207  
Character Transmission. . . . . . . . . . . . . . . . . . . . . . . . .207  
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209  
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210  
Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .211  
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .211  
14.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
14.5.3.1  
14.5.3.2  
14.5.3.3  
14.5.3.4  
14.5.3.5  
14.5.3.6  
14.5.3.7  
14.5.3.8  
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211  
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . .212  
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214  
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216  
Baud Rate Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . .216  
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219  
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220  
14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221  
14.7 ESCI During Break Module Interrupts . . . . . . . . . . . . . . . . . .221  
14.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222  
14.8.1 PTE0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . .222  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
201  
 
Enhanced Serial Communications Interface (ESCI)  
14.8.2 PTE1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . .222  
14.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223  
14.9.1 ESCI Control Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . .223  
14.9.2 ESCI Control Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . .226  
14.9.3 ESCI Control Register 3. . . . . . . . . . . . . . . . . . . . . . . . . . .229  
14.9.4 ESCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .231  
14.9.5 ESCI Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235  
14.9.6 ESCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236  
14.9.7 ESCI Baud Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . .236  
14.9.8 ESCI Prescaler Register . . . . . . . . . . . . . . . . . . . . . . . . . .238  
14.10 ESCI Arbiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242  
14.10.1 ESCI Arbiter Control Register . . . . . . . . . . . . . . . . . . . . . .242  
14.10.2 ESCI Arbiter Data Register . . . . . . . . . . . . . . . . . . . . . . . .244  
14.10.3 Bit Time Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . .244  
14.10.4 Arbitration Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246  
14.2 Introduction  
The enhanced serial communications interface (ESCI) module allows  
asynchronous communications with peripheral devices and other  
microcontroller units (MCU).  
Advance Information  
202  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Features  
14.3 Features  
Features include:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
Programmable baud rates  
Programmable 8-bit or 9-bit character length  
Separately enabled transmitter and receiver  
Separate receiver and transmitter central processor unit (CPU)  
interrupt requests  
Programmable transmitter output polarity  
Two receiver wakeup methods:  
Idle line wakeup  
address mark wakeup  
Interrupt-driven operation with eight interrupt flags:  
Transmitter empty  
Transmission complete  
Receiver full  
Idle receiver input  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
203  
Enhanced Serial Communications Interface (ESCI)  
14.4 Pin Name Conventions  
The generic names of the ESCI input/output (I/O) pins are:  
RxD (receive data)  
TxD (transmit data)  
ESCI I/O lines are implemented by sharing parallel I/O port pins. The full  
name of an ESCI input or output reflects the name of the shared port pin.  
Table 14-1 shows the full names and the generic names of the ESCI I/O  
pins. The generic pin names appear in the text of this section.  
Table 14-1. Pin Name Conventions  
Generic Pin Names  
Full Pin Names  
RxD  
TxD  
PTE1/RxD  
PTE0/TxD  
14.5 Functional Description  
Figure 14-1 shows the structure of the ESCI module. The ESCI allows  
full-duplex, asynchronous, NRZ serial communication between the MCU  
and remote devices, including other MCUs. The transmitter and receiver  
of the ESCI operate independently, although they use the same baud  
rate generator. During normal operation, the CPU monitors the status of  
the ESCI, writes the data to be transmitted, and processes received  
data.  
The baud rate clock source for the ESCI can be selected via the  
configuration bit, ESCIBDSRC, of the CONFIG2 register ($001E).  
For reference, a summary of the ESCI module input/output registers is  
provided in Figure 14-2.  
Advance Information  
204  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
INTERNAL BUS  
ESCI DATA  
REGISTER  
ESCI DATA  
REGISTER  
RxD  
SCI_TxD  
RECEIVE  
SHIFT REGISTER  
TRANSMIT  
SHIFT REGISTER  
RxD  
ARBITER-  
TxD  
TXINV  
BUS_CLK  
LINR  
SCTIE  
TCIE  
SCRIE  
ILIE  
R8  
T8  
SL  
ACLK bit in SCIACTL  
TE  
SCTE  
TC  
RE  
RWU  
SBK  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ORIE  
NEIE  
FEIE  
PEIE  
LOOPS  
ENSCI  
LOOPS  
RECEIVE  
CONTROL  
FLAG  
CONTROL  
TRANSMIT  
CONTROL  
WAKEUP  
CONTROL  
M
BKF  
RPF  
LINT  
ENSCI  
WAKE  
ILTY  
PEN  
PTY  
BUS CLOCK  
CGMXCLK  
Enhanced  
PRE-  
SCALER  
PRE-  
BAUD RATE  
÷ 4  
SCALER GENERATOR  
SL  
DATA SELECTION  
CONTROL  
÷ 16  
SL=1 -> SCI_CLK = BUSCLK  
SL=0 -> SCI_CLK = CGMXCLK (4x BUSCLK)  
Figure 14-1. ESCI Module Block Diagram  
68HC908EY16 Rev 2.0  
Advance Information  
205  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
Addr.  
Register Name  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
ESCI Control Register 1  
TXINV  
$0010  
(SCC1) Write:  
See 224.  
Reset:  
0
SCRIE  
0
Read:  
ESCI Control Register 2  
SCTIE  
TCIE  
0
ILIE  
0
TE  
RE  
0
RWU  
0
SBK  
0
$0011  
$0012  
$0013  
$0014  
$0015  
$0016  
$0017  
$0018  
$0019  
(SCC2) Write:  
See 227.  
Reset:  
0
0
Read:  
R8  
ESCI Control Register 3  
T8  
R
R
ORIE  
NEIE  
FEIE  
PEIE  
(SCC3) Write:  
See 229.  
Reset:  
U
0
0
0
0
0
0
0
Read: SCTE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
PE  
ESCI Status Register 1  
(SCS1) Write:  
See 231.  
Reset:  
Read:  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
BKF  
RPF  
ESCI Status Register 2  
(SCS2) Write:  
See 235.  
Reset:  
0
0
0
0
0
0
0
0
Read:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
ESCI Data Register  
(SCDR) Write:  
See 236.  
Reset:  
Unaffected by reset  
Read:  
ESCI Baud Rate Register  
R
0
LINR  
0
SCP1  
0
SCP0  
0
R
0
SCR2  
SCR1  
SCR0  
(SCBR) Write:  
See 236.  
Reset:  
0
PSSB2  
0
0
PSSB1  
0
0
PSSB0  
0
Read:  
ESCI Prescaler Register  
PDS2  
0
PDS1  
PDS0  
0
PSSB4  
0
PSSB3  
(SCPSC) Write:  
See 238.  
Reset:  
0
0
Read:  
ALOST  
AFIN  
ARUN AROVFL ARD8  
ESCI Arbiter Control  
Register (SCIACTL) Write:  
AM1  
0
AM0  
ACLK  
See 242.  
Reset:  
0
0
0
0
0
0
0
Read: ARD7  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
ESCI Arbiter Data  
Register (SCIADAT) Write:  
See 244.  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 14-2. ESCI I/O Register Summary  
Advance Information  
206  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
14.5.1 Data Format  
The SCI uses the standard non-return-to-zero mark/space data format  
illustrated in Figure 14-3.  
PARITY  
8-BIT DATA FORMAT  
(BIT M IN SCC1 CLEAR)  
OR DATA  
BIT  
NEXT  
START  
BIT  
START  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7  
STOP  
BIT  
PARITY  
OR DATA  
BIT  
9-BIT DATA FORMAT  
(BIT M IN SCC1 SET)  
NEXT  
START  
BIT  
START  
BIT  
BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BIT 8  
STOP  
BIT  
Figure 14-3. SCI Data Formats  
14.5.2 Transmitter  
Figure 14-4 shows the structure of the SCI transmitter and the registers  
are summarized in Figure 14-2. The baud rate clock source for the ESCI  
can be selected via the configuration bit, ESCIBDSRC.  
14.5.2.1 Character Length  
The transmitter can accommodate either 8-bit or 9-bit data. The state of  
the M bit in ESCI control register 1 (SCC1) determines character length.  
When transmitting 9-bit data, bit T8 in ESCI control register 3 (SCC3) is  
the ninth bit (bit 8).  
14.5.2.2 Character Transmission  
During an ESCI transmission, the transmit shift register shifts a  
character out to the TxD pin. The ESCI data register (SCDR) is the write-  
only buffer between the internal data bus and the transmit shift register.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
207  
Enhanced Serial Communications Interface (ESCI)  
INTERNAL BUS  
PRE-  
BAUD  
÷ 4  
÷ 16  
ESCI DATA REGISTER  
SCALER DIVIDER  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
11-BIT  
TRANSMIT  
SHIFT REGISTER  
H
8
7
6
5
4
3
2
1
0
L
SCI_TxD  
TXINV  
M
PEN  
PTY  
PARITY  
GENERATION  
PDS2  
PDS1  
PDS0  
T8  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
TRANSMITTER  
CONTROL LOGIC  
SCTE  
SBK  
SCTE  
LOOPS  
ENSCI  
TE  
SCTIE  
SCTIE  
TC  
TC  
TCIE  
TCIE  
LINT  
Figure 14-4. ESCI Transmitter  
To initiate an ESCI transmission:  
1. Enable the ESCI by writing a logic 1 to the enable ESCI bit  
(ENSCI) in ESCI control register 1 (SCC1).  
2. Enable the transmitter by writing a logic 1 to the transmitter enable  
bit (TE) in ESCI control register 2 (SCC2).  
3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI  
status register 1 (SCS1) and then writing to the SCDR. For 9-bit  
data, also write the T8 bit in SCC3.  
4. Repeat step 3 for each subsequent transmission.  
Advance Information  
208  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
At the start of a transmission, transmitter control logic automatically  
loads the transmit shift register with a preamble of logic 1s. After the  
preamble shifts out, control logic transfers the SCDR data into the  
transmit shift register. A logic 0 start bit automatically goes into the least  
significant bit (LSB) position of the transmit shift register. A logic 1 stop  
bit goes into the most significant bit (MSB) position.  
The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the  
SCDR transfers a byte to the transmit shift register. The SCTE bit  
indicates that the SCDR can accept new data from the internal data bus.  
If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the  
SCTE bit generates a transmitter CPU interrupt request.  
When the transmit shift register is not transmitting a character, the TxD  
pin goes to the idle condition, logic 1. If at any time software clears the  
ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver  
relinquish control of the port E pins.  
14.5.2.3 Break Characters  
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit  
shift register with a break character. For TXINV = 0 (output not inverted),  
a transmitted break character contains all logic 0s and has no start, stop,  
or parity bit. Break character length depends on the M bit in SCC1 and  
the LINR bits in SCBR. As long as SBK is at logic 1, transmitter logic  
continuously loads break characters into the transmit shift register. After  
software clears the SBK bit, the shift register finishes transmitting the  
last break character and then transmits at least one logic 1. The  
automatic logic 1 at the end of a break character guarantees the  
recognition of the start bit of the next character.  
When LINR is cleared in SCBR, the ESCI recognizes a break character  
when a start bit is followed by eight or nine logic 0 data bits and a logic 0  
where the stop bit should be, resulting in a total of 10 or 11 consecutive  
logic 0 data bits. When LINR is set in SCBR, the ESCI recognizes a  
break character when a start bit is followed by 9 or 10 logic 0 data bits  
and a logic 0 where the stop bit should be, resulting in a total of 11 or 12  
consecutive logic 0 data bits.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
209  
Enhanced Serial Communications Interface (ESCI)  
Receiving a break character has these effects on ESCI registers:  
Sets the framing error bit (FE) in SCS1  
Sets the ESCI receiver full bit (SCRF) in SCS1  
Clears the ESCI data register (SCDR)  
Clears the R8 bit in SCC3  
Sets the break flag bit (BKF) in SCS2  
May set the overrun (OR), noise flag (NF), parity error (PE), or  
reception in progress flag (RPF) bits  
14.5.2.4 Idle Characters  
For TXINV = 0 (output not inverted), a transmitted idle character  
contains all logic 1s and has no start, stop, or parity bit. Idle character  
length depends on the M bit in SCC1. The preamble is a synchronizing  
idle character that begins every transmission.  
If the TE bit is cleared during a transmission, the TxD pin becomes idle  
after completion of the transmission in progress. Clearing and then  
setting the TE bit during a transmission queues an idle character to be  
sent after the character currently being transmitted.  
NOTE: When a break sequence is followed immediately by an idle character,  
this SCI design exhibits a condition in which the break character length  
is reduced by one half bit time. In this instance, the break sequence will  
consist of a valid start bit, eight or nine data bits (as defined by the M bit  
in SCC1) of logic 0 and one half data bit length of logic 0 in the stop bit  
position followed immediately by the idle character. To ensure a break  
character of the proper length is transmitted, always queue up a byte of  
data to be transmitted while the final break sequence is in progress.  
NOTE: When queueing an idle character, return the TE bit to logic 1 before the  
stop bit of the current character shifts out to the TxD pin. Setting TE after  
the stop bit appears on TxD causes data previously written to the SCDR  
to be lost. A good time to toggle the TE bit for a queued idle character is  
when the SCTE bit becomes set and just before writing the next byte to  
the SCDR.  
Advance Information  
210  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
14.5.2.5 Inversion of Transmitted Output  
The transmit inversion bit (TXINV) in ESCI control register 1 (SCC1)  
reverses the polarity of transmitted data. All transmitted values including  
idle, break, start, and stop bits, are inverted when TXINV is at logic 1.  
See 14.9.1 ESCI Control Register 1.  
14.5.2.6 Transmitter Interrupts  
These conditions can generate CPU interrupt requests from the ESCI  
transmitter:  
ESCI transmitter empty (SCTE) The SCTE bit in SCS1  
indicates that the SCDR has transferred a character to the  
transmit shift register. SCTE can generate a transmitter CPU  
interrupt request. Setting the ESCI transmit interrupt enable bit,  
SCTIE, in SCC2 enables the SCTE bit to generate transmitter  
CPU interrupt requests.  
Transmission complete (TC) The TC bit in SCS1 indicates that  
the transmit shift register and the SCDR are empty and that no  
break or idle character has been generated. The transmission  
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to  
generate transmitter CPU interrupt requests.  
14.5.3 Receiver  
Figure 14-5 shows the structure of the ESCI receiver. The receiver I/O  
registers are summarized in Figure 14-2.  
14.5.3.1 Character Length  
The receiver can accommodate either 8-bit or 9-bit data. The state of the  
M bit in ESCI control register 1 (SCC1) determines character length.  
When receiving 9-bit data, bit R8 in ESCI control register 3 (SCC3) is the  
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth  
bit (bit 7).  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
211  
Enhanced Serial Communications Interface (ESCI)  
14.5.3.2 Character Reception  
During an ESCI reception, the receive shift register shifts characters in  
from the RxD pin. The ESCI data register (SCDR) is the read-only buffer  
between the internal data bus and the receive shift register.  
After a complete character shifts into the receive shift register, the data  
portion of the character transfers to the SCDR. The ESCI receiver full bit,  
SCRF, in ESCI status register 1 (SCS1) becomes set, indicating that the  
Advance Information  
212  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
INTERNAL BUS  
LINR  
SCP1  
SCP0  
SCR1  
SCR2  
SCR0  
ESCI DATA REGISTER  
PRE-  
BAUD  
÷ 4  
÷ 16  
SCALER DIVIDER  
11-BIT  
RECEIVE SHIFT REGISTER  
DATA  
RECOVERY  
H
8
7
6
5
4
3
2
1
0
L
RxD  
ALL ZEROS  
BKF  
RPF  
PDS2  
PDS1  
PDS0  
M
RWU  
PSSB4  
PSSB3  
PSSB2  
PSSB1  
PSSB0  
SCRF  
IDLE  
WAKE  
ILTY  
WAKEUP  
LOGIC  
PEN  
PTY  
R8  
PARITY  
CHECKING  
IDLE  
ILIE  
ILIE  
SCRF  
SCRIE  
SCRIE  
OR  
OR  
ORIE  
ORIE  
NF  
NF  
NEIE  
NEIE  
FE  
FE  
FEIE  
FEIE  
PE  
PE  
PEIE  
PEIE  
Figure 14-5. ESCI Receiver Block Diagram  
68HC908EY16 Rev 2.0  
Advance Information  
213  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
received byte can be read. If the ESCI receive interrupt enable bit,  
SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU  
interrupt request.  
14.5.3.3 Data Sampling  
The receiver samples the RxD pin at the RT clock rate. The RT clock is  
an internal signal with a frequency 16 times the baud rate. To adjust for  
baud rate mismatch, the RT clock is resynchronized at these times (see  
Figure 14-6):  
After every start bit  
After the receiver detects a data bit change from logic 1 to logic 0  
(after the majority of data bit samples at RT8, RT9, and RT10  
returns a valid logic 1 and the majority of the next RT8, RT9, and  
RT10 samples returns a valid logic 0)  
To locate the start bit, data recovery logic does an asynchronous search  
for a logic 0 preceded by three logic 1s. When the falling edge of a  
possible start bit occurs, the RT clock begins to count to 16.  
START BIT  
LSB  
RxD  
START BIT  
QUALIFICATION  
START BIT  
VERIFICATION SAMPLING  
DATA  
SAMPLES  
RT  
CLOCK  
RT CLOCK  
STATE  
RT CLOCK  
RESET  
Figure 14-6. Receiver Data Sampling  
Advance Information  
68HC908EY16 Rev 2.0  
214  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
To verify the start bit and to detect noise, data recovery logic takes  
samples at RT3, RT5, and RT7. Table 14-2 summarizes the results of  
the start bit verification samples.  
Table 14-2. Start Bit Verification  
RT3, RT5, and RT7 Samples  
Start Bit Verification  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
Yes  
Yes  
Yes  
No  
0
1
1
0
1
0
0
0
Yes  
No  
No  
No  
If start bit verification is not successful, the RT clock is reset and a new  
search for a start bit begins.  
To determine the value of a data bit and to detect noise, recovery logic  
takes samples at RT8, RT9, and RT10. Table 14-3 summarizes the  
results of the data bit samples.  
Table 14-3. Data Bit Recovery  
RT8, RT9, and RT10 Samples  
Data Bit Determination  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
0
0
0
1
0
1
1
1
0
1
1
1
1
1
1
0
NOTE: The RT8, RT9, and RT10 samples do not affect start bit verification. If  
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s  
following a successful start bit verification, the noise flag (NF) is set and  
the receiver assumes that the bit is a start bit.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
215  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
To verify a stop bit and to detect noise, recovery logic takes samples  
at RT8, RT9, and RT10. Table 14-4 summarizes the results of the stop  
bit samples.  
Table 14-4. Stop Bit Recovery  
RT8, RT9, and RT10 Samples  
Framing Error Flag  
Noise Flag  
000  
001  
010  
011  
100  
101  
110  
111  
1
1
1
0
1
0
0
0
0
1
1
1
1
1
1
0
14.5.3.4 Framing Errors  
If the data recovery logic does not detect a logic 1 where the stop bit  
should be in an incoming character, it sets the framing error bit, FE, in  
SCS1. A break character also sets the FE bit because a break character  
has no stop bit. The FE bit is set at the same time that the SCRF bit  
is set.  
14.5.3.5 Baud Rate Tolerance  
A transmitting device may be operating at a baud rate below or above  
the receiver baud rate. Accumulated bit time misalignment can cause  
one of the three stop bit data samples to fall outside the actual stop bit.  
Then a noise error occurs. If more than one of the samples is outside the  
stop bit, a framing error occurs. In most applications, the baud rate  
tolerance is much more than the degree of misalignment that is likely  
to occur.  
As the receiver samples an incoming character, it resynchronizes the RT  
clock on any valid falling edge within the character. Resynchronization  
within characters corrects misalignments between transmitter bit times  
and receiver bit times.  
Slow Data Tolerance  
Advance Information  
216  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
Figure 14-7 shows how much a slow received character can be  
misaligned without causing a noise error or a framing error. The slow  
stop bit begins at RT8 instead of RT1 but arrives in time for the stop  
bit data samples at RT8, RT9, and RT10.  
MSB  
STOP  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 14-7. Slow Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 14-7, the receiver  
counts 154 RT cycles at the point when the count of the transmitting  
device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 8-bit character with no errors is:  
:
154 147  
× 100 = 4.54%  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 14-7, the receiver  
counts 170 RT cycles at the point when the count of the transmitting  
device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a slow 9-bit character with no errors is:  
170 163  
× 100 = 4.12%  
-------------------------  
170  
Fast Data Tolerance  
68HC908EY16 Rev 2.0  
Advance Information  
217  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
Figure 14-8 shows how much a fast received character can be  
misaligned without causing a noise error or a framing error. The fast  
stop bit ends at RT10 instead of RT16 but is still there for the stop bit  
data samples at RT8, RT9, and RT10.  
STOP  
IDLE OR NEXT CHARACTER  
RECEIVER  
RT CLOCK  
DATA  
SAMPLES  
Figure 14-8. Fast Data  
For an 8-bit character, data sampling of the stop bit takes the receiver  
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.  
With the misaligned character shown in Figure 14-8, the receiver  
counts 154 RT cycles at the point when the count of the transmitting  
device is 10 bit times × 16 RT cycles = 160 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 8-bit character with no errors is  
154 160  
× 100 = 3.90%.  
-------------------------  
154  
For a 9-bit character, data sampling of the stop bit takes the receiver  
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.  
With the misaligned character shown in Figure 14-8, the receiver  
counts 170 RT cycles at the point when the count of the transmitting  
device is 11 bit times × 16 RT cycles = 176 RT cycles.  
The maximum percent difference between the receiver count and the  
transmitter count of a fast 9-bit character with no errors is:  
170 176  
× 100 = 3.53%.  
-------------------------  
170  
Advance Information  
218  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Functional Description  
14.5.3.6 Receiver Wakeup  
So that the MCU can ignore transmissions intended only for other  
receivers in multiple-receiver systems, the receiver can be put into a  
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the  
receiver into a standby state during which receiver interrupts are  
disabled.  
Depending on the state of the WAKE bit in SCC1, either of two  
conditions on the RxD pin can bring the receiver out of the standby state:  
1. Address mark An address mark is a logic 1 in the MSB position  
of a received character. When the WAKE bit is set, an address  
mark wakes the receiver from the standby state by clearing the  
RWU bit. The address mark also sets the ESCI receiver full bit,  
SCRF. Software can then compare the character containing the  
address mark to the user-defined address of the receiver. If they  
are the same, the receiver remains awake and processes the  
characters that follow. If they are not the same, software can set  
the RWU bit and put the receiver back into the standby state.  
2. Idle input line condition When the WAKE bit is clear, an idle  
character on the RxD pin wakes the receiver from the standby  
state by clearing the RWU bit. The idle character that wakes the  
receiver does not set the receiver idle bit, IDLE, or the ESCI  
receiver full bit, SCRF. The idle line type bit, ILTY, determines  
whether the receiver begins counting logic 1s as idle character bits  
after the start bit or after the stop bit.  
NOTE: With the WAKE bit clear, setting the RWU bit after the RxD pin has been  
idle will cause the receiver to wake up.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
219  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
14.5.3.7 Receiver Interrupts  
These sources can generate CPU interrupt requests from the ESCI  
receiver:  
ESCI receiver full (SCRF) The SCRF bit in SCS1 indicates that  
the receive shift register has transferred a character to the SCDR.  
SCRF can generate a receiver CPU interrupt request. Setting the  
ESCI receive interrupt enable bit, SCRIE, in SCC2 enables the  
SCRF bit to generate receiver CPU interrupts.  
Idle input (IDLE) The IDLE bit in SCS1 indicates that 10 or 11  
consecutive logic 1s shifted in from the RxD pin. The idle line  
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate  
CPU interrupt requests.  
14.5.3.8 Error Interrupts  
These receiver error flags in SCS1 can generate CPU interrupt requests:  
Receiver overrun (OR) The OR bit indicates that the receive  
shift register shifted in a new character before the previous  
character was read from the SCDR. The previous character  
remains in the SCDR, and the new character is lost. The overrun  
interrupt enable bit, ORIE, in SCC3 enables OR to generate ESCI  
error CPU interrupt requests.  
Noise flag (NF) The NF bit is set when the ESCI detects noise  
on incoming data or break characters, including start, data, and  
stop bits. The noise error interrupt enable bit, NEIE, in SCC3  
enables NF to generate ESCI error CPU interrupt requests.  
Framing error (FE) The FE bit in SCS1 is set when a logic 0  
occurs where the receiver expects a stop bit. The framing error  
interrupt enable bit, FEIE, in SCC3 enables FE to generate ESCI  
error CPU interrupt requests.  
Parity error (PE) The PE bit in SCS1 is set when the ESCI  
detects a parity error in incoming data. The parity error interrupt  
enable bit, PEIE, in SCC3 enables PE to generate ESCI error CPU  
interrupt requests.  
Advance Information  
68HC908EY16 Rev 2.0  
220  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Low-Power Modes  
14.6 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
14.6.1 Wait Mode  
The ESCI module remains active in wait mode. Any enabled CPU  
interrupt request from the ESCI module can bring the MCU out of wait  
mode.  
If ESCI module functions are not required during wait mode, reduce  
power consumption by disabling the module before executing the WAIT  
instruction.  
14.6.2 Stop Mode  
The ESCI module is inactive in stop mode. The STOP instruction does  
not affect ESCI register states. ESCI module operation resumes after  
the MCU exits stop mode.  
Because the internal clock is inactive during stop mode, entering stop  
mode during an ESCI transmission or reception results in invalid data.  
14.7 ESCI During Break Module Interrupts  
The BCFE bit in the break flag control register (SBFCR) enables  
software to clear status bits during the break state. See Section 9.  
Break Module (BRK).  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
221  
Enhanced Serial Communications Interface (ESCI)  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a two-step read/write clearing procedure. If software  
does the first step on such a bit before the break, the bit cannot change  
during the break state as long as BCFE is at logic 0. After the break,  
doing the second step clears the status bit.  
14.8 I/O Signals  
Port E shares two of its pins with the ESCI module. The two ESCI I/O  
pins are:  
PTE0/TxD transmit data  
PTE1/RxD receive data  
14.8.1 PTE0/TxD (Transmit Data)  
The PTE0/TxD pin is the serial data output from the ESCI transmitter.  
The ESCI shares the PTE0/TxD pin with port E. When the ESCI is  
enabled, the PTE0/TxD pin is an output regardless of the state of the  
DDRE0 bit in data direction register E (DDRE).  
14.8.2 PTE1/RxD (Receive Data)  
The PTE1/RxD pin is the serial data input to the ESCI receiver. The  
ESCI shares the PTE1/RxD pin with port E. When the ESCI is enabled,  
the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit in  
data direction register E (DDRE).  
Advance Information  
222  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
14.9 I/O Registers  
These I/O registers control and monitor ESCI operation:  
ESCI control register 1, SCC1  
ESCI control register 2, SCC2  
ESCI control register 3, SCC3  
ESCI status register 1, SCS1  
ESCI status register 2, SCS2  
ESCI data register, SCDR  
ESCI baud rate register, SCBR  
ESCI prescaler register, SCPSC  
ESCI arbiter control register, SCIACTL  
ESCI arbiter data register, SCIADAT  
14.9.1 ESCI Control Register 1  
ESCI control register 1 (SCC1):  
Enables loop mode operation  
Enables the ESCI  
Controls output polarity  
Controls character length  
Controls ESCI wakeup method  
Controls idle character detection  
Enables parity function  
Controls parity type  
68HC908EY16 Rev 2.0  
Advance Information  
223  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
 
Enhanced Serial Communications Interface (ESCI)  
Address: $0010  
Bit 7  
LOOPS  
0
6
ENSCI  
0
5
TXINV  
0
4
M
0
3
WAKE  
0
2
ILTY  
0
1
PEN  
0
Bit 0  
PTY  
0
Read:  
Write:  
Reset:  
Figure 14-9. ESCI Control Register 1 (SCC1)  
LOOPS Loop Mode Select Bit  
This read/write bit enables loop mode operation. In loop mode the  
RxD pin is disconnected from the ESCI, and the transmitter output  
goes into the receiver input. Both the transmitter and the receiver  
must be enabled to use loop mode. Reset clears the LOOPS bit.  
1 = Loop mode enabled  
0 = Normal operation enabled  
ENSCI Enable ESCI Bit  
This read/write bit enables the ESCI and the ESCI baud rate  
generator. Clearing ENSCI sets the SCTE and TC bits in ESCI status  
register 1 and disables transmitter interrupts. Reset clears the  
ENSCI bit.  
1 = ESCI enabled  
0 = ESCI disabled  
TXINV Transmit Inversion Bit  
This read/write bit reverses the polarity of transmitted data. Reset  
clears the TXINV bit.  
1 = Transmitter output inverted  
0 = Transmitter output not inverted  
NOTE: Setting the TXINV bit inverts all transmitted values including idle, break,  
start, and stop bits.  
Advance Information  
224  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
M Mode (Character Length) Bit  
This read/write bit determines whether ESCI characters are eight or  
nine bits long (See Table 14-5).The ninth bit can serve as a receiver  
wakeup signal or as a parity bit. Reset clears the M bit.  
1 = 9-bit ESCI characters  
0 = 8-bit ESCI characters  
Table 14-5. Character Format Selection  
Control Bits  
PEN:PTY  
Character Format  
Start  
Bits  
Data  
Bits  
Stop  
Parity  
Character  
Length  
M
Bits  
0
1
0
0
1
1
0 X  
0 X  
1 0  
1 1  
1 0  
1 1  
1
1
1
1
1
1
8
9
7
7
8
8
None  
None  
Even  
Odd  
1
1
1
1
1
1
10 bits  
11 bits  
10 bits  
10 bits  
11 bits  
11 bits  
Even  
Odd  
WAKE Wakeup Condition Bit  
This read/write bit determines which condition wakes up the ESCI: a  
logic 1 (address mark) in the MSB position of a received character or  
an idle condition on the RxD pin. Reset clears the WAKE bit.  
1 = Address mark wakeup  
0 = Idle line wakeup  
ILTY Idle Line Type Bit  
This read/write bit determines when the ESCI starts counting logic 1s  
as idle character bits. The counting begins either after the start bit or  
after the stop bit. If the count begins after the start bit, then a string of  
logic 1s preceding the stop bit may cause false recognition of an idle  
character. Beginning the count after the stop bit avoids false idle  
character recognition, but requires properly synchronized  
transmissions. Reset clears the ILTY bit.  
1 = Idle character bit count begins after stop bit  
0 = Idle character bit count begins after start bit  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
225  
Enhanced Serial Communications Interface (ESCI)  
PEN Parity Enable Bit  
This read/write bit enables the ESCI parity function (see Table 14-5).  
When enabled, the parity function inserts a parity bit in the MSB  
position (see Table 14-3). Reset clears the PEN bit.  
1 = Parity function enabled  
0 = Parity function disabled  
PTY Parity Bit  
This read/write bit determines whether the ESCI generates and  
checks for odd parity or even parity (see Table 14-5). Reset clears the  
PTY bit.  
1 = Odd parity  
0 = Even parity  
NOTE: Changing the PTY bit in the middle of a transmission or reception can  
generate a parity error.  
14.9.2 ESCI Control Register 2  
ESCI control register 2 (SCC2):  
Enables these CPU interrupt requests:  
SCTE bit to generate transmitter CPU interrupt requests  
TC bit to generate transmitter CPU interrupt requests  
SCRF bit to generate receiver CPU interrupt requests  
IDLE bit to generate receiver CPU interrupt requests  
Enables the transmitter  
Enables the receiver  
Enables ESCI wakeup  
Transmits ESCI break characters  
Advance Information  
226  
68HC908EY16 Rev 2.0  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
Address: $0011  
Bit 7  
6
TCIE  
0
5
SCRIE  
0
4
ILIE  
0
3
TE  
0
2
RE  
0
1
RWU  
0
Bit 0  
SBK  
0
Read:  
SCTIE  
Write:  
Reset:  
0
Figure 14-10. ESCI Control Register 2 (SCC2)  
SCTIE ESCI Transmit Interrupt Enable Bit  
This read/write bit enables the SCTE bit to generate ESCI transmitter  
CPU interrupt requests. Setting the SCTIE bit in SCC2 enables the  
SCTE bit to generate CPU interrupt requests. Reset clears the  
SCTIE bit.  
1 = SCTE enabled to generate CPU interrupt  
0 = SCTE not enabled to generate CPU interrupt  
TCIE Transmission Complete Interrupt Enable Bit  
This read/write bit enables the TC bit to generate ESCI transmitter  
CPU interrupt requests. Reset clears the TCIE bit.  
1 = TC enabled to generate CPU interrupt requests  
0 = TC not enabled to generate CPU interrupt requests  
SCRIE ESCI Receive Interrupt Enable Bit  
This read/write bit enables the SCRF bit to generate ESCI receiver  
CPU interrupt requests. Setting the SCRIE bit in SCC2 enables the  
SCRF bit to generate CPU interrupt requests. Reset clears the  
SCRIE bit.  
1 = SCRF enabled to generate CPU interrupt  
0 = SCRF not enabled to generate CPU interrupt  
ILIE Idle Line Interrupt Enable Bit  
This read/write bit enables the IDLE bit to generate ESCI receiver  
CPU interrupt requests. Reset clears the ILIE bit.  
1 = IDLE enabled to generate CPU interrupt requests  
0 = IDLE not enabled to generate CPU interrupt requests  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
227  
Enhanced Serial Communications Interface (ESCI)  
TE Transmitter Enable Bit  
Setting this read/write bit begins the transmission by sending a  
preamble of 10 or 11 logic 1s from the transmit shift register to the  
TxD pin. If software clears the TE bit, the transmitter completes any  
transmission in progress before the TxD returns to the idle condition  
(logic 1). Clearing and then setting TE during a transmission queues  
an idle character to be sent after the character currently being  
transmitted. Reset clears the TE bit.  
1 = Transmitter enabled  
0 = Transmitter disabled  
NOTE: Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RE Receiver Enable Bit  
Setting this read/write bit enables the receiver. Clearing the RE bit  
disables the receiver but does not affect receiver interrupt flag bits.  
Reset clears the RE bit.  
1 = Receiver enabled  
0 = Receiver disabled  
NOTE: Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is  
clear. ENSCI is in ESCI control register 1.  
RWU Receiver Wakeup Bit  
This read/write bit puts the receiver in a standby state during which  
receiver interrupts are disabled. The WAKE bit in SCC1 determines  
whether an idle input or an address mark brings the receiver out of the  
standby state and clears the RWU bit. Reset clears the RWU bit.  
1 = Standby state  
0 = Normal operation  
Advance Information  
228  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
SBK Send Break Bit  
Setting and then clearing this read/write bit transmits a break  
character followed by a logic 1. The logic 1 after the break character  
guarantees recognition of a valid start bit. If SBK remains set, the  
transmitter continuously transmits break characters with no logic 1s  
between them. Reset clears the SBK bit.  
1 = Transmit break characters  
0 = No break characters being transmitted  
NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit.  
Toggling SBK before the preamble begins causes the ESCI to send a  
break character instead of a preamble.  
14.9.3 ESCI Control Register 3  
ESCI control register 3 (SCC3):  
Stores the ninth ESCI data bit received and the ninth ESCI data bit  
to be transmitted.  
Enables these interrupts:  
Receiver overrun  
Noise error  
Framing error  
Parity error  
Address: $0012  
Bit 7  
R8  
6
T8  
0
5
R
0
4
3
2
NEIE  
0
1
FEIE  
0
Bit 0  
PEIE  
0
Read:  
Write:  
Reset:  
R
ORIE  
U
0
0
= Unimplemented  
R
= Reserved  
U = Unaffected  
Figure 14-11. ESCI Control Register 3 (SCC3)  
68HC908EY16 Rev 2.0  
Advance Information  
229  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
R8 Received Bit 8  
When the ESCI is receiving 9-bit characters, R8 is the read-only ninth  
bit (bit 8) of the received character. R8 is received at the same time  
that the SCDR receives the other 8 bits.  
When the ESCI is receiving 8-bit characters, R8 is a copy of the eighth  
bit (bit 7). Reset has no effect on the R8 bit.  
T8 Transmitted Bit 8  
When the ESCI is transmitting 9-bit characters, T8 is the read/write  
ninth bit (bit 8) of the transmitted character. T8 is loaded into the  
transmit shift register at the same time that the SCDR is loaded into  
the transmit shift register. Reset clears the T8 bit.  
ORIE Receiver Overrun Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests  
generated by the receiver overrun bit, OR. Reset clears ORIE.  
1 = ESCI error CPU interrupt requests from OR bit enabled  
0 = ESCI error CPU interrupt requests from OR bit disabled  
NEIE Receiver Noise Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests  
generated by the noise error bit, NE. Reset clears NEIE.  
1 = ESCI error CPU interrupt requests from NE bit enabled  
0 = ESCI error CPU interrupt requests from NE bit disabled  
FEIE Receiver Framing Error Interrupt Enable Bit  
This read/write bit enables ESCI error CPU interrupt requests  
generated by the framing error bit, FE. Reset clears FEIE.  
1 = ESCI error CPU interrupt requests from FE bit enabled  
0 = ESCI error CPU interrupt requests from FE bit disabled  
PEIE Receiver Parity Error Interrupt Enable Bit  
This read/write bit enables ESCI receiver CPU interrupt requests  
generated by the parity error bit, PE. Reset clears PEIE.  
1 = ESCI error CPU interrupt requests from PE bit enabled  
0 = ESCI error CPU interrupt requests from PE bit disabled  
Advance Information  
230  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
14.9.4 ESCI Status Register 1  
ESCI status register 1 (SCS1) contains flags to signal these conditions:  
Transfer of SCDR data to transmit shift register complete  
Transmission complete  
Transfer of receive shift register data to SCDR complete  
Receiver input idle  
Receiver overrun  
Noisy data  
Framing error  
Parity error  
Address: $0013  
Bit 7  
Read: SCTE  
Write:  
6
5
4
3
2
1
Bit 0  
PE  
TC  
SCRF  
IDLE  
OR  
NF  
FE  
Reset:  
1
1
0
0
0
0
0
0
= Unimplemented  
Figure 14-12. ESCI Status Register 1 (SCS1)  
SCTE ESCI Transmitter Empty Bit  
This clearable, read-only bit is set when the SCDR transfers a  
character to the transmit shift register. SCTE can generate an ESCI  
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,  
SCTE generates an ESCI transmitter CPU interrupt request. In  
normal operation, clear the SCTE bit by reading SCS1 with SCTE set  
and then writing to SCDR. Reset sets the SCTE bit.  
1 = SCDR data transferred to transmit shift register  
0 = SCDR data not transferred to transmit shift register  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
231  
Enhanced Serial Communications Interface (ESCI)  
TC Transmission Complete Bit  
This read-only bit is set when the SCTE bit is set, and no data,  
preamble, or break character is being transmitted. TC generates an  
ESCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also  
set. TC is cleared automatically when data, preamble, or break is  
queued and ready to be sent. There may be up to 1.5 transmitter  
clocks of latency between queueing data, preamble, and break and  
the transmission actually starting. Reset sets the TC bit.  
1 = No transmission in progress  
0 = Transmission in progress  
SCRF ESCI Receiver Full Bit  
This clearable, read-only bit is set when the data in the receive shift  
register transfers to the ESCI data register. SCRF can generate an  
ESCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is  
set the SCRF generates a CPU interrupt request. In normal operation,  
clear the SCRF bit by reading SCS1 with SCRF set and then reading  
the SCDR. Reset clears SCRF.  
1 = Received data available in SCDR  
0 = Data not available in SCDR  
IDLE Receiver Idle Bit  
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s  
appear on the receiver input. IDLE generates an ESCI error CPU  
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit  
by reading SCS1 with IDLE set and then reading the SCDR. After the  
receiver is enabled, it must receive a valid character that sets the  
SCRF bit before an idle condition can set the IDLE bit. Also, after the  
IDLE bit has been cleared, a valid character must again set the SCRF  
bit before an idle condition can set the IDLE bit. Reset clears the  
IDLE bit.  
1 = Receiver input idle  
0 = Receiver input active (or idle since the IDLE bit was cleared)  
OR Receiver Overrun Bit  
This clearable, read-only bit is set when software fails to read the  
SCDR before the receive shift register receives the next character.  
The OR bit generates an ESCI error CPU interrupt request if the ORIE  
Advance Information  
232  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
bit in SCC3 is also set. The data in the shift register is lost, but the data  
already in the SCDR is not affected. Clear the OR bit by reading SCS1  
with OR set and then reading the SCDR. Reset clears the OR bit.  
1 = Receive shift register full and SCRF = 1  
0 = No receiver overrun  
Software latency may allow an overrun to occur between reads of  
SCS1 and SCDR in the flag-clearing sequence. Figure 14-13 shows  
the normal flag-clearing sequence and an example of an overrun  
caused by a delayed flag-clearing sequence. The delayed read of  
SCDR does not clear the OR bit because OR was not set when SCS1  
was read. Byte 2 caused the overrun and is lost. The next flag-  
clearing sequence reads byte 3 in the SCDR instead of byte 2.  
In applications that are subject to software latency or in which it is  
important to know which byte is lost due to an overrun, the flag-  
clearing routine can check the OR bit in a second read of SCS1 after  
reading the data register.  
NORMAL FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 2  
READ SCDR  
BYTE 3  
DELAYED FLAG CLEARING SEQUENCE  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
READ SCS1  
SCRF = 1  
OR = 0  
READ SCS1  
SCRF = 1  
OR = 1  
READ SCDR  
BYTE 1  
READ SCDR  
BYTE 3  
Figure 14-13. Flag Clearing Sequence  
68HC908EY16 Rev 2.0  
Advance Information  
233  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
NF Receiver Noise Flag Bit  
This clearable, read-only bit is set when the ESCI detects noise on the  
RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in  
SCC3 is also set. Clear the NF bit by reading SCS1 and then reading  
the SCDR. Reset clears the NF bit.  
1 = Noise detected  
0 = No noise detected  
FE Receiver Framing Error Bit  
This clearable, read-only bit is set when a logic 0 is accepted as the  
stop bit. FE generates an ESCI error CPU interrupt request if the FEIE  
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set  
and then reading the SCDR. Reset clears the FE bit.  
1 = Framing error detected  
0 = No framing error detected  
PE Receiver Parity Error Bit  
This clearable, read-only bit is set when the ESCI detects a parity  
error in incoming data. PE generates a PE CPU interrupt request if the  
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with  
PE set and then reading the SCDR. Reset clears the PE bit.  
1 = Parity error detected  
0 = No parity error detected  
Advance Information  
234  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
14.9.5 ESCI Status Register 2  
ESCI status register 2 (SCS2) contains flags to signal these conditions:  
Break character detected  
Incoming data  
Address: $0014  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
RPF  
Read:  
Write:  
Reset:  
BKF  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-14. ESCI Status Register 2 (SCS2)  
BKF Break Flag Bit  
This clearable, read-only bit is set when the ESCI detects a break  
character on the RxD pin. In SCS1, the FE and SCRF bits are also  
set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared.  
BKF does not generate a CPU interrupt request. Clear BKF by  
reading SCS2 with BKF set and then reading the SCDR. Once  
cleared, BKF can become set again only after logic 1s again appear  
on the RxD pin followed by another break character. Reset clears the  
BKF bit.  
1 = Break character detected  
0 = No break character detected  
RPF Reception in Progress Flag Bit  
This read-only bit is set when the receiver detects a logic 0 during the  
RT1 time period of the start bit search. RPF does not generate an  
interrupt request. RPF is reset after the receiver detects false start bits  
(usually from noise or a baud rate mismatch), or when the receiver  
detects an idle character. Polling RPF before disabling the ESCI  
module or entering stop mode can show whether a reception is in  
progress.  
1 = Reception in progress  
0 = No reception in progress  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
235  
Enhanced Serial Communications Interface (ESCI)  
14.9.6 ESCI Data Register  
The ESCI data register (SCDR) is the buffer between the internal data  
bus and the receive and transmit shift registers. Reset has no effect on  
data in the ESCI data register.  
Address: $0015  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Unaffected by Reset  
Figure 14-15. ESCI Data Register (SCDR)  
R7/T7:R0/T0 Receive/Transmit Data Bits  
Reading address $0015 accesses the read-only received data bits,  
R7:R0. Writing to address $0015 writes the data to be transmitted,  
T7:T0. Reset has no effect on the ESCI data register.  
NOTE: Do not use read-modify-write instructions on the ESCI data register.  
14.9.7 ESCI Baud Rate Register  
The ESCI baud rate register (SCBR) together with the ESCI prescaler  
register selects the baud rate for both the receiver and the transmitter.  
NOTE: There are two prescalers available to adjust the baud rate. One in the  
ESCI baud rate register and one in the ESCI prescaler register.  
Address: $0016  
Bit 7  
6
LINR  
0
5
SCP1  
0
4
3
2
SCR2  
0
1
SCR1  
0
Bit 0  
SCR0  
0
Read:  
Write:  
Reset:  
R
SCP0  
R
0
0
0
= Unimplemented  
R
= Reserved  
Figure 14-16. ESCI Baud Rate Register (SCBR)  
Advance Information  
236  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
LINR LIN Receiver Bits  
This read/write bit selects the enhanced ESCI features for the local  
interconnect network (LIN) protocol as shown in Table 14-6. Reset  
clears LINR.  
Table 14-6. ESCI LIN Control Bits  
LINR  
M
X
0
Functionality  
Normal ESCI functionality  
0
1
1
11-bit break detect enabled for LIN receiver  
12-bit break detect enabled for LIN receiver  
1
SCP1 and SCP0 ESCI Baud Rate Register Prescaler Bits  
These read/write bits select the baud rate register prescaler divisor as  
shown in Table 14-7. Reset clears SCP1 and SCP0.  
Table 14-7. ESCI Baud Rate Prescaling  
Baud Rate Register  
SCP[1:0]  
Prescaler Divisor (BPD)  
0 0  
0 1  
1 0  
1 1  
1
3
4
13  
SCR2SCR0 ESCI Baud Rate Select Bits  
These read/write bits select the ESCI baud rate divisor as shown in  
Table 14-8. Reset clears SCR2SCR0.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
237  
Enhanced Serial Communications Interface (ESCI)  
Table 14-8. ESCI Baud Rate Selection  
SCR[2:1:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
Baud Rate Divisor (BD)  
1
2
4
8
1 0 0  
1 0 1  
1 1 0  
16  
32  
64  
128  
1 1 1  
14.9.8 ESCI Prescaler Register  
The ESCI prescaler register (SCPSC) together with the ESCI baud rate  
register selects the baud rate for both the receiver and the transmitter.  
NOTE: There are two prescalers available to adjust the baud rate. One in the  
ESCI baud rate register and one in the ESCI prescaler register.  
Address: $0017  
Bit 7  
PDS2  
0
6
PDS1  
0
5
PDS0  
0
4
PSSB4  
0
3
PSSB3  
0
2
PSSB2  
0
1
PSSB1  
0
Bit 0  
PSSB0  
0
Read:  
Write:  
Reset:  
Figure 14-17. ESCI Prescaler Register (SCPSC)  
PDS2PDS0 Prescaler Divisor Select Bits  
These read/write bits select the prescaler divisor as shown in  
Table 14-9. Reset clears PDS2PDS0.  
NOTE: The setting of 000will bypass this prescaler. It is not recommended to  
bypass the prescaler while ENSCI is set, because the switching is not  
glitch free.  
Advance Information  
238  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
Table 14-9. ESCI Prescaler Division Ratio  
PDS[2:1:0]  
Prescaler Divisor (PD)  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
Bypass this prescaler  
2
3
4
5
6
7
8
PSSB4PSSB0 Clock Insertion Select Bits  
These read/write bits select the number of clocks inserted in each 32  
output cycle frame to achieve more timing resolution on the average  
prescaler frequency as shown in Table 14-10. Reset clears  
PSSB4PSSB0.  
Table 14-10. ESCI Prescaler Divisor Fine Adjust  
PSSB[4:3:2:1:0]  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
0 0 0 1 1  
0 0 1 0 0  
0 0 1 0 1  
0 0 1 1 0  
0 0 1 1 1  
0 1 0 0 0  
0 1 0 0 1  
0 1 0 1 0  
0 1 0 1 1  
0 1 1 0 0  
0 1 1 0 1  
Prescaler Divisor Fine Adjust (PDFA)  
0/32 = 0  
1/32 = 0.03125  
2/32 = 0.0625  
3/32 = 0.09375  
4/32 = 0.125  
5/32 = 0.15625  
6/32 = 0.1875  
7/32 = 0.21875  
8/32 = 0.25  
9/32 = 0.28125  
10/32 = 0.3125  
11/32 = 0.34375  
12/32 = 0.375  
13/32 = 0.40625  
68HC908EY16 Rev 2.0  
Advance Information  
239  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
Table 14-10. ESCI Prescaler Divisor Fine Adjust (Continued)  
PSSB[4:3:2:1:0]  
0 1 1 1 0  
0 1 1 1 1  
1 0 0 0 0  
1 0 0 0 1  
1 0 0 1 0  
1 0 0 1 1  
1 0 1 0 0  
1 0 1 0 1  
1 0 1 1 0  
1 0 1 1 1  
1 1 0 0 0  
1 1 0 0 1  
1 1 0 1 0  
1 1 0 1 1  
1 1 1 0 0  
1 1 1 0 1  
1 1 1 1 0  
1 1 1 1 1  
Prescaler Divisor Fine Adjust (PDFA)  
14/32 = 0.4375  
15/32 = 0.46875  
16/32 = 0.5  
17/32 = 0.53125  
18/32 = 0.5625  
19/32 = 0.59375  
20/32 = 0.625  
21/32 = 0.65625  
22/32 = 0.6875  
23/32 = 0.71875  
24/32 = 0.75  
25/32 = 0.78125  
26/32 = 0.8125  
27/32 = 0.84375  
28/32 = 0.875  
29/32 = 0.90625  
30/32 = 0.9375  
31/32 = 0.96875  
Use the following formula to calculate the ESCI baud rate:  
SCI clock source  
Baud rate = -----------------------------------------------------------------------------------  
64 × BPD × BD × (PD + PDFA)  
SCI clock source = fBus or CGMXCLK (selected by ESCIBDSRC in  
the CONFIG2 register)  
BPD = Baud rate register prescaler divisor  
BD = Baud rate divisor  
PD = Prescaler divisor  
PDFA = Prescaler divisor fine adjust  
Table 14-11 shows the ESCI baud rates that can be generated with a  
4.9152-MHz clock frequency.  
Advance Information  
240  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
I/O Registers  
Table 14-11. ESCI Baud Rate Selection Examples  
Prescaler  
Divisor  
(BPD)  
Baud Rate  
Divisor  
(BD)  
Baud Rate  
PDS[2:1:0] PSSB[4:3:2:1:0] SCP[1:0]  
SCR[2:1:0]  
(f  
= 4.9152 MHz)  
Bus  
0 0 0  
1 1 1  
1 1 1  
1 1 1  
1 1 1  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
X X X X X  
0 0 0 0 0  
0 0 0 0 1  
0 0 0 1 0  
1 1 1 1 1  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 0  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
0 1  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 0  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1 1  
1
1
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1
1
76,800  
9600  
9562.65  
9525.58  
8563.07  
38,400  
19,200  
9600  
4800  
2400  
1200  
600  
1
1
1
1
1
1
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
X X X X X  
1
2
1
4
1
8
1
16  
32  
64  
128  
1
1
1
1
3
25,600  
12,800  
6400  
3200  
1600  
800  
3
2
3
4
3
8
3
16  
32  
64  
128  
1
3
3
400  
3
200  
4
19,200  
9600  
4800  
2400  
1200  
600  
4
2
4
4
4
8
4
16  
32  
64  
128  
1
4
4
300  
4
150  
13  
13  
13  
13  
13  
13  
13  
13  
5908  
2954  
1477  
739  
2
4
8
16  
32  
64  
128  
369  
185  
92  
46  
68HC908EY16 Rev 2.0  
Advance Information  
241  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
14.10 ESCI Arbiter  
The ESCI module comprises an arbiter module designed to support  
software for communication tasks as bus arbitration, baud rate recovery  
and break time detection. The arbiter module consists of an 9-bit counter  
with 1-bit overflow and control logic. The CPU can control operation  
mode via the ESCI arbiter control register (SCIACTL).  
14.10.1 ESCI Arbiter Control Register  
Address: $0018  
Bit 7  
6
5
AM0  
0
4
ACLK  
0
3
2
1
Bit 0  
Read:  
AM1  
Write:  
ALOST  
AFIN  
ARUN AROVFL ARD8  
Reset:  
0
0
0
0
0
0
= Unimplemented  
Figure 14-18. ESCI Arbiter Control Register (SCIACTL)  
AM1 and AM0 Arbiter Mode Select Bits  
These read/write bits select the mode of the arbiter module as shown  
in Table 14-12. Reset clears AM1 and AM0.  
Table 14-12. ESCI Arbiter Selectable Modes  
AM[1:0]  
0 0  
ESCI Arbiter Mode  
Idle / counter reset  
0 1  
Bit time measurement  
Bus arbitration  
1 0  
1 1  
Reserved / do not use  
ALOST Arbitration Lost Flag  
This read-only bit indicates loss of arbitration. Clear ALOST by writing  
a logic 0 to AM1. Reset clears ALOST.  
Advance Information  
242  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
ESCI Arbiter  
ACLK Arbiter Counter Clock Select Bit  
This read/write bit selects the arbiter counter clock source.  
Reset clears ACLK.  
1 = Arbiter counter is clocked with one half of the ESCI input clock  
generated by the ESCI prescaler.  
0 = Arbiter counter is clocked with the bus clock divided by four  
NOTE: For ACLK=1, the Arbiter input clock is driven from the ESCI prescaler.  
The prescaler can be clocked by either the bus clock or CGMXCLK  
depending on the state of the ESCIBDSRC bit in CONFIG2.  
AFINArbiter Bit Time Measurement Finish Flag  
This read-only bit indicates bit time measurement has finished. Clear  
AFIN by writing any value to SCIACTL. Reset clears AFIN.  
1 = Bit time measurement has finished  
0 = Bit time measurement not yet finished  
ARUNArbiter Counter Running Flag  
This read-only bit indicates the arbiter counter is running. Reset  
clears ARUN.  
1 = Arbiter counter running  
0 = Arbiter counter stopped  
AROVFLArbiter Counter Overflow Bit  
This read-only bit indicates an arbiter counter overflow. Clear  
AROVFL by writing any value to SCIACTL. Writing logic 0s to AM1  
and AM0 resets the counter keeps it in this idle state. Reset clears  
AROVFL.  
1 = Arbiter counter overflow has occurred  
0 = No arbiter counter overflow has occurred  
ARD8Arbiter Counter MSB  
This read-only bit is the MSB of the 9-bit arbiter counter. Clear ARD8  
by writing any value to SCIACTL. Reset clears ARD8.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
243  
Enhanced Serial Communications Interface (ESCI) Module  
Enhanced Serial Communications Interface (ESCI)  
14.10.2 ESCI Arbiter Data Register  
Address: $0019  
Bit 7  
Read: ARD7  
Write:  
6
5
4
3
2
1
Bit 0  
ARD6  
ARD5  
ARD4  
ARD3  
ARD2  
ARD1  
ARD0  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 14-19. ESCI Arbiter Data Register (SCIADAT)  
ARD7ARD0 Arbiter Least Significant Counter Bits  
These read-only bits are the eight LSBs of the  
9-bit arbiter counter. Clear ARD7ARD0 by writing any value to  
SCIACTL. Writing logic 0s to AM1 and AM0 permanently resets the  
counter and keeps it in this idle state. Reset clears ARD7ARD0.  
14.10.3 Bit Time Measurement  
Two bit time measurement modes, described here, are available  
according to the state of ACLK.  
1. ACLK = 0 The counter is clocked with one quarter of the bus  
clock. The counter is started when a falling edge on the RxD pin is  
detected. The counter will be stopped on the next falling edge.  
ARUN is set while the counter is running, AFIN is set on the  
second falling edge on RxD (for instance, the counter is stopped).  
This mode is used to recover the received baud rate.  
See Figure 14-20.  
2. ACLK = 1 The counter is clocked with one half of the ESCI input  
clock generated by the ESCI prescaler. The counter is started  
when a logic 0 is detected on RxD (see Figure 14-21). A logic 0 on  
RxD on enabling the bit time measurement with ACLK = 1 leads  
to immediate start of the counter (see Figure 14-22). The counter  
will be stopped on the next rising edge of RxD. This mode is used  
to measure the length of a received break.  
Advance Information  
244  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
ESCI Arbiter  
MEASURED TIME  
RXD  
Figure 14-20. Bit Time Measurement with ACLK = 0  
MEASURED TIME  
RXD  
Figure 14-21. Bit Time Measurement with ACLK = 1, Scenario A  
MEASURED TIME  
RXD  
Figure 14-22. Bit Time Measurement with ACLK = 1, Scenario B  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Enhanced Serial Communications Interface (ESCI) Module  
245  
Enhanced Serial Communications Interface (ESCI)  
14.10.4 Arbitration Mode  
If AM[1:0] is set to 10, the arbiter module operates in arbitration mode.  
On every rising edge of SCI_TxD (output of the ESCI module, internal  
chip signal), the counter is started. When the counter reaches $38  
(ACLK = 0) or $08 (ACLK = 1), RxD is statically sensed. If in this case,  
RxD is sensed low (for example, another bus is driving the bus  
dominant) ALOST is set. As long as ALOST is set, the TxD pin is forced  
to 1, resulting in a seized transmission.  
If SCI_TxD is sensed logic 0 without having sensed a logic 0 before on  
RxD, the counter will be reset, arbitration operation will be restarted after  
the next rising edge of SCI_TxD.  
Advance Information  
246  
68HC908EY16 Rev 2.0  
Enhanced Serial Communications Interface (ESCI) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 15. Serial Peripheral Interface (SPI) Module  
15.1 Contents  
15.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248  
15.4 Pin Name and Register Name Conventions. . . . . . . . . . . . . .249  
15.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250  
15.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252  
15.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253  
15.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254  
15.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . .254  
15.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . .255  
15.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . .256  
15.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . .257  
15.7 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258  
15.7.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259  
15.7.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .261  
15.8 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263  
15.9 Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . .264  
15.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265  
15.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
15.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266  
15.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267  
15.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . .267  
15.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268  
15.13.1 MISO (Master In/Slave Out). . . . . . . . . . . . . . . . . . . . . . . .268  
15.13.2 MOSI (Master Out/Slave In). . . . . . . . . . . . . . . . . . . . . . . .269  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
247  
Serial Peripheral Interface (SPI) Module  
15.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
15.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269  
15.13.5 VSS (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271  
15.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . .274  
15.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277  
15.2 Introduction  
15.3 Features  
This section describes the serial peripheral interface (SPI) module,  
which allows full-duplex, synchronous, serial communications with  
peripheral devices.  
Features of the SPI module include:  
Full-Duplex Operation  
Master and Slave Modes  
Double-Buffered Operation with Separate Transmit and Receive  
Registers  
Four Master Mode Frequencies (Maximum = Bus Frequency ÷ 2)  
Maximum Slave Mode Frequency = Bus Frequency  
Serial Clock with Programmable Polarity and Phase  
Two Separately Enabled Interrupts with CPU Service:  
SPRF (SPI Receiver Full)  
SPTE (SPI Transmitter Empty)  
Mode Fault Error Flag with CPU Interrupt Capability  
Overflow Error Flag with CPU Interrupt Capability  
Programmable Wired-OR Mode  
I2C (Inter-Integrated Circuit) Compatibility  
Advance Information  
248  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Pin Name and Register Name Conventions  
15.4 Pin Name and Register Name Conventions  
The generic names of the SPI input/output (I/O) pins are:  
SS (slave select)  
SPSCK (SPI serial clock)  
MOSI (master out slave in)  
MISO (master in slave out)  
The SPI shares four I/O pins with a parallel I/O port. The full name of an  
SPI pin reflects the name of the shared port pin. Table 15-1 shows the  
full names of the SPI I/O pins. The generic pin names appear in the text  
that follows.  
Table 15-1. Pin Name Conventions  
SPI Generic Pin Name  
Full SPI Pin Name  
MISO  
MOSI  
SS  
SPSCK  
PTC0/MISO PTC1/MOSI PTA6/SS PTA5/SPSCK  
The generic names of the SPI I/O registers are:  
SPI control register (SPCR)  
SPI status and control register (SPSCR)  
SPI data register (SPDR)  
Table 15-2 shows the names and the addresses of the SPI I/O registers.  
Table 15-2. I/O Register Addresses  
Register Name  
SPI Control Register (SPCR)  
SPI Status and Control Register (SPSCR)  
SPI Data Register (SPDR)  
Address  
$000D  
$000E  
$000F  
68HC908EY16 Rev 2.0  
Advance Information  
249  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
 
 
Serial Peripheral Interface (SPI) Module  
15.5 Functional Description  
Table 15-3 summarizes the SPI I/O registers and Figure 15-1 shows the  
structure of the SPI module.  
Table 15-3. SPI I/O Register Summary  
Addr  
Register Name  
R/W Bit 7  
6
R
0
5
4
3
2
1
Bit 0  
SPTIE  
0
Read:  
SPRIE  
Write:  
SPI Control Register  
$000D  
SPMSTR CPOL  
CPHA SPWOM SPE  
(SPCR)  
Reset:  
0
1
0
1
SPTE  
1
0
0
Read: SPRF  
Write:  
OVRF MODF  
SPI Status and Control Register  
(SPSCR)  
$000E  
$000F  
ERRIE  
0
MODFEN SPR1  
SPR0  
0
Reset:  
0
0
0
0
0
Read:  
Write:  
Reset:  
R7  
T7  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
R0  
T0  
SPI Data Register  
(SPDR)  
Unaffected by Reset  
= Unimplemented  
R
=Reserved  
Advance Information  
250  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
 
Serial Peripheral Interface (SPI) Module  
Functional Description  
INTERNAL BUS  
TRANSMIT DATA REGISTER  
SHIFT REGISTER  
BUS CLOCK  
MISO  
MOSI  
7
6
5
4
3
2
1
0
÷ 2  
÷ 8  
÷ 32  
CLOCK  
DIVIDER  
RECEIVE DATA REGISTER  
PIN  
CONTROL  
LOGIC  
÷ 128  
CLOCK  
SPSCK  
SPMSTR  
SPE  
SELECT  
M
CLOCK  
LOGIC  
S
SS  
SPR1  
SPR0  
SPMSTR  
CPHA  
CPOL  
SPWOM  
TRANSMITTER CPU INTERRUPT REQUEST  
RECEIVER/ERROR CPU INTERRUPT REQUEST  
MODFEN  
ERRIE  
SPTIE  
SPI  
CONTROL  
SPRIE  
SPE  
SPRF  
SPTE  
OVRF  
MODF  
Figure 15-1. SPI Module Block Diagram  
The SPI module allows full-duplex, synchronous, serial communication  
between the MCU and peripheral devices, including other MCUs.  
Software can poll the SPI status flags or SPI operation can be interrupt  
driven. All SPI interrupts can be serviced by the CPU.  
The following paragraphs describe the operation of the SPI module.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
251  
 
Serial Peripheral Interface (SPI) Module  
15.5.1 Master Mode  
The SPI operates in master mode when the SPI master bit, SPMSTR  
(SPCR $0010), is set.  
NOTE: Configure the SPI modules as master and slave before enabling them.  
Enable the master SPI before enabling the slave SPI. Disable the slave  
SPI before disabling the master SPI. See SPI Control Register on page  
271.  
Only a master SPI module can initiate transmissions. Software begins  
the transmission from a master SPI module by writing to the SPI data  
register. If the shift register is empty, the byte immediately transfers to  
the shift register, setting the SPI transmitter empty bit, SPTE (SPSCR  
$0011). The byte begins shifting out on the MOSI pin under the control  
of the serial clock. (See Table 15-4).  
The SPR1 and SPR0 bits control the baud rate generator and determine  
the speed of the shift register. (See SPI Status and Control Register  
on page 274). Through the SPSCK pin, the baud rate generator of the  
master also controls the shift register of the slave peripheral.  
MASTER MCU  
SLAVE MCU  
MISO  
MOSI  
MISO  
MOSI  
SHIFT REGISTER  
SHIFT REGISTER  
SPSCK  
SS  
SPSCK  
SS  
BAUD RATE  
GENERATOR  
V
DD  
Figure 15-2. Full-Duplex Master-Slave Connections  
Advance Information  
252  
68HC908EY16 Rev 2.0  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Serial Peripheral Interface (SPI) Module  
Functional Description  
As the byte shifts out on the MOSI pin of the master, another byte shifts  
in from the slave on the masters MISO pin. The transmission ends when  
the receiver full bit, SPRF (SPSCR), becomes set. At the same time that  
SPRF becomes set, the byte from the slave transfers to the receive data  
register. In normal operation, SPRF signals the end of a transmission.  
Software clears SPRF by reading the SPI status and control register and  
then reading the SPI data register. Writing to the SPI data register clears  
the SPTIE bit.  
15.5.2 Slave Mode  
The SPI operates in slave mode when the SPMSTR bit (SPCR, $0010)  
is clear. In slave mode the SPSCK pin is the input for the serial clock  
from the master MCU. Before a data transmission occurs, the SS pin of  
the slave MCU must be at logic 0. SS must remain low until the  
transmission is complete. (See Mode Fault Error on page 261).  
In a slave SPI module, data enters the shift register under the control of  
the serial clock from the master SPI module. After a byte enters the shift  
register of a slave SPI, it is transferred to the receive data register, and  
the SPRF bit (SPSCR) is set. To prevent an overflow condition, slave  
software then must read the SPI data register before another byte enters  
the shift register.  
The maximum frequency of the SPSCK for an SPI configured as a slave  
is the bus clock speed, which is twice as fast as the fastest master  
SPSCK clock that can be generated. The frequency of the SPSCK for an  
SPI configured as a slave does not have to correspond to any SPI baud  
rate. The baud rate only controls the speed of the SPSCK generated by  
an SPI configured as a master. Therefore, the frequency of the SPSCK  
for an SPI configured as a slave can be any frequency less than or equal  
to the bus speed.  
When the master SPI starts a transmission, the data in the slave shift  
register begins shifting out on the MISO pin. The slave can load its shift  
register with a new byte for the next transmission by writing to its transmit  
data register. The slave must write to its transmit data register at least  
one bus cycle before the master starts the next transmission. Otherwise  
the byte already in the slave shift register shifts out on the MISO pin.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
253  
Serial Peripheral Interface (SPI) Module  
Data written to the slave shift register during a a transmission remains in  
a buffer until the end of the transmission.  
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts  
a transmission. When CPHA is clear, the falling edge of SS starts a  
transmission. (See Transmission Formats on page 254).  
If the write to the data register is late, the SPI transmits the data already  
in the shift register from the previous transmission.  
NOTE: To prevent SPSCK from appearing as a clock edge, SPSCK must be in  
the proper idle state before the slave is enabled.  
15.6 Transmission Formats  
During an SPI transmission, data is simultaneously transmitted (shifted  
out serially) and received (shifted in serially). A serial clock line  
synchronizes shifting and sampling on the two serial data lines. A slave  
select line allows individual selection of a slave SPI device; slave  
devices that are not selected do not interfere with SPI bus activities. On  
a master SPI device, the slave select line can be used optionally to  
indicate a multiple-master bus contention.  
15.6.1 Clock Phase and Polarity Controls  
Software can select any of four combinations of serial clock (SCK) phase  
and polarity using two bits in the SPI control register (SPCR). The clock  
polarity is specified by the CPOL control bit, which selects an active high  
or low clock and has no significant effect on the transmission format.  
The clock phase (CPHA) control bit (SPCR) selects one of two  
fundamentally different transmission formats. The clock phase and  
polarity should be identical for the master SPI device and the  
communicating slave device. In some cases, the phase and polarity are  
changed between transmissions to allow a master device to  
communicate with peripheral slaves having different requirements.  
NOTE: Before writing to the CPOL bit or the CPHA bit (SPCR), disable the SPI  
by clearing the SPI enable bit (SPE).  
Advance Information  
254  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
 
Serial Peripheral Interface (SPI) Module  
Transmission Formats  
15.6.2 Transmission Format When CPHA = 0  
Figure 15-3 shows an SPI transmission in which CPHA (SPCR) is  
logic 0. The figure should not be used as a replacement for data sheet  
parametric information. Two waveforms are shown for SCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted  
as a master or slave timing diagram since the serial clock (SCK), master  
in/slave out (MISO), and master out/slave in (MOSI) pins are directly  
connected between the master and the slave. The MISO signal is the  
output from the slave, and the MOSI signal is the output from the master.  
The SS line is the slave select input to the slave. The slave SPI drives  
its MISO output only when its slave select input (SS) is at logic 0, so that  
only the selected slave drives to the master. The SS pin of the master is  
not shown but is assumed to be inactive. The SS pin of the master must  
be high or must be reconfigured as general-purpose I/O not affecting the  
SPI (see Mode Fault Error on page 261). When CPHA = 0, the first  
SPSCK edge is the MSB capture strobe. Therefore, the slave must  
begin driving its data before the first SPSCK edge, and a falling edge on  
the SS pin is used to start the transmission. The SS pin must be toggled  
high and then low again between each byte transmitted.  
SCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SCK CPOL = 0  
SCK CPOL = 1  
MOSI  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
LSB  
FROM MASTER  
MISO  
FROM SLAVE  
MSB  
SS TO SLAVE  
CAPTURE STROBE  
Figure 15-3. Transmission Format (CPHA = 0)  
68HC908EY16 Rev 2.0  
Advance Information  
255  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
 
Serial Peripheral Interface (SPI) Module  
15.6.3 Transmission Format When CPHA = 1  
Figure 15-4 shows an SPI transmission in which CPHA (SPCR) is  
logic 1. The figure should not be used as a replacement for data sheet  
parametric information. Two waveforms are shown for SCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted  
as a master or slave timing diagram since the serial clock (SCK), master  
in/slave out (MISO), and master out/slave in (MOSI) pins are directly  
connected between the master and the slave. The MISO signal is the  
output from the slave, and the MOSI signal is the output from the master.  
The SS line is the slave select input to the slave. The slave SPI drives  
its MISO output only when its slave select input (SS) is at logic 0, so that  
only the selected slave drives to the master. The SS pin of the master is  
not shown but is assumed to be inactive. The SS pin of the master must  
be high or must be reconfigured as general-purpose I/O not affecting the  
SPI. (See Mode Fault Error on page 261). When CPHA = 1, the master  
begins driving its MOSI pin on the first SPSCK edge. Therefore, the  
slave uses the first SPSCK edge as a start transmission signal. The SS  
pin can remain low between transmissions. This format may be  
preferable in systems having only one master and only one slave driving  
the MISO data line.  
SCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SCK CPOL = 0  
SCK CPOL =1  
MOSI  
FROM MASTER  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
MISO  
FROM SLAVE  
LSB  
SS TO SLAVE  
CAPTURE STROBE  
Figure 15-4. Transmission Format (CPHA = 1)  
Advance Information  
256  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
 
Serial Peripheral Interface (SPI) Module  
Transmission Formats  
15.6.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), transmissions  
are started by a software write to the SPDR ($0012). CPHA has no effect  
on the delay to the start of the transmission, but it does affect the initial  
state of the SCK signal. When CPHA = 0, the SCK signal remains  
inactive for the first half of the first SCK cycle. When CPHA = 1, the first  
SCK cycle begins with an edge on the SCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1SPR0) affects the  
delay from the write to SPDR and the start of the SPI transmission. (See  
Figure 15-5). The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. It is only enabled when both the  
SPE and SPMSTR bits (SPCR) are set to conserve power. SCK edges  
occur half way through the low time of the internal MCU clock. Since the  
SPI clock is free-running, it is uncertain where the write to the SPDR will  
occur relative to the slower SCK. This uncertainty causes the variation  
in the initiation delay shown in Figure 15-5. This delay will be no longer  
than a single SPI bit time. That is, the maximum delay between the write  
to SPDR and the start of the SPI transmission is two MCU bus cycles for  
DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and  
128 MCU bus cycles for DIV128.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
257  
Serial Peripheral Interface (SPI) Module  
WRITE  
TO SPDR  
INITIATION DELAY  
MSB  
BUS  
CLOCK  
MOSI  
BIT 6  
BIT 5  
SCK  
CPHA = 1  
SCK  
CPHA = 0  
SCK CYCLE  
NUMBER  
1
2
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN  
WRITE  
TO SPDR  
BUS  
CLOCK  
SCK = INTERNAL CLOCK ÷ 2;  
2 POSSIBLE START POINTS  
EARLIEST LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 8;  
8 POSSIBLE START POINTS  
LATEST  
LATEST  
LATEST  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 32;  
32 POSSIBLE START POINTS  
WRITE  
TO SPDR  
BUS  
CLOCK  
EARLIEST  
SCK = INTERNAL CLOCK ÷ 128;  
128 POSSIBLE START POINTS  
Figure 15-5. Transmission Start Delay (Master)  
15.7 Error Conditions  
Two flags signal SPI error conditions:  
1. Overflow (OVRF in SPSCR) Failing to read the SPI data  
register before the next byte enters the shift register sets the  
Advance Information  
258  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Error Conditions  
OVRF bit. The new byte does not transfer to the receive data  
register, and the unread byte still can be read by accessing the  
SPI data register. OVRF is in the SPI status and control register.  
2. Mode fault error (MODF in SPSCR) The MODF bit indicates  
that the voltage on the slave select pin (SS) is inconsistent with the  
mode of the SPI. MODF is in the SPI status and control register.  
15.7.1 Overflow Error  
The overflow flag (OVRF in SPSCR) becomes set if the SPI receive data  
register still has unread data from a previous transmission when the  
capture strobe of bit 1 of the next transmission occurs. (See Figure 15-3  
and Figure 15-4.) If an overflow occurs, the data being received is not  
transferred to the receive data register so that the unread data can still  
be read. Therefore, an overflow error always indicates the loss of data.  
OVRF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE in SPSCR) is also set. MODF and OVRF can  
generate a receiver/error CPU interrupt request. (See Figure 15-8). It is  
not possible to enable only MODF or OVRF to generate a receiver/error  
CPU interrupt request. However, leaving MODFEN low prevents MODF  
from being set.  
If an end-of-block transmission interrupt was meant to pull the MCU out  
of wait, having an overflow condition without overflow interrupts enabled  
causes the MCU to hang in wait mode. If the OVRF is enabled to  
generate an interrupt, it can pull the MCU out of wait mode instead.  
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,  
watch for an overflow condition. Figure 15-6 shows how it is possible to  
miss an overflow.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
259  
Serial Peripheral Interface (SPI) Module  
BYTE 1  
1
BYTE 2  
4
BYTE 3  
6
BYTE 4  
8
SPRF  
OVRF  
2
5
READ SPSCR  
3
7
READ SPDR  
1
2
BYTE 1 SETS SPRF BIT.  
5
CPU READS SPSCRW WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
6
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
3
4
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,  
BUT NOT OVRF BIT.  
BYTE 2 SETS SPRF BIT.  
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE  
OVRF BIT IS SET. BYTE 4 IS LOST.  
Figure 15-6. Missed Read of Overflow Condition  
The first part of Figure 15-6 shows how to read the SPSCR and SPDR  
to clear the SPRF without problems. However, as illustrated by the  
second transmission example, the OVRF flag can be set in between the  
time that SPSCR and SPDR are read.  
In this case, an overflow can be easily missed. Since no more SPRF  
interrupts can be generated until this OVRF is serviced, it will not be  
obvious that bytes are being lost as more transmissions are completed.  
To prevent this, either enable the OVRF interrupt or do another read of  
the SPSCR after the read of the SPDR. This ensures that the OVRF was  
not set before the SPRF was cleared and that future transmissions will  
complete with an SPRF interrupt. Figure 15-7 illustrates this process.  
Generally, to avoid this second SPSCR read, enable the OVRF to the  
CPU by setting the ERRIE bit (SPSCR).  
Advance Information  
260  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Error Conditions  
BYTE 1  
1
BYTE 2  
5
BYTE 3  
7
BYTE 4  
11  
SPI RECEIVE  
COMPLETE  
SPRF  
OVRF  
2
4
6
9
12  
14  
READ SPSCR  
READ SPDR  
3
8
10  
13  
1
2
8
9
BYTE 1 SETS SPRF BIT.  
CPU READS BYTE 2 IN SPDR,  
CLEARING SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
3
4
CPU READS BYTE 1 IN SPDR,  
CLEARING SPRF BIT.  
10  
CPU READS BYTE 2 SPDR,  
CLEARING OVRF BIT.  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
11  
12  
13  
BYTE 4 SETS SPRF BIT.  
CPU READS SPSCR.  
5
6
BYTE 2 SETS SPRF BIT.  
CPU READS SPSCR WITH SPRF BIT SET  
AND OVRF BIT CLEAR.  
CPU READS BYTE 4 IN SPDR,  
CLEARING SPRF BIT.  
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.  
14  
CPU READS SPSCR AGAIN  
TO CHECK OVRF BIT.  
Figure 15-7. Clearing SPRF When OVRF Interrupt Is Not Enabled  
15.7.2 Mode Fault Error  
For the MODF flag (in SPSCR) to be set, the mode fault error enable bit  
(MODFEN in SPSCR) must be set. Clearing the MODFEN bit does not  
clear the MODF flag but does prevent MODF from being set again after  
MODF is cleared.  
MODF generates a receiver/error CPU interrupt request if the error  
interrupt enable bit (ERRIE in SPSCR) is also set. The SPRF, MODF,  
and OVRF interrupts share the same CPU interrupt vector. MODF and  
OVRF can generate a receiver/error CPU interrupt request. (See Figure  
15-8). It is not possible to enable only MODF or OVRF to generate a  
receiver/error CPU interrupt request. However, leaving MODFEN low  
prevents MODF from being set.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
261  
 
Serial Peripheral Interface (SPI) Module  
In a master SPI with the mode fault enable bit (MODFEN) set, the mode  
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master  
SPI causes the following events to occur:  
If ERRIE = 1, the SPI generates an SPI receiver/error CPU  
interrupt request.  
The SPE bit is cleared.  
The SPTE bit is set.  
The SPI state counter is cleared.  
The data direction register of the shared I/O port regains control of  
port drivers.  
NOTE: To prevent bus contention with another master SPI after a mode fault  
error, clear all data direction register (DDR) bits associated with the SPI  
shared port pins.  
NOTE: Setting the MODF flag (SPSCR) does not clear the SPMSTR bit.  
Reading SPMSTR when MODF = 1 will indicate a MODE fault error  
occurred in either master mode or slave mode.  
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS  
goes high during a transmission. When CPHA = 0, a transmission begins  
when SS goes low and ends once the incoming SPSCK returns to its idle  
level after the shift of the eighth data bit. When CPHA = 1, the  
transmission begins when the SPSCK leaves its idle level and SS is  
already low. The transmission continues until the SPSCK returns to its  
IDLE level after the shift of the last data bit. (See Transmission  
Formats on page 254).  
NOTE: When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)  
and later deselected (SS is at logic 1) even if no SPSCK is sent to that  
slave. This happens because SS at logic 0 indicates the start of the  
transmission (MISO driven out with the value of MSB) for CPHA = 0.  
When CPHA = 1, a slave can be selected and then later deselected with  
no transmission occurring. Therefore, MODF does not occur since a  
transmission was never begun.  
In a slave SPI (MSTR = 0), the MODF bit generates an SPI  
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF  
Advance Information  
262  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Interrupts  
bit does not clear the SPE bit or reset the SPI in any way. Software can  
abort the SPI transmission by toggling the SPE bit of the slave.  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high  
impedance state. Also, the slave SPI ignores all incoming SPSCK  
clocks, even if a transmission has begun.  
To clear the MODF flag, read the SPSCR and then write to the SPCR  
register. This entire clearing procedure must occur with no MODF  
condition existing or else the flag will not be cleared.  
15.8 Interrupts  
Four SPI status flags can be enabled to generate CPU interrupt  
requests:  
Table 15-4. SPI Interrupts  
Flag  
Request  
SPTE (Transmitter Empty) SPI Transmitter CPU Interrupt Request (SPTIE = 1)  
SPRF (Receiver Full)  
OVRF (Overflow)  
SPI Receiver CPU Interrupt Request (SPRIE = 1)  
SPI Receiver/Error Interrupt Request  
(SPRIE = 1, ERRIE = 1)  
SPI Receiver/Error Interrupt Request  
(SPRIE = 1, ERRIE = 1, MODFEN = 1)  
MODF (Mode Fault)  
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag  
to generate transmitter CPU interrupt requests.  
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to  
generate receiver CPU interrupt, provided that the SPI is enabled  
(SPE = 1).  
The error interrupt enable bit (ERRIE) enables both the MODF and  
OVRF flags to generate a receiver/error CPU interrupt request.  
The mode fault enable bit (MODFEN) can prevent the MODF flag from  
being set so that only the OVRF flag is enabled to generate  
receiver/error CPU interrupt requests.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
263  
 
Serial Peripheral Interface (SPI) Module  
SPTE  
SPTIE  
SPE  
SPI TRANSMITTER  
CPU INTERRUPT REQUEST  
SPRIE  
SPRF  
SPI RECEIVER/ERROR  
CPU INTERRUPT REQUEST  
ERRIE  
MODF  
OVRF  
Figure 15-8. SPI Interrupt Request Generation  
Two sources in the SPI status and control register can generate CPU  
interrupt requests:  
1. SPI receiver full bit (SPRF) The SPRF bit becomes set every  
time a byte transfers from the shift register to the receive data  
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,  
SPRF can generate an SPI receiver/error CPU interrupt request.  
2. SPI transmitter empty (SPTE) The SPTE bit becomes set every  
time a byte transfers from the transmit data register to the shift  
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,  
SPTE can generate an SPTE CPU interrupt request.  
15.9 Queuing Transmission Data  
The double-buffered transmit data register allows a data byte to be  
queued and transmitted. For an SPI configured as a master, a queued  
data byte is transmitted immediately after the previous transmission has  
completed. The SPI transmitter empty flag (SPTE in SPSCR) indicates  
when the transmit data buffer is ready to accept new data. Write to the  
SPI data register only when the SPTE bit is high. Figure 15-9 shows the  
timing associated with doing back-to-back transmissions with the SPI  
(SPSCK has CPHA:CPOL = 1:0).  
Advance Information  
264  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
Resetting the SPI  
1
3
8
WRITE TO SPDR  
SPTE  
5
10  
2
SPSCK (CPHA:CPOL = 1:0)  
MOSI  
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT  
6
5
4
3
2
1
6
5
4
3
2
1
6
5
4
BYTE 1  
BYTE 2  
BYTE 3  
4
9
SPRF  
READ SPSCR  
READ SPDR  
6
11  
7
12  
1
2
3
4
CPU WRITES BYTE 1 TO SPDR, CLEARING  
SPTE BIT.  
7
8
CPU READS SPDR, CLEARING SPRF BIT.  
CPU WRITES BYTE 3 TO SPDR, QUEUEING  
BYTE 3 AND CLEARING SPTE BIT.  
BYTE 1 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
9
SECOND INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
CPU WRITES BYTE 2 TO SPDR, QUEUEING  
BYTE 2 AND CLEARING SPTE BIT.  
10  
BYTE 3 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
FIRST INCOMING BYTE TRANSFERS FROM SHIFT  
REGISTER TO RECEIVE DATA REGISTER, SETTING  
SPRF BIT.  
11  
12  
CPU READS SPSCR WITH SPRF BIT SET.  
CPU READS SPDR, CLEARING SPRF BIT.  
5
6
BYTE 2 TRANSFERS FROM TRANSMIT DATA  
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.  
CPU READS SPSCR WITH SPRF BIT SET.  
Figure 15-9. SPRF/SPTE CPU Interrupt Timing  
For a slave, the transmit data buffer allows back-to-back transmissions  
to occur without the slave having to time the write of its data between the  
transmissions. Also, if no new data is written to the data buffer, the last  
value contained in the shift register will be the next data word  
transmitted.  
15.10 Resetting the SPI  
Any system reset completely resets the SPI. Partial reset occurs  
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the  
following occurs:  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
265  
 
Serial Peripheral Interface (SPI) Module  
The SPTE flag is set.  
Any transmission currently in progress is aborted.  
The shift register is cleared.  
The SPI state counter is cleared, making it ready for a new  
complete transmission.  
All the SPI port logic is defaulted back to being general-purpose  
I/O.  
The following additional items are reset only by a system reset:  
All control bits in the SPCR register  
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,  
and SPR0)  
The status flags SPRF, OVRF, and MODF  
By not resetting the control bits when SPE is low, the user can clear SPE  
between transmissions without having to reset all control bits when SPE  
is set back to high for the next transmission.  
By not resetting the SPRF, OVRF, and MODF flags, the user can still  
service these interrupts after the SPI has been disabled. The user can  
disable the SPI by writing 0 to the SPE bit. The SPI also can be disabled  
by a mode fault occurring in an SPI that was configured as a master with  
the MODFEN bit set.  
15.11 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
15.11.1 Wait Mode  
The SPI module remains active after the execution of a WAIT instruction.  
In wait mode, the SPI module registers are not accessible by the CPU.  
Any enabled CPU interrupt request from the SPI module can bring the  
MCU out of wait mode.  
Advance Information  
266  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
SPI During Break Interrupts  
If SPI module functions are not required during wait mode, reduce power  
consumption by disabling the SPI module before executing the WAIT  
instruction.  
To exit wait mode when an overflow condition occurs, enable the OVRF  
bit to generate CPU interrupt requests by setting the error interrupt  
enable bit (ERRIE). (See Interrupts on page 263).  
15.11.2 Stop Mode  
The SPI module is inactive after the execution of a STOP instruction.  
The STOP instruction does not affect register conditions. SPI operation  
resumes after the MCU exits stop mode. If stop mode is exited by reset,  
any transfer in progress is aborted and the SPI is reset.  
15.12 SPI During Break Interrupts  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR, $FE03) enables software to  
clear status bits during the break state. (See Flag Protection During  
Break Interrupts on page 160).  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a two-step read/write clearing procedure. If software  
does the first step on such a bit before the break, the bit cannot change  
during the break state as long as BCFE is at logic 0. After the break,  
doing the second step clears the status bit.  
Since the SPTE bit cannot be cleared during a break with the BCFE bit  
cleared, a write to the data register in break mode will not initiate a  
transmission nor will this data be transferred into the shift register.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
267  
Serial Peripheral Interface (SPI) Module  
Therefore, a write to the SPDR in break mode with the BCFE bit cleared  
has no effect.  
15.13 I/O Signals  
The SPI module has four I/O pins and shares three of them with a  
parallel I/O port.  
MISO Data received  
MOSI Data transmitted  
SPSCK Serial clock  
SS Slave select  
VSS Clock ground  
The SPI has limited inter-integrated circuit (I2C) capability (requiring  
software support) as a master in a single-master environment. To  
communicate with I2C peripherals, MOSI becomes an open-drain output  
when the SPWOM bit in the SPI control register is set. In I2C  
communication, the MOSI and MISO pins are connected to a  
bidirectional pin from the I2C peripheral and through a pullup resistor  
to VDD.  
15.13.1 MISO (Master In/Slave Out)  
MISO is one of the two SPI module pins that transmit serial data. In full  
duplex operation, the MISO pin of the master SPI module is connected  
to the MISO pin of the slave SPI module. The master SPI simultaneously  
receives data on its MISO pin and transmits data from its MOSI pin.  
Slave output data on the MISO pin is enabled only when the SPI is  
configured as a slave. The SPI is configured as a slave when its  
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multiple-  
slave system, a logic 1 on the SS pin puts the MISO pin in a high-  
impedance state.  
Advance Information  
268  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
I/O Signals  
When enabled, the SPI controls data direction of the MISO pin  
regardless of the state of the data direction register of the shared I/O  
port.  
15.13.2 MOSI (Master Out/Slave In)  
MOSI is one of the two SPI module pins that transmit serial data. In full  
duplex operation, the MOSI pin of the master SPI module is connected  
to the MOSI pin of the slave SPI module. The master SPI simultaneously  
transmits data from its MOSI pin and receives data on its MISO pin.  
When enabled, the SPI controls data direction of the MOSI pin  
regardless of the state of the data direction register of the shared I/O  
port.  
15.13.3 SPSCK (Serial Clock)  
The serial clock synchronizes data transmission between master and  
slave devices. In a master MCU, the SPSCK pin is the clock output. In a  
slave MCU, the SPSCK pin is the clock input. In full duplex operation, the  
master and slave MCUs exchange a byte of data in eight serial clock  
cycles.  
When enabled, the SPI controls data direction of the SPSCK pin  
regardless of the state of the data direction register of the shared I/O  
port.  
15.13.4 SS (Slave Select)  
The SS pin has various functions depending on the current state of the  
SPI. For an SPI configured as a slave, the SS is used to select a slave.  
For CPHA = 0, the SS is used to define the start of a transmission. (See  
15.6 Transmission Formats.) Since it is used to indicate the start of a  
transmission, the SS must be toggled high and low between each byte  
transmitted for the CPHA = 0 format. However, it can remain low  
throughout the transmission for the CPHA = 1 format. See Figure 15-10.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
269  
 
Serial Peripheral Interface (SPI) Module  
MISO/MOSI  
MASTER SS  
BYTE 1  
BYTE 2  
BYTE 3  
SLAVE SS  
CPHA = 0  
SLAVE SS  
CPHA = 1  
Figure 15-10. CPHA/SS Timing  
When an SPI is configured as a slave, the SS pin is always configured  
as an input. It cannot be used as a general-purpose I/O regardless of the  
state of the MODFEN control bit. However, the MODFEN bit can still  
prevent the state of the SS from creating a MODF error. (See SPI Status  
and Control Register on page 274).  
NOTE: A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high-  
impedance state. The slave SPI ignores all incoming SPSCK clocks,  
even if a transmission already has begun.  
When an SPI is configured as a master, the SS input can be used in  
conjunction with the MODF flag to prevent multiple masters from driving  
MOSI and SPSCK. (See Mode Fault Error on page 261). For the state  
of the SS pin to set the MODF flag, the MODFEN bit in the SPSCK  
register must be set. If the MODFEN bit is low for an SPI master, the SS  
pin can be used as a general-purpose I/O under the control of the data  
direction register of the shared I/O port. With MODFEN high, it is an  
input-only pin to the SPI regardless of the state of the data direction  
register of the shared I/O port.  
Advance Information  
270  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
 
Serial Peripheral Interface (SPI) Module  
I/O Registers  
The CPU can always read the state of the SS pin by configuring the  
appropriate pin as an input and reading the data register. (See Table 15-  
5).  
Table 15-5. SPI Configuration  
SPE SPMSTR MODFEN SPI Configuration  
State of SS Logic  
General-Purpose I/O;  
SS Ignored by SPI  
0
1
1
1
X
0
1
1
X
X
0
Not Enabled  
Slave  
Input-Only to SPI  
General-Purpose I/O;  
SS Ignored by SPI  
Master without MODF  
Master with MODF  
1
Input-Only to SPI  
X = dont care  
15.13.5 VSS (Clock Ground)  
VSS is the ground return for the serial clock pin, SPSCK, and the ground  
for the port output buffers. To reduce the ground return path loop and  
minimize radio frequency (RF) emissions, connect the ground pin of the  
slave to the VSS pin.  
15.14 I/O Registers  
Three registers control and monitor SPI operation:  
SPI control register (SPCR $0010)  
SPI status and control register (SPSCR $0011)  
SPI data register (SPDR $0012)  
15.14.1 SPI Control Register  
The SPI control register:  
Enables SPI module interrupt requests  
Selects CPU interrupt requests  
68HC908EY16 Rev 2.0  
Advance Information  
271  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
 
Serial Peripheral Interface (SPI) Module  
Configures the SPI module as master or slave  
Selects serial clock polarity and phase  
Configures the SPSCK, MOSI, and MISO pins as open-drain  
outputs  
Enables the SPI module  
Address: $000D  
Bit 7  
6
5
4
3
2
1
SPE  
0
Bit 0  
SPTIE  
0
Read:  
Write:  
Reset:  
SPRIE  
R
SPMSTR CPOL  
CPHA SPWOM  
0
0
1
0
1
0
R
=Reserved  
Figure 15-11. SPI Control Register (SPCR)  
SPRIE SPI Receiver Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPRF bit. The SPRF bit is set when a byte transfers from the shift  
register to the receive data register. Reset clears the SPRIE bit.  
1 = SPRF CPU interrupt requests enabled  
0 = SPRF CPU interrupt requests disabled  
SPMSTR SPI Master Bit  
This read/write bit selects master mode operation or slave mode  
operation. Reset sets the SPMSTR bit.  
1 = Master mode  
0 = Slave mode  
CPOL Clock Polarity Bit  
This read/write bit determines the logic state of the SPSCK pin  
between transmissions. (See Figure 15-3 and Figure 15-4.) To  
transmit data between SPI modules, the SPI modules must have  
identical CPOL bits. Reset clears the CPOL bit.  
CPHA Clock Phase Bit  
Advance Information  
272  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
I/O Registers  
This read/write bit controls the timing relationship between the serial  
clock and SPI data. (See Figure 15-3 and Figure 15-4.) To transmit  
data between SPI modules, the SPI modules must have identical  
CPHA bits. When CPHA = 0, the SS pin of the slave SPI module must  
be set to logic 1 between bytes. (See Figure 15-10). Reset sets the  
CPHA bit.  
When CPHA = 0 for a slave, the falling edge of SS indicates the  
beginning of the transmission. This causes the SPI to leave its idle  
state and begin driving the MISO pin with the MSB of its data. Once  
the transmission begins, no new data is allowed into the shift register  
from the data register. Therefore, the slave data register must be  
loaded with the desired transmit data before the falling edge of SS.  
Any data written after the falling edge is stored in the data register and  
transferred to the shift register at the current transmission.  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the  
beginning of the transmission. The same applies when SS is high for  
a slave. The MISO pin is held in a high-impedance state, and the  
incoming SPSCK is ignored. In certain cases, it may also cause the  
MODF flag to be set. (See Mode Fault Error on page 261). A logic 1  
on the SS pin does not in any way affect the state of the SPI state  
machine.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
273  
Serial Peripheral Interface (SPI) Module  
SPWOM SPI Wired-OR Mode Bit  
This read/write bit disables the pullup devices on pins SPSCK, MOSI,  
and MISO so that those pins become open-drain outputs.  
1 = Wired-OR SPSCK, MOSI, and MISO pins  
0 = Normal push-pull SPSCK, MOSI, and MISO pins  
SPE SPI Enable Bit  
This read/write bit enables the SPI module. Clearing SPE causes a  
partial reset of the SPI (see Resetting the SPI on page 265). Reset  
clears the SPE bit.  
1 = SPI module enabled  
0 = SPI module disabled  
SPTIE SPI Transmit Interrupt Enable Bit  
This read/write bit enables CPU interrupt requests generated by the  
SPTE bit. SPTE is set when a byte transfers from the transmit data  
register to the shift register. Reset clears the SPTIE bit.  
1 = SPTE CPU interrupt requests enabled  
0 = SPTE CPU interrupt requests disabled  
15.14.2 SPI Status and Control Register  
The SPI status and control register contains flags to signal the following  
conditions:  
Receive data register full  
Failure to clear SPRF bit before next byte is received (overflow  
error)  
Inconsistent logic level on SS pin (mode fault error)  
Transmit data register empty  
The SPI status and control register also contains bits that perform these  
functions:  
Enable error interrupts  
Enable mode fault error detection  
Select master SPI baud rate  
Advance Information  
274  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
I/O Registers  
Address: $000E  
Bit 7  
6
5
4
3
2
1
Bit 0  
SPR0  
0
Read: SPRF  
Write:  
OVRF  
MODF  
SPTE  
ERRIE  
MODFEN SPR1  
Reset:  
0
0
0
0
1
0
0
R
=Reserved  
= Unimplemented  
Figure 15-12. SPI Status and Control Register (SPSCR)  
SPRF SPI Receiver Full Bit  
This clearable, read-only flag is set each time a byte transfers from  
the shift register to the receive data register. SPRF generates a CPU  
interrupt request if the SPRIE bit in the SPI control register is set also.  
During an SPRF CPU interrupt, the CPU clears SPRF by reading the  
SPI status and control register with SPRF set and then reading the  
SPI data register. Any read of the SPI data register clears the SPRF  
bit.  
Reset clears the SPRF bit.  
1 = Receive data register full  
0 = Receive data register not full  
ERRIE Error Interrupt Enable Bit  
This read-only bit enables the MODF and OVRF flags to generate  
CPU interrupt requests. Reset clears the ERRIE bit.  
1 = MODF and OVRF can generate CPU interrupt requests  
0 = MODF and OVRF cannot generate CPU interrupt requests  
OVRF Overflow Bit  
This clearable, read-only flag is set if software does not read the byte  
in the receive data register before the next byte enters the shift  
register. In an overflow condition, the byte already in the receive data  
register is unaffected, and the byte that shifted in last is lost. Clear the  
OVRF bit by reading the SPI status and control register with OVRF set  
and then reading the SPI data register. Reset clears the OVRF flag.  
1 = Overflow  
0 = No overflow  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
275  
Serial Peripheral Interface (SPI) Module  
MODF Mode Fault Bit  
This clearable, read-only flag is set in a slave SPI if the SS pin goes  
high during a transmission. In a master SPI, the MODF flag is set if  
the SS pin goes low at any time. Clear the MODF bit by reading the  
SPI status and control register with MODF set and then writing to the  
SPI data register. Reset clears the MODF bit.  
1 = SS pin at inappropriate logic level  
0 = SS pin at appropriate logic level  
SPTE SPI Transmitter Empty Bit  
This clearable, read-only flag is set each time the transmit data  
register transfers a byte into the shift register. SPTE generates an  
SPTE CPU interrupt request if the SPTIE bit in the SPI control register  
is set also.  
NOTE: Do not write to the SPI data register unless the SPTE bit is high.  
For an idle master or idle slave that has no data loaded into its  
transmit buffer, the SPTE will be set again within two bus cycles since  
the transmit buffer empties into the shift register. This allows the user  
to queue up a 16-bit value to send. For an already active slave, the  
load of the shift register cannot occur until the transmission is  
completed. This implies that a back-to-back write to the transmit data  
register is not possible. The SPTE indicates when the next write can  
occur.  
Reset sets the SPTE bit.  
1 = Transmit data register empty  
0 = Transmit data register not empty  
MODFEN Mode Fault Enable Bit  
This read/write bit, when set to 1, allows the MODF flag to be set. If  
the MODF flag is set, clearing the MODFEN does not clear the MODF  
flag. If the SPI is enabled as a master and the MODFEN bit is low,  
then the SS pin is available as a general-purpose I/O.  
If the MODFEN bit is set, then this pin is not available as a general  
purpose I/O. When the SPI is enabled as a slave, the SS pin is not  
available as a general-purpose I/O regardless of the value of  
MODFEN. (See SS (Slave Select) on page 269).  
Advance Information  
276  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
I/O Registers  
If the MODFEN bit is low, the level of the SS pin does not affect the  
operation of an enabled SPI configured as a master. For an enabled  
SPI configured as a slave, having MODFEN low only prevents the  
MODF flag from being set. It does not affect any other part of SPI  
operation. (See Mode Fault Error on page 261).  
SPR1 and SPR0 SPI Baud Rate Select Bits  
In master mode, these read/write bits select one of four baud rates as  
shown in Table 15-6. SPR1 and SPR0 have no effect in slave mode.  
Reset clears SPR1 and SPR0.  
Table 15-6. SPI Master Baud Rate Selection  
SPR1:SPR0  
Baud Rate Divisor (BD)  
00  
01  
10  
11  
2
8
32  
128  
Use this formula to calculate the SPI baud rate:  
CGMOUT  
Baud rate = --------------------------  
2 × BD  
where:  
CGMOUT = base clock output of the internal clock generator module  
(ICG), see Internal Clock Generator (ICG) Module on page 111.  
BD = baud rate divisor  
15.14.3 SPI Data Register  
The SPI data register is the read/write buffer for the receive data register  
and the transmit data register. Writing to the SPI data register writes data  
into the transmit data register. Reading the SPI data register reads data  
from the receive data register. The transmit data and receive data  
registers are separate buffers that can contain different values. See  
Figure 15-1  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Serial Peripheral Interface (SPI) Module  
277  
 
Serial Peripheral Interface (SPI) Module  
Address: $000F  
Bit 7  
R7  
6
5
4
3
2
1
Bit 0  
R0  
Read:  
Write:  
Reset:  
R6  
T6  
R5  
T5  
R4  
T4  
R3  
T3  
R2  
T2  
R1  
T1  
T7  
T0  
Indeterminate after Reset  
Figure 15-13. SPI Data Register (SPDR)  
R7R0/T7T0 Receive/Transmit Data Bits  
NOTE: Do not use read-modify-write instructions on the SPI data register since  
the buffer read is not the same as the buffer written.  
Advance Information  
278  
68HC908EY16 Rev 2.0  
Serial Peripheral Interface (SPI) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 16. Timer Interface A (TIMA) Module  
16.1 Contents  
16.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280  
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
16.4.1 TIMA Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .283  
16.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .283  
16.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285  
16.4.3.1  
16.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .285  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .286  
16.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .286  
16.4.4.1  
16.4.4.2  
16.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .287  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .288  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289  
16.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290  
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291  
16.7 TIMA During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .291  
16.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292  
16.9.1 TIMA Status and Control Register . . . . . . . . . . . . . . . . . . .293  
16.9.2 TIMA Counter Registers. . . . . . . . . . . . . . . . . . . . . . . . . . .295  
16.9.3 TIMA Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .296  
16.9.4 TIMA Channel Status and Control Registers . . . . . . . . . . .297  
16.9.5 TIMA Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .301  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
279  
Timer Interface A (TIMA) Module  
16.2 Introduction  
This section describes the timer interface module (TIMA). The TIMA is a  
2-channel timer that provides a timing reference with input capture,  
output compare, and pulse width modulation (PWM) functions.  
Figure 16-1 is a block diagram of the TIMA and Figure 16-2 provides a  
summary of the input/output (I/O) registers.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
16.3 Features  
Features of the TIMA include:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered PWM signal generation  
Programmable TIMA clock input  
7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMA counter stop and reset bits  
Advance Information  
280  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
Features  
INTERNAL  
BUS CLOCK  
PRESCALER SELECT  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TAMODH:TAMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TACH0H:TACH0L  
16-BIT LATCH  
TOV0  
CH0MAX  
PTD0  
PTD0/TACH0  
PTD1/TACH1  
LOGIC  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
CH0IE  
MS0A  
ELS1B  
CHANNEL 1  
16-BIT COMPARATOR  
TACH1H:TACH1L  
16-BIT LATCH  
TOV1  
CH1MAX  
PTD1  
LOGIC  
CH1F  
INTER-  
RUPT  
LOGIC  
CH1IE  
MS1A  
Figure 16-1. TIMA Block Diagram  
Addr.  
Register Name  
TIMA Status and Control  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
TOIE  
TSTOP  
R
PS2  
PS1  
PS0  
$0020  
Register (TASC) Write:  
TRST  
0
See 293.  
Reset:  
0
0
1
0
0
0
0
Read: BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
TIMA Counter Register  
High (TACNTH) Write:  
$0021  
$0022  
See 295.  
Reset:  
0
0
0
0
0
0
0
0
Read: BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
TIMA Counter Register  
Low (TACNTL) Write:  
See 295.  
Reset:  
0
0
0
0
0
0
0
0
Figure 16-2. TIMA I/O Register Summary  
68HC908EY16 Rev 2.0  
Advance Information  
281  
MOTOROLA  
Timer Interface A (TIMA) Module  
 
Timer Interface A (TIMA) Module  
Addr.  
Register Name  
Bit 7  
BIT 15  
1
6
BIT 14  
1
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
TIMA Counter Modulo  
$0023 Register High (TAMODH) Write:  
See 296.  
Reset:  
Read:  
TIMA Counter Modulo  
BIT 7  
BIT 6  
1
BIT 5  
1
BIT 4  
1
BIT 3  
1
BIT 2  
1
BIT 1  
1
BIT 0  
1
$0024 Register Low (TAMODL) Write:  
See 296.  
Reset:  
1
Read: CH0F  
TIMA Channel 0 Status  
and Control Register  
(TASC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
$0025  
$0026  
$0027  
$0028  
$0029  
$002A  
Write:  
Reset:  
Read:  
0
0
See 297.  
TIMA Channel 0 Register  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
High (TACH0H) Write:  
See 302.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
TIMA Channel 0 Register  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
Low (TACH0L) Write:  
See 302.  
Reset:  
Read: CH1F  
0
R
0
TIMA Channel 1 Status  
and Control Register  
(TASC1)  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
Write:  
Reset:  
Read:  
0
0
See 297.  
TIMA Channel 1 Register  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
High (TACH1H) Write:  
See 302.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Read:  
TIMA Channel 1 Register  
BIT 7  
R
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
Low (TACH1L) Write:  
See 302.  
Reset:  
Indeterminate after reset  
= Unimplemented  
=Reserved  
Figure 16-2. TIMA I/O Register Summary (Continued)  
Advance Information  
282  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
Functional Description  
16.4 Functional Description  
Figure 16-1 shows the TIMA structure. The central component of the  
TIMA is the 16-bit TIMA counter that can operate as a free-running  
counter or a modulo up-counter. The TIMA counter provides the timing  
reference for the input capture and output compare functions. The TIMA  
counter modulo registers, TAMODHTAMODL, control the modulo  
value of the TIMA counter. Software can read the TIMA counter value at  
any time without affecting the counting sequence.  
The two TIMA channels are programmable independently as input  
capture or output compare channels.  
16.4.1 TIMA Counter Prescaler  
The TIMA clock source can be one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIMA status and control register  
select the TIMA clock source.  
16.4.2 Input Capture  
An input capture function has three basic parts: edge select logic, an  
input capture latch, and a 16-bit counter. Two 8-bit registers, which make  
up the 16-bit input capture register, are used to latch the value of the  
free-running counter after the corresponding input capture edge detector  
senses a defined transition. The polarity of the active edge is  
programmable. The level transition which triggers the counter transfer is  
defined by the corresponding input edge bits (ELSxB and ELSxA in  
TASC0 through TASC1 control registers with x referring to the active  
channel number). When an active edge occurs on the pin of an input  
capture channel, the TIMA latches the contents of the TIMA counter into  
the TIMA channel registers, TACHxHTACHxL. Input captures can  
generate TIMA central processor unit (CPU) interrupt requests.  
Software can determine that an input capture event has occurred by  
enabling input capture interrupts or by polling the status flag bit.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
283  
Timer Interface A (TIMA) Module  
The free-running counter contents are transferred to the TIMA channel  
status and control register (TACHxHTACHxL, see 16.9.5 TIMA  
Channel Registers) on each proper signal transition regardless of  
whether the TIMA channel flag (CH0FCH1F in TASC0TASC1  
registers) is set or clear. When the status flag is set, a CPU interrupt is  
generated if enabled. The value of the count latched or capturedis the  
time of the event. Because this value is stored in the input capture  
register 2 bus cycles after the actual event occurs, user software can  
respond to this event at a later time and determine the actual time of the  
event. However, this must be done prior to another input capture on the  
same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal,  
software can determine the period and/or pulse width of the signal. To  
measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are  
captured. Software should track the overflows at the 16-bit module  
counter to extend its range.  
Another use for the input capture function is to establish a time  
reference. In this case, an input capture function is used in conjunction  
with an output compare function. For example, to activate an output  
signal a specified number of clock cycles after detecting an input event  
(edge), use the input capture function to record the time at which the  
edge occurred. A number corresponding to the desired delay is added to  
this captured value and stored to an output compare register (see 16.9.5  
TIMA Channel Registers). Because both input captures and output  
compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of  
software latencies.  
Reset does not affect the contents of the input capture channel register  
(TACHxHTACHxL).  
Advance Information  
284  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
Functional Description  
16.4.3 Output Compare  
With the output compare function, the TIMA can generate a periodic  
pulse with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIMA can set, clear, or toggle the channel pin. Output compares can  
generate TIMA CPU interrupt requests.  
16.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 16.4.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMA channel registers.  
An unsynchronized write to the TIMA channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIMA overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMA may  
pass the new value before it is written.  
Use these methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIMA  
overflow interrupts and write the new value in the TIMA overflow  
interrupt routine. The TIMA overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
285  
 
Timer Interface A (TIMA) Module  
16.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the PTD0/TACH0 pin. The TIMA  
channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMA channel 0 status and control register  
(TASC0) links channel 0 and channel 1. The output compare value in the  
TIMA channel 0 registers initially controls the output on the  
PTD0/TACH0 pin. Writing to the TIMA channel 1 registers enables the  
TIMA channel 1 registers to synchronously control the output after the  
TIMA overflows. At each subsequent overflow, the TIMA channel  
registers (0 or 1) that control the output are the ones written to last. TSC0  
controls and monitors the buffered output compare function, and TIMA  
channel 1 status and control register (TASC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTD1/TACH1, is available as a  
general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
16.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIMA can generate a PWM signal. The value in the TIMA counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIMA counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
Advance Information  
286  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
 
Timer Interface A (TIMA) Module  
Functional Description  
As Figure 16-3 shows, the output compare value in the TIMA channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIMA to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIMA to set the pin if the state of the PWM  
pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 16-3. PWM Period and Pulse Width  
The value in the TIMA counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMA counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000 (see 16.9.1 TIMA Status and Control Register).  
The value in the TIMA channel registers determines the pulse width of  
the PWM output. The pulse width of an 8-bit PWM signal is variable in  
256 increments. Writing $0080 (128) to the TIMA channel registers  
produces a duty cycle of 128/256 or 50%.  
16.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 16.4.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMA channel registers.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
287  
Timer Interface A (TIMA) Module  
An unsynchronized write to the TIMA channel registers to change a  
pulse width value could cause incorrect operation for up to two PWM  
periods. For example, writing a new value before the counter reaches  
the old value but after the counter reaches the new value prevents any  
compare during that PWM period. Also, using a TIMA overflow interrupt  
routine to write a new, smaller pulse width value may cause the compare  
to be missed. The TIMA may pass the new value before it is written to  
the TIMA channel registers.  
Use these methods to synchronize unbuffered changes in the PWM  
pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIMA overflow  
interrupts and write the new value in the TIMA overflow interrupt  
routine. The TIMA overflow interrupt occurs at the end of the  
current PWM period. Writing a larger value in an output compare  
interrupt routine (at the end of the current pulse) could cause two  
output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
16.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the PTD0/TACH0 pin. The TIMA channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIMA channel 0 status and control register  
(TASC0) links channel 0 and channel 1. The TIMA channel 0 registers  
Advance Information  
288  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
Functional Description  
initially control the pulse width on the PTD0/TACH0 pin. Writing to the  
TIMA channel 1 registers enables the TIMA channel 1 registers to  
synchronously control the pulse width at the beginning of the next PWM  
period. At each subsequent overflow, the TIMA channel registers (0 or  
1) that control the pulse width are the ones written to last. TASC0  
controls and monitors the buffered PWM function, and TIMA channel 1  
status and control register (TASC1) is unused. While the MS0B bit is set,  
the channel 1 pin, PTD1/TACH1, is available as a general-purpose I/O  
pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
16.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use this initialization procedure:  
1. In the TIMA status and control register (TASC):  
a. Stop the TIMA counter by setting the TIMA stop bit, TSTOP.  
b. Reset the TIMA counter prescaler by setting the TIMA reset  
bit, TRST.  
2. In the TIMA counter modulo registers (TAMODHTAMODL), write  
the value for the required PWM period.  
3. In the TIMA channel x registers (TACHxHTACHxL), write the  
value for the required pulse width.  
4. In TIMA channel x status and control register (TASCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the  
mode select bits, MSxBMSxA. See Table 16-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
289  
Timer Interface A (TIMA) Module  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxBELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. See Table 16-2.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIMA status control register (TASC), clear the TIMA stop bit,  
TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIMA channel 0 registers (TACH0HTACH0L)  
initially control the buffered PWM output. TIMA status control register 0  
(TASC0) controls and monitors the PWM signal from the linked  
channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on  
TIMA overflows. Subsequent output compares try to force the output to  
a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. See 16.9.4 TIMA  
Channel Status and Control Registers.  
16.5 Interrupts  
These TIMA sources can generate interrupt requests:  
TIMA overflow flag (TOF) The TOF bit is set when the TIM  
counter reaches the modulo value programmed in the TIMA  
counter modulo registers. The TIMA overflow interrupt enable bit,  
TOIE, enables TIMA overflow CPU interrupt requests. TOF and  
TOIE are in the TIMA status and control register.  
Advance Information  
290  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
Low-Power Modes  
TIMA channel flags (CH1FCH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIMA CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
16.6 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in  
low power-consumption standby modes.  
16.6.1 Wait Mode  
The TIMA remains active after the execution of a WAIT instruction. In  
wait mode, the TIMA registers are not accessible by the CPU. Any  
enabled CPU interrupt request from the TIMA can bring the MCU out of  
wait mode.  
If TIMA functions are not required during wait mode, reduce power  
consumption by stopping the TIMA before executing the WAIT  
instruction.  
16.6.2 Stop Mode  
The TIMA is inactive after the execution of a STOP instruction. The  
STOP instruction does not affect register conditions or the state of the  
TIMA counter. TIMA operation resumes when the MCU exits stop mode.  
16.7 TIMA During Break Interrupts  
A break interrupt stops the TIMA counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
291  
Timer Interface A (TIMA) Module  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
16.8 I/O Signals  
Port D shares two of its pins with the TIMA. There is no external clock  
input to the TIMA prescaler. The two TIMA channel I/O pins are  
PTD0/TACH0 and PTD1/TACH1.  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTD0/TACH0 and PTD1/TACH1  
can be configured as buffered output compare or buffered PWM pins.  
16.9 I/O Registers  
These I/O registers control and monitor TIMA operation:  
TIMA status and control register, TASC  
TIMA control registers, TACNTHTACNTL  
TIMA counter modulo registers, TAMODHTAMODL  
TIMA channel status and control registers, TASC0 and TASC1  
TIMA channel registers, TACH0HTACH0L and  
TACH1HTACH1L  
Advance Information  
292  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
I/O Registers  
16.9.1 TIMA Status and Control Register  
The TIMA status and control register (TASC):  
Enables TIMA overflow interrupts  
Flags TIMA overflows  
Stops the TIMA counter  
Resets the TIMA counter  
Prescales the TIMA counter clock  
Address: $$0020  
Bit 7  
TOF  
0
6
5
TSTOP  
1
4
0
3
R
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOIE  
TRST  
0
0
0
R
=Reserved  
Figure 16-4. TIMA Status and Control Register (TASC)  
TOF TIMA Overflow Flag Bit  
This read/write flag is set when the TIMA counter reaches the modulo  
value programmed in the TIMA counter modulo registers. Clear TOF  
by reading the TIMA status and control register when TOF is set and  
then writing a logic 0 to TOF. If another TIMA overflow occurs before  
the clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIMA counter has reached modulo value  
0 = TIMA counter has not reached modulo value  
TOIE TIMA Overflow Interrupt Enable Bit  
This read/write bit enables TIMA overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIMA overflow interrupts enabled  
0 = TIMA overflow interrupts disabled  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
293  
 
Timer Interface A (TIMA) Module  
TSTOP TIMA Stop Bit  
This read/write bit stops the TIMA counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMA  
counter until software clears the TSTOP bit.  
1 = TIMA counter stopped  
0 = TIMA counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIMA is  
required to exit wait mode. Also, when the TSTOP bit is set and the timer  
is configured for input capture operation, input captures are inhibited  
until TSTOP is cleared.  
TRST TIMA Reset Bit  
Setting this write-only bit resets the TIMA counter and the TIMA  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIMA counter is reset and always reads as logic 0. Reset clears  
the TRST bit.  
1 = Prescaler and TIMA counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIMA  
counter at a value of $0000.  
PS[2:0] Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIMA counter as Table 16-1 shows. Reset clears the  
PS[2:0] bits.  
Table 16-1. Prescaler Selection  
PS[2:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
TIMA Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Unused  
Advance Information  
294  
68HC908EY16 Rev 2.0  
MOTOROLA  
Timer Interface A (TIMA) Module  
 
Timer Interface A (TIMA) Module  
I/O Registers  
16.9.2 TIMA Counter Registers  
The two read-only TIMA counter registers contain the high and low bytes  
of the value in the TIMA counter. Reading the high byte (TACNTH)  
latches the contents of the low byte (TACNTL) into a buffer. Subsequent  
reads of TACNTH do not affect the latched TACNTL value until TACNTL  
is read. Reset clears the TIMA counter registers. Setting the TIMA reset  
bit (TRST) also clears the TIMA counter registers.  
NOTE: If TACNTH is read during a break interrupt, be sure to unlatch TACNTL  
by reading TACNTL before exiting the break interrupt. Otherwise,  
TACNTL retains the value latched during the break.  
Register Name and Address  
Bit 7  
TACNTH $0021  
6
5
BIT 13  
R
4
BIT 12  
R
3
BIT 11  
R
2
BIT 10  
R
1
BIT 9  
R
Bit 0  
BIT 8  
R
Read: BIT 15  
BIT 14  
Write:  
R
0
R
0
Reset:  
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TACNTL $0022  
6
5
BIT 5  
R
4
BIT 4  
R
3
BIT 3  
R
2
BIT 2  
R
1
BIT 1  
R
Bit 0  
BIT 0  
R
Read: BIT 7  
BIT 6  
Write:  
R
0
R
Reset:  
0
0
0
0
0
0
0
R
=Reserved  
Figure 16-5. TIMA Counter Registers (TACNTH and TACNTL)  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
295  
Timer Interface A (TIMA) Module  
16.9.3 TIMA Counter Modulo Registers  
The read/write TIMA modulo registers contain the modulo value for the  
TIMA counter. When the TIMA counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIMA counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte  
(TMODH) inhibits the TOF bit and overflow interrupts until the low byte  
(TMODL) is written. Reset sets the TIMA counter modulo registers.  
Register Name and Address  
TAMODH $0023  
Bit 7  
6
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
BIT 15  
1
BIT 14  
1
Write:  
Reset:  
Register Name and Address  
TAMODL $0024  
Bit 7  
6
5
BIT 5  
1
4
BIT 4  
1
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
BIT 7  
1
BIT 6  
1
Write:  
Reset:  
Figure 16-6. TIMA Counter Modulo Registers  
(TMODH and TMODL)  
NOTE: Reset the TIMA counter before writing to the TIMA counter modulo  
registers.  
Advance Information  
296  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
I/O Registers  
16.9.4 TIMA Channel Status and Control Registers  
Each of the TIMA channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIMA overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address  
Bit 7  
TASC0 $0025  
6
5
MS0B  
0
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
CH0IE  
0
MS0A  
0
Write:  
0
0
Reset:  
Register Name and Address  
Bit 7  
TASC1 $0028  
6
5
0
4
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
CH1IE  
0
MS1A  
0
Write:  
0
0
R
0
Reset:  
R
R =Reserved  
Figure 16-7. TIMA Channel Status  
and Control Registers (TASC0TASC1)  
CHxF Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIMA  
counter registers matches the value in the TIMA channel x registers.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
297  
Timer Interface A (TIMA) Module  
When CHxIE = 1, clear CHxF by reading TIMA channel x status and  
control register with CHxF set, and then writing a logic 0 to CHxF. If  
another interrupt request occurs before the clearing sequence is  
complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIMA CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIMA channel 0.  
Setting MS0B disables the channel 1 status and control register and  
reverts TACH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 16-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin once PWM, input capture, or output compare  
operation is enabled (see Table 16-2). Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
Advance Information  
298  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
I/O Registers  
Table 16-2. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under Port Control;  
Initialize Timer  
Output Level High  
X0  
X1  
00  
00  
Output  
Preset  
Pin under Port Control;  
Initialize Timer  
Output Level Low  
00  
00  
00  
01  
10  
11  
Capture on Rising Edge Only  
Capture on Falling Edge Only  
Capture on Rising or Falling Edge  
Input  
Capture  
01  
01  
01  
01  
10  
11  
Output  
Compare  
or PWM  
Toggle Output on Compare  
Clear Output on Compare  
Set Output on Compare  
Buffered  
Output  
Compare  
or  
1X  
1X  
1X  
01  
10  
11  
Toggle Output on Compare  
Clear Output on Compare  
Set Output on Compare  
Buffered PWM  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIMA status and control register  
(TASC).  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port B or port D, and pin PTD0/TACH0 or pin PTD1/TACH1 is  
available as a general-purpose I/O pin. However, channel x is at a  
state determined by these bits and becomes transparent to the  
respective pin when PWM, input capture, or output compare mode is  
enabled. Table 16-2 shows how ELSxB and ELSxA work. Reset  
clears the ELSxB and ELSxA bits.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
299  
Timer Interface A (TIMA) Module  
 
Timer Interface A (TIMA) Module  
NOTE: Before enabling a TIMA channel register for input capture operation,  
make sure that the PTDx/TACHx pin is stable for at least two bus clocks.  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIMA counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMA counter overflow.  
0 = Channel x pin does not toggle on TIMA counter overflow.  
NOTE: When TOVx is set, a TIMA counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1 and clear output on compare is  
selected, setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100 percent. As Figure 16-8 shows, the  
CHxMAX bit takes effect in the cycle after it is set or cleared. The  
output stays at 100 percent duty cycle level until the cycle after  
CHxMAX is cleared.  
NOTE: The PWM 100 percent duty cycle is defined as output high all of the time.  
To generate the 100 percent duty cycle, use the CHxMAX bit in the TSCx  
register. The PWM 0 percent duty cycle is defined as output low all of the  
time. To generate the 0 percent duty cycle, select clear output on  
compare and then clear the TOVx bit (CHxMAX = 0).  
Advance Information  
300  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Timer Interface A (TIMA) Module  
I/O Registers  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTEx/TCHx  
TOV = 1  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOV = 0  
Figure 16-8. CHxMAX Latency  
16.9.5 TIMA Channel Registers  
These read/write registers contain the captured TIMA counter value of  
the input capture function or the output compare value of the output  
compare function. The state of the TIMA channel registers after reset is  
unknown.  
In input capture mode (MSxBMSxA = 0:0), reading the high byte of the  
TIMA channel x registers (TACHxH) inhibits input captures until the low  
byte (TACHxL) is read.  
In output compare mode (MSxBMSxA 0:0), writing to the high byte of  
the TIMA channel x registers (TACHxH) inhibits output compares and  
the CHxF bit until the low byte (TACHxL) is written.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface A (TIMA) Module  
301  
Timer Interface A (TIMA) Module  
Register Name and Address  
TACH0H $0026  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
TACH0L $0027  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
TACH1H $0029  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Write:  
Reset:  
Indeterminate after reset  
Register Name and Address  
TACH1L $002A  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Write:  
Reset:  
Indeterminate after reset  
Figure 16-9. TIMA Channel Registers (TACH0H/LTACH1H/L)  
Advance Information  
302  
68HC908EY16 Rev 2.0  
Timer Interface A (TIMA) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 17. Timer Interface B (TIMB) Module  
17.1 Contents  
17.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304  
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.1 TIMB Counter Prescaler. . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307  
17.4.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309  
17.4.3.1  
17.4.3.2  
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . .309  
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .310  
17.4.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . .310  
17.4.4.1  
17.4.4.2  
17.4.4.3  
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . .312  
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . .313  
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313  
17.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315  
17.7 TIMB During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . . .316  
17.8 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
17.8.1 TIMB Channel I/O Pins (PTB7/TBCH1PTB6/TBCH0) . . .316  
17.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316  
17.9.1 TIMB Status and Control Register . . . . . . . . . . . . . . . . . . .317  
17.9.2 TIMB Status and Control Register . . . . . . . . . . . . . . . . . . .320  
17.9.3 TIMB Counter Modulo Registers . . . . . . . . . . . . . . . . . . . .321  
17.9.4 TIMB Channel Status and Control Registers . . . . . . . . . . .322  
17.9.5 TIMB Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . .326  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface B (TIMB) Module  
303  
Timer Interface B (TIMB) Module  
17.2 Introduction  
This section describes the timer interface module (TIMB). The TIMB is a  
2-channel timer that provides a timing reference with input capture,  
output compare, and pulse width modulation (PWM) functions.  
Figure 17-1 is a block diagram of the TIMB and Figure 17-2 provides a  
summary of the input/output (I/O) registers.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
17.3 Features  
Features of the TIMB include:  
Two input capture/output compare channels  
Rising-edge, falling-edge, or any-edge input capture trigger  
Set, clear, or toggle output compare action  
Buffered and unbuffered PWM signal generation  
Programmable TIMB clock input  
7-frequency internal bus clock prescaler selection  
Free-running or modulo up-count operation  
Toggle any channel pin on overflow  
TIMB counter stop and reset bits  
Advance Information  
304  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
Features  
INTERNAL  
BUS CLOCK  
PRESCALER SELECT  
PRESCALER  
TSTOP  
TRST  
PS2  
PS1  
PS0  
16-BIT COUNTER  
INTER-  
RUPT  
LOGIC  
TOF  
TOIE  
16-BIT COMPARATOR  
TBMODH:TBMODL  
ELS0B  
ELS0A  
ELS1A  
CHANNEL 0  
16-BIT COMPARATOR  
TBCH0H:TBCH0L  
16-BIT LATCH  
TOV0  
CH0MAX  
PTB6  
PTB6/TBCH0  
PTB7/TBCH1  
LOGIC  
CH0F  
MS0B  
INTER-  
RUPT  
LOGIC  
CH0IE  
MS0A  
ELS1B  
CHANNEL 1  
16-BIT COMPARATOR  
TBCH1H:TBCH1L  
16-BIT LATCH  
TOV1  
CH1MAX  
PTB7  
LOGIC  
CH1F  
INTER-  
RUPT  
LOGIC  
CH1IE  
MS1A  
Figure 17-1. TIMB Block Diagram  
Addr.  
Register Name  
TIMB Status and Control  
Bit 7  
TOF  
0
6
5
4
0
3
2
1
Bit 0  
Read:  
0
R
TOIE  
TSTOP  
PS2  
PS1  
PS0  
$002B  
Register (TBSC) Write:  
TRST  
0
See 318.  
Reset:  
0
0
1
0
0
0
0
Read: BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
TIMB Counter Register  
High (TBCNTH) Write:  
$002C  
$002D  
See 320.  
Reset:  
0
0
0
0
0
0
0
0
Read: BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
TIMB Counter Register  
Low (TBCNTL) Write:  
See 320.  
Reset:  
0
0
0
0
0
0
0
0
Figure 17-2. TIMB I/O Register Summary  
68HC908EY16 Rev 2.0  
Advance Information  
305  
MOTOROLA  
Timer Interface B (TIMB) Module  
 
Timer Interface B (TIMB) Module  
Addr.  
Register Name  
Bit 7  
BIT 15  
1
6
BIT 14  
1
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
TIMB Counter Modulo  
$002E Register High (TBMODH) Write:  
See 321.  
Reset:  
Read:  
TIMB Counter Modulo  
BIT 7  
BIT 6  
1
BIT 5  
1
BIT 4  
1
BIT 3  
1
BIT 2  
1
BIT 1  
1
BIT 0  
1
$002F Register Low (TBMODL) Write:  
See 321.  
Reset:  
1
Read: CH0F  
TIMB Channel 0 Status  
and Control Register  
(TBSC0)  
CH0IE  
0
MS0B  
0
MS0A  
0
ELS0B  
0
ELS0A  
0
TOV0  
0
CH0MAX  
0
$0030  
$0031  
$0032  
$0033  
$0034  
$0035  
Write:  
Reset:  
Read:  
0
0
See 322.  
TIMB Channel 0 Register  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
High (TBCH0H) Write:  
See 326.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Indeterminate after reset  
Read:  
TIMB Channel 0 Register  
BIT 7  
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
Low (TBCH0L) Write:  
See 326.  
Reset:  
Read: CH1F  
0
R
0
TIMB Channel 1 Status  
and Control Register  
(TBSC1)  
CH1IE  
0
MS1A  
0
ELS1B  
0
ELS1A  
0
TOV1  
0
CH1MAX  
0
Write:  
Reset:  
Read:  
0
0
See 322.  
TIMB Channel 1 Register  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
High (TBCH1H) Write:  
See 326.  
Reset:  
Indeterminate after reset  
BIT 4 BIT 3  
Read:  
TIMB Channel 1 Register  
BIT 7  
R
BIT 6  
BIT 5  
BIT 2  
BIT 1  
BIT 0  
Low (TBCH1L) Write:  
See 326.  
Reset:  
Indeterminate after reset  
= Unimplemented  
=Reserved  
Figure 17-2. TIMB I/O Register Summary (Continued)  
Advance Information  
306  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
Functional Description  
17.4 Functional Description  
Figure 17-1 shows the TIMB structure. The central component of the  
TIMB is the 16-bit TIMB counter that can operate as a free-running  
counter or a modulo up-counter. The TIMB counter provides the timing  
reference for the input capture and output compare functions. The TIMB  
counter modulo registers, TBMODHTBMODL, control the modulo  
value of the TIMB counter. Software can read the TIMB counter value at  
any time without affecting the counting sequence.  
The two TIMB channels are programmable independently as input  
capture or output compare channels.  
17.4.1 TIMB Counter Prescaler  
The TIMB clock source can be one of the seven prescaler outputs. The  
prescaler generates seven clock rates from the internal bus clock. The  
prescaler select bits, PS[2:0], in the TIMB status and control register  
select the TIMB clock source.  
17.4.2 Input Capture  
An input capture function has three basic parts: edge select logic, an  
input capture latch, and a 16-bit counter. Two 8-bit registers, which make  
up the 16-bit input capture register, are used to latch the value of the  
free-running counter after the corresponding input capture edge detector  
senses a defined transition. The polarity of the active edge is  
programmable. The level transition which triggers the counter transfer is  
defined by the corresponding input edge bits (ELSxB and ELSxA in  
TBSC0 through TBSC1 control registers with x referring to the active  
channel number). When an active edge occurs on the pin of an input  
capture channel, the TIMB latches the contents of the TIMB counter into  
the TIMB channel registers, TCHxHTCHxL. Input captures can  
generate TIMB CPU interrupt requests. Software can determine that an  
input capture event has occurred by enabling input capture interrupts or  
by polling the status flag bit.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface B (TIMB) Module  
307  
Timer Interface B (TIMB) Module  
The free-running counter contents are transferred to the TIMB channel  
status and control register (TBCHxHTBCHxL, see 17.9.5 TIMB  
Channel Registers) on each proper signal transition regardless of  
whether the TIMB channel flag (CH0FCH1F in TBSC0TBSC1  
registers) is set or clear. When the status flag is set, a CPU interrupt is  
generated if enabled. The value of the count latched or capturedis the  
time of the event. Because this value is stored in the input capture  
register 2 bus cycles after the actual event occurs, user software can  
respond to this event at a later time and determine the actual time of the  
event. However, this must be done prior to another input capture on the  
same pin; otherwise, the previous time value will be lost.  
By recording the times for successive edges on an incoming signal,  
software can determine the period and/or pulse width of the signal. To  
measure a period, two successive edges of the same polarity are  
captured. To measure a pulse width, two alternate polarity edges are  
captured. Software should track the overflows at the 16-bit module  
counter to extend its range.  
Another use for the input capture function is to establish a time  
reference. In this case, an input capture function is used in conjunction  
with an output compare function. For example, to activate an output  
signal a specified number of clock cycles after detecting an input event  
(edge), use the input capture function to record the time at which the  
edge occurred. A number corresponding to the desired delay is added to  
this captured value and stored to an output compare register (see 17.9.5  
TIMB Channel Registers). Because both input captures and output  
compares are referenced to the same 16-bit modulo counter, the delay  
can be controlled to the resolution of the counter independent of  
software latencies.  
Reset does not affect the contents of the input capture channel register  
(TBCHxHTBCHxL).  
Advance Information  
308  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
Functional Description  
17.4.3 Output Compare  
With the output compare function, the TIMB can generate a periodic  
pulse with a programmable polarity, duration, and frequency. When the  
counter reaches the value in the registers of an output compare channel,  
the TIMB can set, clear, or toggle the channel pin. Output compares can  
generate TIMB CPU interrupt requests.  
17.4.3.1 Unbuffered Output Compare  
Any output compare channel can generate unbuffered output compare  
pulses as described in 17.4.3 Output Compare. The pulses are  
unbuffered because changing the output compare value requires writing  
the new value over the old value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change an  
output compare value could cause incorrect operation for up to two  
counter overflow periods. For example, writing a new value before the  
counter reaches the old value but after the counter reaches the new  
value prevents any compare during that counter overflow period. Also,  
using a TIMB overflow interrupt routine to write a new, smaller output  
compare value may cause the compare to be missed. The TIMB may  
pass the new value before it is written.  
Use these methods to synchronize unbuffered changes in the output  
compare value on channel x:  
When changing to a smaller value, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current output compare pulse. The interrupt routine has until  
the end of the counter overflow period to write the new value.  
When changing to a larger output compare value, enable TIMB  
overflow interrupts and write the new value in the TIMB overflow  
interrupt routine. The TIMB overflow interrupt occurs at the end of  
the current counter overflow period. Writing a larger value in an  
output compare interrupt routine (at the end of the current pulse)  
could cause two output compares to occur in the same counter  
overflow period.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface B (TIMB) Module  
309  
 
Timer Interface B (TIMB) Module  
17.4.3.2 Buffered Output Compare  
Channels 0 and 1 can be linked to form a buffered output compare  
channel whose output appears on the PTB6/TBCH0 pin. The TIMB  
channel registers of the linked pair alternately control the output.  
Setting the MS0B bit in TIMB channel 0 status and control register  
(TBSC0) links channel 0 and channel 1. The output compare value in the  
TIMB channel 0 registers initially controls the output on the  
PTB6/TBCH0 pin. Writing to the TIMB channel 1 registers enables the  
TIMB channel 1 registers to synchronously control the output after the  
TIMB overflows. At each subsequent overflow, the TIMB channel  
registers (0 or 1) that control the output are the ones written to last. TSC0  
controls and monitors the buffered output compare function, and TIMB  
channel 1 status and control register (TBSC1) is unused. While the  
MS0B bit is set, the channel 1 pin, PTB7/TBCH1, is available as a  
general-purpose I/O pin.  
NOTE: In buffered output compare operation, do not write new output compare  
values to the currently active channel registers. User software should  
track the currently active channel to prevent writing a new value to the  
active channel. Writing to the active channel registers is the same as  
generating unbuffered output compares.  
17.4.4 Pulse Width Modulation (PWM)  
By using the toggle-on-overflow feature with an output compare channel,  
the TIMB can generate a PWM signal. The value in the TIMB counter  
modulo registers determines the period of the PWM signal. The channel  
pin toggles when the counter reaches the value in the TIMB counter  
modulo registers. The time between overflows is the period of the PWM  
signal.  
Advance Information  
310  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
 
Timer Interface B (TIMB) Module  
Functional Description  
As Figure 17-3 shows, the output compare value in the TIMB channel  
registers determines the pulse width of the PWM signal. The time  
between overflow and output compare is the pulse width. Program the  
TIMB to clear the channel pin on output compare if the state of the PWM  
pulse is logic 1. Program the TIMB to set the pin if the state of the PWM  
pulse is logic 0.  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PULSE  
WIDTH  
PTEx/TCHx  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
Figure 17-3. PWM Period and Pulse Width  
The value in the TIMB counter modulo registers and the selected  
prescaler output determines the frequency of the PWM output. The  
frequency of an 8-bit PWM signal is variable in 256 increments. Writing  
$00FF (255) to the TIMB counter modulo registers produces a PWM  
period of 256 times the internal bus clock period if the prescaler select  
value is $000 (see 17.9.1 TIMB Status and Control Register).  
The value in the TIMB channel registers determines the pulse width of  
the PWM output. The pulse width of an 8-bit PWM signal is variable in  
256 increments. Writing $0080 (128) to the TIMB channel registers  
produces a duty cycle of 128/256 or 50%.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface B (TIMB) Module  
311  
Timer Interface B (TIMB) Module  
17.4.4.1 Unbuffered PWM Signal Generation  
Any output compare channel can generate unbuffered PWM pulses as  
described in 17.4.4 Pulse Width Modulation (PWM). The pulses are  
unbuffered because changing the pulse width requires writing the new  
pulse width value over the value currently in the TIMB channel registers.  
An unsynchronized write to the TIMB channel registers to change a  
pulse width value could cause incorrect operation for up to two PWM  
periods. For example, writing a new value before the counter reaches  
the old value but after the counter reaches the new value prevents any  
compare during that PWM period. Also, using a TIMB overflow interrupt  
routine to write a new, smaller pulse width value may cause the compare  
to be missed. The TIMB may pass the new value before it is written to  
the TIMB channel registers.  
Use these methods to synchronize unbuffered changes in the PWM  
pulse width on channel x:  
When changing to a shorter pulse width, enable channel x output  
compare interrupts and write the new value in the output compare  
interrupt routine. The output compare interrupt occurs at the end  
of the current pulse. The interrupt routine has until the end of the  
PWM period to write the new value.  
When changing to a longer pulse width, enable TIMB overflow  
interrupts and write the new value in the TIMB overflow interrupt  
routine. The TIMB overflow interrupt occurs at the end of the  
current PWM period. Writing a larger value in an output compare  
interrupt routine (at the end of the current pulse) could cause two  
output compares to occur in the same PWM period.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare also can cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
Advance Information  
312  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
Functional Description  
17.4.4.2 Buffered PWM Signal Generation  
Channels 0 and 1 can be linked to form a buffered PWM channel whose  
output appears on the PTB6/TBCH0 pin. The TIMB channel registers of  
the linked pair alternately control the pulse width of the output.  
Setting the MS0B bit in TIMB channel 0 status and control register  
(TBSC0) links channel 0 and channel 1. The TIMB channel 0 registers  
initially control the pulse width on the PTB6/TBCH0 pin. Writing to the  
TIMB channel 1 registers enables the TIMB channel 1 registers to  
synchronously control the pulse width at the beginning of the next  
PWM period. At each subsequent overflow, the TIMB channel registers  
(0 or 1) that control the pulse width are the ones written to last. TBSC0  
controls and monitors the buffered PWM function, and TIMB channel 1  
status and control register (TBSC1) is unused. While the MS0B bit is set,  
the channel 1 pin, PTB7/TBCH1, is available as a general-purpose  
I/O pin.  
NOTE: In buffered PWM signal generation, do not write new pulse width values  
to the currently active channel registers. User software should track the  
currently active channel to prevent writing a new value to the active  
channel. Writing to the active channel registers is the same as  
generating unbuffered PWM signals.  
17.4.4.3 PWM Initialization  
To ensure correct operation when generating unbuffered or buffered  
PWM signals, use this initialization procedure:  
1. In the TIMB status and control register (TBSC):  
a. Stop the TIMB counter by setting the TIMB stop bit, TSTOP.  
b. Reset the TIMB counter prescaler by setting the TIMB reset  
bit, TRST.  
2. In the TIMB counter modulo registers (TBMODHTBMODL), write  
the value for the required PWM period.  
3. In the TIMB channel x registers (TBCHxHTBCHxL), write the  
value for the required pulse width.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface B (TIMB) Module  
313  
Timer Interface B (TIMB) Module  
4. In TIMB channel x status and control register (TBSCx):  
a. Write 0:1 (for unbuffered output compare or PWM signals) or  
1:0 (for buffered output compare or PWM signals) to the  
mode select bits, MSxBMSxA. See Table 17-2.  
b. Write 1 to the toggle-on-overflow bit, TOVx.  
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on  
compare) to the edge/level select bits, ELSxBELSxA. The  
output action on compare must force the output to the  
complement of the pulse width level. See Table 17-2.  
NOTE: In PWM signal generation, do not program the PWM channel to toggle  
on output compare. Toggling on output compare prevents reliable 0%  
duty cycle generation and removes the ability of the channel to self-  
correct in the event of software error or noise. Toggling on output  
compare can also cause incorrect PWM signal generation when  
changing the PWM pulse width to a new, much larger value.  
5. In the TIMB status control register (TBSC), clear the TIMB stop bit,  
TSTOP.  
Setting MS0B links channels 0 and 1 and configures them for buffered  
PWM operation. The TIMB channel 0 registers (TBCH0HTBCH0L)  
initially control the buffered PWM output. TIMB status control register 0  
(TBSC0) controls and monitors the PWM signal from the linked  
channels. MS0B takes priority over MS0A.  
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on  
TIMB overflows. Subsequent output compares try to force the output to  
a state it is already in and have no effect. The result is a 0% duty cycle  
output.  
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the  
TOVx bit generates a 100% duty cycle output. See 17.9.4 TIMB  
Channel Status and Control Registers.  
Advance Information  
314  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
Interrupts  
17.5 Interrupts  
These TIMB sources can generate interrupt requests:  
TIMB overflow flag (TOF) The TOF bit is set when the TIMB  
counter reaches the modulo value programmed in the TIMB  
counter modulo registers. The TIMB overflow interrupt enable bit,  
TOIE, enables TIMB overflow CPU interrupt requests. TOF and  
TOIE are in the TIMB status and control register.  
TIMB channel flags (CH1FCH0F) The CHxF bit is set when an  
input capture or output compare occurs on channel x. Channel x  
TIMB CPU interrupt requests are controlled by the channel x  
interrupt enable bit, CHxIE.  
17.6 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in  
low power- consumption standby modes.  
17.6.1 Wait Mode  
The TIMB remains active after the execution of a WAIT instruction. In  
wait mode, the TIMB registers are not accessible by the central  
processor unit (CPU). Any enabled CPU interrupt request from the TIMB  
can bring the MCU out of wait mode.  
If TIMB functions are not required during wait mode, reduce power  
consumption by stopping the TIMB before executing the WAIT  
instruction.  
17.6.2 Stop Mode  
The TIMB is inactive after the execution of a STOP instruction. The  
STOP instruction does not affect register conditions or the state of the  
TIMB counter. TIMB operation resumes when the MCU exits stop mode.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Timer Interface B (TIMB) Module  
315  
Timer Interface B (TIMB) Module  
17.7 TIMB During Break Interrupts  
A break interrupt stops the TIMB counter and inhibits input captures.  
The system integration module (SIM) controls whether status bits in  
other modules can be cleared during the break state. The BCFE bit in  
the SIM break flag control register (SBFCR) enables software to clear  
status bits during the break state.  
To allow software to clear status bits during a break interrupt, write a  
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect status bits during the break state, write a logic 0 to the BCFE  
bit. With BCFE at logic 0 (its default state), software can read and write  
I/O registers during the break state without affecting status bits. Some  
status bits have a 2-step read/write clearing procedure. If software does  
the first step on such a bit before the break, the bit cannot change during  
the break state as long as BCFE is at logic 0. After the break, doing the  
second step clears the status bit.  
17.8 I/O Signals  
Port B shares two of its pins with the TIMB. There is no external clock  
input to the TIMB prescaler. The two TIMB channel I/O pins are  
PTB6/TBCH0 and PTB7/TBCH1. See Section 22. Input/Output (I/O)  
Ports.  
17.8.1 TIMB Channel I/O Pins (PTB7/TBCH1PTB6/TBCH0)  
Each channel I/O pin is programmable independently as an input  
capture pin or an output compare pin. PTB6/TBCH0 and PTB7/TBCH1  
can be configured as buffered output compare or buffered PWM pins.  
17.9 I/O Registers  
These I/O registers control and monitor TIMB operation:  
Advance Information  
316  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
I/O Registers  
TIMB status and control register, TBSC  
TIMB control registers, TBCNTHTBCNTL  
TIMB counter modulo registers, TBMODHTBMODL  
TIMB channel status and control registers, TBSC0 and TBSC1  
TIMB channel registers, TBCH0HTBCH0L and  
TBCH1HTBCH1L  
17.9.1 TIMB Status and Control Register  
The TIMB status and control register:  
Enables TIMB overflow interrupts  
Flags TIMB overflows  
Stops the TIMB counter  
Resets the TIMB counter  
Prescales the TIMB counter clock  
68HC908EY16 Rev 2.0  
Advance Information  
317  
MOTOROLA  
Timer Interface B (TIMB) Module  
 
Timer Interface B (TIMB) Module  
Address: $002B  
Bit 7  
6
TOIE  
0
5
TSTOP  
1
4
0
3
R
0
2
PS2  
0
1
PS1  
0
Bit 0  
PS0  
0
Read:  
Write:  
Reset:  
TOF  
0
TRST  
0
0
R
=Reserved  
Figure 17-4. TIMB Status and Control Register (TBSC)  
TOF TIMB Overflow Flag Bit  
This read/write flag is set when the TIMB counter reaches the modulo  
value programmed in the TIMB counter modulo registers. Clear TOF  
by reading the TIMB status and control register when TOF is set and  
then writing a logic 0 to TOF. If another TIMB overflow occurs before  
the clearing sequence is complete, then writing logic 0 to TOF has no  
effect. Therefore, a TOF interrupt request cannot be lost due to  
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic  
1 to TOF has no effect.  
1 = TIMB counter has reached modulo value  
0 = TIMB counter has not reached modulo value  
TOIE TIMB Overflow Interrupt Enable Bit  
This read/write bit enables TIMB overflow interrupts when the TOF bit  
becomes set. Reset clears the TOIE bit.  
1 = TIMB overflow interrupts enabled  
0 = TIMB overflow interrupts disabled  
TSTOP TIMB Stop Bit  
This read/write bit stops the TIMB counter. Counting resumes when  
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIMB  
counter until software clears the TSTOP bit.  
1 = TIMB counter stopped  
0 = TIMB counter active  
NOTE: Do not set the TSTOP bit before entering wait mode if the TIMB is  
required to exit wait mode. Also, when the TSTOP bit is set and the timer  
is configured for input capture operation, input captures are inhibited  
until TSTOP is cleared.  
Advance Information  
318  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
I/O Registers  
TRST TIMB Reset Bit  
Setting this write-only bit resets the TIMB counter and the TIMB  
prescaler. Setting TRST has no effect on any other registers.  
Counting resumes from $0000. TRST is cleared automatically after  
the TIMB counter is reset and always reads as logic 0. Reset clears  
the TRST bit.  
1 = Prescaler and TIMB counter cleared  
0 = No effect  
NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIMB  
counter at a value of $0000.  
PS[2:0] Prescaler Select Bits  
These read/write bits select one of the seven prescaler outputs as the  
input to the TIMB counter as Table 17-1 shows. Reset clears the  
PS[2:0] bits.  
Table 17-1. Prescaler Selection  
PS[2:0]  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
TIMB Clock Source  
Internal bus clock ÷ 1  
Internal bus clock ÷ 2  
Internal bus clock ÷ 4  
Internal bus clock ÷ 8  
Internal bus clock ÷ 16  
Internal bus clock ÷ 32  
Internal bus clock ÷ 64  
Unused  
68HC908EY16 Rev 2.0  
Advance Information  
319  
MOTOROLA  
Timer Interface B (TIMB) Module  
 
Timer Interface B (TIMB) Module  
17.9.2 TIMB Counter Registers  
The two read-only TIMB counter registers contain the high and low bytes  
of the value in the TIMB counter. Reading the high byte (TBCNTH)  
latches the contents of the low byte (TBCNTL) into a buffer. Subsequent  
reads of TBCNTH do not affect the latched TBCNTL value until TBCNTL  
is read. Reset clears the TIMB counter registers. Setting the TIMB reset  
bit (TRST) also clears the TIMB counter registers.  
NOTE: If TBCNTH is read during a break interrupt, be sure to unlatch TBCNTL  
by reading TBCNTL before exiting the break interrupt. Otherwise,  
TBCNTL retains the value latched during the break.  
Register Name and Address  
Bit 7  
TBCNTH $002C  
6
5
BIT 13  
R
4
BIT 12  
R
3
BIT 11  
R
2
BIT 10  
R
1
BIT 9  
R
Bit 0  
BIT 8  
R
Read: BIT 15  
BIT 14  
Write:  
R
0
R
0
Reset:  
0
0
0
0
0
0
Register Name and Address  
Bit 7  
TBCNTL $002D  
6
5
BIT 5  
R
4
BIT 4  
R
3
BIT 3  
R
2
BIT 2  
R
1
BIT 1  
R
Bit 0  
BIT 0  
R
Read: BIT 7  
BIT 6  
R
Write:  
R
0
Reset:  
0
0
0
0
0
0
0
R
=Reserved  
Figure 17-5. TIMB Counter Registers  
(TBCNTH and TBCNTL)  
Advance Information  
320  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
I/O Registers  
17.9.3 TIMB Counter Modulo Registers  
The read/write TIMB modulo registers contain the modulo value for the  
TIMB counter. When the TIMB counter reaches the modulo value, the  
overflow flag (TOF) becomes set, and the TIMB counter resumes  
counting from $0000 at the next timer clock. Writing to the high byte  
(TMODH) inhibits the TOF bit and overflow interrupts until the low byte  
(TMODL) is written. Reset sets the TIMB counter modulo registers.  
Register Name and Address  
TBMODH $002E  
Bit 7  
6
5
BIT 13  
1
4
BIT 12  
1
3
BIT 11  
1
2
BIT 10  
1
1
BIT 9  
1
Bit 0  
BIT 8  
1
Read:  
BIT 15  
1
BIT 14  
1
Write:  
Reset:  
Register Name and Address  
TBMODL $002F  
Bit 7  
6
5
BIT 5  
1
4
BIT 4  
1
3
BIT 3  
1
2
BIT 2  
1
1
BIT 1  
1
Bit 0  
BIT 0  
1
Read:  
BIT 7  
1
BIT 6  
1
Write:  
Reset:  
Figure 17-6. TIMB Counter Modulo Registers  
(TMODH and TMODL)  
NOTE: Reset the TIMB counter before writing to the TIMB counter modulo  
registers.  
68HC908EY16 Rev 2.0  
Advance Information  
321  
MOTOROLA  
Timer Interface B (TIMB) Module  
Timer Interface B (TIMB) Module  
17.9.4 TIMB Channel Status and Control Registers  
Each of the TIMB channel status and control registers:  
Flags input captures and output compares  
Enables input capture and output compare interrupts  
Selects input capture, output compare, or PWM operation  
Selects high, low, or toggling output on output compare  
Selects rising edge, falling edge, or any edge as the active input  
capture trigger  
Selects output toggling on TIMB overflow  
Selects 0% and 100% PWM duty cycle  
Selects buffered or unbuffered output compare/PWM operation  
Register Name and Address  
Bit 7  
TBSC0 $0030  
6
5
MS0B  
0
4
3
ELS0B  
0
2
ELS0A  
0
1
TOV0  
0
Bit 0  
CH0MAX  
0
Read: CH0F  
CH0IE  
0
MS0A  
0
Write:  
0
0
Reset:  
Register Name and Address  
Bit 7  
TBSC1 $0033  
6
5
0
4
3
ELS1B  
0
2
ELS1A  
0
1
TOV1  
0
Bit 0  
CH1MAX  
0
Read: CH1F  
CH1IE  
MS1A  
0
Write:  
0
0
R
0
Reset:  
0
R
=Reserved  
Figure 17-7. TIMB Channel Status  
and Control Registers (TBSC0TBSC1)  
CHxF Channel x Flag Bit  
When channel x is an input capture channel, this read/write bit is set  
when an active edge occurs on the channel x pin. When channel x is  
an output compare channel, CHxF is set when the value in the TIMB  
counter registers matches the value in the TIMB channel x registers.  
When CHxIE = 1, clear CHxF by reading TIMB channel x status and  
control register with CHxF set, and then writing a logic 0 to CHxF. If  
Advance Information  
322  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Timer Interface B (TIMB) Module  
I/O Registers  
another interrupt request occurs before the clearing sequence is  
complete, then writing logic 0 to CHxF has no effect. Therefore, an  
interrupt request cannot be lost due to inadvertent clearing of CHxF.  
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.  
1 = Input capture or output compare on channel x  
0 = No input capture or output compare on channel x  
CHxIE Channel x Interrupt Enable Bit  
This read/write bit enables TIMB CPU interrupts on channel x.  
Reset clears the CHxIE bit.  
1 = Channel x CPU interrupt requests enabled  
0 = Channel x CPU interrupt requests disabled  
MSxB Mode Select Bit B  
This read/write bit selects buffered output compare/PWM operation.  
MSxB exists only in the TIMB channel 0.  
Setting MS0B disables the channel 1 status and control register and  
reverts TBCH1 to general-purpose I/O.  
Reset clears the MSxB bit.  
1 = Buffered output compare/PWM operation enabled  
0 = Buffered output compare/PWM operation disabled  
MSxA Mode Select Bit A  
When ELSxB:A 00, this read/write bit selects either input capture  
operation or unbuffered output compare/PWM operation.  
See Table 17-2.  
1 = Unbuffered output compare/PWM operation  
0 = Input capture operation  
When ELSxB:A = 00, this read/write bit selects the initial output level  
of the TCHx pin once PWM, input capture, or output compare  
operation is enabled. See Table 17-2. Reset clears the MSxA bit.  
1 = Initial output level low  
0 = Initial output level high  
NOTE: Before changing a channel function by writing to the MSxB or MSxA bit,  
set the TSTOP and TRST bits in the TIMB status and control register  
(TBSC).  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
323  
Timer Interface B (TIMB) Module  
Timer Interface B (TIMB) Module  
ELSxB and ELSxA Edge/Level Select Bits  
When channel x is an input capture channel, these read/write bits  
control the active edge-sensing logic on channel x.  
When channel x is an output compare channel, ELSxB and ELSxA  
control the channel x output behavior when an output compare  
occurs.  
When ELSxB and ELSxA are both clear, channel x is not connected  
to port B, and pin PTBx/TBCHx is available as a general-purpose I/O  
pin. However, channel x is at a state determined by these bits and  
becomes transparent to the respective pin when PWM, input capture,  
or output compare mode is enabled. Table 17-2 shows how ELSxB  
and ELSxA work. Reset clears the ELSxB and ELSxA bits.  
Table 17-2. Mode, Edge, and Level Selection  
MSxB:MSxA ELSxB:ELSxA  
Mode  
Configuration  
Pin under Port Control;  
Initialize Timer  
Output Level High  
X0  
X1  
00  
00  
Output  
Preset  
Pin under Port Control;  
Initialize Timer  
Output Level Low  
00  
00  
00  
01  
10  
11  
Capture on Rising Edge Only  
Capture on Falling Edge Only  
Capture on Rising or Falling Edge  
Input  
Capture  
01  
01  
01  
01  
10  
11  
Output  
Compare  
or PWM  
Toggle Output on Compare  
Clear Output on Compare  
Set Output on Compare  
Buffered  
Output  
Compare  
or  
1X  
1X  
1X  
01  
10  
11  
Toggle Output on Compare  
Clear Output on Compare  
Set Output on Compare  
Buffered PWM  
NOTE: Before enabling a TIMB channel register for input capture operation,  
make sure that the PTBx/TBCHx pin is stable for at least two bus clocks.  
Advance Information  
324  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
 
Timer Interface B (TIMB) Module  
I/O Registers  
TOVx Toggle-On-Overflow Bit  
When channel x is an output compare channel, this read/write bit  
controls the behavior of the channel x output when the TIMB counter  
overflows. When channel x is an input capture channel, TOVx has no  
effect. Reset clears the TOVx bit.  
1 = Channel x pin toggles on TIMB counter overflow.  
0 = Channel x pin does not toggle on TIMB counter overflow.  
NOTE: When TOVx is set, a TIMB counter overflow takes precedence over a  
channel x output compare if both occur at the same time.  
CHxMAX Channel x Maximum Duty Cycle Bit  
When the TOVx bit is at logic 1 and clear output on compare is  
selected, setting the CHxMAX bit forces the duty cycle of buffered and  
unbuffered PWM signals to 100 percent. As Figure 17-8 shows, the  
CHxMAX bit takes effect in the cycle after it is set or cleared. The  
output stays at 100 percent duty cycle level until the cycle after  
CHxMAX is cleared.  
NOTE: The PWM 100 percent duty cycle is defined as output high all of the time.  
To generate the 100 percent duty cycle, use the CHxMAX bit in the TSCx  
register. The PWM 0 percent duty cycle is defined as output low all of the  
time. To generate the 0 percent duty cycle, select clear output on  
compare and then clear the TOVx bit (CHxMAX = 0).  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
OVERFLOW  
PERIOD  
PTEx/TCHx  
TOV = 1  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
OUTPUT  
COMPARE  
CHxMAX  
TOV = 0  
Figure 17-8. CHxMAX Latency  
68HC908EY16 Rev 2.0  
Advance Information  
325  
MOTOROLA  
Timer Interface B (TIMB) Module  
 
Timer Interface B (TIMB) Module  
17.9.5 TIMB Channel Registers  
These read/write registers contain the captured TIMB counter value of  
the input capture function or the output compare value of the output  
compare function. The state of the TIMB channel registers after reset is  
unknown.  
In input capture mode (MSxBMSxA = 0:0), reading the high byte of the  
TIMB channel x registers (TBCHxH) inhibits input captures until the low  
byte (TBCHxL) is read.  
In output compare mode (MSxBMSxA 0:0), writing to the high byte of  
the TIMB channel x registers (TBCHxH) inhibits output compares and  
the CHxF bit until the low byte (TBCHxL) is written.  
Register Name and Address  
TBCH0H $0031  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Write:  
Reset:  
Indeterminate after reset  
TBCH0L $0032  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Write:  
Reset:  
Indeterminate after reset  
TBCH1H $0034  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
Write:  
Reset:  
Indeterminate after reset  
TBCH1L $0035  
Register Name and Address  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Write:  
Reset:  
Indeterminate after reset  
Figure 17-9. TIMB Channel Registers  
(TBCH0H/LTBCH1H/L)  
Advance Information  
326  
68HC908EY16 Rev 2.0  
Timer Interface B (TIMB) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 18. BEMF Module  
18.1 Contents  
18.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327  
18.4 BEMF Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.5 Input Signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .328  
18.2 Introduction  
This section describes the BEMF Module. The BEMF counter integrates  
over time, while the PTD0/TACH0 pin is active.  
This function is useful for measuring recirculation currents in motors  
occurring on switching of inductive loads.  
BEMF is the abbreviation for Back ElectroMagnetic Force.  
18.3 Functional Description  
The 8-bit BEMF Counter runs at the internal bus frequency divided by  
64. Whenever PTD0/TACH0 is logic one, the counter increments by 1  
with each period.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
BEMF Module  
327  
 
BEMF Module  
18.4 BEMF Register  
The BEMF Register contains the 8 read-only bits of the BEMF Counter,  
showing its actual value. A read access to the BEMF Register resets all  
counter bits to logic zero.  
Address: $000B  
Bit 7  
Read: BEMF7  
Write:  
6
5
4
3
2
1
Bit 0  
BEMF6  
BEMF5  
BEMF4  
BEMF3  
BEMF2  
BEMF1  
BEMF0  
Reset:  
0
0
0
0
0
0
0
0
Figure 18-1. BEMF Register (BEMF)  
18.5 Input Signal  
Port D shares the PTD0/TACH0 pin with the BEMF module. To measure  
an external signal with the BEMF module, PTD0/ATD8 must be  
configured as an input (DDRD0=0).  
18.6 Low Power Modes  
The WAIT and STOP instructions put the MCU in low-power-  
consumption standby modes.  
18.6.1 Wait Mode  
18.6.2 Stop Mode  
The BEMF module remains active after execution of the WAIT  
instruction. In WAIT mode the BEMF register is not accessible by the  
CPU.  
The BEMF module is inactive after execution of the STOP instruction. In  
STOP mode the BEMF register is not accessible by the CPU.  
Advance Information  
328  
68HC908EY16 Rev 2.0  
BEMF Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 19. Keyboard Interrupt (KBD) Module  
19.1 Contents  
19.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329  
19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330  
19.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333  
19.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
19.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
19.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334  
19.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . .334  
19.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335  
19.8.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . .335  
19.8.2 Keyboard Interrupt Enable Register. . . . . . . . . . . . . . . . . .336  
19.2 Introduction  
The keyboard interrupt (KBD) module provides five independently  
maskable external interrupt pins.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
329  
Keyboard Interrupt (KBD) Module  
19.3 Features  
KBD features include:  
Five keyboard interrupt pins (PTA4/KDB4PTA0/KBD0) with  
internal pullups, with separate keyboard interrupt enable bits and  
one keyboard interrupt mask  
Hysteresis buffers  
Programmable edge-only or edge- and level- interrupt sensitivity  
Automatic interrupt acknowledge  
Exit from low-power modes  
19.4 Functional Description  
Writing to the KBIE4KBIE0 bits in the keyboard interrupt enable register  
independently enables or disables each port as a keyboard interrupt pin.  
Enabling a keyboard interrupt pin also enables its internal pullup device.  
A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard  
interrupt request.  
A keyboard interrupt is latched when one or more keyboard pins goes  
low after all were high. The MODEK bit in the keyboard status and  
control register controls the triggering mode of the keyboard interrupt.  
If the keyboard interrupt is edge-sensitive only, a falling edge on a  
keyboard pin does not latch an interrupt request if another  
keyboard pin is already low. To prevent losing an interrupt request  
on one pin because another pin is still low, software can disable  
the latter pin while it is low.  
If the keyboard interrupt is falling edge- and low level-sensitive, an  
interrupt request is present as long as any keyboard pin is low.  
Advance Information  
330  
68HC908EY16 Rev 2.0  
Keyboard Interrupt (KBD) Module  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
Functional Description  
INTERNAL BUS  
VECTOR FETCH  
DECODER  
ACKK  
KBD0  
V
DD  
RESET  
KEYF  
CLR  
.
.
.
TO PULLUP  
ENABLE  
D
Q
SYNCHRONIZER  
CK  
KB0IE  
KB4IE  
KEYBOARD  
INTERRUPT FF  
IMASKK  
KEYBOARD  
INTERRUPT  
REQUEST  
KBD4  
TO PULLUP  
ENABLE  
MODEK  
Figure 19-1. Keyboard Module Block Diagram  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
Read:  
Write:  
Reset:  
0
0
0
0
KEYF  
0
ACKK  
0
Keyboard Status  
and Control Register  
(KBSCR)  
IMASKK MODEK  
$001A  
See 335.  
0
0
0
0
0
0
0
KBIE4  
0
0
KBIE3  
0
0
KBIE1  
0
0
KBIE0  
0
Keyboard Interrupt  
Enable Register  
(KBIER)  
KBIE2  
0
$001B  
See 336.  
0
0
0
= Unimplemented  
Figure 19-2. KBD I/O Register Summary  
68HC908EY16 Rev 2.0  
Advance Information  
331  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
Keyboard Interrupt (KBD) Module  
If the MODEK bit is set, the keyboard interrupt pins are both falling edge-  
and low level-sensitive, and both of the following actions must occur to  
clear a keyboard interrupt request:  
Vector fetch or software clear A vector fetch generates an  
interrupt acknowledge signal to clear the interrupt request.  
Software may generate the interrupt acknowledge signal by  
writing a logic 1 to the ACKK bit in the keyboard status and control  
register (KBSCR). The ACKK bit is useful in applications that poll  
the keyboard interrupt pins and require software to clear the  
keyboard interrupt request. Writing to the ACKK bit prior to leaving  
an interrupt service routine also can prevent spurious interrupts  
due to noise. Setting ACKK does not affect subsequent transitions  
on the keyboard interrupt pins. A falling edge that occurs after  
writing to the ACKK bit latches another interrupt request. If the  
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the  
program counter with the vector address at locations $FFE4 and  
$FFE5.  
Return of all enabled keyboard interrupt pins to logic 1. As long as  
any enabled keyboard interrupt pin is at logic 0, the keyboard  
interrupt remains set.  
The vector fetch or software clear and the return of all enabled keyboard  
interrupt pins to logic 1 may occur in any order.  
If the MODEK bit is clear, the keyboard interrupt pin is falling edge-  
sensitive only. With MODEK clear, a vector fetch or software clear  
immediately clears the keyboard interrupt request.  
Reset clears the keyboard interrupt request and the MODEK bit, clearing  
the interrupt request even if a keyboard interrupt pin stays at logic 0.  
The keyboard flag bit (KEYF) in the keyboard status and control register  
can be used to see if a pending interrupt exists. The KEYF bit is not  
affected by the keyboard interrupt mask bit (IMASKK) which makes it  
useful in applications where polling is preferred.  
Advance Information  
332  
68HC908EY16 Rev 2.0  
Keyboard Interrupt (KBD) Module  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
Keyboard Initialization  
To determine the logic level on a keyboard interrupt pin, use the data  
direction register to configure the pin as an input and read the data  
register.  
NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding  
keyboard interrupt pin to be an input, overriding the data direction  
register. However, the data direction register bit must be a logic 0 for  
software to read the pin.  
19.5 Keyboard Initialization  
When a keyboard interrupt pin is enabled, it takes time for the internal  
pullup to reach a logic 1. Therefore, a false interrupt can occur as soon  
as the pin is enabled.  
To prevent a false interrupt on keyboard initialization:  
1. Mask keyboard interrupts by setting the IMASKK bit in the  
keyboard status and control register  
2. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register  
3. Write to the ACKK bit in the keyboard status and control register  
to clear any false interrupts  
4. Clear the IMASKK bit.  
An interrupt signal on an edge-triggered pin can be acknowledged  
immediately after enabling the pin. An interrupt signal on an edge- and  
level-triggered interrupt pin must be acknowledged after a delay that  
depends on the external load.  
Another way to avoid a false interrupt:  
1. Configure the keyboard pins as outputs by setting the appropriate  
DDRA bits in data direction register A.  
2. Write logic 1s to the appropriate port A data register bits.  
3. Enable the KBI pins by setting the appropriate KBIEx bits in the  
keyboard interrupt enable register.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
333  
Keyboard Interrupt (KBD) Module  
19.6 Low-Power Modes  
The WAIT and STOP instructions put the microcontroller unit (MCU) in  
low-power-consumption standby modes.  
19.6.1 Wait Mode  
19.6.2 Stop Mode  
The keyboard module remains active in wait mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of wait mode.  
The keyboard module remains active in stop mode. Clearing the  
IMASKK bit in the keyboard status and control register enables keyboard  
interrupt requests to bring the MCU out of stop mode.  
19.7 Keyboard Module During Break Interrupts  
The BCFE bit in the break flag control register (SBFCR) enables  
software to clear status bits during the break state.  
To allow software to clear the KEYF bit during a break interrupt, write a  
logic 1 to the BCFE bit. If KEYF is cleared during the break state, it  
remains cleared when the MCU exits the break state.  
To protect the KEYF bit during the break state, write a logic 0 to the  
BCFE bit. With BCFE at logic 0, writing to the keyboard acknowledge bit  
(ACKK) in the keyboard status and control register during the break state  
has no effect. See 19.8.1 Keyboard Status and Control Register.  
Advance Information  
334  
68HC908EY16 Rev 2.0  
Keyboard Interrupt (KBD) Module  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
I/O Registers  
19.8 I/O Registers  
These registers control and monitor operation of the keyboard module:  
Keyboard status and control register, KBSCR  
Keyboard interrupt enable register, KBIER  
19.8.1 Keyboard Status and Control Register  
The keyboard status and control register:  
Flags keyboard interrupt requests  
Acknowledges keyboard interrupt requests  
Masks keyboard interrupt requests  
Controls keyboard interrupt triggering sensitivity  
Address: $001A  
Bit 7  
6
0
5
0
4
0
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
KEYF  
0
ACKK  
0
IMASKK MODEK  
0
0
0
0
0
0
0
= Unimplemented  
Figure 19-3. Keyboard Status and Control Register (KBSCR)  
Bits 74 Not used  
These read-only bits always read as logic 0s.  
KEYF Keyboard Flag Bit  
This read-only bit is set when a keyboard interrupt is pending. Reset  
clears the KEYF bit.  
1 = Keyboard interrupt pending  
0 = No keyboard interrupt pending  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Keyboard Interrupt (KBD) Module  
335  
Keyboard Interrupt (KBD) Module  
ACKK Keyboard Acknowledge Bit  
Writing a logic 1 to this write-only bit clears the keyboard interrupt  
request. ACKK always reads as logic 0. Reset clears ACKK.  
IMASKK Keyboard Interrupt Mask Bit  
Writing a logic 1 to this read/write bit prevents the output of the  
keyboard interrupt mask from generating interrupt requests. Reset  
clears the IMASKK bit.  
1 = Keyboard interrupt requests masked  
0 = Keyboard interrupt requests not masked  
MODEK Keyboard Triggering Sensitivity Bit  
This read/write bit controls the triggering sensitivity of the keyboard  
interrupt pins. Reset clears MODEK.  
1 = Keyboard interrupt requests on falling edges and low levels  
0 = Keyboard interrupt requests on falling edges only  
19.8.2 Keyboard Interrupt Enable Register  
The keyboard interrupt enable register enables or disables each port A  
pin to operate as a keyboard interrupt pin.  
Address: $001B  
Bit 7  
0
6
0
5
0
4
KBIE4  
0
3
KBIE3  
0
2
KBIE2  
0
1
KBIE1  
0
Bit 0  
KBIE0  
0
Read:  
Write:  
Reset:  
0
0
0
= Unimplemented  
Figure 19-4. Keyboard Interrupt Enable Register (KBIER)  
KBIE4KBIE0 Keyboard Interrupt Enable Bits  
Each of these read/write bits enables the corresponding keyboard  
interrupt pin to latch interrupt requests. Reset clears the keyboard  
interrupt enable register.  
1 = PDx pin enabled as keyboard interrupt pin  
0 = PDx pin not enabled as keyboard interrupt pin  
Advance Information  
336  
68HC908EY16 Rev 2.0  
Keyboard Interrupt (KBD) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 20. Timebase Module (TBM)  
20.1 Contents  
20.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337  
20.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338  
20.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
20.6 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340  
20.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
20.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
20.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342  
20.8 Timebase Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . .343  
20.2 Introduction  
This section describes the timebase module (TBM). The TBM will  
generate periodic interrupts at user selectable rates using a counter  
clocked by either the internal or external clock sources. This TBM  
version uses 15 divider stages, eight of which are user selectable.  
NOTE: The TBM on this device differs from that of the MC68HC908KX8 in that  
it has an additional divide-by-128 at the front end of the divider chain.  
For further information regarding timers on M68HC08 family devices,  
please consult the HC08 Timer Reference Manual, TIM08RM/AD.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
337  
Timebase Module (TBM)  
Timebase Module (TBM)  
20.3 Features  
Features of the TBM module include:  
Software configurable periodic interrupts with divide-by-1024,  
2048, 4096, 8192, 16384, 262144, 1048576 and 4194304 taps of  
the selected clock source  
Configurable for operation during stop mode to allow periodic  
wake up from stop  
20.4 Functional Description  
This module can generate a periodic interrupt by dividing the clock  
source supplied from the internal clock generator module, TBMCLK.  
Note that this clock source is the external clock ECLK when the ECGON  
bit in the ICG control register (ICGCR) is set. Otherwise, TBMCLK is  
driven at the internally generated clock frequency (ICLK). In other words,  
if the external clock is enabled it will be used as the TBMCLK, even if the  
MCU bus clock is based on the internal clock.  
The counter is initialized to all 0s when TBON bit is cleared. The counter,  
shown in Figure 20-1, starts counting when the TBON bit is set. When  
the counter overflows at the tap selected by TBR2TBR0, the TBIF bit  
gets set. If the TBIE bit is set, an interrupt request is sent to the CPU.  
The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the  
TBIF flag is set after enabling the timebase module, the interrupt is  
generated at approximately half of the overflow period. Subsequent  
events occur at the exact period.  
The timebase module may remain active after execution of the STOP  
instruction if the internal clock generator has been enabled to operate  
during stop mode through the OSCENINSTOP bit in the configuration  
register. The timebase module can be used in this mode to generate a  
periodic wakeup from stop mode.  
Advance Information  
338  
68HC908EY16 Rev 2.0  
Timebase Module (TBM)  
MOTOROLA  
Timebase Module (TBM)  
Functional Description  
TBMCLKSEL  
FROM CONFIG2  
TBMCLK  
0
1
Divide by 128  
Prescaler  
FROM ICG MODULE  
TBON  
÷ 2  
÷ 2  
÷ 2  
÷ 2  
÷ 2 ÷ 2 ÷ 2  
TBMINT  
÷ 2 ÷ 2 ÷ 2 ÷ 2  
÷ 2 ÷ 2  
÷ 2 ÷ 2  
TBIF  
TBIE  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
R
Figure 20-1. Timebase Block Diagram  
68HC908EY16 Rev 2.0  
Advance Information  
339  
MOTOROLA  
Timebase Module (TBM)  
Timebase Module (TBM)  
20.5 Interrupts  
The timebase module can periodically interrupt the CPU with a rate  
defined by the selected TBMCLK and the select bits TBR2TBR0. When  
the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit  
is set, enabling the timebase interrupt, the counter chain overflow will  
generate a CPU interrupt request.  
Interrupts must be acknowledged by writing a logic 1 to the TACK bit.  
20.6 TBM Interrupt Rate  
The interrupt rate is determined by the equation:  
Divider  
1
t
= -------------------------- = -----------------------  
TBMRATE  
f
f
TBMRATE  
TBMCLK  
where:  
fTBMCLK  
=
Frequency supplied from the internal clock  
generator (ICG) module  
Divider =  
Divider value as determined by TBR2TBR0  
settings. See Table 20-1.  
As an example, a clock source of 4.9152 MHz and the TBR2TBR0 set  
to {011}, the divider tap is 128 and the interrupt rate calculates to  
128/4.9152 x 106 = 26 µs.  
Table 20-1. Timebase Divider Selection  
Divider Tap  
TBR2  
TBR1  
TBR0  
TMBCLKSEL  
0
32,768  
8192  
2048  
128  
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
4,194,304  
1,048,576  
262144  
16,384  
8192  
64  
32  
4096  
Advance Information  
340  
68HC908EY16 Rev 2.0  
Timebase Module (TBM)  
MOTOROLA  
 
Timebase Module (TBM)  
TBM Interrupt Rate  
Table 20-1. Timebase Divider Selection  
Divider Tap  
TBR2  
TBR1  
TBR0  
TMBCLKSEL  
0
16  
8
1
1
1
1
1
0
1
2048  
1024  
NOTE: Do not change TBR2TBR0 bits while the timebase is enabled  
(TBON = 1).  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
341  
Timebase Module (TBM)  
Timebase Module (TBM)  
20.7 Low-Power Modes  
The WAIT and STOP instructions put the MCU in low power-  
consumption standby modes.  
20.7.1 Wait Mode  
The timebase module remains active after execution of the WAIT  
instruction. In wait mode the timebase register is not accessible by the  
CPU.  
If the timebase functions are not required during wait mode, reduce the  
power consumption by stopping the timebase before executing the  
WAIT instruction.  
20.7.2 Stop Mode  
The timebase module may remain active after execution of the STOP  
instruction if the internal clock generator has been enabled to operate  
during stop mode through the OSCENINSTOP bit in the configuration  
register. The timebase module can be used in this mode to generate a  
periodic wake up from stop mode.  
If the internal clock generator has not been enabled to operate in stop  
mode, the timebase module will not be active during stop mode. In stop  
mode, the timebase register is not accessible by the CPU.  
If the timebase functions are not required during stop mode, reduce  
power consumption by disabling the timebase module before executing  
the STOP instruction.  
Advance Information  
342  
68HC908EY16 Rev 2.0  
Timebase Module (TBM)  
MOTOROLA  
Timebase Module (TBM)  
Timebase Control Register  
20.8 Timebase Control Register  
The timebase has one register, the timebase control register (TBCR),  
which is used to enable the timebase interrupts and set the rate.  
Address: $001C  
Bit 7  
6
TBR2  
0
5
TBR1  
0
4
TBR0  
0
3
2
1
TBON  
0
Bit 0  
R
Read:  
Write:  
Reset:  
TBIF  
0
TACK  
0
TBIE  
0
0
0
= Unimplemented  
R
= Reserved  
Figure 20-2. Timebase Control Register (TBCR)  
TBIF Timebase Interrupt Flag  
This read-only flag bit is set when the timebase counter has rolled  
over.  
1 = Timebase interrupt pending  
0 = Timebase interrupt not pending  
TBR2TBR0 Timebase Divider Selection Bits  
These read/write bits select the tap in the counter to be used for  
timebase interrupts as shown in Table 20-1.  
NOTE: Do not change TBR2TBR0 bits while the timebase is enabled  
(TBON = 1).  
TACKTimebase ACKnowledge Bit  
The TACK bit is a write-only bit and always reads as 0. Writing a  
logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a  
logic 0 to this bit has no effect.  
1 = Clear timebase interrupt flag  
0 = No effect  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
343  
Timebase Module (TBM)  
Timebase Module (TBM)  
TBIE Timebase Interrupt Enabled Bit  
This read/write bit enables the timebase interrupt when the TBIF bit  
becomes set. Reset clears the TBIE bit.  
1 = Timebase interrupt is enabled.  
0 = Timebase interrupt is disabled.  
TBON Timebase Enabled Bit  
This read/write bit enables the timebase. Timebase may be turned off  
to reduce power consumption when its function is not necessary. The  
counter can be initialized by clearing and then setting this bit. Reset  
clears the TBON bit.  
1 = Timebase is enabled.  
0 = Timebase is disabled and the counter initialized to 0s.  
NOTE: Clearing TBON has no effect on the TBIF flag.  
Advance Information  
344  
68HC908EY16 Rev 2.0  
Timebase Module (TBM)  
MOTOROLA  
Advance Information 68HC908EY16  
Section 21. Analog-to-Digital Converter (ADC) Module  
21.1 Contents  
21.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346  
21.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347  
21.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
21.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348  
21.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349  
21.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.6 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351  
21.7.1 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .351  
21.7.2 ADC Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . .352  
21.7.3 ADC Voltage Reference Pin (VREFH) . . . . . . . . . . . . . . . . .352  
21.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . .352  
21.7.5 ADC Voltage In (ADVIN) . . . . . . . . . . . . . . . . . . . . . . . . . .352  
21.7.6 ADC External Connections. . . . . . . . . . . . . . . . . . . . . . . . .352  
21.7.6.1 VREFH and VREFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352  
21.7.6.2 ANx. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .353  
21.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .354  
21.8.2 ADC Data Register High (ADRH) and Data Register Low  
(ADRL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357  
21.8.3 ADC Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361  
68HC908EY16 Rev 2.0  
Advance Information  
345  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
 
Analog-to-Digital Converter (ADC) Module  
21.2 Introduction  
This section describes the 10-bit analog-to-digital converter (ADC).  
For further information regarding analog-to-digital converters on  
Motorola microcontrollers, please consult the HC08 ADC Reference  
Manual, ADCRM/AD.  
21.3 Features  
Features of the ADC module include:  
8 channels with multiplexed input  
Linear successive approximation  
10-bit resolution, 8-bit accuracy  
Single or continuous conversion  
Conversion complete flag or conversion complete interrupt  
Selectable ADC clock  
Left or right justified result  
Left justified sign data mode  
High impedance buffered ADC input  
21.4 Functional Description  
Eight ADC channels are available for sampling external sources at pins  
PTB7:PTB0. To achieve the best possible accuracy, these pins are  
implemented as input-only pins when the analog-to-digital (A/D) feature  
is enabled. An analog multiplexer allows the single ADC to select one of  
the 8 ADC channels as ADC voltage IN (ADCVIN). ADCVIN is converted  
by the successive approximation algorithm. When the conversion is  
completed, the ADC places the result in the ADC data register (ADRH  
and ADRL) and sets a flag or generates an interrupt. See Figure 21-1.  
Advance Information  
346  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
Functional Description  
INTERNAL  
DATA BUS  
PTB  
ADC CHANNEL x  
READ PTB  
DISABLE  
ADC DATA REGISTERS  
ADC VOLTAGE IN  
ADVIN  
CONVERSION  
COMPLETE  
INTERRUPT  
LOGIC  
CHANNEL  
SELECT  
ADC  
ADCH[4:0]  
AIEN  
COCO/IDMAS  
ADC CLOCK  
PTx  
CGMXCLK  
BUS CLOCK  
CLOCK  
GENERATOR  
ADIV[2:0]  
ADICLK  
Figure 21-1. ADC Block Diagram  
21.4.1 ADC Port I/O Pins  
PTB7:PTB0 are general-purpose I/O pins that are shared with the ADC  
channels. See Section 22. Input/Output (I/O) Ports.  
The channel select bits define which ADC channel/port pin will be used  
as the input signal. The ADC overrides the port logic when that port is  
selected by the ADC multiplexer. The remaining ADC channels/port pins  
are controlled by the port logic and can be used as general-purpose  
input/output (I/O) pins. Writes to the port register or DDR will not have  
any effect on the port pin that is selected by the ADC. Read of a port pin  
which is in use by the ADC will return a logic 0.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
347  
Analog-to-Digital Converter (ADC) Module  
21.4.2 Voltage Conversion  
When the input voltage to the ADC equals VREFH, the ADC converts the  
signal to $3FF (full scale). If the input voltage equals VREFL, the ADC  
converts it to $000. Input voltages between VREFH and VREFL are  
straight-line linear conversions. All other input voltages will result in  
$3FF if greater than VREFH and $000 if less than VREFL  
.
NOTE: Input voltage should not exceed the analog supply voltages. See 23.11  
Analog-to-Digital Converter (ADC) Characteristics.  
21.4.3 Conversion Time  
Conversion starts after a write to the ADSCR. A conversion is between  
16 and 17 ADC clock cycles, therefore:  
16 to17 ADC Cycles  
Conversion time =  
ADC Frequency  
Number of Bus Cycles = Conversion Time x Bus Frequency  
The ADC conversion time is determined by the clock source chosen and  
the divide ratio selected. The clock source is either the bus clock or  
CGMXCLK and is selectable by ADICLK located in the ADC clock  
register. For example, if CGMXCLK is 4 MHz and is selected as the ADC  
input clock source, the ADC input clock divide-by-2 prescale is selected  
and the bus frequency is 8 MHz:  
16 to17 ADC Cycles  
Conversion Time =  
= 8 to 8.5 µs  
4 MHz/2  
Number of bus cycles = (8 to 8.5µs) x 8 MHz = 64 to 68 cycles  
NOTE: The ADC frequency must be between fADIC minimum and fADIC  
maximum to meet A/D specifications. See 23.11 Analog-to-Digital  
Converter (ADC) Characteristics.  
Since an ADC cycle may be comprised of several bus cycles (four in the  
previous example) and the start of a conversion is initiated by a bus cycle  
write to the ADSCR, from zero to four additional bus cycles may occur  
Advance Information  
348  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
Functional Description  
before the start of the initial ADC cycle. This results in a fractional ADC  
cycle and is represented as the 17th cycle.  
21.4.4 Continuous Conversion  
In continuous conversion mode, the ADC data registers ADRH and  
ADRL will be filled with new data after each conversion. Data from the  
previous conversion will be overwritten whether that data has been read  
or not. Conversions will continue until the ADCO bit is cleared. The  
COCO bit is set after the first conversion and will stay set for the next  
several conversions until the next write of the ADC status and control  
register or the next read of the ADC data register.  
21.4.5 Result Justification  
The conversion result may be formatted in four different ways:  
1. Left justified  
2. Right justified  
3. Left Justified sign data mode  
4. 8-bit truncation mode  
All four of these modes are controlled using MODE0 and MODE1 bits  
located in the ADC clock register (ADCLK).  
Left justification will place the eight most significant bits (MSB) in the  
corresponding ADC data register high, ADRH. This may be useful if the  
result is to be treated as an 8-bit result where the two least significant  
bits (LSB), located in the ADC data register low, ADRL, can be ignored.  
However, ADRL must be read after ADRH or else the interlocking will  
prevent all new conversions from being stored.  
Right justification will place only the two MSBs in the corresponding ADC  
data register high, ADRH, and the eight LSBs in ADC data register low,  
ADRL. This mode of operation typically is used when a 10-bit unsigned  
result is desired.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
349  
Analog-to-Digital Converter (ADC) Module  
Left justified sign data mode is similar to left justified mode with one  
exception. The MSB of the 10-bit result, AD9 located in ADRH, is  
complemented. This mode of operation is useful when a result,  
represented as a signed magnitude from mid-scale, is needed. Finally,  
8-bit truncation mode will place the eight MSBs in ADC data register low,  
ADRL. The two LSBs are dropped. This mode of operation is used when  
compatibility with 8-bit ADC designs are required. No interlocking  
between ADRH and ADRL is present.  
NOTE: Quantization error is affected when only the most significant eight bits  
are used as a result. See Figure 21-2.  
8-BIT 10-BIT  
RESULT RESULT  
IDEAL 8-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
10-BIT TRUNCATED  
TO 8-BIT RESULT  
003  
00B  
00A  
009  
IDEAL 10-BIT CHARACTERISTIC  
WITH QUANTIZATION = ±1/2  
002  
001  
000  
008  
007  
006  
005  
004  
003  
002  
001  
000  
WHEN TRUNCATION IS USED,  
ERROR FROM IDEAL 8-BIT = 3/8 LSB  
DUE TO NON-IDEAL QUANTIZATION.  
INPUT VOLTAGE  
1/2  
2 1/2  
4 1/2  
6 1/2  
8 1/2  
REPRESENTED AS 10-BIT  
1 1/2  
3 1/2  
5 1/2  
7 1/2  
9 1/2  
INPUT VOLTAGE  
REPRESENTED AS 8-BIT  
1/2  
1 1/2  
2 1/2  
Figure 21-2. 8-Bit Truncation Mode Error  
Advance Information  
350  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
 
Analog-to-Digital Converter (ADC) Module  
Interrupts  
21.4.6 Monotonicity  
The conversion process is monotonic and has no missing codes.  
21.5 Interrupts  
When the AIEN bit is set, the ADC module is capable of generating a  
CPU interrupt after each ADC conversion. A CPU interrupt is generated  
if the COCO bit is at logic 0. The COCO bit is not used as a conversion  
complete flag when interrupts are enabled.  
21.6 Wait Mode  
The WAIT instruction can put the MCU in low power-consumption  
standby mode.  
The ADC continues normal operation during wait mode. Any enabled  
CPU interrupt request from the ADC can bring the MCU out of wait  
mode. If the ADC is not required to bring the MCU out of wait mode,  
power down the ADC by setting ADCH[4:0] in the ADC status and control  
register before executing the WAIT instruction.  
21.7 I/O Signals  
The ADC module has 8 input signals.  
21.7.1 ADC Analog Power Pin (VDDA  
)
The ADC analog portion uses VDDA as its power pin. Connect the VDDA  
pin to the same voltage potential as VDD. External filtering may be  
necessary to ensure clean VDDA for good results.  
NOTE: Route VDDA carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
351  
Analog-to-Digital Converter (ADC) Module  
Analog-to-Digital Converter (ADC) Module  
21.7.2 ADC Analog Ground Pin (VSSA  
)
The ADC analog portion uses VSSA as its ground pin. Connect the VSSA  
pin to the same voltage potential as VSS.  
21.7.3 ADC Voltage Reference Pin (VREFH  
)
V
REFH is the power supply for setting the reference voltage VREFH.  
Connect the VREFH pin to the same voltage potential as VDDA. There will  
be a finite current associated with VREFH. See Section 23. Preliminary  
Electrical Specifications.  
NOTE: Route VREFH carefully for maximum noise immunity and place bypass  
capacitors as close as possible to the package.  
21.7.4 ADC Voltage Reference Low Pin (VREFL  
)
VREFL is the lower reference supply for the ADC. Connect the VREFL pin  
to the same voltage potential as VSSA. A finite current will be associated  
with VREFL. See Section 23. Preliminary Electrical Specifications.  
21.7.5 ADC Voltage In (ADVIN)  
ADVIN is the input voltage signal from one of the 8 ADC channels to the  
ADC module.  
21.7.6 ADC External Connections  
This section describes the ADC external connections: VREFH and VREFL  
,
ANx, and grounding.  
21.7.6.1 VREFH and VREFL  
Both ac and dc current are drawn through the VREFH and VREFL loop.  
The AC current is in the form of current spikes required to supply charge  
to the capacitor array at each successive approximation step. The  
current flows through the internal resistor string. The best external  
Advance Information  
352  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
I/O Registers  
component to meet both these current demands is a capacitor in the  
0.01 µF to 1 µF range with good high frequency characteristics. This  
capacitor is connected between VREFH and VREFL and must be placed  
as close as possible to the package pins. Resistance in the path is not  
recommended because the dc current will cause a voltage drop which  
could result in conversion errors.  
21.7.6.2 ANx  
Empirical data shows that capacitors from the analog inputs to VREFL  
improve ADC performance. 0.01-µF and 0.1-µF capacitors with good  
high-frequency characteristics are sufficient. These capacitors must be  
placed as close as possible to the package pins.  
21.7.6.3 Grounding  
In cases where separate power supplies are used for analog and digital  
power, the ground connection between these supplies should be at the  
VSSA pin. This should be the only ground connection between these  
supplies if possible. The VSSA pin makes a good single point ground  
location. Connect the VREFL pin to the same potential as VSSA at the  
single point ground location.  
21.8 I/O Registers  
These I/O registers control and monitor operation of the ADC:  
ADC status and control register, ADSCR  
ADC data registers, ADRH and ARDL  
ADC clock register, ADCLK  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
353  
Analog-to-Digital Converter (ADC) Module  
21.8.1 ADC Status and Control Register  
This section describes the function of the ADC status and control  
register (ADSCR). Writing ADSCR aborts the current conversion and  
initiates a new conversion.  
Address: $003C  
Bit 7  
COCO  
0
6
AIEN  
0
5
ADCO  
0
4
ADCH4  
1
3
ADCH3  
1
2
ADCH2  
1
1
ADCH1  
1
Bit 0  
ADCH0  
1
Read:  
Write:  
Reset:  
Figure 21-3. ADC Status and Control Register (ADSCR)  
COCO Conversions Complete Bit  
When AIEN bit is a logic 0, the COCO is a read-only bit which is set  
each time a conversion is completed except in the continuous  
conversion mode where it is set after the first conversion. This bit is  
cleared whenever the ADC status and control register is written or  
whenever the ADC data register is read.  
If AIEN bit is a logic 1, the COCO is a read/write bit. Reset clears this  
bit.  
1 = Conversion completed (AIEN = 0)  
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN = 1)  
Advance Information  
354  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
I/O Registers  
AIEN ADC Interrupt Enable Bit  
When this bit is set, an interrupt is generated at the end of an ADC  
conversion. The interrupt signal is cleared when the data register is  
read or the status/control register is written. Reset clears the AIEN bit.  
1 = ADC interrupt enabled  
0 = ADC interrupt disabled  
ADCO ADC Continuous Conversion Bit  
When set, the ADC will convert samples continuously and update the  
ADR register at the end of each conversion. Only one conversion is  
allowed when this bit is cleared. Reset clears the ADCO bit.  
1 = Continuous ADC conversion  
0 = One ADC conversion  
ADCH[4:0] ADC Channel Select Bits  
ADCH4, ADCH3, ADCH2, ADCH1, and ADCH0 form a 5-bit field  
which is used to select one of 8 ADC channels. The ADC channels  
are detailed in Table 21-1.  
NOTE: Take care to prevent switching noise from corrupting the analog signal  
when simultaneously using a port pin as both an analog and digital input.  
The ADC subsystem is turned off when the channel select bits are all  
set to 1. This feature allows for reduced power consumption for the  
MCU when the ADC is not used.  
NOTE: Recovery from the disabled state requires one conversion cycle to  
stabilize.  
The voltage levels supplied from internal reference nodes as  
specified in Table 21-1 are used to verify the operation of the ADC  
both in production test and for user applications.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
355  
Analog-to-Digital Converter (ADC) Module  
Analog-to-Digital Converter (ADC) Module  
Table 21-1. Mux Channel Select  
ADCH4  
ADCH3  
ADCH2  
ADCH1  
ADCH0  
Input Select  
PTB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
to  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
Unused *  
1
1
1
1
1
1
1
1
1
1
0
0
0
1
0
1
Reserved **  
Unused *  
VREFH  
VREFL  
1
1
1
1
1
1
1
1
0
1
ADC power off  
* If any unused channels are selected, the resulting ADC conversion will be unknown.  
** Used for factory testing.  
Advance Information  
356  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
I/O Registers  
21.8.2 ADC Data Register High (ADRH) and Data Register Low (ADRL)  
21.8.2.1 Left Justified Mode  
In left justified mode the ADRH register holds the eight MSBs of the 10-  
bit result. The ADRL register holds the two LSBs of the 10-bit result. All  
other bits read as 0. ADRH and ADRL are updated each time an ADC  
single channel conversion completes. Reading ADRH latches the  
contents of ADRL until ADRL is read. Until ADRL is read, all subsequent  
results will be lost.  
Address: $003D  
Bit 7  
ADRH  
Bit 0  
6
5
4
3
2
1
Read:  
Write:  
Reset:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
Unaffected by reset  
Address: $003E  
ADRL  
0
Read:  
Write:  
Reset:  
AD1  
AD0  
0
0
0
0
0
Unaffected by reset  
= Unimplemented  
Figure 21-4. ADC Data Register High (ADRH) and Low (ADRL)  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
357  
Analog-to-Digital Converter (ADC) Module  
21.8.2.2 Right Justified Mode  
In right justified mode the ADRH register holds the two MSBs of the 10-  
bit result. All other bits read as 0. The ADRL register holds the eight  
LSBs of the 10-bit result. ADRH and ADRL are updated each time an  
ADC single channel conversion completes. Reading ADRH latches the  
contents of ADRL until ADRL is read. Until ADRL is read, all subsequent  
ADC results will be lost.  
Address: $003D  
Bit 7  
ADRH  
Bit 0  
6
0
5
0
4
0
3
0
2
0
1
Read:  
Write:  
Reset:  
0
AD9  
AD8  
Unaffected by reset  
Address: $003E  
ADRL  
AD0  
Read:  
Write:  
Reset:  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
Unaffected by reset  
= Unimplemented  
Figure 21-5. ADC Data Register High (ADRH) and Low (ADRL)  
Advance Information  
358  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
I/O Registers  
21.8.2.3 Left Justified Signed Data Mode  
In left justified signed data mode the ADRH register holds the eight  
MSBs of the 10-bit result. The only difference from left justified mode is  
that the AD9 is complemented. The ADRL register holds the two LSBs  
of the 10-bit result. All other bits read as 0. ADRH and ADRL are updated  
each time an ADC single channel conversion completes. Reading ADRH  
latches the contents of ADRL until ADRL is read. Until ADRL is read, all  
subsequent results will be lost.  
Address: $003D  
Bit 7  
AD9  
6
5
4
3
2
1
Bit 0  
AD2  
Read:  
Write:  
Reset:  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
Unaffected by reset  
Address: $003E  
Read:  
Write:  
Reset:  
AD1  
AD0  
0
0
0
0
0
0
Unaffected by reset  
= Unimplemented  
Figure 21-6. ADC Data Register High (ADRH) and Low (ADRL)  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
359  
Analog-to-Digital Converter (ADC) Module  
21.8.2.4 Eight Bit Truncation Mode  
In 8-bit truncation mode the ADRL register holds the eight MSBs of the  
10-bit result. The ADRH register is unused and reads as 0. The ADRL  
register is updated each time an ADC single channel conversion  
completes. In 8-bit mode, the ADRL register contains no interlocking  
with ADRH.  
Address: $003D  
Bit 7  
ADRH  
Bit 0  
0
6
0
5
0
4
0
3
0
2
0
1
0
Read:  
Write:  
Reset:  
0
Unaffected by reset  
Address: $003E  
ADRL  
AD2  
Read:  
Write:  
Reset:  
AD9  
AD8  
AD7  
AD6  
AD5  
AD4  
AD3  
Unaffected by reset  
= Unimplemented  
Figure 21-7. ADC Data Register High (ADRH) and Low (ADRL)  
Advance Information  
360  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
I/O Registers  
21.8.3 ADC Clock Register  
This register selects the clock frequency for the ADC, selecting between  
modes of operation.  
Address: $003F  
Bit 7  
ADIV2  
0
6
ADIV1  
0
5
ADIV0  
0
4
3
2
1
R
0
Bit 0  
0
Read:  
Write:  
Reset:  
ADICLK MODE1 MODE0  
0
0
1
0
= Unimplemented  
Figure 21-8. ADC Clock Register (ADCLK)  
ADIV2:ADIV0 ADC Clock Prescaler Bits  
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide  
ratio used by the ADC to generate the internal ADC clock.  
Table 21-2 shows the available clock configurations.  
Table 21-2. ADC Clock Divide Ratio  
ADIV2  
ADIV1  
ADIV0  
ADC Clock Rate  
ADC input clock /1  
ADC input clock /2  
ADC input clock /4  
ADC input clock /8  
ADC input clock /16  
0
0
0
0
1
0
0
1
1
X
0
1
0
1
X
X = dont care  
ADICLK ADC Input Clock Select Bit  
ADICLK selects either bus clock or CGMXCLK as the input clock  
source to generate the internal ADC clock. Reset selects CGMXCLK  
as the ADC clock source.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Analog-to-Digital Converter (ADC) Module  
361  
 
Analog-to-Digital Converter (ADC) Module  
If the external clock (CGMXCLK) is equal to or greater than 1 MHz,  
CGMXCLK can be used as the clock source for the ADC. If  
CGMXCLK is less than 1 MHz, use the PLL-generated bus clock as  
the clock source. As long as the internal ADC clock is at fADIC, correct  
operation can be guaranteed. See 23.11 Analog-to-Digital  
Converter (ADC) Characteristics.  
1 = Internal bus clock  
0 = External clock, CGMXCLK  
CGMXCLK or bus frequency  
f
=
ADIC  
ADIV[2:0]  
MODE1:MODE0 Modes of Result Justification Bits  
MODE1:MODE0 selects among four modes of operation. The  
manner in which the ADC conversion results will be placed in the ADC  
data registers is controlled by these modes of operation. Reset  
returns right-justified mode.  
00 = 8-bit truncation mode  
01 = Right justified mode  
10 = Left justified mode  
11 = Left justified sign data mode  
Advance Information  
362  
68HC908EY16 Rev 2.0  
Analog-to-Digital Converter (ADC) Module  
MOTOROLA  
Advance Information 68HC908EY16  
Section 22. Input/Output (I/O) Ports  
22.1 Contents  
22.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
22.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365  
22.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . .366  
22.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368  
22.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . .369  
22.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363  
22.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371  
22.5.2 Data Direction Register C. . . . . . . . . . . . . . . . . . . . . . . . . .372  
22.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374  
22.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374  
22.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . .375  
22.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
22.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377  
22.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . .378  
22.2 Introduction  
Twenty-four bidirectional input/output (I/O) form five parallel ports. All I/O  
pins are programmable as inputs or outputs.  
NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or  
VSS. Although the I/O ports do not require termination for proper  
operation, termination reduces excess current consumption and the  
possibility of electrostatic damage.  
68HC908EY16 Rev 2.0  
MOTOROLA  
Advance Information  
363  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
Port A Data Register  
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
$0000  
(PTA) Write:  
See 365.  
Reset:  
Read:  
Unaffected by reset  
PTB4 PTB3  
Unaffected by reset  
PTC4 PTC3  
Unaffected by reset  
Port B Data Register  
PTB7  
0
PTB6  
0
PTB5  
0
PTB2  
PTB1  
PTC1  
PTD1  
PTB0  
PTC0  
PTD0  
$0001  
$0002  
$0003  
$0004  
$0005  
$0006  
$0007  
$0008  
(PTB) Write:  
See 368.  
Reset:  
Read:  
Port C Data Register  
PTC2  
0
(PTC) Write:  
See 371.  
Reset:  
Read:  
0
0
0
0
0
Port D Data Register  
(PTD) Write:  
See 374.  
Reset:  
Read:  
Unaffected by reset  
DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
Data Direction Register A  
0
0
(DDRA) Write:  
See 366.  
Reset:  
0
0
0
0
0
0
0
Read:  
Data Direction Register B  
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
(DDRB) Write:  
See 369.  
Reset:  
0
0
0
0
0
0
0
0
0
0
Read:  
Data Direction Register C  
MCLKEN  
DDRC4 DDRC3 DDRC2 DDRC1 DDRC0  
(DDRC) Write:  
See 372.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Data Direction Register D  
DDRD1 DDRD0  
(DDRD) Write:  
See 375.  
Reset:  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Read:  
Port E Data Register  
PTE1  
PTE0  
(PTE) Write:  
See 377.  
Reset:  
Unaffected by reset  
= Unimplemented  
Figure 22-1. 68HC908EY16 I/O Port Register Summary  
Advance Information  
364  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port A  
Addr.  
Register Name  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
0
0
0
0
0
0
Data Direction Register E  
DDRE1 DDRE0  
$000A  
(DDRE) Write:  
See 378.  
Reset:  
0
0
0
0
0
0
0
0
Read: BEMF7  
Write:  
BEMF6  
BEMF5  
BEMF4  
BEMF3  
BEMF2  
BEMF1  
BEMF0  
BEMF Register (BEMF)  
See 328.  
$000B  
Reset:  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-1. 68HC908EY16 I/O Port Register Summary (Continued)  
22.3 Port A  
Port A is a 7-bit general-purpose bidirectional I/O port that shares pin  
functions with the SPI and KBD modules.  
22.3.1 Port A Data Register  
The port A data register contains a data latch for each of the seven  
port A pins.  
Address: $0000  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTA6  
PTA5  
PTA4  
PTA3  
PTA2  
PTA1  
PTA0  
Unaffected by reset  
KBD4 KBD3  
Alternate  
Function:  
SS  
SPSCK  
KBD2  
KBD1  
KBD0  
= Unimplemented  
Figure 22-2. Port A Data Register (PTA)  
68HC908EY16 Rev 2.0  
Advance Information  
365  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
PTA[6:0] Port A Data Bits  
These read/write bits are software programmable. Data direction of  
each port A pin is under the control of the corresponding bit in data  
direction register A. Reset has no effect on port A data.  
22.3.2 Data Direction Register A  
Data direction register A determines whether each port A pin is an input  
or an output. Writing a logic 1 to a DDRA bit enables the output buffer for  
the corresponding port A pin; a logic 0 disables the output buffer.  
Address: $0004  
Bit 7  
0
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0  
Unaffected by reset  
= Unimplemented  
Figure 22-3. Data Direction Register A (DDRA)  
DDRA[6:0] Data Direction Register A Bits  
These read/write bits control port A data direction. Reset clears  
DDRA[6:0], configuring all port A pins as inputs.  
1 = Corresponding port A pin configured as output  
0 = Corresponding port A pin configured as input  
NOTE: Avoid glitches on port A pins by writing to the port A data register before  
changing data direction register A bits from 0 to 1.  
Figure 22-4 shows the port A I/O logic.  
Advance Information  
366  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port A  
READ DDRA ($0004)  
WRITE DDRA ($0004)  
DDRAx  
PTAx  
RESET  
WRITE PTA ($0000)  
READ PTA ($0000)  
PTAx  
Figure 22-4. Port A I/O Circuit  
When bit DDRAx is a logic 1, reading address $0000 reads the PTAx  
data latch. When bit DDRAx is a logic 0, reading address $0000 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 22-1 summarizes  
the operation of the port A pins.  
Table 22-1. Port A Pin Functions  
Accesses  
Accesses to PTA  
DDRA  
Bit  
PTA  
Bit  
I/O Pin  
Mode  
to DDRA  
Read/Write  
DDRA[6:0]  
DDRA[6:0]  
Read  
Pin  
Write  
PTA[6:0](1)  
PTA[6:0]  
0
X
X
Input, Hi-Z  
Output  
1
PTA[6:0]  
X = dont care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
68HC908EY16 Rev 2.0  
Advance Information  
367  
MOTOROLA  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
22.4 Port B  
Port B is an 8-bit special-function port that shares all of its pins with the  
analog-to-digital converter and some pin functions with TIMB.  
Port B is designed so that the ADC function will take priority over the  
Timer functionality on PTB6 and PTB7. If the ADC is selected for a  
conversion on a previously enabled Timer pin, the port pin will be  
connected to the ADC and disconnected from the Timer. If both the  
Timer Input Capture and ADC functions are being used on the same port  
pin, it is recommended that the Timer channel be diabled before the pin  
is enabled as an ADC input to avoid glitches. If both the Timer Output  
Compare (or PWM) and ADC functions are being used on the same port  
pin, it is recommended that the Timer channel be disabled before the pin  
is enabled as an ADC input.  
22.4.1 Port B Data Register  
The port B data register contains a data latch for each of the eight port  
B pins.  
Address: $0001  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
PTB7  
PTB6  
PTB5  
PTB4  
PTB3  
PTB2  
PTB1  
PTB0  
Unaffected by reset  
ATD4 ATD3  
Alternate  
Functions:  
ATD7  
ATD6  
ATD5  
ATD2  
ATD1  
ATD0  
Alternate  
Function:  
TBCH1  
TBCH0  
Figure 22-5. Port B Data Register (PTB)  
PTB[7:0] Port B Data Bits  
These read/write bits are software programmable. Data direction of  
each port B pin is under the control of the corresponding bit in data  
direction register B. Reset has no effect on port B data.  
Advance Information  
368  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port B  
ATD[7:0] ADC Channels  
PTB7PTB0 are eight of the 15 analog-to-digital converter channels.  
The ADC channel select bits, CH[4:0], determine whether the  
PTB7PTB0 pins are ADC channels or general-purpose I/O pins. If  
an ADC channel is selected and a read of this corresponding bit in the  
port B data register occurs, the data will be 0 if the data direction for  
this bit is programmed as an input. Otherwise, the data will reflect the  
value in the data latch (see Section 21. Analog-to-Digital Converter  
(ADC) Module). Data direction register B (DDRB) does not affect the  
data direction of port B pins that are being used by the ADC. However,  
the DDRB bits always determine whether reading port B returns to the  
states of the latches or logic 0.  
TBCH[1:0] Timer Channel I/O Bits  
The PTB7/TBCH1PTB6/TBCH0 pins are the TIMB input  
capture/output compare pins. The edge/level select bits,  
ELSxBELSxA, determine whether the PTB7/TBCH1PTB6/TBCH0  
pins are timer channel I/O pins or general-purpose I/O pins. (See  
17.9.1 TIMB Status and Control Register.)  
22.4.2 Data Direction Register B  
Data direction register B determines whether each port B pin is an input  
or an output. Writing a logic 1 to a DDRB bit enables the output buffer for  
the corresponding port B pin; a logic 0 disables the output buffer.  
Address: $0005  
Bit 7  
6
5
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0  
0
0
0
0
0
0
0
0
Figure 22-6. Data Direction Register B (DDRB)  
DDRB[7:0] Data Direction Register B Bits  
These read/write bits control port B data direction. Reset clears  
DDRB[7:0], configuring all port B pins as inputs.  
68HC908EY16 Rev 2.0  
Advance Information  
369  
MOTOROLA  
Input/Output (I/O) Ports  
Input/Output (I/O) Ports  
1 = Corresponding port B pin configured as output  
0 = Corresponding port B pin configured as input  
NOTE: Avoid glitches on port B pins by writing to the port B data register before  
changing data direction register B bits from 0 to 1.  
Figure 22-7 shows the port B I/O logic.  
READ DDRB ($0005)  
WRITE DDRB ($0005)  
DDRBx  
RESET  
WRITE PTB ($0001)  
PTBx  
PTBx  
READ PTB ($0001)  
Figure 22-7. Port B I/O Circuit  
When bit DDRBx is a logic 1, reading address $0001 reads the PTBx  
data latch. When bit DDRBx is a logic 0, reading address $0001 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 22-2 summarizes  
the operation of the port B pins.  
Table 22-2. Port B Pin Functions  
Accesses  
Accesses to PTB  
DDRB  
Bit  
PTB  
Bit  
I/O Pin  
Mode  
to DDRB  
Read/Write  
DDRB[7:0]  
DDRB[7:0]  
Read  
Pin  
Write  
PTB[7:0](1)  
PTB[7:0]  
0
X
X
Input, Hi-Z  
Output  
1
PTB[7:0]  
X = dont care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
Advance Information  
370  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
 
 
Input/Output (I/O) Ports  
Port C  
22.5 Port C  
Port C is an 5-bit general-purpose bidirectional I/O port that shares pin  
functions with the ICG and SPI modules.  
22.5.1 Port C Data Register  
The port C data register contains a data latch for each of the five port C  
pins.  
Address: $0002  
Bit 7  
6
0
5
0
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTC4  
PTC3  
PTC2  
PTC1  
PTC0  
Unaffected by reset  
OSC1 OSC2  
Alternate  
Functions:  
MCLK  
MOSI  
MISO  
= Unimplemented  
Figure 22-8. Port C Data Register (PTC)  
PTC[4:0] Port C Data Bits  
These read/write bits are software-programmable. Data direction of  
each port C pin is under the control of the corresponding bit in data  
direction register C. Reset has no effect on port C data.  
MCLK T12 System Clock Bit  
The system clock is driven out of PTC2 when enabled by MCLKEN bit  
in PTCDDR7.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Input/Output (I/O) Ports  
371  
Input/Output (I/O) Ports  
22.5.2 Data Direction Register C  
Data direction register C determines whether each port C pin is an input  
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for  
the corresponding port C pin; a logic 0 disables the output buffer.  
Address: $0006  
Bit 7  
MCLKEN  
0
6
0
5
0
4
3
2
1
Bit 0  
Read:  
Write:  
Reset:  
DDRC4 DDRC3 DDRC2 DDRC1 DDRC0  
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-9. Data Direction Register C (DDRC)  
MCLKEN MCLK Enable Bit  
This read/write bit enables MCLK to be an output signal on PTC2. If  
MCLK is enabled, PTC2 is under the control of MCLKEN. Reset  
clears this bit.  
1 = MCLK output enabled  
0 = MCLK output disabled  
DDRC[4:0] Data Direction Register C Bits  
These read/write bits control port C data direction. Reset clears  
DDRC[4:0] and MCLKEN, configuring all port C pins as inputs.  
1 = Corresponding port C pin configured as output  
0 = Corresponding port C pin configured as input  
NOTE: Avoid glitches on port C pins by writing to the port C data register before  
changing data direction register C bits from 0 to 1.  
Figure 22-10 shows the port C I/O logic.  
Advance Information  
372  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port C  
READ DDRC ($0006)  
WRITE DDRC ($0006)  
DDRCx  
PTCx  
RESET  
WRITE PTC ($0002)  
READ PTC ($0002)  
PTCx  
Figure 22-10. Port C I/O Circuit  
When bit DDRCx is a logic 1, reading address $0002 reads the PTCx  
data latch. When bit DDRCx is a logic 0, reading address $0002 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 22-3 summarizes  
the operation of the port C pins.  
Table 22-3. Port C Pin Functions  
Accesses  
Accesses to PTC  
DDRC  
Bit  
PTC  
Bit  
I/O Pin  
Mode  
to DDRC  
Read/Write  
DDRC[7]  
Read  
Pin  
Write  
PTC2  
0
2
2
Input, Hi-Z  
Output  
1
DDRC[7]  
0
PTC[4:0](1)  
PTC[4:0]  
0
X
X
Input, Hi-Z  
Output  
DDRC[4:0]  
DDRC[4:0]  
Pin  
1
PTC[4:0]  
X = dont care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
68HC908EY16 Rev 2.0  
Advance Information  
373  
MOTOROLA  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
22.6 Port D  
Port D is an 2-bit special function port that shares its pins with the timer  
interface module (TIMA).  
22.6.1 Port D Data Register  
The port D data register contains a data latch for each of the two port D  
pins.  
Address: $0003  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
PTD1  
PTD0  
Unaffected by reset  
Alternate  
Function:  
TACH1  
TACH0  
= Unimplemented  
Figure 22-11. Port D Data Register (PTD)  
PTD[1:0] Port D Data Bits  
PTD[1:0] are read/write, software programmable bits. Data direction  
of each port D pin is under the control of the corresponding bit in data  
direction register D.  
TACH[1:0] Timer Channel I/O Bits  
The PTD1/TACH1PTD0/TACH0 pins are the TIMA input  
capture/output compare pins. The edge/level select bits,  
ELSxBELSxA, determine whether the PTD1/TACH1PTD0/TACH0  
pins are timer channel I/O pins or general-purpose I/O pins. (See  
16.9.1 TIMA Status and Control Register.)  
NOTE: Data direction register D (DDRD) does not affect the data direction of  
port D pins that are being used by the TIMA. However, the DDRD bits  
always determine whether reading port D returns the states of the  
latches or the states of the pins. (See Table 22-4.)  
Advance Information  
374  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port D  
22.6.2 Data Direction Register D  
Data direction register D determines whether each port D pin is an input  
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for  
the corresponding port D pin; a logic 0 disables the output buffer.  
Address: $0007  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
DDRD1 DDRD0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-12. Data Direction Register D (DDRD)  
DDRD[1:0] Data Direction Register D Bits  
These read/write bits control port D data direction. Reset clears  
DDRD[1:0], configuring all port D pins as inputs.  
1 = Corresponding port D pin configured as output  
0 = Corresponding port D pin configured as input  
NOTE: Avoid glitches on port D pins by writing to the port D data register before  
changing data direction register D bits from 0 to 1.  
Figure 22-13 shows the port D I/O logic.  
READ DDRD ($0007)  
WRITE DDRD ($0007)  
DDRDx  
RESET  
WRITE PTD ($0003)  
PTDx  
PTDx  
READ PTD ($0003)  
Figure 22-13. Port D I/O Circuit  
68HC908EY16 Rev 2.0  
Advance Information  
375  
MOTOROLA  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
When bit DDRDx is a logic 1, reading address $0003 reads the PTDx  
data latch. When bit DDRDx is a logic 0, reading address $0003 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 22-4 summarizes  
the operation of the port D pins.  
Table 22-4. Port D Pin Functions  
Accesses  
Accesses to PTD  
DDRD  
Bit  
PTD  
Bit  
I/O Pin  
Mode  
to DDRD  
Read/Write  
DDRD[1:0]  
DDRD[1:0]  
Read  
Pin  
Write  
PTD[1:0](1)  
PTD[1:0]  
0
X
X
Input, Hi-Z  
Output  
1
PTD[1:0]  
X = dont care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
Advance Information  
376  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
 
Input/Output (I/O) Ports  
Port E  
22.7 Port E  
Port E is a 2-bit special function port that shares its pins with the  
Enhanced Serial Communications Interface module (ESCI).  
22.7.1 Port E Data Register  
The port E data register contains a data latch for each of the port E  
pins.  
Address: $0008  
Bit 7  
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
0
PTE1  
PTE0  
Unaffected by reset  
0
0
0
0
0
0
Alternate  
Function:  
RXD  
TXD  
= Unimplemented  
Figure 22-14. Port E Data Register (PTE)  
PTE[1:0] Port E Data Bits  
These read/write bits are software programmable. Data direction of  
each port E pin is under the control of the corresponding bit in data  
direction register E. Reset has no effect on PTE[1:0].  
RxD SCI Receive Data Input Bit  
The PTE1/RxD pin is the receive data input for the SCI module.  
When the enable SCI bit, ENSCI, is clear, the SCI module is disabled,  
and the PTE1/RxD pin is available for general-purpose I/O. See  
14.9.1 ESCI Control Register 1.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Input/Output (I/O) Ports  
377  
Input/Output (I/O) Ports  
TxD SCI Transmit Data Output  
The PTE0/TxD pin is the transmit data output for the SCI module.  
When the enable SCI bit, ENSCI, is clear, the SCI module is disabled,  
and the PTE0/TxD pin is available for general-purpose I/O.  
See 14.9.1 ESCI Control Register 1.  
NOTE: Data direction register E (DDRE) does not affect the data direction of  
port E pins that are being used by the ESCI. However, the DDRE bits  
always determine whether reading port E returns the states of the  
latches or the states of the pins. (See Table 22-5.)  
22.7.2 Data Direction Register E  
Data direction register E determines whether each port E pin is an input  
or an output. Writing a logic 1 to a DDRE bit enables the output buffer for  
the corresponding port E pin; a logic 0 disables the output buffer.  
Address: $000A  
Bit 7  
0
6
0
5
0
4
0
3
0
2
0
1
Bit 0  
Read:  
Write:  
Reset:  
DDRE1 DDRE0  
0
0
0
0
0
0
0
0
= Unimplemented  
Figure 22-15. Data Direction Register E (DDRE)  
DDRE[1:0] Data Direction Register E Bits  
These read/write bits control port E data direction. Reset clears  
DDRE[1:0], configuring all port E pins as inputs.  
1 = Corresponding port E pin configured as output  
0 = Corresponding port E pin configured as input  
NOTE: Avoid glitches on port E pins by writing to the port E data register before  
changing data direction register E bits from 0 to 1.  
Figure 22-16 shows the port E I/O logic.  
Advance Information  
378  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Input/Output (I/O) Ports  
Port E  
READ DDRE ($000A)  
WRITE DDRE ($000A)  
DDREx  
PTEx  
RESET  
WRITE PTE ($0008)  
READ PTE($0008)  
PTEx  
Figure 22-16. Port E I/O Circuit  
When bit DDREx is a logic 1, reading address $0008 reads the PTEx  
data latch. When bit DDREx is a logic 0, reading address $0008 reads  
the voltage level on the pin. The data latch can always be written,  
regardless of the state of its data direction bit. Table 22-5 summarizes  
the operation of the port E pins.  
Table 22-5. Port E Pin Functions  
Accesses  
Accesses to PTE  
DDRE  
Bit  
PTE  
Bit  
I/O Pin  
Mode  
to DDRE  
Read/Write  
DDRE[1:0]  
DDRE[1:0]  
Read  
Pin  
Write  
PTE[1:0](1)  
PTE[1:0]  
0
X
X
Input, Hi-Z  
Output  
1
PTE[1:0]  
X = dont care  
Hi-Z = high impedance  
1. Writing affects data register, but does not affect input.  
68HC908EY16 Rev 2.0  
Advance Information  
379  
MOTOROLA  
Input/Output (I/O) Ports  
 
Input/Output (I/O) Ports  
Advance Information  
380  
68HC908EY16 Rev 2.0  
Input/Output (I/O) Ports  
MOTOROLA  
Advance Information 68HC908EY16  
Section 23. Preliminary Electrical Specifications  
23.1 Contents  
23.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . .381  
23.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . .383  
23.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383  
23.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .384  
23.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386  
23.8 Internal Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . . .387  
23.9 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . .387  
23.10 Trimmed Accuracy of the Internal Clock Generator . . . . . . . .388  
23.10.1 Trimmed Internal Clock Generator Characteristics . . . . . .388  
23.11 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .389  
23.12 SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .390  
23.13 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393  
23.2 Introduction  
This section contains preliminary electrical and timing specifications.  
These values are design targets and have not yet been fully tested.  
23.3 Absolute Maximum Ratings  
Maximum ratings are the extreme limits to which the microcontroller unit  
(MCU) can be exposed without permanently damaging it.  
68HC908EY16 Rev 2.0  
Advance Information  
381  
MOTOROLA  
Preliminary Electrical Specifications  
 
Preliminary Electrical Specifications  
NOTE: This device is not guaranteed to operate properly at the maximum  
ratings. Refer to 23.6 DC Electrical Characteristics for guaranteed  
operating conditions.  
Characteristic(1)  
Supply voltage  
Symbol  
VDD  
Value  
Unit  
V
0.3 to +6.0  
VIn  
VSS 0.3 to VDD +0.3  
Input voltage  
V
Maximum current per pin  
excluding VDD, VSS  
and PTA0PTA6 and PTC0-PTC1  
,
I
±15  
±25  
mA  
mA  
IPTA0IPTA6  
IPTC0IPTC1  
,
Maximum current for pins  
PTA0PTA6 and PTC0-PTC1  
Maximum current out of VSS  
Maximum current into VDD  
IMVSS  
IMVDD  
TSTG  
100  
100  
mA  
mA  
°C  
Storage temperature  
55 to +150  
1. Voltages referenced to VSS  
NOTE: This device contains circuitry to protect the inputs against damage due  
to high static voltages or electric fields; however, it is advised that normal  
precautions be taken to avoid application of any voltage higher than  
maximum-rated voltages to this high-impedance circuit. For proper  
operation, it is recommended that VIn and VOut be constrained to the  
range VSS (VIn or VOut) VDD. Reliability of operation is enhanced if  
unused inputs are connected to an appropriate logic voltage level (for  
example, either VSS or VDD).  
Advance Information  
382  
68HC908EY16 Rev 2.0  
Preliminary Electrical Specifications  
MOTOROLA  
Preliminary Electrical Specifications  
Functional Operating Range  
23.4 Functional Operating Range  
Characteristic  
Symbol  
Value  
Unit  
°C  
TA  
Operating temperature range  
Operating voltage range  
40 to 125  
5.0 ± 10%  
VDD  
V
23.5 Thermal Characteristics  
Characteristic  
Thermal resistance  
Symbol  
Value  
100  
Unit  
C/W  
W
θJA  
QFP (32 pins)  
PI/O  
PD  
I/O pin power dissipation  
User determined  
PD = (IDD x VDD) + PI/O  
=
Power dissipation(1)  
W
K/(TJ + 273°C)  
PD x (TA + 273°C)  
+ PD2 x θJA  
Constant(2)  
K
W/C  
TJ  
TA + (PD x θJA)  
Average junction temperature  
°C  
1. Power dissipation is a function of temperature.  
2. K is a constant unique to the device. K can be determined for a known TA and measured  
PD. With this value of K, PD and TJ can be determined for any value of TA.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Preliminary Electrical Specifications  
383  
Preliminary Electrical Specifications  
23.6 DC Electrical Characteristics  
Characteristic(1)  
Output high voltage  
Typ(2)  
Symbol  
Min  
Max  
Unit  
ILoad = 2.0 mA, all I/O pins  
VDD 0.4  
VDD 1.5  
TBD  
ILoad = 10.0 mA, all I/O pins  
VOH  
V
ILoad = 15.0 mA, PTA0PTA6/SS and  
PTC0PTC1 only  
Output low voltage  
ILoad = 1.6 mA, all I/O pins  
0.4  
1.5  
TBD  
ILoad = 10.0 mA, all I/O pins  
VOL  
V
ILoad = 15.0 mA, PTA0PTA6/SS and  
PTC0PTC1 only  
VIH  
VIL  
0.7 x VDD  
VSS  
V
DD + 0.3  
Input high voltage all ports, IRQ, RST  
Input low voltage all ports, IRQ, RST  
V
V
0.3 x VDD  
+ 2.0  
dc injection current, all ports(3)  
IINJ  
2.0  
mA  
mA  
IINJTOT  
Total dc current injection (sum of all I/O)  
25  
+ 25  
VDD + VDDA supply current  
Run(4), (5)  
Wait(4), (6)  
Stop, 25°C(4), (7)  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
µA  
IDD  
I/O ports Hi-Z leakage current(8)  
IIL  
IIn  
10  
1  
+10  
+1  
µA  
µA  
Input current RESET, OSC1  
COut  
CIn  
Capacitance  
Ports (as input or output)  
12  
8
pF  
POR rearm voltage(9)  
VPOR  
VPOR  
RPOR  
VTST  
0
700  
100  
mV  
mV  
V/ms  
V
POR reset voltage(10)  
0
800  
POR rise time ramp rate  
Monitor mode entry voltage  
0.035  
VDD+ 3.5  
VDD+ 4.5  
Advance Information  
384  
68HC908EY16 Rev 2.0  
Preliminary Electrical Specifications  
MOTOROLA  
Preliminary Electrical Specifications  
DC Electrical Characteristics  
Characteristic(1)  
Typ(2)  
4.25  
4.35  
100  
Symbol  
VTRIPF  
VTRIPR  
VHYS  
Min  
3.90  
4.20  
Max  
4.50  
4.60  
Unit  
V
Low-voltage inhibit reset, trip falling voltage  
Low-voltage inhibit reset, trip rising voltage  
Low-voltage inhibit reset/recover hysteresis  
V
mV  
kΩ  
Pullup resistor PTA0PTA6/SS(11), IRQ, RST  
RPU  
24  
48  
1. VDD = 5.5 Vdc to 4.5 Vdc, VSS = 0 Vdc, TA = 40°C to +125°C, unless otherwise noted  
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.  
3. Some disturbance of the ADC accuracy is possible during any injection event and is dependent on board layout and power  
supply decoupling.  
4. Run (operating) IDD measured using internal oscillator at its 32-MHz rate. VDD = 5.5 Vdc. All inputs 0.2 V from rail. No dc  
loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.  
5. All measurements taken with LVI enabled.  
6. Wait IDD measured using internal oscillator at its 1-MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on  
all outputs. All ports configured as inputs.  
7. Stop IDD is measured with no port pin sourcing current; all modules are disabled. OSCSTOPEN option is not selected.  
8. Pullups and pulldowns are disabled.  
9. Maximum is highest voltage that power-on reset (POR) is guaranteed.  
10. Maximum is highest voltage that POR is possible.  
11. PTA0PTA4 pull-up resistors are for interrupts only and are only enabled when the keyboard is in use.  
68HC908EY16 Rev 2.0  
Advance Information  
385  
MOTOROLA  
Preliminary Electrical Specifications  
Preliminary Electrical Specifications  
23.7 Control Timing  
Characteristic(1)  
Symbol  
Min  
Max  
Unit  
Frequency of operation(2)  
Crystal option  
f
32  
100  
16  
kHz  
MHz  
osc  
External clock option(3)  
dc(4)  
Internal operating frequency  
f
125  
50  
8
MHz  
ns  
op  
Internal clock period (1/fOP  
)
tcyc  
tIRL  
RESET input pulse width low(5)  
ns  
IRQ interrupt pulse width low(6)  
(edge-triggered)  
tILIH  
tILIL  
50  
ns  
IRQ interrupt pulse period  
Note 8  
tcyc  
16-bit timer(7)  
Input capture pulse width  
Input capture period  
tTH, TL  
tTLTL  
t
ns  
tcyc  
Note 8  
Notes:  
1. V  
= 0 Vdc; timing shown with respect to 20% V  
and 70% V  
unless otherwise  
SS  
DD  
SS  
noted.  
2. See Internal Clock Generator (ICG) Module for more information.  
3. No more than 10% duty cycle deviation from 50%  
4. Some modules may require a minimum frequency greater than dc for proper operation.  
See appropriate table for this information.  
5. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller  
pulse width to cause a reset.  
6. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
7. Minimum pulse width is for guaranteed interrupt. It is possible for a smaller pulse width to  
be recognized.  
8. The minimum period, tILIL or tTLTL, should not be less than the number of cycles it takes  
to execute the interrupt service routine plus tcyc  
.
Advance Information  
386  
68HC908EY16 Rev 2.0  
Preliminary Electrical Specifications  
MOTOROLA  
Preliminary Electrical Specifications  
Internal Oscillator Characteristics  
23.8 Internal Oscillator Characteristics  
Characteristic(1)  
Symbol  
Min  
230.4  
25  
1
Typ  
307.2  
Max  
384  
+25  
127  
Unit  
kHz  
%
Internal oscillator base frequency(2), (3)  
fINTOSC  
fOSC_TOL  
N
Internal oscillator tolerance  
Internal oscillator multiplier(4)  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = 40°C to +125°C, unless otherwise noted  
2. Internal oscillator is selectable through software for a maximum frequency. Actual frequency will be  
multiplier (N) x base frequency.  
3. fBus = (fINTOSC / 4) x N when internal clock source selected  
4. Multiplier must be chosen to limit the maximum bus frequency of 8 MHz for 4.5-V operation.  
23.9 External Oscillator Characteristics  
Characteristic(1)  
Symbol  
Min  
Typ  
Max  
Unit  
External clock option(2)(3)  
With ICG clock disabled  
With ICG clock enabled  
EXTSLOW = 1(4)  
EXTSLOW = 0(4)  
32 M(6)  
dc(5)  
fEXTOSC  
Hz  
307.2 k  
32 M(6)  
60  
307.2 k  
External crystal options(7)(8)  
EXTSLOW = 1(4)  
EXTSLOW = 0(4)  
fEXTOSC  
30 k  
1 M  
100 k  
8 M  
Hz  
Crystal load capacitance(9)  
Crystal fixed capacitance(9)  
Crystal tuning capacitance(9)  
Feedback bias resistor(9)  
Series resistor (9)(10)  
CL  
C1  
C2  
RB  
RS  
pF  
pF  
2 x CL  
2 x CL  
pF  
10  
MΩ  
MΩ  
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = 40°C to +125°C, unless otherwise noted  
2. Setting EXTCLKEN configuration option enables OSC1 pin for external clock square-wave input.  
3. No more than 10% duty cycle deviation from 50%  
4. EXTSLOW configuration option configures external oscillator for a slow speed crystal and sets the clock monitor  
circuits of the ICG module to expect an external clock frequency that is higher/lower than the internal oscillator base  
frequency, fINTOSC.  
5. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for  
this information.  
6. MCU speed derates from 32 MHz at VDD = 4.5 Vdc  
7. Setting EXTCLKEN and EXTXTALEN configuration options enables OSC1 and OSC2 pins for external crystal  
option.  
8. fBus = (fEXTOSC / 4) when external clock source is selected.  
9. Consult crystal vendor data sheet, see Figure 7-2. Internal Clock Generator Block Diagram.  
10. Not required for high-frequency crystals  
68HC908EY16 Rev 2.0  
Advance Information  
387  
MOTOROLA  
Preliminary Electrical Specifications  
Preliminary Electrical Specifications  
23.10 Trimmed Accuracy of the Internal Clock Generator  
The unadjusted frequency of the low-frequency base clock (IBASE),  
when the comparators in the frequency comparator indicate zero error,  
can vary as much as ±25% due to process, temperature, and voltage.  
The trimming capability exists to compensate for process affects. The  
remaining variation in frequency is due to temperature, voltage, and  
change in target frequency (multiply register setting). These affects are  
designed to be minimal, however variation does occur. Better  
performance is seen with lower settings of N.  
23.10.1 Trimmed Internal Clock Generator Characteristics  
Characteristic(1)  
Absolute trimmed internal oscillator tolerance(2),(3)  
40°C to 85°C  
Symbol  
Min  
Typ  
Max  
Unit  
%
Fabs_tol  
4.0  
5.0  
7.0  
10.0  
40°C to 125°C  
Variation over temperature(3), (4)  
Var_temp  
0.05  
0.08  
%/°C  
Variation over voltage(3), (5)  
25°C  
40°C to 85°C  
40°C to 125°C  
1.0  
1.0  
1.0  
2.0  
2.0  
2.0  
Var_volt  
%/V  
1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period.  
2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and  
VDD are allowed to vary for a single given setting of N.  
3. Specification is characterized but not tested.  
4. Variation in ICG output frequency for a fixed N and voltage  
5. Variation in ICG output frequency for a fixed N  
Advance Information  
388  
68HC908EY16 Rev 2.0  
MOTOROLA  
Preliminary Electrical Specifications  
Preliminary Electrical Specifications  
Analog-to-Digital Converter (ADC) Characteristics  
23.11 Analog-to-Digital Converter (ADC) Characteristics  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
V
DDA should be tied  
to the same potential  
as VDD via separate  
VDDA  
Supply voltage  
4.5  
5.5  
V
traces  
VADIN  
BAD  
VDDA  
VADIN <= VDDA  
Input voltages  
0
V
Bits  
Resolution  
10  
10  
+4  
AAD  
Absolute accuracy  
ADC internal clock  
Conversion range  
Power-up time  
Conversion time  
Sample time  
4  
Counts  
Hz  
Includes quantization  
fADIC  
RAD  
tAIC = 1/fADIC  
500 k  
VSSA  
1.048 M  
VDDA  
V
tADPU  
tADC  
tADS  
MAD  
ZADI  
FADI  
CADI  
IVREF  
t
AIC cycles  
AIC cycles  
16  
16  
5
17  
t
tAIC cycles  
Monotonicity  
Guaranteed  
V
ADIN = VSSA  
Zero input reading  
Full-scale reading  
Input capacitance  
000  
3FC  
003  
3FF  
30  
Hex  
Hex  
pF  
V
ADIN = VDDA  
Not tested  
VREFH/VREFL current  
1.6  
mA  
Absolute accuracy  
AAD  
1  
+1  
LSB  
LSB  
Includes quantization  
(8-bit truncation mode)  
Quantization error  
+7/8  
1/8  
(8-bit truncation mode)  
68HC908EY16 Rev 2.0  
Advance Information  
389  
MOTOROLA  
Preliminary Electrical Specifications  
Preliminary Electrical Specifications  
23.12 SPI Characteristics  
Diagram  
Characteristic(2)  
Number(1)  
Symbol  
Min  
Max  
Unit  
Operating frequency  
Master  
Slave  
fOP(M)  
fOP(S)  
fOP/128  
DC  
fOP/2  
fOP  
MHz  
MHz  
Cycle time  
1
Master  
Slave  
tCYC(M)  
tCYC(S)  
2
1
128  
tcyc  
tcyc  
2
3
Enable lead time  
Enable lag time  
tLead(S)  
tLag(S)  
1
1
tcyc  
tcyc  
Clock (SPSCK) high time  
4
5
6
7
Master  
Slave  
tSCKH(M)  
tSCKH(S) 1/2 tcyc 25  
tcyc 25  
64 tcyc  
ns  
ns  
Clock (SPSCK) low time  
Master  
Slave  
tSCKL(M)  
tSCKL(S) 1/2 tcyc 25  
tcyc 25  
64 tcyc  
ns  
ns  
Data setup time (inputs)  
Master  
Slave  
tSU(M)  
tSU(S)  
30  
30  
ns  
ns  
Data hold time (inputs)  
Master  
Slave  
tH(M)  
tH(S)  
30  
30  
ns  
ns  
Access time, slave(3)  
CPHA = 0  
CPHA = 1  
8
9
tA(CP0)  
tA(CP1)  
0
0
40  
40  
ns  
ns  
Disable time, slave(4)  
tDIS(S)  
40  
ns  
Data valid time, after enable edge  
10  
Master  
tV(M)  
tV(S)  
50  
50  
ns  
ns  
Slave(5)  
Data hold time, outputs, after enable edge  
11  
Master  
Slave  
tHO(M)  
tHO(S)  
0
0
ns  
ns  
Notes:  
1. Numbers refer to dimensions in Figure 23-1 and Figure 23-2.  
2. All timing is shown with respect to 20% V and 70% V , unless noted; 100 pF load on all SPI pins.  
DD  
DD  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
5. With 100 pF on all SPI pins  
Advance Information  
68HC908EY16 Rev 2.0  
390  
Preliminary Electrical Specifications  
MOTOROLA  
Preliminary Electrical Specifications  
SPI Characteristics  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
5
4
SPSCK OUTPUT  
CPOL = 0  
NOTE  
4
5
SPSCK OUTPUT  
CPOL = 1  
NOTE  
6
7
MISO  
MSB IN  
BITS 61  
BITS 61  
LSB IN  
INPUT  
11  
MASTER MSB OUT  
10  
11  
MOSI  
OUTPUT  
MASTER LSB OUT  
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.  
a) SPI Master Timing (CPHA = 0)  
SS  
INPUT  
SS PIN OF MASTER HELD HIGH  
1
SPSCK OUTPUT  
CPOL = 0  
5
NOTE  
NOTE  
4
SPSCK OUTPUT  
CPOL = 1  
5
4
6
7
MISO  
MSB IN  
11  
BITS 61  
BITS 61  
LSB IN  
INPUT  
10  
10  
MOSI  
OUTPUT  
MASTER MSB OUT  
MASTER LSB OUT  
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.  
b) SPI Master Timing (CPHA = 1)  
Figure 23-1 SPI Master Timing  
68HC908EY16 Rev 2.0  
Advance Information  
391  
MOTOROLA  
Preliminary Electrical Specifications  
Preliminary Electrical Specifications  
SS  
INPUT  
3
1
SPSCK INPUT  
CPOL = 0  
5
4
4
5
2
SPSCK INPUT  
CPOL = 1  
9
8
MISO  
SLAVE MSB OUT  
BITS 61  
BITS 61  
SLAVE LSB OUT  
11  
NOTE  
INPUT  
11  
6
7
10  
MOSI  
OUTPUT  
MSB IN  
LSB IN  
Note: Not defined but normally MSB of character just received  
a) SPI Slave Timing (CPHA = 0)  
SS  
INPUT  
1
SPSCK INPUT  
CPOL = 0  
5
4
5
2
3
SPSCK INPUT  
CPOL = 1  
4
10  
9
8
MISO  
NOTE  
SLAVE MSB OUT  
BITS 61  
BITS 61  
SLAVE LSB OUT  
OUTPUT  
11  
6
7
10  
MOSI  
INPUT  
MSB IN  
LSB IN  
Note: Not defined but normally LSB of character previously transmitted  
b) SPI Slave Timing (CPHA = 1)  
Figure 23-2 SPI Slave Timing  
Advance Information  
392  
68HC908EY16 Rev 2.0  
Preliminary Electrical Specifications  
MOTOROLA  
Preliminary Electrical Specifications  
Memory Characteristics  
23.13 Memory Characteristics  
Symbol/  
Description  
Characteristic  
Min  
Max  
Units  
RAM data retention voltage(1)  
VRDR  
1.3  
1
V
FLASH program bus clock frequency  
MHz  
Hz  
(2)  
FLASH read bus clock frequency  
FLASH page erase time  
32 k  
8 M  
fRead  
(3)  
4
ms  
tErase  
(4)  
FLASH mass erase time  
4
10  
5
40  
ms  
µs  
µs  
µs  
µs  
µs  
µs  
tMErase  
tNVS  
tNVH  
tNVHL  
tPGS  
FLASH PGM/ERASE to HVEN setup time  
FLASH high-voltage hold time  
FLASH high-voltage hold time (mass erase)  
FLASH program hold time  
100  
5
tPROG  
FLASH program time  
30  
1
(5)  
FLASH return to read time  
tRCV  
(6)  
FLASH cumulative program HV period  
4
ms  
tHV  
FLASH row erase endurance(7)  
FLASH row program endurance(6)  
10 K  
10 K  
10  
Cycles  
Cycles  
Years  
FLASH data retention time(8)  
1. Specification is characterized but not tested.  
2. fRead is defined as the frequency range for which the FLASH memory can be read.  
3. If the page erase time is longer than tErase (min), there is no erase-disturb, but it reduces the endurance of the  
FLASH memory.  
4. If the mass erase time is longer than tMErase (min), there is no erase-disturb, but it reduces the endurance of the  
FLASH memory.  
5. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump,  
by clearing HVEN to logic 0.  
6. tHV is defined as the cumulative high voltage programming time to the same row before next erase.  
tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG × 64) tHV max.  
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this  
many erase/program cycles.  
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time  
specified.  
68HC908EY16 Rev 2.0  
Advance Information  
393  
MOTOROLA  
Preliminary Electrical Specifications  
Preliminary Electrical Specifications  
Advance Information  
68HC908EY16 Rev 2.0  
394  
Preliminary Electrical Specifications  
MOTOROLA  
Advance Information 68HC908EY16  
Section 24. Mechanical Specifications  
24.1 Contents  
24.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .395  
24.3 32-Pin QFP (Case Number 873) . . . . . . . . . . . . . . . . . . . . . .396  
24.2 Introduction  
This section gives the dimensions for the 32-pin quad flat pack (QFP).  
The following figure shows the latest package drawings at the time of this  
publication. To make sure that you have the latest package  
specifications, contact one of the following:  
Local Motorola Sales Office  
Worldwide Web at  
http://www.motorola.com/semiconductors/  
Follow Worldwide Web on-line instructions to retrieve the current  
mechanical specifications.  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Mechanical Specifications  
395  
Mechanical Specifications  
24.3 32-Pin QFP (Case Number 873)  
L
17  
24  
25  
16  
B–  
A–  
V
L
B
B
B
P
DETAIL A  
32  
9
1
8
A, B, D–  
D–  
DETAIL A  
A
M
S
S
D
0.20 (0.008)  
C
AB  
0.05 (0.002) AB  
S
F
BASE  
METAL  
M
S
S
D
0.20 (0.008)  
H
AB  
DETAIL C  
M
N
J
E
C
DATUM  
PLANE  
H–  
D
C–  
SEATING  
PLANE  
M
S
S
D
0.01 (0.004)  
0.20 (0.008)  
C
AB  
M
H
G
SECTION BB  
VIEW ROTATED 90 CLOCKWISE  
U
MILLIMETERS  
INCHES  
MIN MAX  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
DIM  
A
B
C
D
E
MIN  
6.95  
6.95  
1.40  
0.273  
1.30  
0.273  
MAX  
7.10  
7.10  
1.60  
0.373  
1.50  
–––  
0.274  
0.274  
0.055  
0.010  
0.051  
0.010  
0.280  
0.280  
0.063  
0.015  
0.059  
–––  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE HIS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THE LEAD EXITS THE PLASTIC BODY AT THE  
BOTTOM OF THE PARTING LINE.  
4. DATUMS A, BAND DTO BE DETERMINED AT  
DATUM PLANE H.  
T
F
R
H–  
G
H
J
K
L
M
N
P
0.80 BSC  
0.031 BSC  
DATUM  
–––  
0.119  
0.33  
0.20  
0.197  
0.57  
–––  
0.005  
0.013  
0.008  
0.008  
0.022  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE C.  
PLANE  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25  
(0.010) PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE DETERMINED  
AT DATUM PLANE H.  
5.6 REF  
0.220 REF  
K
6
8
6
8
Q
0.119  
0.135  
0.005  
0.005  
X
0.40 BSC  
0.016 BSC  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
DAMBAR CANNOT BE LOCATED ON THE LOWER  
RADIUS OR THE FOOT.  
Q
R
S
T
U
V
5
10  
5
0.006  
0.348  
0.006  
5
10  
DETAIL C  
0.15  
8.85  
0.15  
5
0.25  
9.15  
0.25  
11  
0.010  
0.360  
0.010  
11  
8.85  
9.15  
0.348  
0.360  
X
1.00 REF  
0.039 REF  
Advance Information  
396  
68HC908EY16 Rev 2.0  
Mechanical Specifications  
MOTOROLA  
Advance Information 68HC908EY16  
Section 25. Ordering Information  
25.1 Contents  
25.2 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
25.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397  
25.2 Introduction  
This section contains ordering numbers for the MC68HC908EY16.  
25.3 MC Order Numbers  
Table 25-1. MC Order Numbers  
Operating  
MC Order Number(1)  
MC68HC908EY16MFA  
Temperature Range  
40°C to +125°C  
40°C to +105°C  
40°C to +85°C  
MC68HC908EY16VFA  
MC68HC908EY16CFA  
1. FA = Quad flat pack  
68HC908EY16 Rev 2.0  
Advance Information  
397  
MOTOROLA  
Ordering Information  
 
Ordering Information  
Advance Information  
398  
68HC908EY16 Rev 2.0  
Ordering Information  
MOTOROLA  
Advance Information 68HC908EY16  
Revision History  
Contents  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
Changes from Rev 1.0 published on 17 April 2002 to Rev 2.0 published  
in May 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399  
Changes from Rev 0.4 published internally on 9 April 2002 to Rev 1.0  
published on 17 April 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400  
Changes from Rev 0.3 published on 6 September 2001 to Rev 0.4 pub-  
lished internally on 9 April 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . .400  
Changes from Rev 0.0 published on 17 July 2001 to Rev 0.2 published  
on 1 August 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
Changes from Rev 0.0 published on 17 July 2001 to Rev 0.2 published  
on 1 August 2001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403  
Introduction  
This section contains the revision history for the 68HC908EY16 advance  
information data book.  
Changes from Rev 1.0 published on 17 April 2002 to Rev 2.0 published in May  
2002  
3V option removed.  
PTB5 frequency divider function removed.  
BEMF section moved from appendix to Section 18.  
68HC908EY16 Rev 2.0  
Advance Information  
399  
MOTOROLA  
Revision History  
 
Revision History  
Section  
Page (in Rev 0.4)  
Description of change  
ESCIBDSRC bit added to CONFIG2  
Memory Map  
50  
Configuration  
Registers  
(CONFIG1 &  
CONFIG2)  
150  
204  
ESCIBDSRC bit added to CONFIG2 with bit description  
Enhanced Serial  
Communications  
Interface (ESCI)  
Module  
Baud rate selection sentence added to sections 14.5 and 14.5.2 and  
after Table 14-10.  
Changes from Rev 0.4 published internally on 9 April 2002 to Rev 1.0  
published on 17 April 2002  
Change in revision number only to denote external release version.  
Changes from Rev 0.3 published on 6 September 2001 to Rev 0.4 published  
internally on 9 April 2002  
Section  
Page (in Rev 0.4)  
Description of change  
Memory Map  
43  
62  
65  
Reserved port register bits redefined as unimplemented  
Note added about erasing last FLASH page  
FLASH Memory  
Removed last two sentences of FLASH Block Protection description  
System Integration  
Module (SIM)  
92  
RST description added  
Configuration  
Registers  
(CONFIG1 &  
CONFIG2)  
149  
PTB7 changed to PTC3  
Advance Information  
400  
68HC908EY16 Rev 2.0  
Revision History  
MOTOROLA  
Revision History  
Changes from Rev 0.2 published on 1 August 2001 to Rev 0.3 published on 6 September 2001  
Section  
Page (in Rev 0.4)  
Description of change  
Table 10-1 . Mode Selection added  
169  
Added sentence about forced monitor mode  
Updated first note in section 10.5.1  
170  
Monitor ROM  
(MON)  
170  
171  
210  
PTB5 column added to Table 10-2  
PTB5 pin added to Figure 10-1  
Enhanced Serial  
Communications  
Interface (ESCI)  
Module  
Note added regarding length of break character when followed by an  
idle.  
Prescale bits renamed  
ACLK = 0 description changed  
238  
243 and 244  
Timer Interface A  
(TIMA) Module  
279 301  
303 326  
Several updates for clarification  
Several updates for clarification  
Timer Interface B  
(TIMB) Module  
Analog-to-Digital  
Converter (ADC)  
Module  
345  
354  
355  
Reserved register bits redefined as unimplemented  
Table 20-1 updated to show all unused combinations  
Left Justified Mode description corrected  
Input/Output (I/O)  
Ports  
361 376  
Reserved register bits redefined as unimplemented  
Port B description updated  
366  
Changes to:  
382 and 384  
382 and 384  
382 and 384  
386  
Hi-Z leakage current  
Input current  
Monitor mode entry voltage  
External clock frequency of operation  
FLASH page erase time  
Preliminary  
Electrical  
Specifications  
391  
Changes from Rev 0.2 published on 1 August 2001 to Rev 0.3 published on 6  
September 2001  
Section  
Page (in Rev 0.3)  
Description of change  
$001E TMBCLKSEL and SSBPUENB bits added  
$001E TMBCLKSEL and SSBPUENB bits added  
Memory Map  
50  
Configuration  
Registers  
150  
(CONFIG1 &  
CONFIG2)  
152  
Corrections to Table 8-1: PTB6 to PTC4 and PTB7 to PTC3  
68HC908EY16 Rev 2.0  
Advance Information  
401  
MOTOROLA  
Revision History  
Revision History  
Section  
Page (in Rev 0.3)  
Description of change  
Figure 12-1 updated, digital filter removed  
False reset protection text updated  
Table 12-1 updated  
188  
189  
190  
191  
Low-Voltage Inhibit  
(LVI) Module  
References to digital filter removed  
Timer Interface A  
(TIMA) Module  
280  
304  
External clock input removed from features  
External clock input removed from features  
Timer Interface B  
(TIMB) Module  
336  
337  
338  
345  
Divide-by-128 replaced by divide-by-1024  
Figure 19-1 updated  
Timebase Module  
(TBM)  
Note added after Table 19-1  
Analog-to-Digital  
Converter (ADC)  
Module  
PTC and Cx removed from Figure 20-1  
347  
ADCR changed to ADCLK  
384 and 386  
388 and 392  
391  
Control Timing specifications added  
SPI characteristics added  
Preliminary  
Electrical  
Specifications  
FLASH read bus clock frequency changed to 8 MHz  
Advance Information  
402  
68HC908EY16 Rev 2.0  
MOTOROLA  
Revision History  
Revision History  
Changes from Rev 0.0 published on 17 July 2001 to Rev 0.2 published on 1 August 2001  
Changes from Rev 0.0 published on 17 July 2001 to Rev 0.2 published on 1  
August 2001  
Section  
Page (in Rev 0.2)  
Description of change  
Third bullet in standard features list changes to:  
8-MHz internal bus frequency at 5V, 4MHZ at 3V  
34  
General Description  
37  
48  
BEMF module added to block diagram  
BEMF register added  
Register addresses changed for ADC:  
$003B is now reserved  
ADSCR is now $003C  
Memory Map  
53  
ADRH is now $003D  
ADRL is now $003E  
54  
68  
Reset value of $003F corrected to $04  
Several corrections made to Table 4-1  
FLASH Memory  
Monitor ROM  
(MON)  
168, 172  
Erased Flash locations corrected to $FF  
Keyboard Interrupt  
(KBD) Module  
330  
352  
355  
Keyboard interrupt vector corrected to $FFE4 and $FFE5  
Address of ADSCR is now $003C  
Address of ADRH is now $003D  
Register description now includes left justified mode  
Analog-to-Digital  
Converter (ADC)  
Module  
Address of ADRL is now $003E for right justified mode as well as  
8-bit mode  
358  
Register description now includes left justified mode  
359  
361  
Reset value of $003F corrected to $04  
BEMF register added to Figure 21-1  
Input/Output (I/O)  
Ports  
Preliminary  
Electrical  
Specifications  
383  
401  
dc injection current specifications corrected  
New appendix  
BEMF Module  
68HC908EY16 Rev 2.0  
Advance Information  
MOTOROLA  
Revision History  
403  
Revision History  
Advance Information  
404  
68HC908EY16 Rev 2.0  
Revision History  
MOTOROLA  
Advance Information 68HC908EY16  
Glossary  
A See accumulator (A).”  
accumulator (A) An 8-bit general-purpose register in the CPU08. The CPU08 uses the  
accumulator to hold operands and results of arithmetic and logic operations.  
acquisition mode A mode of PLL operation during startup before the PLL locks on a  
frequency. Also see "tracking mode."  
address bus The set of wires that the CPU or DMA uses to read and write memory locations.  
addressing mode The way that the CPU determines the operand address for an instruction.  
The M68HC08 CPU has 16 addressing modes.  
ALU See arithmetic logic unit (ALU).”  
arithmetic logic unit (ALU) The portion of the CPU that contains the logic circuitry to perform  
arithmetic, logic, and manipulation operations on operands.  
asynchronous Refers to logic circuits and operations that are not synchronized by a common  
reference signal.  
baud rate The total number of bits transmitted per unit of time.  
BCD See binary-coded decimal (BCD).”  
binary Relating to the base 2 number system.  
binary number system The base 2 number system, having two digits, 0 and 1. Binary  
arithmetic is convenient in digital circuit design because digital circuits have two  
permissible voltage levels, low and high. The binary digits 0 and 1 can be interpreted to  
correspond to the two digital voltage levels.  
binary-coded decimal (BCD) A notation that uses 4-bit binary numbers to represent the 10  
decimal digits and that retains the same positional structure of a decimal number. For  
example,  
234 (decimal) = 0010 0011 0100 (BCD)  
bit A binary digit. A bit has a value of either logic 0 or logic 1.  
68HC908EY16 Rev 2.0  
Advance Information  
405  
MOTOROLA  
Glossary  
Glossary  
branch instruction An instruction that causes the CPU to continue processing at a memory  
location other than the next sequential address.  
break module A module in the M68HC08 Family. The break module allows software to halt  
program execution at a programmable point in order to enter a background routine.  
breakpoint A number written into the break address registers of the break module. When a  
number appears on the internal address bus that is the same as the number in the break  
address registers, the CPU executes the software interrupt instruction (SWI).  
break interrupt A software interrupt caused by the appearance on the internal address bus  
of the same value that is written in the break address registers.  
bus A set of wires that transfers logic signals.  
bus clock The bus clock is derived from the CGMOUT output from the CGM. The bus clock  
frequency, fop, is equal to the frequency of the oscillator output, CGMXCLK, divided by  
four.  
byte A set of eight bits.  
C The carry/borrow bit in the condition code register. The CPU08 sets the carry/borrow bit  
when an addition operation produces a carry out of bit 7 of the accumulator or when a  
subtraction operation requires a borrow. Some logical operations and data manipulation  
instructions also clear or set the carry/borrow bit (as in bit test and branch instructions and  
shifts and rotates).  
CCR See condition code register.”  
central processor unit (CPU) The primary functioning unit of any computer system. The  
CPU controls the execution of instructions.  
CGM See clock generator module (CGM).”  
clear To change a bit from logic 1 to logic 0; the opposite of set.  
clock A square wave signal used to synchronize events in a computer.  
clock generator module (CGM) A module in the M68HC08 Family. The CGM generates a  
base clock signal from which the system clocks are derived. The CGM may include a  
crystal oscillator circuit and or phase-locked loop (PLL) circuit.  
comparator A device that compares the magnitude of two inputs. A digital comparator defines  
the equality or relative differences between two binary numbers.  
computer operating properly module (COP) A counter module in the M68HC08 Family that  
resets the MCU if allowed to overflow.  
Advance Information  
406  
68HC908EY16 Rev 2.0  
Glossary  
MOTOROLA  
Glossary  
condition code register (CCR) An 8-bit register in the CPU08 that contains the interrupt  
mask bit and five bits that indicate the results of the instruction just executed.  
control bit One bit of a register manipulated by software to control the operation of the  
module.  
control unit One of two major units of the CPU. The control unit contains logic functions that  
synchronize the machine and direct various operations. The control unit decodes  
instructions and generates the internal control signals that perform the requested  
operations. The outputs of the control unit drive the execution unit, which contains the  
arithmetic logic unit (ALU), CPU registers, and bus interface.  
COP See "computer operating properly module (COP)."  
counter clock The input clock to the TIM counter. This clock is the output of the TIM  
prescaler.  
CPU See central processor unit (CPU).”  
CPU08 The central processor unit of the M68HC08 Family.  
CPU clock The CPU clock is derived from the CGMOUT output from the CGM. The CPU  
clock frequency is equal to the frequency of the oscillator output, CGMXCLK, divided by  
four.  
CPU cycles A CPU cycle is one period of the internal bus clock, normally derived by dividing  
a crystal oscillator source by two or more so the high and low times will be equal. The  
length of time required to execute an instruction is measured in CPU clock cycles.  
CPU registers Memory locations that are wired directly into the CPU logic instead of being  
part of the addressable memory map. The CPU always has direct access to the  
information in these registers. The CPU registers in an M68HC08 are:  
A (8-bit accumulator)  
H:X (16-bit index register)  
SP (16-bit stack pointer)  
PC (16-bit program counter)  
CCR (condition code register containing the V, H, I, N, Z, and C  
bits)  
CSIC customer-specified integrated circuit  
cycle time The period of the operating frequency: tCYC = 1/fOP.  
decimal number system Base 10 numbering system that uses the digits zero through nine.  
68HC908EY16 Rev 2.0  
Advance Information  
407  
MOTOROLA  
Glossary  
Glossary  
direct memory access module (DMA) A M68HC08 Family module that can perform data  
transfers between any two CPU-addressable locations without CPU intervention. For  
transmitting or receiving blocks of data to or from peripherals, DMA transfers are faster  
and more code-efficient than CPU interrupts.  
DMA See "direct memory access module (DMA)."  
DMA service request A signal from a peripheral to the DMA module that enables the DMA  
module to transfer data.  
duty cycle A ratio of the amount of time the signal is on versus the time it is off. Duty cycle is  
usually represented by a percentage.  
EEPROM Electrically erasable, programmable, read-only memory. A nonvolatile type of  
memory that can be electrically reprogrammed.  
EPROM Erasable, programmable, read-only memory. A nonvolatile type of memory that can  
be erased by exposure to an ultraviolet light source and then reprogrammed.  
exception An event such as an interrupt or a reset that stops the sequential execution of the  
instructions in the main program.  
external interrupt module (IRQ) A module in the M68HC08 Family with both dedicated  
external interrupt pins and port pins that can be enabled as interrupt pins.  
fetch To copy data from a memory location into the accumulator.  
firmware Instructions and data programmed into nonvolatile memory.  
free-running counter A device that counts from zero to a predetermined number, then rolls  
over to zero and begins counting again.  
full-duplex transmission Communication on a channel in which data can be sent and  
received simultaneously.  
H The upper byte of the 16-bit index register (H:X) in the CPU08.  
H The half-carry bit in the condition code register of the CPU08. This bit indicates a carry from  
the low-order four bits of the accumulator value to the high-order four bits. The half-carry  
bit is required for binary-coded decimal arithmetic operations. The decimal adjust  
accumulator (DAA) instruction uses the state of the H and C bits to determine the  
appropriate correction factor.  
hexadecimal Base 16 numbering system that uses the digits 0 through 9 and the letters A  
through F.  
high byte The most significant eight bits of a word.  
Advance Information  
408  
68HC908EY16 Rev 2.0  
Glossary  
MOTOROLA  
Glossary  
illegal address An address not within the memory map  
illegal opcode A nonexistent opcode.  
I The interrupt mask bit in the condition code register of the CPU08. When I is set, all interrupts  
are disabled.  
index register (H:X) A 16-bit register in the CPU08. The upper byte of H:X is called H. The  
lower byte is called X. In the indexed addressing modes, the CPU uses the contents of  
H:X to determine the effective address of the operand. H:X can also serve as a temporary  
data storage location.  
input/output (I/O) Input/output interfaces between a computer system and the external world.  
A CPU reads an input to sense the level of an external signal and writes to an output to  
change the level on an external signal.  
instructions Operations that a CPU can perform. Instructions are expressed by programmers  
as assembly language mnemonics. A CPU interprets an opcode and its associated  
operand(s) and instruction.  
interrupt A temporary break in the sequential execution of a program to respond to signals  
from peripheral devices by executing a subroutine.  
interrupt request A signal from a peripheral to the CPU intended to cause the CPU to  
execute a subroutine.  
I/O See input/output (I/0).”  
IRQ See "external interrupt module (IRQ)."  
jitter Short-term signal instability.  
latch A circuit that retains the voltage level (logic 1 or logic 0) written to it for as long as power  
is applied to the circuit.  
latency The time lag between instruction completion and data movement.  
least significant bit (LSB) The rightmost digit of a binary number.  
logic 1 A voltage level approximately equal to the input power voltage (VDD).  
logic 0 A voltage level approximately equal to the ground voltage (VSS).  
low byte The least significant eight bits of a word.  
low voltage inhibit module (LVI) A module in the M68HC08 Family that monitors power  
supply voltage.  
68HC908EY16 Rev 2.0  
Advance Information  
409  
MOTOROLA  
Glossary  
Glossary  
LVI See "low voltage inhibit module (LVI)."  
M68HC08 A Motorola family of 8-bit MCUs.  
mark/space The logic 1/logic 0 convention used in formatting data in serial communication.  
mask 1. A logic circuit that forces a bit or group of bits to a desired state. 2. A photomask used  
in integrated circuit fabrication to transfer an image onto silicon.  
mask option A optional microcontroller feature that the customer chooses to enable or  
disable.  
mask option register (MOR) An EPROM location containing bits that enable or disable  
certain MCU features.  
MCU Microcontroller unit. See microcontroller.”  
memory location Each M68HC08 memory location holds one byte of data and has a unique  
address. To store information in a memory location, the CPU places the address of the  
location on the address bus, the data information on the data bus, and asserts the write  
signal. To read information from a memory location, the CPU places the address of the  
location on the address bus and asserts the read signal. In response to the read signal,  
the selected memory location places its data onto the data bus.  
memory map A pictorial representation of all memory locations in a computer system.  
microcontroller Microcontroller unit (MCU). A complete computer system, including a CPU,  
memory, a clock oscillator, and input/output (I/O) on a single integrated circuit.  
modulo counter A counter that can be programmed to count to any number from zero to its  
maximum possible modulus.  
monitor ROM A section of ROM that can execute commands from a host computer for testing  
purposes.  
MOR See "mask option register (MOR)."  
most significant bit (MSB) The leftmost digit of a binary number.  
multiplexer A device that can select one of a number of inputs and pass the logic level of that  
input on to the output.  
N The negative bit in the condition code register of the CPU08. The CPU sets the negative bit  
when an arithmetic operation, logical operation, or data manipulation produces a negative  
result.  
nibble A set of four bits (half of a byte).  
Advance Information  
410  
68HC908EY16 Rev 2.0  
Glossary  
MOTOROLA  
Glossary  
object code The output from an assembler or compiler that is itself executable machine code,  
or is suitable for processing to produce executable machine code.  
opcode A binary code that instructs the CPU to perform an operation.  
open-drain An output that has no pullup transistor. An external pullup device can be  
connected to the power supply to provide the logic 1 output voltage.  
operand Data on which an operation is performed. Usually a statement consists of an  
operator and an operand. For example, the operator may be an add instruction, and the  
operand may be the quantity to be added.  
oscillator A circuit that produces a constant frequency square wave that is used by the  
computer as a timing and sequencing reference.  
OTPROM One-time programmable read-only memory. A nonvolatile type of memory that  
cannot be reprogrammed.  
overflow A quantity that is too large to be contained in one byte or one word.  
page zero The first 256 bytes of memory (addresses $0000$00FF).  
parity An error-checking scheme that counts the number of logic 1s in each byte transmitted.  
In a system that uses odd parity, every byte is expected to have an odd number of logic  
1s. In an even parity system, every byte should have an even number of logic 1s. In the  
transmitter, a parity generator appends an extra bit to each byte to make the number of  
logic 1s odd for odd parity or even for even parity. A parity checker in the receiver counts  
the number of logic 1s in each byte. The parity checker generates an error signal if it finds  
a byte with an incorrect number of logic 1s.  
PC See program counter (PC).”  
peripheral A circuit not under direct CPU control.  
phase-locked loop (PLL) A oscillator circuit in which the frequency of the oscillator is  
synchronized to a reference signal.  
PLL See "phase-locked loop (PLL)."  
pointer Pointer register. An index register is sometimes called a pointer register because its  
contents are used in the calculation of the address of an operand, and therefore points to  
the operand.  
polarity The two opposite logic levels, logic 1 and logic 0, which correspond to two different  
voltage levels, VDD and VSS.  
polling Periodically reading a status bit to monitor the condition of a peripheral device.  
68HC908EY16 Rev 2.0  
Advance Information  
411  
MOTOROLA  
Glossary  
Glossary  
port A set of wires for communicating with off-chip devices.  
prescaler A circuit that generates an output signal related to the input signal by a fractional  
scale factor such as 1/2, 1/8, 1/10 etc.  
program A set of computer instructions that cause a computer to perform a desired operation  
or operations.  
program counter (PC) A 16-bit register in the CPU08. The PC register holds the address of  
the next instruction or operand that the CPU will use.  
pull An instruction that copies into the accumulator the contents of a stack RAM location. The  
stack RAM address is in the stack pointer.  
pullup A transistor in the output of a logic gate that connects the output to the logic 1 voltage  
of the power supply.  
pulse-width The amount of time a signal is on as opposed to being in its off state.  
pulse-width modulation (PWM) Controlled variation (modulation) of the pulse width of a  
signal with a constant frequency.  
push An instruction that copies the contents of the accumulator to the stack RAM. The stack  
RAM address is in the stack pointer.  
PWM period The time required for one complete cycle of a PWM waveform.  
RAM Random access memory. All RAM locations can be read or written by the CPU. The  
contents of a RAM memory location remain valid until the CPU writes a different value or  
until power is turned off.  
RC circuit A circuit consisting of capacitors and resistors having a defined time constant.  
read To copy the contents of a memory location to the accumulator.  
register A circuit that stores a group of bits.  
reserved memory location A memory location that is used only in special factory test modes.  
Writing to a reserved location has no effect. Reading a reserved location returns an  
unpredictable value.  
reset To force a device to a known condition.  
ROM Read-only memory. A type of memory that can be read but cannot be changed (written).  
The contents of ROM must be specified before manufacturing the MCU.  
SCI See "serial communication interface module (SCI)."  
serial Pertaining to sequential transmission over a single line.  
Advance Information  
412  
68HC908EY16 Rev 2.0  
Glossary  
MOTOROLA  
Glossary  
serial communications interface module (SCI) A module in the M68HC08 Family that  
supports asynchronous communication.  
serial peripheral interface module (SPI) A module in the M68HC08 Family that supports  
synchronous communication.  
set To change a bit from logic 0 to logic 1; opposite of clear.  
shift register A chain of circuits that can retain the logic levels (logic 1 or logic 0) written to  
them and that can shift the logic levels to the right or left through adjacent circuits in the  
chain.  
signed A binary number notation that accommodates both positive and negative numbers.  
The most significant bit is used to indicate whether the number is positive or negative,  
normally logic 0 for positive and logic 1 for negative. The other seven bits indicate the  
magnitude of the number.  
software Instructions and data that control the operation of a microcontroller.  
software interrupt (SWI) An instruction that causes an interrupt and its associated vector  
fetch.  
SPI See "serial peripheral interface module (SPI)."  
stack A portion of RAM reserved for storage of CPU register contents and subroutine return  
addresses.  
stack pointer (SP) A 16-bit register in the CPU08 containing the address of the next available  
storage location on the stack.  
start bit A bit that signals the beginning of an asynchronous serial transmission.  
status bit A register bit that indicates the condition of a device.  
stop bit A bit that signals the end of an asynchronous serial transmission.  
subroutine A sequence of instructions to be used more than once in the course of a program.  
The last instruction in a subroutine is a return from subroutine (RTS) instruction. At each  
place in the main program where the subroutine instructions are needed, a jump or branch  
to subroutine (JSR or BSR) instruction is used to call the subroutine. The CPU leaves the  
flow of the main program to execute the instructions in the subroutine. When the RTS  
instruction is executed, the CPU returns to the main program where it left off.  
synchronous Refers to logic circuits and operations that are synchronized by a common  
reference signal.  
TIM See "timer interface module (TIM)."  
68HC908EY16 Rev 2.0  
Advance Information  
413  
MOTOROLA  
Glossary  
Glossary  
timer interface module (TIM) A module used to relate events in a system to a point in time.  
timer A module used to relate events in a system to a point in time.  
toggle To change the state of an output from a logic 0 to a logic 1 or from a logic 1 to a logic 0.  
tracking mode Mode of low-jitter PLL operation during which the PLL is locked on a  
frequency. Also see "acquisition mode."  
twos complement A means of performing binary subtraction using addition techniques. The  
most significant bit of a twos complement number indicates the sign of the number (1  
indicates negative). The twos complement negative of a number is obtained by inverting  
each bit in the number and then adding 1 to the result.  
unbuffered Utilizes only one register for data; new data overwrites current data.  
unimplemented memory location A memory location that is not used. Writing to an  
unimplemented location has no effect. Reading an unimplemented location returns an  
unpredictable value. Executing an opcode at an unimplemented location causes an illegal  
address reset.  
V The overflow bit in the condition code register of the CPU08. The CPU08 sets the V bit when  
a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE,  
and BLT use the overflow bit.  
variable A value that changes during the course of program execution.  
VCO See "voltage-controlled oscillator."  
vector A memory location that contains the address of the beginning of a subroutine written  
to service an interrupt or reset.  
voltage-controlled oscillator (VCO) A circuit that produces an oscillating output signal of a  
frequency that is controlled by a dc voltage applied to a control input.  
waveform A graphical representation in which the amplitude of a wave is plotted against time.  
wired-OR Connection of circuit outputs so that if any output is high, the connection point is  
high.  
word A set of two bytes (16 bits).  
write The transfer of a byte of data from the CPU to a memory location.  
X The lower byte of the index register (H:X) in the CPU08.  
Z The zero bit in the condition code register of the CPU08. The CPU08 sets the zero bit when  
an arithmetic operation, logical operation, or data manipulation produces a result of $00.  
Advance Information  
414  
68HC908EY16 Rev 2.0  
Glossary  
MOTOROLA  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Information in this document is provided solely to enable system and software  
implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
Motorola Semiconductors H.K. Ltd.;  
Silicon Harbour Centre, 2 Dai King Street,  
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852-26668334  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
Motorola reserves the right to make changes without further notice to any products  
herein. Motorola makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Motorola assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. Typicalparameters which may be provided in Motorola data sheets  
and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including Typicals”  
must be validated for each customer application by customers technical experts.  
Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which  
the failure of the Motorola product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Motorola products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated  
with such unintended or unauthorized use, even if such claim alleges that Motorola  
was negligent regarding the design or manufacture of the part.  
HOME PAGE:  
http://www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark  
Office. digital dna is a trademark of Motorola, Inc. All other product or service  
names are the property of their respective owners. Motorola, Inc. is an Equal  
Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 2002  
MC68HC908EY16/D  

相关型号:

MC68HC908EY16VFAE

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY16VFAE

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, LEAD FREE, PLASTIC, QFP-32
NXP

MC68HC908EY8

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY8A

M68HC08 Microcontrollers
FREESCALE

MC68HC908EY8CFAE

8-BIT, FLASH, 8 MHz, MICROCONTROLLER, PQFP32, LEAD FREE, PLASTIC, QFP-32
NXP

MC68HC908EY8KFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, PLASTIC, QFP-32
NXP

MC68HC908EY8VFA

8-BIT, FLASH, 8MHz, MICROCONTROLLER, PQFP32, PLASTIC, QFP-32
NXP

MC68HC908GP20

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP20CFB

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP20CFB

Microcontroller, 8-Bit, FLASH, 68HC08 CPU, 8.2MHz, HCMOS, PQFP44, PLASTIC, QFP-44
MOTOROLA

MC68HC908GP20CP

M68HC08 Microcontrollers
FREESCALE

MC68HC908GP32

M68HC08 Family of 8-bit microcontroller units (MCUs)
MOTOROLA