LE79R240QC [MICROSEMI]

SLIC, Bipolar, CQCC32, 8 X 8 MM, QFN-32;
LE79R240QC
型号: LE79R240QC
厂家: Microsemi    Microsemi
描述:

SLIC, Bipolar, CQCC32, 8 X 8 MM, QFN-32

电信 电信集成电路
文件: 总23页 (文件大小:606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISLIC™  
Intelligent Subscriber Line Interface Circuit  
Am79R240*/Le79R240 Device  
APPLICATIONS  
ORDERING INFORMATION  
An ISLAC™ device must be used with this part.  
I Optimized for Voice over Broadband and related  
applications  
Device  
Am79R240JC*  
Package  
32-pin PLCC  
— Cable telephony  
— Integrated Access Devices (IAD)  
— Smart Residential Gateways (SRG)  
— LAN Systems  
Le79R240JC  
Le79R240QC**  
32-pin PLCC  
32-pin QFN  
*This product can be ordered using ordering part numbers Am79R240  
or Le79R240. The Am79R240 ordering part number will be discontin-  
ued after 6/30/02, at which time the product will only be available using  
the Le79R240 ordering part number.  
**Due to size constraints, QFN devices are marked by omitting the “Le”  
prefix. For example, Le79R240QC is marked 79R240QC.  
FEATURES  
I Monitor of two-wire interface voltages and currents  
supports  
— Voice transmission  
— Internal chip ring generation  
— Programmable DC feed characteristics  
DESCRIPTION  
In combination with an ISLAC™ device, the Le79R240 device  
implements the telephone line interface function. This enables  
the design of a low cost, high performance, fully software  
programmable line interface for multiple country applications  
worldwide. All AC, DC, and signaling parameters are fully  
programmable via microprocessor or GCI interfaces on the  
ISLAC device. Additionally, the Le79R240 device has  
integrated self-test capabilities to resolve faults to the line  
circuit.  
Independent of battery  
Current limited  
— Selectable off-hook and ground-key thresholds  
— Power cross and fault detection  
I Supports internal short loop ringing  
I +5 V and battery supplies  
I Dual battery operation for system power saving  
— Automatic battery switching  
I Compatible with inexpensive protection networks  
BLOCK DIAGRAM  
— Accommodates low tolerance fuse resistors or PTC  
thermistors  
Signal  
Transmission  
RSN  
VTX  
I Metering capable  
AD  
SA  
— 12 kHz and 16 kHz  
Longitudinal  
Control  
I Tip-open state supports ground start signaling  
I 5 REN with 15 V DC offset trapezoid.  
For US standard:  
HPA  
HPB  
SB  
Two-Wire  
Interface  
Attenuator  
VSAB  
VREF  
BD  
— drives ring up to 4.4 kft of 26 gauge wire.  
or  
— drives ring up to 7 kft of 24 gauge wire.  
For European (British) standard:  
— drives ring up to 1.7 km of 0.5 mm copper cable.  
I Space Saving Package Options (8x8 QFN)  
Signal  
Conditioning  
IMT  
ILG  
CREF  
Fault  
Meas.  
VBL  
VBH  
Switch Driver  
RELATED LITERATURE  
P1  
P2  
P3  
LD  
I 080250 Le79Q2241/2242/2243 QISLAC Data Sheet  
Input Decoder and  
Control Registers  
I 080262 Intelligent Access™ Voice Solutions Evaluation  
Board User’s Guide  
I 080344 Le79R2xx/Le79Q224x ISLIC™/Quad ISLAC™  
Technical Reference  
Document ID# 080693 Date:  
Apr 17, 2002  
1
Rev:  
E
Version:  
Distribution:  
Public Document  
Am/Le79R240 Data Sheet  
Table of Contents  
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
RELATED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
LE79R240 DEVICE INTERNAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
FEATURES OF THE INTELLIGENT ACCESS™ CHIP SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
CHIP SET BLOCK DIAGRAM - FOUR CHANNEL LINE CARD EXAMPLE . . . . . . . . . . . . . . . . . . . . .6  
CONNECTION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
PIN DESCRIPTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
THERMAL RESISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
ELECTRICAL OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
DC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
TRANSMISSION SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
RINGING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
CURRENT-LIMIT BEHAVIOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
THERMAL SHUTDOWN FAULT INDICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
OPERATING MODE DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
THERMAL-MANAGEMENT EQUATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
TIMING SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
WAVEFORMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
APPLICATION CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
INTERNAL RINGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
LINE CARD PARTS LIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
PHYSICAL DIMENSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
32-PIN PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
32-PIN QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
REVISION B TO C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
REVISION C TO D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
REVISION D TO E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2
Am/Le79R240 Data Sheet  
PRODUCT DESCRIPTION  
The Intelligent Access™ voice chip sets integrate all functions of the subscriber line. Two chip types are used to implement the  
line card an Le79R240 device and the Le79Q2241/2242/2243 ISLAC device. These provide the following basic functions:  
1. The Le79R240 device: A high voltage, bipolar device that drives the subscriber line, maintains longitudinal  
balance and senses line conditions.  
2. The Le79Q2241/2242/2243 ISLAC device: A low voltage CMOS IC that provides conversion, control and  
DSP functions for the Le79R240 device.  
A complete schematic of a line card using the Intelligent Access voice chip sets for internal ringing is shown in the “Chip set Block  
Diagram - Four Channel Line card Example” on page 6.  
The Le79R240 device uses reliable, bipolar technology to provide the power necessary to drive a wide variety of subscriber lines.  
It can be programmed by the ISLAC device to operate in eight different modes that control power consumption and signaling.  
This enables it to have full control over the subscriber loop. The Le79R240 device is designed to be used exclusively with the  
ISLAC devices. The Le79R240 device requires only +5 V power and the battery supplies for its operation.  
The Le79R240 device implements a linear loop-current feeding method.  
The ISLAC device contains high-performance circuits that provide A/D and D/A conversion for the voice (codec), DC-feed and  
supervision signals. The ISLAC device contains a DSP core that handles signaling, DC-feed and supervision for all channels.  
The DSP core selectively interfaces with three types of backplanes:  
Standard PCM/MPI  
Standard GCI  
Modified GCI with a single analog line per GCI channel  
The Intelligent Access voice chip set provides a complete software configurable solution to the BORSCHT functions as well as  
complete programmable control over subscriber line DC-feed characteristics, such as current limit and feed resistance. In  
addition, these chip sets provide system level solutions for the loop supervisory functions and metering. In total, they provide a  
programmable solution that can satisfy worldwide line card requirements by software configuration.  
Software programmed filter coefficients, DC-feed data and supervision data are easily calculated with the WinSLACsoftware.  
This PC software is provided free of charge, and allows the designer to enter a description of system requirements. WinSLAC  
then computes the necessary coefficients and plots the predicted system results.  
The Le79R240 device includes circuitry to report Tip•Ring voltage and metallic and longitudinal currents to the ISLAC device.  
These inputs allow the ISLAC device to place several key Le79R240 device performance parameters under software control.  
The main functions that can be observed and/or controlled through the ISLAC device backplane interface are:  
DC-feed characteristics  
Ground-key detection  
Off-hook detection  
Metering signal  
Subscriber line voltage and currents  
Ring-trip detection  
Abrupt and smooth battery reversal  
Subscriber line matching  
Ringing generation  
To accomplish these functions, the ISLIC device collects the following information and feeds it in analog form to the ISLAC device:  
The metallic (IMT) and longitudinal (ILG) loop currents  
The AC (VTX) and DC (VSAB) loop voltage  
The outputs supplied by the ISLAC device to the ISLIC device are then:  
A voltage (VHLi) that provides control for the following high-level ISLIC device outputs:  
DC loop current  
Internal ringing signal  
12 or 16 kHz metering signal  
A low-level voltage proportional to the voice signal (VOUTi)  
The ISLAC device performs the codec and filter functions associated with the four-wire section of the subscriber line circuitry in  
a digital switch. These functions involve converting an analog voice signal into digital PCM samples and converting digital PCM  
samples back into an analog signal. During conversion, digital filters are used to band-limit the voice signals.  
Am/Le79R240 Data Sheet  
3
The user-programmable filters set the receive and transmit gain, perform the transhybrid balancing function, permit adjustment  
of the two-wire termination impedance and provide frequency attenuation adjustment (equalization) of the receive and transmit  
paths. Adaptive transhybrid balancing is also included. All programmable digital filter coefficients can be calculated using  
WinSLAC software and loaded into the ISLAC device registers using the system microprocessor. The PCM codes can be either  
16-bit linear twos-complement or 8-bit companded A-law or µ-law.  
Besides the codec functions, the Intelligent Access voice chip set provides all the sensing, feedback, and clocking necessary to  
completely control ISLIC device functions with programmable parameters. System-level parameters under programmable control  
include active loop current limits, feed resistance, and feed mode voltages.  
The ISLAC device supplies complete mode control to the ISLIC device using the control bus (P1-P3) and tri-level load signal  
(LDi).  
The Intelligent Access voice chip set provides extensive loop supervision capability including off-hook, ring-trip and ground-key  
detection. Detection thresholds for these functions are programmable. A programmable debounce timer is available that  
eliminates false detection due to contact bounce.  
AC and DC fault detection is also provided.  
Note:  
i denotes channel number  
4
Am/Le79R240 Data Sheet  
LE79R240 DEVICE INTERNAL BLOCK DIAGRAM  
AD  
SA  
IA sense  
RSN  
IA  
IA  
600  
A Amplifier  
+
-
+
-
HPA  
+
VTX  
VREF  
+
-
HPB  
-
+
+
β
-
= 0.01  
VREF  
VSAB  
VREF  
SB  
BD  
B Amplifier  
IB  
IB sense  
IB  
600  
VREF  
To Power  
Amplifiers  
Thermal  
Shutdown  
VBH  
VBL  
High Neg  
Batt  
Select  
IA  
IB  
IMT  
ILG  
+
600 600  
IA IB  
-
600 600  
Decoder  
C2 C3  
CREF  
RSVD RSVD RSVD  
C1  
Control Register  
Demux  
Power amplifiers positive supply  
P3  
BGND  
P1  
P2  
LD  
VCC  
GND  
Am/Le79R240 Data Sheet  
5
FEATURES OF THE INTELLIGENT ACCESS™ CHIP SET  
Performs all battery feed, ringing, signaling, hybrid and  
Polarity reversal  
test (BORSCHT) functions  
Supports both loop-start and ground-start signaling  
Exceeds central office requirements  
Selectable PCM or GCI interface  
Two chip solution supports high density, multi-channel  
architecture  
Single hardware design meets multiple country require-  
Supports most available master clock frequencies  
ments through software programming of:  
from 512 kHz to 8.192 MHz  
Ringing waveform and frequency  
DC loop-feed characteristics and current-limit  
Loop-supervision detection thresholds  
On-hook transmission  
Power/service denial mode  
Line-feed characteristics independent of battery voltage  
Only 5 V, 3.3 V and battery supplies needed  
Low idle-power per line  
Off-hook debounce circuit  
Ground-key and ring-trip filters  
Off-hook detect de-bounce interval  
Two-wire AC impedance  
Transhybrid balance  
Transmit and receive gains  
Equalization  
Digital I/O pins  
A-law/µ-law and linear selection  
Linear power-feed  
Compatible with inexpensive protection networks;  
Accommodates low-tolerance fuse resistors while main-  
taining longitudinal balance  
Monitors two-wire interface voltages and currents  
Power-cross, fault, and foreign voltage detection  
Integrated self-test features and built-in voice-path test  
modes  
Supports internal balanced ringing with offset  
Echo gain, distortion, and noise  
Self-contained ringing generation and control  
Integrated ring-trip filter and software enabled man-  
Guaranteed performance over commercial temperature  
range.  
Small physical size  
ual or automatic ring-trip mode  
Supports metering generation with envelope shaping  
CHIP SET BLOCK DIAGRAM - FOUR CHANNEL LINE CARD EXAMPLE  
7
4
4
VCCA  
A1  
Le79R240  
Le79R240  
Le79R240  
Le79R240  
LD1  
VCCD  
B1  
DGND1  
DGND2  
IO(1-4)  
TSCA/G  
TSCB  
VREF  
7
7
A2  
B2  
LD2  
RC  
Networks  
and  
AGND1  
AGND2  
A3  
B3  
DRA/DD  
DRB  
Protection  
LD3  
Quad  
ISLAC  
Le79Q224x  
P1-P3  
DXB  
3
7
DXA/DU  
DCLK/S0  
PCLK/FS  
MCLK  
A4  
B4  
LD4  
RREF  
FS/DCL  
CS/RST  
DIO/S1  
INT  
RSHB  
BATH  
BATL  
RSLB  
6
Am/Le79R240 Data Sheet  
CONNECTION DIAGRAM  
4
3
2
1
32 31 30  
5
6
29  
28  
27  
26  
25  
24  
23  
22  
21  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
P1  
SB  
SA  
7
IMT  
8
ILG  
9
CREF  
RSVD  
HPB  
HPA  
VTX  
32-Pin PLCC  
10  
11  
12  
13  
P2  
14 15 16 17 18 19 20  
32 31  
1
30 29  
28 27  
26 25  
24  
RSVD  
SA  
2
23  
RSVD  
IMT  
3
4
22  
21  
RSVD  
RSVD  
ILG  
CREF  
32-Pin QFN  
5
6
20  
19  
RSVD  
RSVD  
RSVD  
HPB  
18  
17  
RSVD  
P1  
HPA  
VTX  
7
8
Exposed Pad  
9
10  
11 12  
13 14  
15 16  
Note:  
1. Pin1 is marked for orientation.  
2. RSVD = Reserved. Do not connect to this pin.  
3. The thermally enhanced QFN package features an exposed pad on the underside which must be electrically tied to VBH.  
Am/Le79R240 Data Sheet  
7
PIN DESCRIPTIONS  
Pin Name  
AD, BD  
BGND  
Type  
Output  
Description  
Provide the currents to the A and B leads of the subscriber loop.  
Ground return for high and low battery supplies.  
VCCD reference. It is the digital high logic supply rail, used by the ISLIC device to ISLAC device  
interface.  
Analog and digital ground return for VCC.  
These pins connect to CHP, the external high-pass filter capacitor that separates the DC loop-  
voltage from the voice transmission path.  
Ground  
+3.3 VDC  
Ground  
Output  
CREF  
GND  
HPA, HPB  
ILG is proportional to the common-mode line current (IAD – IBD), except in disconnect mode,  
where ILG is proportional to the current into grounded SB.  
IMT is proportional to the differential line current (IAD + IBD), except in disconnect mode, where  
IMT is proportional to the current into grounded SA. The Le79R240 device indicates thermal  
overload by pulling IMT to CREF.  
ILG  
IMT  
Output  
Output  
The LD pin controls the input latch and responds to a 3-level input. When the LD pin is a logic  
1 < (V  
+ 0.3 V), the logic levels on P1 – P3 latch into the Le79R240 device control register  
REF  
LD  
Input  
bits that operate the mode-decoder. When the LD pin level is at < VREF ± 0.3 V, the control  
register contents are locked.  
P1 – P3  
RSN  
Input  
Input  
Inputs to the latch for the operating-mode decoder and the relay-drivers.  
The metallic current between AD and BD is equal to 500 times the current into this pin. Networks  
that program receive gain and two-wire impedance connect to this node. This input is at a virtual  
potential of VREF.  
RSVD  
Reserved  
Input  
These pins are used during Legerity testing. In the application, these pins must be left floating.  
Sense the voltages on the line side of the fuse resistors at the A and B leads. External sense  
resistors, RSA and RSB, protect these pins from lightning or power-cross.  
SA, SB  
Connection to high-battery supply used for ringing and long loops. Connects to the substrate.  
When only a single battery is available, it connects to both VBH and VBL.  
Connection to low-battery supply used for short loops. When only a single battery is available,  
this pin can be connected to VBH.  
VBH  
VBL  
VCC  
Battery (Power)  
Battery (Power)  
+5 V Power  
Supply  
Positive supply for low voltage analog and digital circuits in the Le79R240 device.  
The ISLAC chip provides this voltage which is used by the Le79R240 device for internal  
reference purposes. All analog input and output signals interfacing to the ISLAC chip are  
referenced to this pin.  
VREF  
VSAB  
Input  
Output  
Scaled-down version of the voltage between the sense points SA and SB on this pin.  
The voltage between this pin and VREF is a scaled down version of the AC component of the  
voltage sensed between the SA and SB pins. One end of the two-wire input impedance  
programming network connects to VTX. The voltage at VTX swings positive and negative with  
respect to VREF.  
VTX  
Output  
Battery  
Exposed  
Pad  
This must be electrically tied to VBH.  
8
Am/Le79R240 Data Sheet  
Absolute Maximum Ratings  
Stresses greater than those listed under "Absolute Maximum Ratings" can cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to absolute maximum ratings for extended periods can affect device reliability.  
Storage temperature  
Ambient temperature, under bias  
Humidity  
–55 to +150°C  
0 to 70°C  
5% to 95%  
–0.4 to +7 V  
+0.4 to –95 V  
–3 to +3 V  
V
V
with respect to GND  
CC  
, V with respect to GND (See Note 2)  
BH  
BL  
BGND with respect to GND  
AD or BD to BGND:  
Continuous  
V
V
V
V
- 1 to BGND + 1  
- 5 to BGND + 5  
- 10 to BGND + 10  
- 15 to BGND + 15  
BH  
BH  
BH  
BH  
10 ms (F = 0.1 Hz)  
1 µs (F = 0.1 Hz)  
250 ns (F = 0.1 Hz)  
Current into SA or SB:  
10 µs rise to I  
PEAK  
I
= ±5 mA  
PEAK  
1000 µs fall to 0.5 I  
PEAK  
2000 µs fall to I = 0  
Current into SA or SB:  
2 µs rise to I  
10 µs fall to 0.5 I  
PEAK  
I
= ±12.5 mA  
PEAK  
PEAK  
20 µs fall to I = 0  
SA SB continuous  
5 mA  
Current through AD or BD  
P1, P2, P3, LD to GND  
± 150 mA  
–0.4 to V + 0.4 V  
CC  
Maximum power dissipation, (See Note 1)  
T = 70°C  
A
1.67 W  
3.00 W  
1.5 kV min  
In 32-pin PLCC package  
In 32-pin QFN package  
ESD Immunity (Human Body Model)  
Note:  
1. Thermal limiting circuitry on chip will shut down the circuit at a junction temperature of about 165°C. Continuous operation above 145°C  
junction temperature may degrade device reliability.  
The thermal performance of a thermally enhanced package is assured through optimized printed circuit board layout. Specified performance  
requires that the exposed thermal pad be soldered to an equally sized exposed copper surface, which, in turn, conducts heat through  
multiple vias to a large internal copper plane.  
2. Rise time of V (dv/dt) must be limited to less than 27 v/µs.  
BH  
Thermal Resistance  
The junction to air thermal resistance of the Le79R240 device in a 32-pin PLCC package is 45°C/W and in a 32-pin QFN package  
is 25 °C/W (measured under free air convection conditions and without external heat sinking).  
Electrical Operating Ranges  
Legerity guarantees the performance of this device over the commercial (0ºC to 70ºC) temperature range by conducting electrical  
characterization and by conducting a production test with single insertion coupled to periodic sampling. These characterization  
and test procedures comply with section 4.6.2 of Bellcore TR-TSY-000357 Component Reliability Assurance Requirements for  
Telecommunications Equipment.  
Environmental Ranges  
Ambient Temperature  
Ambient Relative Humidity  
0 to 70°C Commercial  
15 to 85%  
Am/Le79R240 Data Sheet  
9
Electrical Ranges  
Voltage at VCC  
Voltage at VBL  
Voltage at VBH  
BGND with respect to GND  
Load resistance on VTX to VREF  
Load resistance on VSAB to VREF  
5 V ± 5%  
–15 V to VBH  
–42.5 V to –90 V  
–100 mV to +100 mV  
20 kminimum  
20 kminimum  
SPECIFICATIONS  
Power Dissipation  
Loop resistance = 0 to unless otherwise noted (not including fuse resistors), 2 x 50 fuse resistors, BATL = –24 V,  
BATH = –90 V, VCC = +5 V. For power dissipation measurements, DC-feed conditions are as follows:  
ILA (active mode current limit) = 25 mA (IRSN = 50 µA)  
RFD (feed resistance) = 500 Ω  
VAS (anti-sat activate voltage) = 10 V  
VAPP (apparent battery voltage) = 48  
Description  
Test Conditions  
On-Hook Disconnect  
On-Hook Standby  
Min  
Typ  
55  
80  
Max  
80  
125  
Unit  
On-Hook Transmission  
ISLIC  
175  
340  
900  
250  
450  
1050  
0.7  
Power Dissipation Normal  
Polarity  
Fixed Longitudinal Voltage  
mW  
On-Hook Active High Battery  
Off-Hook Active Low Battery  
ISLIC  
ISLIC  
R = 294 Ω  
L
On-Hook Disconnect  
VBH  
VBL  
VCC  
VBH  
VBL  
VCC  
VBH  
VBL  
VCC  
VBH  
VBL  
VCC  
0.4  
0.1  
3.0  
0.75  
0
3.1  
1.85  
0
5
3.6  
0
7.3  
4.0  
1.2  
On-Hook Standby  
4.0  
3.0  
On-Hook Transmission  
Fixed Longitudinal Voltage  
Power Supply Currents  
mA  
6.5  
5.0  
On-Hook Active High Battery  
8.5  
2.0  
Off-Hook Active Low Battery  
VBH  
VBL  
VCC  
0.9  
26.9  
7.5  
R = 294 Ω  
L
10  
10  
Am/Le79R240 Data Sheet  
DC SPECIFICATIONS  
Unless otherwise specified, test conditions are: VCC = 5 V, BATH = –90 V, BATL = –24V, RRX = 150 k,  
RL = 600 , RSA = RSB = 200 k, RFA = RFB = 50 , CHP = 22 nF, CAD = CBD = 22 nF,  
IRSN = 50 mA, Active low battery. DC-feed conditions are normally set by the ISLAC device. When the  
Le79R240 device is tested by itself, its operating conditions must be simulated as if it were connected to  
an ideal ISLAC device.  
30 k  
30 k  
390 pf  
VREF  
RT Network  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
Standby mode, open circuit,  
BH  
|V | < 55 V  
V
- 8  
48  
V
- 7  
51  
V
- 6  
BH  
BH  
BH  
|V | > 55 V  
Two-wire loop voltage  
(including offset)  
55.5  
56.5  
16.5  
BH  
1
V
2
GND VB  
Active mode, RL = 600 ,  
13.5  
15  
I
= 20 µA  
RSN  
Feed resistance per leg at  
pins AD & BD  
Feed current limit  
IMT current  
2
3
Standby mode  
130  
250  
375  
45  
W
2
Standby mode, R = 600 Ω  
18  
34  
56  
mA  
L
Standby mode, R = 2200 Ω  
44.6  
L
Standby mode  
A to VBH  
B to Ground  
µA  
ILG current  
28  
28  
V
+ 0.3  
Low boundary  
V
REF  
Ternary input voltage  
boundaries for LD pin. Mid-  
level input source must be  
Vref.  
C
- 1  
High boundary  
Input high current  
Input low current  
Mid-level current  
V
REF  
108  
47  
51  
4
5
µA  
µA  
µA  
2
2
2
Input high voltage  
Input low voltage  
Input high current  
Input low current  
2.0  
V
V
µA  
µA  
0.8  
20  
20  
Logic Inputs P1, P2, P3  
–20  
–20  
0
0
6
7
8
VTX output offset  
VREF input current  
CREF input current  
–50  
0
50  
0
+50  
mV  
µA  
µA  
V
= 1.4 V  
= 3.3 V  
2
2
REF  
C
–3  
3
REF  
ß, DC Ratio of V  
voltage:  
to loop  
SAB  
9
Tj < 145°C, VSA - VSB = 22 V  
0.0088  
0.0097  
0.0106  
V/V  
V
SAB  
β =  
----------------------------  
V
V  
SA  
SB  
I
I
/I  
I
I
= 10 mA  
= 10 mA  
10  
11  
275  
560  
300  
605  
325  
650  
A/A  
A/A  
LOOP MT  
LOOP  
/I  
LONG LG  
LONG  
Input current, SA and SB  
pins  
K1  
12  
13  
Active modes  
1.0  
3.0  
µA  
2
2
Incremental DC current gain  
462.5  
500  
537.5  
A/A  
Am/Le79R240 Data Sheet  
11  
Transmission Specifications  
No.  
1
Item  
RSN input impedance  
VTX output impedance  
Condition  
f = 300 to 3400 Hz  
Min  
Typ  
1
3
Max  
Unit  
Note  
2
2
Active High Battery or Active Low  
Battery  
3
Max, AC + DC loop current  
50  
mA  
2
2
Longitudinal impedance,  
A or B to GND  
2-4 wire gain  
2-4 wire gain variation with  
frequency  
4
5
6
Active mode  
70  
135  
–10 dBm, 1 kHz, 0 to 70°C  
300 to 3400 Hz, relative to 1 kHz  
14.18  
–0.15  
13.98  
13.78  
+0.15  
+3 dBm to –55 dBm  
Reference: –10 dBm  
–10 dBm, 1 kHz  
7
8
9
2-4 wire gain tracking  
–0.15  
–0.20  
–0.1  
+0.15  
+0.20  
+0.1  
5
dB  
4-2 wire gain  
4-2 wire gain variation with  
frequency  
300 to 3400 Hz, relative to 1 kHz  
+3 dBm to –55 dBm  
Reference: –10 dBm  
10  
4-2 wire gain tracking  
–0.15  
+0.15  
5
300 Hz to 3400 Hz  
0 dBm  
Total harmonic distortion level  
2-wire  
dB  
dB  
3
2
–50  
–48  
–14 dBm  
11  
4-wire  
R
= 600 Ω  
- 50 V 0 dBm  
4-wire overload level at VTX  
OHT  
±1  
–50  
Vp  
dB  
2
2
LOAD  
V
AB  
Active modes, R = 600 Ω  
Idle channel noise  
C-message  
L
+9  
–5  
+12  
–78  
dBrnC  
dBmC  
dBmp  
dBmp  
2
2
2-wire  
4-wire  
2-wire  
4-wire  
12  
Psophometric  
Weighted  
–8  
–95  
2
Longitudinal balance  
(IEEE method)  
Active  
L - T 200 to 3400 Hz  
52  
40  
13  
14  
T - L 200 to 3400 Hz  
50 to 3400 Hz  
3.4 to 50 kHz  
45  
40  
dB  
3, 4  
1, 2, 4  
PSRR (VBH, VBL)  
25  
50 to 3400 Hz  
3.4 to 50 kHz  
F = 15 to 60 Hz Active mode  
Freq = 12 kHz 0.5 Vrms  
Freq = 16 kHz  
Metering load = 200 Ω  
45  
35  
3, 4  
15  
16  
PSRR (VCC)  
25  
10  
1, 2, 4  
Longitudinal AC current per wire  
mArms  
dB  
2
2
17  
Metering distortion  
40  
Ringing Specifications  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
Ringing Voltage  
Active internal ringing  
VBH + 6  
V
7
Current-Limit Behavior  
SLIC Mode  
Condition  
Min  
Typ  
1
35  
Max  
100  
46  
Unit  
µA  
Note  
6
Disconnect  
Tip Open  
Applied fault between ground and T/R  
Ring Short to GND  
24  
Short Tip to VBH  
Short Ring to GND  
20  
20  
38  
35  
47  
44  
Standby  
mA  
Active Ringing  
ISLAC device generating internal ringing  
100  
2
12  
Am/Le79R240 Data Sheet  
Thermal Shutdown Fault Indications  
Fault  
Indication  
IMT operates normally (V ±1 V)  
No Fault  
REF  
Thermal Shutdown  
KG, IMT above 2.8 V  
Note:  
1. These tests are performed with the following load impedances:  
Frequency < 12 kHz – Longitudinal impedance = 500 ; metallic impedance = 300 Ω  
Frequency > 12 kHz – Longitudinal impedance = 90 ; metallic impedance = 135 Ω  
2. Not tested or partially tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
3. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
4. When the Le79R240 device and ISLAC device is in the anti-sat operating region, this parameter is degraded. The exact degradation  
depends on system design.  
5.  
–55 dBm gain tracking level not tested in production. This parameter is guaranteed by characterization and correlation to other tests.  
6. This spec is valid from 0 V to V or –50 V, whichever is lower in magnitude.  
BL  
7. Other ringing voltage characteristics are set by the ISLAC device.  
Operating Modes  
The Le79R240 device receives multiplexed control data on the P1, P2 and P3 pins. The LD pin then controls the loading of P1,  
P2, and P3 values into the proper bits in the Le79R240 device control register. When the LD pin is less than 0.3 V below VREF  
<
(VREF - 0.3 V), P1–P3 must be low. When the LD pin is more than 0.3 V above VREF > (VREF + 0.3 V), P1–P3 must contain ISLIC  
device control data C1, C2, and C3, which are latched into the Le79R240 device control register. Connecting the LD pin to VREF  
locks the contents of the Le79R240 device control register.  
The operating mode of the Le79R240 device is determined by the C1, C2, and C3 bits in the control register of the Le79R240  
device. The following table defines the Le79R240 device operating modes set by these signals.  
Table 1. Operating Modes  
Battery Voltage  
C3  
C2  
C1  
Operating Mode  
Selection  
Operating Mode  
High Battery (BATH) and  
BGND  
(High ohmic feed): Loop supervision active, A  
and B amplifiers shut down  
0
0
0
Standby (See Note)  
High Battery (BATH) and  
BGND  
High Battery (BATH) and  
BGND  
Tip Open: AD at High-Impedance, Channel A  
power amplifier shut down  
0
0
0
1
1
0
Tip Open (See Note)  
On-Hook Transmission,  
Fixed Longitudinal Voltage  
Fixed longitudinal voltage of –28 V  
Low Battery selection at  
VBL  
AD and BD at High-Impedance, Channel A and  
B power amplifiers shut down  
0
1
1
1
0
0
1
0
1
Disconnect  
RSVD  
High Battery (BATH) and  
BGND  
Low Battery (BATL) and  
BGND  
High Battery (BATH) and  
BGND  
Active High Battery  
Active feed, normal or reverse polarity  
Active internal ringing  
1
1
1
1
0
1
Active Low Battery  
Active Internal Ringing  
Note:  
In these modes, the ring lead (B-lead) output has a –50 V internal clamp to battery ground (BGND).  
Am/Le79R240 Data Sheet  
13  
Operating Mode Descriptions  
Operating Mode  
Description  
This mode disconnects both A and B output amplifiers from the AD and BD outputs. The A and B amplifiers  
are shut down and the Le79R240 device selects the low battery voltage at the VBL pin. In the Disconnect  
state, the currents on IMT and ILG represent the voltages on the SA and SB pins, respectively. These  
Disconnect  
V
V
SA  
currents are scaled to produce voltages across RMTi and RLGi of ----------- and ----------- , respectively.  
SB  
400 400  
The power amplifiers are turned off. The AD output is driven by an internal 250 (typical) resistor, which  
connects to ground. The BD output is driven by an internal 250 (typical) resistor, which connects to the  
high battery (BATH) at the VBH pin, through a clamp circuit, which clamps to approximately –50 V with  
respect to BGND. For VBH values above –55 V, the open-circuit voltage, which appears at this output is  
Standby  
~VBH + 7 V. If V is below –55 V, the voltage at this output is – 50 V. The battery selection for the balance  
BH  
of the circuitry on the chip is VBL. Line supervision remains active. Current limiting is provided on each  
line to limit power dissipation under short-loop conditions as specified in “Current-Limit Behavior” on  
page 12. In external ringing, the standby ISLIC device state is selected.  
In this mode, the AD (Tip) lead is opened and the BD (Ring) lead is connected to a clamp, which operates  
from the high battery on VBH pin and clamps to approximately –50 V with respect to BGND through a  
resistor of approximately 250 (typical). The battery selection for the balance of the circuitry on the chip  
is VBL.  
Tip Open  
In the Active High Battery mode, battery connections are connected as shown in Table 1. Both output  
amplifiers deliver the full power level determined by the programmed DC-feed conditions. Active High  
Battery mode is enabled during a call in applications when a long loop can be encountered.  
Both output amplifiers deliver the full power level determined by the programmed DC-feed conditions.  
VBL, the low negative battery, is selected in the Active Low Battery mode. This is typically used during the  
voice part of a call.  
Active High Battery  
Active Low Battery  
In the Internal Ringing mode, the Le79R240 device selects the battery connections as shown in Table 1.  
Active Internal Ringing When using internal ringing, both the AD and BD output amplifiers deliver the ringing signal determined  
by the programmed ringing level.  
On-Hook  
In the On-Hook Transmission, Fixed Longitudinal Voltage mode, battery connections are connected as  
Transmission (OHT),  
shown in Table 1. The longitudinal voltage is fixed at the voltage (also in the table above) to allow  
Fixed Longitudinal  
compliance with safety specifications for some classes of products.  
Voltage  
Thermal-Management Equations  
Applies to all modes except Standby, which has no thermal management.  
I < 5 mA  
L
P
= (S  
– I (R + 2R  
)) • I + 0.3 W  
FUSE L  
SLIC  
BAT  
L
L
PT  
= 0  
RTMG  
14  
Am/Le79R240 Data Sheet  
TIMING SPECIFICATIONS  
Symbol  
Signal  
Parameter  
Min  
Typ  
Max  
2
Unit  
tr  
tf  
LD  
Rise time Le79R240 device LD pin  
Fall time Le79R240 device LD pin  
LD minimum pulse width  
SLD  
LD  
2
SLD  
t
t
t
LD  
3
µs  
SLDPW  
SDXSU  
SDXHD  
P1,P2,P3  
P1,P2,P3  
P1–P3 data Setup time  
4.5  
4.5  
P1–P3 data hold time  
Note:  
1. The P1–P3 pins are updated continuously during operation by the LD signal.  
2. When writing to the ISLIC device registers, the sequence is:  
a) Set LD pin to mid-state  
b) Place appropriate data on the P1–P3 pins  
c) Assert the LD pin to High to write the proper data  
d) Return LD pin to mid-state  
3. Le79R240 device registers are refreshed at 5.33 kHz when used with an ISLAC device.  
4. If the clock or MPI becomes disabled, the LD pins and P1–P3 returns to 0 V state, thus protecting the Le79R240 device and the line  
connection.  
5. Not tested in production. Guaranteed by characterization.  
Am/Le79R240 Data Sheet  
15  
WAVEFORMS  
187.5 µs  
LD  
*
P1,P2,P3  
S
S
S
Write State Register  
Lock Registers  
VCC  
VREF  
LD  
0V  
New State  
Data  
Previous  
State Data  
State Data  
P1,P2,P3  
DETAIL A  
VREF  
Write State Register  
trSLD  
tfSLD  
LD  
tSLDPW  
tSDXHD  
tSDXSU  
P1,P2,P3  
*Note:  
When the LD pin is less than 0.3 V below V  
, P1-P3 must be low.  
REF  
16  
Am/Le79R240 Data Sheet  
APPLICATION CIRCUIT  
Internal Ringing  
+5 V  
VCC  
3.3 V  
CREF  
RSAi  
RRXi  
RHLai  
SA  
VOUTi  
RSN  
DGND  
AGND  
RFAi  
A
AD  
VHLi  
RHLci  
RTi  
RHLdi  
CHLdi  
U3  
VREF  
CADi  
VCCA  
VCCD  
VCC  
+3.3VDC  
VSAB  
VTX  
VSABi  
CHPi  
HPA  
HPB  
VINi  
U4  
RFBi  
B
BD  
SB  
RSBi  
VIMTi  
IMT  
ILG  
CBDi  
RMTi  
U1  
Le79R240  
U2  
ISLAC  
VREF  
RSVD  
RSVD  
RSVD  
VILGi  
BACK  
PLANE  
RLGi  
VREF  
DHi  
VREF  
VREF  
BATH  
BATL  
VBH  
DLi  
VBL  
LD  
LDi  
P1  
CBATHi  
CBATLi  
GND  
P1  
P2  
P3  
SLB  
BATL  
BATH  
RSLB  
P2  
P3  
SHB  
RSVD  
RSHB  
RSVD  
RSVD  
RSVD  
RSVD  
IREF  
RREF  
BGND  
RSVD  
** Connections shown for one channel  
Am/Le79R240 Data Sheet  
17  
LINE CARD PARTS LIST  
The following list defines the parts and part values required to meet target specification limits for channel i of the line card (i = 1, 2).  
Item  
Type  
Le79R240  
Le79Q224x  
P0741SA  
Diode  
Value  
Tol.  
Rating  
Comments  
U1  
U2  
ISLIC device  
ISLAC device  
U3, U4  
DHi, DLi  
RFAi, RFBi  
RSAi, RSBi  
RTi  
TECCOR protector  
50 ns  
Fusible PTC protection resistors  
Sense resistors  
100 mA  
50 Ω  
100 V  
2 W  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Capacitor  
Resistor  
Resistor  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
5%  
2%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
10%  
1%  
1%  
10%  
20%  
20%  
20%  
200 kΩ  
80.6 kΩ  
100 kΩ  
69.8 kΩ  
750 kΩ  
40.2 kΩ  
2.87 kΩ  
2.87 kΩ  
0.82 µF  
3.01 kΩ  
6.04 kΩ  
22 nF  
1/4 W  
1/10 W  
1/10 W  
1/10 W  
1/8 W  
1/10 W  
1/10 W  
1/10 W  
10 V  
1/8 W  
1/8 W  
100 V  
100 V  
100 V  
50 V  
RRXi  
RREF  
Current reference  
Ceramic  
RSHB, RSLB, RSPB  
RHLai  
RHLci  
RHLdi  
CHLdi  
RMTi  
RLGi  
CADi, CBDi  
CBATHi, CBATLi  
CHPi  
Ceramic, not voltage sensitive  
100 nF  
22 nF  
100 nF  
Ceramic  
Ceramic  
Ceramic  
CVC  
Note:  
1. Value can be adjusted to suit application.  
2. Can be looser for relaxed ring-trip requirements.  
18  
Am/Le79R240 Data Sheet  
PHYSICAL DIMENSIONS  
32-Pin PLCC  
Am/Le79R240 Data Sheet  
19  
32-Pin QFN  
20  
Am/Le79R240 Data Sheet  
REVISION HISTORY  
Revision B to C  
Applied new format.  
Added 5 REN statement and sub-bullets to “Distinctive Characteristics”  
Corrections to “Internal Ringing Application Circuit”  
Changed limits for On-Hook Standby, Power Dissipation Normal Polarity in “Power Dissipation” table.  
New value for VBL in “Electrical Ranges” table.  
Added VRING condition to row 1 in “DC Specifications” table. Also provided min values for row 3, and created rows 15 and  
16.  
Added max value for row 4 in “Transmission Specifications” table. Also changed min and max for row 6.  
Supplied ringing voltage in “Ringing Specifications” table.  
Supplied max values in “Current-Limit Behavior” table.  
Imported correct graphics for “Physical Dimensions.”  
Revision C to D  
“Distinctive Characteristics changed to “Features.” 5 REN bullet changed from 9.2 to 9.55 kft and from 14.6 to 15.2 kft.  
Diameter information deleted from 5 REN bullet.  
“Environmental Ranges,” and “Chip Set Features” new temperature statement.  
Updated “Internal Ringing” Application Circuit for component “CBATLi” circuitry.  
“Waveforms,” new image.  
Revision D to E  
Added QFN package data to “Connection Diagram,” “Absolute Maximum Ratings,” and “Physical Dimensions.”  
Updated "Am" OPNs (Ordering Part Numbers) to "Le" throughout document  
In "Ordering Information" the following changes were made:  
Added entries for Le79R240JC and Le79R240QC  
Removed the chip graphic  
Added notes  
In "Features," added "Foreign Voltage Sensing" feature  
Standardized notes in "Absolute Maximum Ratings" section  
Made minor edits to paragraph in "Electrical Operating Ranges" section  
Updated 32-pin PLCC physical dimensions graphic  
Removed obsolete “Sales Office Listing.”  
Am/Le79R240 Data Sheet  
21  
The contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy  
or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No  
license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's  
Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including,  
but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
Legerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other  
applications intended to support or sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury,  
death, or severe property or environmental damage may occur. Legerity reserves the right to discontinue or make changes to its products at any time without notice.  
© 2002 Legerity, Inc.  
All rights reserved.  
Trademarks  
Legerity, the Legerity logo and combinations thereof, and ISLIC, ISLAC, Intelligent Access, and WinSLAC are trademarks of Legerity, Inc.  
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
Legerity  
P.O. Box 18200  
Austin, Texas 78760-8200  
512-228-5400 Corporate Office  
512-228-5507 Fax  
800-432-4009 North America Toll Free  
To contact the Legerity Sales Office nearest you,  
or to download or order product literature, visit  
our web site at www.legerity.com  
To order literature in North America,  
call: 800-572-4859  
or email: americalit@legerity.com  
To order literature in Europe or Asia,  
call: 44-0-1179-341607  
or email: Europe - eurolit@legerity.com  
Asia - asialit@legerity.com  

相关型号:

LE79R241DJC

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241DJC

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R241DJCT

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241DJCT

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R241FQC

SLIC, Bipolar, 8 X 8 MM, GREEN, MO-220, QFN-32
MICROSEMI

LE79R241FQCT

SLIC, Bipolar, 8 X 8 MM, GREEN, MO-220, QFN-32
MICROSEMI

LE79R241JC

SLIC, Bipolar, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241JCT

SLIC, Bipolar, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241QCT

SLIC, Bipolar, 8 X 8 MM, MO-220, QFN-32
ZARLINK

LE79R251JC

Telecommunication IC
ETC

LE79R70-1DJCT

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R70-1FQC

SLIC, Bipolar, GREEN, MO-220, QFN-32
MICROSEMI