LE79R251JC [ETC]

Telecommunication IC ; 电信IC\n
LE79R251JC
型号: LE79R251JC
厂家: ETC    ETC
描述:

Telecommunication IC
电信IC\n

电信
文件: 总22页 (文件大小:514K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P R E L I M I N A R Y  
ISLIC™  
Intelligent Subscriber Line Interface Circuit  
Le79R251 device  
APPLICATIONS  
ORDERING INFORMATION  
An ISLAC™ device must be used with this part.  
Device Package  
Le79R251JC 32-pin PLCC  
Provides a cost-effective voice solution for long loop  
applications providing POTS and integrated test  
capabilities.  
— CO  
— DLC  
— PBX/KTS  
— Pair Gain  
DESCRIPTION  
The Le79R251 device, in combination with an ISLAC™ device,  
implements telephone line interface function. This enables the  
design of a low cost, high performance, fully software  
programmable line interface for multiple country applications  
worldwide. All AC, DC, and signaling parameters are fully  
programmable via microprocessor or GCI interfaces on the  
ISLAC device. Le79R251 device has integrated self-test and  
line-test capabilities to resolve faults to the line or line circuit.  
Integrated test capability is crucial for remote applications  
where dedicated test hardware is not cost effective.  
FEATURES  
Monitor of two-wire interface voltages and currents  
supports  
— Voice transmission  
— Through chip ring generation  
— Programmable DC feed characteristics  
Independent of battery  
Current limited  
RELATED LITERATURE  
— Selectable off-hook and ground-key thresholds  
— Subscriber line diagnostics  
080274 Am79D2251 Dual ISLAC Data Sheet  
080250 Am79Q224x Quad ISLAC Data Sheet  
080345 Am79R2xx/Am79D2251 Technical Reference  
080344 Am79R2xx/Am79Q224x Technical Reference  
Leakage and Loop resistance  
Line capacitance and Bell  
Foreign voltage sensing  
— Power cross and fault detection  
Integrates through chip ringing  
— High voltage operation supports long loops  
BLOCK DIAGRAM  
RSN  
VTX  
Signal  
Transmission  
AD  
SA  
— Provides the highest ringing capability in Legerity's  
HPA  
HPB  
SB  
Intelligent Access Voice family.  
Two-Wire  
Interface  
Longitudinal  
Control  
Gain/Level  
Shift  
VLB  
Dual battery operation for system power saving  
— Automatic high/low battery switching  
— Intelligent thermal management  
— +5 V and battery voltages required  
Compatible with inexpensive protection networks  
Attenuator  
VSAB  
VREF  
BD  
IMT  
ILG  
Signal  
Conditioning  
TMN  
TMP  
Thermal  
Management  
Control  
CREF  
Fault  
Meas  
— Maintains longitudinal balance with low tolerance fuse  
TMS  
resistors or PTC thermistors  
VBP  
VBL  
Provides pulse metering  
— 12 kHz and 16 kHz  
— Smooth polarity reversal  
Switch  
Driver  
Tip-open state supports ground start signaling  
Integrated test load switches/relay drivers  
5 REN with 20 V DC offset trapezoid.  
For US standard:  
VBH  
R2  
Relay  
Control  
Input  
Decoder  
and  
Control  
Registers  
P1  
P2  
P3  
Relay  
Drivers  
R3  
RYE  
— drives ring up to 16.9 kft of 26 gauge wire.  
or  
R1  
Relay Driver 1  
LD  
— drives ring up to 26.8 kft of 24 gauge wire.  
For European (British) standard:  
— drives ring up to 6.5 km of 0.5 mm copper cable.  
BGND  
GND  
VCC  
Publication# 080253 Rev:  
A
Version: 1.0 Date: Sep 27, 2001  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
Table of Contents  
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
RELATED LITERATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
PRODUCT DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
LE79R251 DEVICE INTERNAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
FEATURES OF THE INTELLIGENT ACCESS™ CHIPSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
CHIPSET BLOCK DIAGRAM - FOUR CHANNEL LINE CARD EXAMPLE . . . . . . . . . . . . . . . . . . . . . .6  
CONNECTION DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
THERMAL RESISTANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
ELECTRICAL OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Environmental Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Electrical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
DC SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
RELAY DRIVER SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
TRANSMISSION SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
RINGING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
CURRENT-LIMIT BEHAVIOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
THERMAL SHUTDOWN FAULT INDICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
OPERATING MODES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
OPERATING MODE DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
DRIVER DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
THERMAL-MANAGEMENT EQUATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
TIMING SPECIFICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
WAVEFORMS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
APPLICATION CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
INTERNAL RINGING LINE CARD SCHEMATIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
LINE CARD PARTS LIST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
PHYSICAL DIMENSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
PL 032 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
PRODUCT DESCRIPTION  
Legerity’s Intelligent Access™ voice chipsets integrate all the functions of a subscriber line. Two chip types are used to implement  
the line card: an Le79R251 device and an ISLAC device. Current ISLAC devices include the following: 79Q2241, 79Q2242,  
79Q2243, and 79D2251. These provide the following basic functions:  
1. The Le79R251 device: A high voltage, bipolar device that drives the subscriber line, maintains longitudinal balance and  
senses line conditions.  
2. The ISLAC device: A low voltage CMOS IC that provides conversion, control and DSP functions for the Le79R251 de-  
vice.  
A complete schematic of the line card using the Intelligent Access voice chipsets for internal ringing is shown in “Internal Ringing  
Line Card Schematic” on page 18.  
The Le79R251 device uses reliable, bipolar technology to provide the power necessary to drive a wide variety of subscriber lines.  
It can be programmed by the ISLAC device to operate in eight different modes that control power consumption and signaling,  
enabling it to have full control over the subscriber loop. The Le79R251 device is designed to be used exclusively with the ISLAC  
devices, and requires only +5 V, 3.3 V battery supplies for its operation.  
The Le79R251 device implements a linear loop-current feeding method with the enhancement of intelligent thermal  
management. This limits the amount of power dissipated on the Le79R251 device chip by dissipating power in external resistors  
in a controlled manner.  
The ISLAC device contains high-performance circuits that provide A/D and D/A conversion for the voice (codec), DC-feed and  
supervision signals. The ISLAC device contains a DSP core that handles signaling, DC-feed, supervision and line diagnostics for  
all channels.  
The DSP core selectively interfaces with three types of backplanes:  
Standard PCM/MPI  
Standard GCI  
Modified GCI with a single analog line per GCI channel  
The Intelligent Access voice chipset provides a complete software configurable solution to the BORSCHT functions as well as  
complete programmable control over subscriber line DC-feed characteristics, such as current limit and feed resistance. In  
addition, these chipsets provide system level solutions for the loop supervisory functions and metering. In total, they provide a  
programmable solution that can satisfy worldwide line card requirements by software configuration.  
Software programmed filter coefficients, DC-feed data and supervision data are easily calculated with the WinSLAC™ software.  
This PC software is provided free of charge, and it allows the designer to enter a description of system requirements. WinSLAC  
then computes the necessary coefficients and plots the predicted system results.  
The Le79R251 device includes circuitry to report metallic voltages and longitudinal currents on Tip/Ring to the ISLAC device.  
These inputs allow the ISLAC device to place several key Le79R251 device performance parameters under software control.  
The main functions that can be observed and/or controlled through the ISLAC backplane interface are:  
DC-feed characteristics  
Ground-key detection  
Off-hook detection  
Metering signal  
Longitudinal operating point  
Subscriber line voltage and currents  
Ring-trip detection  
Abrupt and smooth battery reversal  
Subscriber line matching  
Ringing generation  
Sophisticated line and circuit tests  
To accomplish these functions, the ISLIC device collects the following information and feeds it, in analog form, to the ISLAC  
device:  
The metallic (IMT) and longitudinal (ILG) loop currents  
The AC (VTX) and DC (VSAB) loop voltage  
The outputs supplied by the ISLAC device to the ISLIC device are then:  
A voltage (VHLi) that provides control for the following high-level ISLIC device outputs:  
DC loop current  
Internal ringing signal  
Le79R251 ISLIC™ Data Sheet  
3
P R E L I M I N A R Y  
12 or 16 kHz metering signal  
A low-level voltage proportional to the voice signal (VOUTi)  
A voltage that controls longitudinal offset for test purposes (VLBi)  
The ISLAC device performs the codec and filter functions associated with the four-wire section of the subscriber line circuitry in  
a digital switch. These functions involve converting an analog voice signal into digital PCM samples and converting digital PCM  
samples back into an analog signal. During conversion, digital filters are used to band-limit the voice signals.  
The user-programmable filters set the receive and transmit gain, perform the transhybrid balancing function, permit adjustment  
of the two-wire termination impedance and provide frequency attenuation adjustment (equalization) of the receive and transmit  
paths. Adaptive transhybrid balancing is also included. All programmable digital filter coefficients can be calculated using  
WinSLAC software and loaded into the ISLAC device registers using the system microprocessor. The PCM codes can be either  
16-bit linear, twos-complement, or 8-bit companded A-law or µ-law.  
Besides the codec functions, the Intelligent Access voice chipset provides all the sensing, feedback, and clocking necessary to  
completely control ISLIC device functions with programmable parameters. System-level parameters under programmable control  
include active loop current limits, feed resistance, and feed mode voltages.  
The ISLAC device supplies complete mode control to the ISLIC device using the control bus (P1–P3) and tri-level load signal  
(LDi).  
The Intelligent Access voice chipset provides extensive loop supervision capability including off-hook, ring-trip and ground-key  
detection. Detection thresholds for these functions are programmable and a programmable debounce timer is available that  
eliminates false detection due to contact bounce.  
For subscriber line diagnostics, AC and DC line conditions can be monitored using built-in test tools. Measured parameters can  
be compared to programmed threshold levels to set a pass/fail bit and the user can choose to send the measurement data directly  
to a higher level processor by way of the PCM voice channel. Both longitudinal and metallic resistance and capacitance can be  
measured, which allows leakage resistance, line capacitance, and the number telephone ringers to be identified.  
Note:  
"i" denotes channel number.  
4
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
LE79R251 DEVICE INTERNAL BLOCK DIAGRAM  
RSN  
AD  
IA sense  
IA  
IA  
600  
SA  
+
-
A Amplifier  
Fault  
Meas.  
+
-
HPA  
VBP  
Active High Voltage  
VTX  
+
Power  
Amplifiers  
Positive  
Supply  
TMS  
HPB  
VREF  
BGND  
+
-
-
+
Fault  
Meas.  
+
β
= 0.00667  
VSAB  
VREF  
-
SB  
BD  
VREF  
B Amplifier  
IB  
IB sense  
IB  
600  
VREF  
TMN  
Thermal  
Management  
Control  
Gain/Level Shift  
VLB  
TMP  
VBH  
To Power  
Amplifiers  
Thermal  
Shutdown  
High Neg  
Batt Sel  
IA  
IB  
IMT  
ILG  
+
VBL  
R3  
600 600  
IA  
IB  
-
600 600  
RYE  
R2  
Decoder  
C2 C3  
CREF  
RD1 RD2 RD3  
C1  
Control Register  
R1  
Demux  
BGND  
P1  
P2  
P3  
LD  
VCC  
GND  
Le79R251 ISLIC™ Data Sheet  
5
P R E L I M I N A R Y  
FEATURES OF THE INTELLIGENT ACCESS™ CHIPSET  
Performs all battery feed, ringing, signaling, hybrid and  
Supports both loop-start and ground-start signaling  
Exceeds LSSGR and CCITT central office requirements  
Selectable PCM or GCI interface  
test (BORSCHT) functions  
Two chip solution supports high density, multi-channel  
architecture  
Supports most available master clock frequencies  
Single hardware design meets multiple country require-  
from 512 kHz to 8.192 MHz  
ments through software programming of:  
On-hook transmission  
Power/service denial mode  
Line-feed characteristics independent of battery voltage  
Only 5 V, 3.3 V and battery supplies needed  
Low idle-power per line  
Ringing waveform and frequency  
DC loop-feed characteristics and current-limit  
Loop-supervision detection thresholds  
Off-hook debounce circuit  
Ground-key and ring-trip filters  
Linear power-feed with intelligent power-management  
Off-hook detect de-bounce interval  
Two-wire AC impedance  
Transhybrid balance  
Transmit and receive gains  
Equalization  
Digital I/O pins  
A-law/µ-law and linear selection  
feature  
Compatible with inexpensive protection networks;  
Accommodates low-tolerance fuse resistors while main-  
taining longitudinal balance  
Monitors two-wire interface voltages and currents for  
subscriber line diagnostics  
Built-in voice-path test modes  
Power-cross, fault, and foreign voltage detection  
Integrated line-test features  
Supports internal and external battery-backed ringing  
Self-contained ringing generation and control  
Supports external ringing generator and ring relay  
Leakage  
Line and ringer capacitance  
Loop resistance  
Ring relay operation synchronized to zero crossings  
of ringing voltage and current  
Integrated self-test features  
Echo gain, distortion, and noise  
Integrated ring-trip filter and software enabled man-  
ual or automatic ring-trip mode  
Supports metering generation with envelope shaping  
Smooth or abrupt polarity reversal  
Adaptive transhybrid balance  
Guaranteed performance over commercial and industrial  
temperature ranges.  
Up to three relay drivers per ISLIC™ device  
Configurable as test load switches  
Continuous or adapt and freeze  
CHIPSET BLOCK DIAGRAM - FOUR CHANNEL LINE CARD EXAMPLE  
7
4
4
VCCA  
A1  
Am79R251  
Am79R251  
Am79R251  
Am79R251  
LD1  
VCCD  
B1  
DGND1  
DGND2  
IO(1-4)  
TSCA/G  
TSCB  
VREF  
7
7
A2  
B2  
LD2  
RC  
Networks  
and  
AGND1  
AGND2  
A3  
B3  
DRA/DD  
DRB  
Protection  
LD3  
Quad  
ISLAC  
Am79Q2243  
P1-P3  
DXB  
3
7
DXA/DU  
DCLK/S0  
PCLK/FS  
MCLK  
A4  
B4  
LD4  
RREF  
FS/DCL  
CS/RST  
DIO/S1  
INT  
RSHB  
RSLB  
RSPB  
BATH  
BATL  
BATP  
6
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
CONNECTION DIAGRAM  
4
3
2
1
32 31 30  
5
6
29  
28  
27  
26  
25  
24  
23  
22  
21  
R1  
R2  
SB  
SA  
7
RYE  
R3  
IMT  
8
ILG  
Le79R251  
32-Pin PLCC  
9
TMS  
TMP  
TMN  
P1  
CREF  
RSVD  
HPB  
HPA  
VTX  
10  
11  
12  
13  
P2  
14 15 16 17 18 19 20  
Note:  
Pin 1 is marked for orientation.  
RSVD = Reserved. Don not connect to this pin.  
Le79R251 ISLIC™ Data Sheet  
7
P R E L I M I N A R Y  
PIN DESCRIPTIONS  
Pin  
Pin Name  
I/O  
Description  
AD, BD  
BGND  
A, B Line Drivers  
Ground  
O
Provide the currents to the A and B leads of the subscriber loop.  
Ground return for high and low battery supplies.  
VCCD reference. It is the digital high logic supply rail, used by the ISLIC to ISLAC  
interface.  
CREF  
+3.3 VDC  
GND  
Ground  
Analog and digital ground return for VCC.  
High-Pass Filter  
Capacitor  
Longitudinal Current  
Sense  
These pins connect to CHP, the external high-pass filter capacitor that separates  
the DC loop-voltage from the voice transmission path.  
ILG is proportional to the common-mode line current (IAD – IBD), except in  
disconnect mode, where ILG is proportional to the current into grounded SB.  
IMT is proportional to the differential line current (IAD + IBD), except in disconnect  
mode, where IMT is proportional to the current into grounded SA.The Le79R251  
device indicates thermal overload by pulling IMT to >2.8 V.  
HPA, HPB  
O
O
ILG  
IMT  
Metallic Current Sense  
Register Load  
O
The LD pin controls the input latch and responds to a 3-level input. When the LD  
pin is a logic 1 (CREF - 1), the logic levels on P1–P3 latch into the Le79R251  
device control register bits that operate the mode-decoder. When the LD pin is a  
logic 0 (< 0.6 V), the logic levels on P1–P3 latch into the Le79R251 device control  
register bits that control the relay drivers (RD1–RD3). When the LD pin level is at  
LD  
I
~V  
± 0.3 V the control register contents are locked.  
REF  
P1–P3  
R1  
R2  
Control Bus  
I
Inputs to the latch for the operating-mode decoder and the relay-drivers.  
Collector connection for relay 1 driver. Emitter internally connected to BGND.  
Collector connection for relay 2 driver. Emitter internally connected to RYE  
Collector connection for relay 3 driver. Emitter internally connected to RYE.  
Relay 1 Driver  
Relay 2 Driver  
Relay 3 Driver  
O
O
O
R3  
The metallic current between AD and BD is equal to 500 times the current into this  
pin. Networks that program receive gain and two-wire impedance connect to this  
node. This input is at a virtual potential of VREF.  
Receive Summing  
Node  
RSN  
I
RSVD  
RYE  
Reserved  
Relay 2, 3 Common  
Emitter  
This is used during Legerity testing. In the application, this pin must be left floating.  
O
I
Emitter connection for R2 and R3. Normally connected to relay ground.  
Sense the voltages on the line side of the fuse resistors at the A and B leads.  
External sense resistors, RSA and RSB, protect these pins from lightning or  
power-cross.  
A, B Lead Voltage  
Sense  
SA, SB  
TMP, TMN,  
TMS  
External resistors connected from TMP to TMS and TMN to VBL to offload excess  
power from the Le79R251 device.  
Connection to high-battery supply used for ringing and long loops. Connects to the  
substrate. When only a single negative battery is available, it connects to both  
VBH and VBL.  
Thermal Management  
Battery (Power)  
VBH  
VBL  
Connection to low-battery supply used for short loops. When only a single negative  
battery is available, this pin must be connected to VBH.  
Battery (Power)  
Positive Battery  
(Power)  
+5 V Power Supply  
VBP  
VCC  
Used in Ringing State and for Extended Loop operation.  
Positive supply for low voltage analog and digital circuits in the Le79R251 device.  
Sets the DC longitudinal voltage of the Le79R251 device. It is the reference for the  
longitudinal control loop. When the VLB pin is greater than VREF, the Le79R251  
device sets the longitudinal voltage to a voltage approximately half-way between  
the positive and negative power supply battery rails. When the VLB pin is driven  
to levels between 0V and VREF, the longitudinal voltage decreases linearly with  
the voltage on the VLB pin.  
VLB  
Longitudinal Voltage  
I
The ISLAC chip provides this voltage which is used by the Le79R251 device for  
internal reference purposes. All analog input and output signals interfacing to the  
ISLAC chip are referenced to this pin.  
Scaled-down version of the voltage between the sense points SA and SB on this  
pin.  
1.4 V Analog  
Reference  
VREF  
VSAB  
I
Loop Voltage  
O
The voltage between this pin and VREF is a scaled down version of the AC  
component of the voltage sensed between the SA and SB pins. One end of the  
two-wire input impedance programming network connects to VTX. The voltage at  
VTX swings positive and negative with respect to VREF.  
VTX  
4-Wire Transmit Signal  
O
8
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
Stresses greater than those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at or  
above these limits is not implied. Exposure to absolute maximum ratings for extended periods can affect device reliability.  
Storage Temperature  
–55 to +150° C  
–40 to +85° C  
–0.4 to +7 V  
+0.4 to –85 V  
–0.4 to +85 V  
Ambient temperature, under bias  
V
V
V
V
with respect to GND  
CC  
BH  
BP  
BP  
, V with respect to GND (see Note 2)  
BL  
with respect to GND  
with respect to VBH  
150 V  
BGND with respect to GND  
Voltage on R1 relay outputs  
AD or BD to BGND:  
Continuous  
–3 to +3V  
+7 V  
V
V
V
V
– 1 to VBP + 1  
– 5 to VBP + 5  
– 10 to VBP + 10  
– 15 to VBP + 15  
BH  
BH  
BH  
BH  
10 ms (F = 0.1 Hz)  
1 µs (F = 0.1 Hz)  
250 ns (F = 0.1 Hz)  
Current into SA or SB:  
10 µs rise to Ipeak;  
I
= ±5 mA  
PEAK  
PEAK  
1000 µs fall to 0.5 Ipeak;  
2000 µs fall to I =0  
Current into SA or SB:  
2 µs rise to Ipeak;  
I
= ±12.5 mA  
10 µs fall to 0.5 Ipeak;  
20 µs fall to I = 0  
SA SB continuous  
5 mA  
± 150 mA  
–0.4 to VCC + 0.4 V  
1000 V min  
900 V  
Current through AD or BD  
P1, P2, P3, LD to GND  
ESD Immunity (Human Body Model)  
Charged device model  
Maximum power dissipation, (See Note 1)  
T = 70°C  
1.67 W  
A
T = 85°C 1.33 W  
A
Note:  
1. Thermal-limiting circuitry on chip will shut down the circuit at a junction temperature of about 160° C. Operation above 145° C junction  
temperature may degrade device reliability.  
2. Rise time of VBH (dv/dt) must be limited to less than 27 V/µs.  
Thermal Resistance  
The junction to air thermal resistance of the Le79R251 device in a 32-pin, PLCC package is 43°C/W. The typical junction to case  
thermal resistance is 14°C/W. Measured under free air convection conditions and without external heat-sinking.  
Electrical Operating Ranges  
Legerity guarantees the performance of this device over commercial (0°C to 70°C) and industrial (–40°C to 85°C) temperature  
ranges by conducting electrical characterization over each range, and by conducting a production test with single insertion  
coupled to periodic sampling. These characterization and test procedures comply with section 4.6.2 of Bellcore TR-TSY-000357  
Component Reliability Assurance Requirements for Telecommunications Equipment.  
Environmental Ranges  
0 to 70°C Commercial  
–40 to +85 °C extended temperature  
Ambient Temperature  
Ambient Relative Humidity  
5 to 95%  
Le79R251 ISLIC™ Data Sheet  
9
P R E L I M I N A R Y  
Electrical Ranges  
VCC  
VBL  
VBH  
VBP  
5 V ± 5%  
–15 V to VBH  
–18 to –79 V  
+79 to +8 V  
140 V  
Maximum supply voltage across device, VBP–VBH  
BGND with respect to GND  
Load resistance on VTX to Vref  
Load resistance on VSAB to Vref  
–100 to +100 mV  
20 kminimum  
20 kminimum  
SPECIFICATIONS  
Power Dissipation  
Loop resistance = 0 to unless otherwise noted (not including fuse resistors), 2 x 50 fuse resistors.  
For case 1: BATL = –36 V, BATH = –68 V, BATP = +52 V, and VCC = +5 V.  
For case 2, BATL = -24 V, BATH = -48 V, BATP = +79 V, and VCC = +5 V.  
For power dissipation measurements, DC-feed conditions are as follows:  
ILA (Active mode current limit) = 25 mA (IRSN = 50 µA)  
RFD (Feed resistance) = 500 Ω  
VAS (Anti-sat activate voltage) = 10 V  
VAPP (Apparent Battery Voltage) = 48 V  
RMGL = RMGP (Thermal management resistors) = 1 kΩ  
Case 1  
Max  
Case 2  
Max  
Description  
Test Conditions  
Unit  
Typ  
65  
Typ  
55  
On-Hook Disconnect  
85  
80  
On-Hook Standby  
On-Hook Transmission  
Fixed Longitudinal Voltage  
110  
210  
140  
270  
90  
170  
120  
220  
ISLIC  
ISLIC  
Power Dissipation Normal  
Polarity  
mW  
On-Hook Active High Battery  
300  
420  
220  
350  
Off-Hook Active Low Battery  
RL = 294 Ω  
ISLIC  
TMG  
700  
200  
800  
240  
400  
40  
500  
60  
On-Hook Active Boost Battery  
On-Hook Disconnect  
600  
970  
660  
1050  
VBH  
VBL  
VCC  
VBP  
0.6  
0.1  
0.9  
0.2  
0.6  
0.1  
0.9  
0.2  
3.9  
4.5  
3.9  
4.5  
0.08  
0.15  
0.08  
0.15  
On-Hook Standby  
VBH  
VBL  
VCC  
VBP  
1.3  
0
4.3  
0.12  
1.7  
0
1.3  
0
4.3  
0.12  
1.7  
0
5
5
0.3  
0.3  
On-Hook Transmission  
Fixed Longitudinal Voltage  
VBH  
VBL  
VCC  
VBP  
3.5  
0
7.2  
0.10  
4.0  
0
8.5  
0.2  
3.5  
0
7.2  
0.10  
4.0  
0
8.5  
0.2  
mA  
Power Supply Currents  
On-Hook Active High Battery  
VBH  
VBL  
VCC  
VBP  
4
0
8.2  
0.10  
6
0
11  
0.2  
4
0
8.2  
0.10  
6
0
11  
0.2  
Off-Hook Active Low Battery  
RL = 294 Ω  
VBH  
VBL  
VCC  
VBP  
2.2  
27.5  
8.2  
3
2.2  
27.5  
8.2  
3
30  
11  
0.2  
30  
11  
0.2  
0.10  
0.10  
Active Boost  
Battery On-Hook  
VBH  
VBL  
VCC  
VBP  
5
0
5
5
8.5  
0
8.5  
7.5  
5
0
5
5
8.5  
0
8.5  
7.5  
10  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
DC Specifications  
Unless otherwise specified, test conditions are: VCC = 5 V, RMGP = RMGL = 1 k, BATH = –68 V, BATL =  
–36 V, BATP = +52 V, RRX = 150 k, RL = 600 , RSA = RSB = 200 k, RFA = RFB = 50 , CHP = 22 nF,  
CAD = CBD = 22 nF, IRSN = 50 µA. DC-feed conditions are normally set by the ISLAC device. When the  
Le79R251 device is tested by itself, its operating conditions must be simulated as if it were connected to  
an ideal ISLAC device.  
30 k  
30 k  
390 pf  
VREF  
RT Network  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
Standby mode, open circuit,  
|VBH| < 55 V  
|VBH| – 9  
48  
|VBH|–8  
52  
|VBH|–7  
55  
55  
16.13  
|VBH| > 55 V  
GND – VB  
Two-wire loop voltage,  
including offset (V -V )  
1
V
2
Any Active mode (does not  
13.88  
19.8  
130  
15  
22  
A
B
include OHT), RL = 600 ,  
I
= 50 µA  
RSN  
OHT mode, RL = 2200 ,  
I
= 20 µA  
RSN  
Feed resistance per leg at  
pins AD & BD  
2
3
Standby mode  
250  
375  
40  
Feed current  
Feed current limit  
IMT current  
Standby mode, RL = 600 Ω  
Standby mode, RL = 2200 Ω  
Standby mode  
18  
44.6  
30  
56  
mA  
µA  
ILG current  
A to VBH  
B to Ground  
25.7  
25.7  
Low boundary  
Medium boundary  
High boundary  
Input high current  
Input low current  
Mid-level current  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
0.6  
VREF+0.3  
V
V
V
µA  
µA  
µA  
V
VREF–0.3  
CREF – 1  
–20  
Ternary input voltage  
boundaries for LD pin. Mid-  
level input source must be  
Vref.  
4
5
20  
20  
20  
2
2
2
–20  
–20  
2.0  
0.6  
20  
20  
V
Logic Inputs P1, P2, P3  
–20  
–20  
–50  
µA  
µA  
mV  
6
7
8
VTX output offset  
VREF input current  
CREF input current  
+50  
VREF = 1.4 V, Active Low Battery  
I
I
= -25 mA  
= 0 mA  
60  
200  
120  
300  
µA  
µA  
2
2
LOOP  
LOOP  
CREF = 3.3 V  
1
10  
β, DC Ratio of VSAB to  
loop voltage:  
9
Tj < 145°C, VSA – VSB = 22 V  
0.00606  
41  
0.00667  
0.00740  
V/V  
VSAB  
β = ---------------------------  
V
SA VSB  
Gain from VLB pin to A or B  
pin  
10  
45  
49  
V/V  
2
2
11  
12  
13  
VLB pin input current  
ILOOP/IMT  
ILONG/ILG  
VLB = VREF 1V  
ILOOP = 10 mA  
ILONG = 10 mA  
–100  
290  
580  
100  
350  
700  
µA  
A/A  
A/A  
300  
600  
Input current, SA and SB  
pins  
K1  
ISA/IMT  
ISB/ILG  
VSAB output offset  
IMT output offset  
14  
Active modes  
1.0  
3.0  
µA  
2
2
15  
16  
17  
18  
19  
Incremental DC current gain  
Disconnect, ISA = 2 mA  
Disconnect, ISB = 2 mA  
462  
5.0  
10  
-20  
–3  
500  
6
12  
538  
7
14  
20  
3
A/A  
mV  
µA  
0
Le79R251 ISLIC™ Data Sheet  
11  
P R E L I M I N A R Y  
No.  
20  
Item  
ILG output offset  
Condition  
Min  
–3  
Typ  
0
Max  
3
Unit  
µA  
Note  
Relay Driver Specifications  
No.  
Item  
Condition  
Min  
Typ  
Max  
Unit  
Note  
25 mA/relay sink  
40 mA/ relay sink  
R2,R3 = BGND  
RYE = VBH  
Iz = 100 µA  
Iz = 30 mA  
0.4  
0.8  
0.5  
1.0  
1
On Voltage  
V
µA  
V
2
2
R2,R3 Off Leakage  
0
100  
3
4
Zener Break Over, R1  
Zener On Voltage, R1  
9
8.0  
9.5  
8.8  
10.5  
9.5  
Figure 1. Relay Drivers  
R3  
R2  
RYE  
A. Relay Driver Configuration  
R1  
BGND  
B. Ring Relay  
Transmission Specifications  
No.  
Item  
RSN input impedance  
VTX output impedance  
Condition  
f = 300 to 3400 Hz  
Min  
Typ  
1
3
Max  
10  
20  
Unit  
Note  
2
1
2
3
4
Active High Battery, Active Low  
Battery, Active Boosted Battery  
Active mode  
Max, AC + DC loop current  
70  
mA  
2
Input impedance, A or B to GND  
70  
135  
–10 dBm, 1 kHz, 0 to 70°C  
–14.13 –13.98 –13.83  
–14.18 –13.98 –13.78  
5
6
2-4 wire gain  
T = –40°C to 85°C  
2
A
300 to 3400 Hz, relative to 1 kHz  
–0.1  
+0.1  
2-4 wire gain variation with  
frequency  
T =–40°C to 85°C  
–0.15  
+0.15  
2
5
A
–0.1  
0
0
+0.1  
+3 dBm to –55 dBm  
Reference: –10 dBm  
7
8
2-4 wire gain tracking  
dB  
T = –40 to 85°C  
–0.15  
+0.15  
2, 5  
2
A
–10 dBm, 1 kHz  
–0.15  
–0.2  
0
0
+0.15  
+0.2  
4-2 wire gain  
T = –40°C to 85°C  
A
4-2 wire gain variation with  
frequency  
9
300 to 3400 Hz, relative to 1 kHz  
–0.1  
–0.1  
+0.1  
+0.1  
+3 dBm to –55 dBm  
Reference: –10 dBm  
10  
4-2 wire gain tracking  
2, 5  
12  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
Condition  
No.  
Item  
Min  
Typ  
Max  
Unit  
Note  
Total harmonic distortion level  
2-wire  
300 Hz to 3400 Hz  
0 dBm  
11.2 dBm  
–12 dBm  
–0.8 dBm  
–50  
–40  
–48  
–38  
dB  
dB  
dB  
dB  
Vp  
11  
4-wire  
4-wire overload level at VTX  
RLOAD = 600 Ω  
±1  
2
Active modes, R = 600 Ω  
Idle channel noise  
C-message  
Weighted  
Psophometric  
Weighted  
L
+7  
–7  
–83  
–97  
+11  
–79  
dBrnC  
dBmp  
2-wire  
4-wire  
2-wire  
4-wire  
12  
L - T  
200 to 1000 Hz  
T = –40°C to 85°C  
1000 to 3400 Hz  
T = –40°C to 85°C  
58  
53  
53  
48  
63  
2
2
A
Longitudinal balance  
(IEEE method)  
Normal Polarity  
58  
A
13  
14  
T - L  
L - T  
L - T  
200 to 3400 Hz  
IL = 50 to 3400 Hz  
200 to 1000 Hz  
40  
63  
2
dB  
50  
48  
Reverse Polarity  
T = –40°C to 85°C  
A
50 to 3400 Hz  
3.4 K to 50 kHz  
50 to 3400 Hz  
3.4 K to 50 kHz  
F = 15 to 60 Hz Active mode  
Freq = 12 kHz 2.8 Vrms  
Freq = 16 kHz  
25  
25  
20  
40  
45  
40  
45  
35  
30  
3,4  
1, 2, 4  
3, 4  
1, 2, 4  
2
PSRR (VBH, VBL, VBP)  
15  
16  
PSRR (VCC)  
Longitudinal AC current per wire  
mArms  
dB  
17  
Metering distortion  
56  
2
metering load = 200 Ω  
Ringing Specifications  
No.  
Item  
Condition  
Active Internal Ringing  
Min  
(VBP-VBH) - 10 V  
Typ  
Max  
133  
Unit  
V
Note  
7
1
Peak Ringing Voltage  
Current-Limit Behavior  
No.  
SLIC Mode  
Condition  
Min  
Typ  
Max  
Unit  
Note  
Applied fault between ground and T/R  
VBH applied to Tip or Ring  
1
µA  
A
1
Disconnect  
100  
6
VBH/200K  
2
3
4
Tip Open  
Short to GND  
Short Tip-to-VBH  
Short Ring-to-GND  
ISLAC generating internal ringing  
30  
30  
30  
100  
40  
45  
40  
Standby  
mA  
Active Ringing  
Thermal Shutdown Fault Indications  
No.  
Fault  
Indication  
1
2
No Fault  
Thermal Shutdown  
ILG, IMT operates normally (Vref ±1V)  
ILG, IMT above 2.8 V  
Note:  
1. These tests are performed with the following load impedances:  
Frequency < 12 kHz – Longitudinal impedance = 500 ; metallic impedance = 300 Ω  
Frequency > 12 kHz – Longitudinal impedance = 90 ; metallic impedance = 135 Ω  
2. Not tested or partially tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
3. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
Le79R251 ISLIC™ Data Sheet  
13  
P R E L I M I N A R Y  
4. When the Le79R251 device and ISLAC device is in the anti-sat operating region, this parameter is degraded. The exact degradation  
depends on system design.  
5. –55 dBm gain tracking level not tested in production. This parameter is guaranteed by characterization and correlation to other tests.  
6. This spec is valid from 0 V to VBL or –50 V, whichever is lower in magnitude.  
7. Other ringing-voltage characteristics are set by the ISLAC device.  
OPERATING MODES  
The Le79R251 device receives multiplexed control data on the P1, P2 and P3 pins. The LD pin controls the loading of P1, P2,  
and P3 values into the proper bits in the Le79R251 device control register. The device control register is a register in within the  
Le79R251 that latches the multiplexed relay and state data. This is organized as two sets of three bits: RD1-RD3 for the relay  
data and C1-C3 for the state control. When the LD pin is less than 0.6 V, P1–P3 will contain data for relay control bits RD1, RD2  
and RD3. These are latched into the first three bits in the Le79R251 device control register. When the LD pin is more than  
CREF - 1, P1–P3 will contain ISLIC control data C1, C2, and C3, which are latched into the last three bits of the Le79R251 device  
control register. Setting the voltage on the LD pin to VREF 0.3 V locks the contents of the Le79R251 device control register.  
The operating mode of the Le79R251 device is determined by the C1, C2, and C3 bits in the control register of the Le79R251  
device. The table below defines the Le79R251 device operating modes set by these signals.  
Under normal operating conditions, the ISLIC device does not have active relays. The Le79R251 device to ISLAC device  
interface is designed to allow continuous real-time control of the relay drivers to avoid incorrect data loads to the relay bit latches  
of the Le79R251 devices.  
To perform external ringing, the ISLAC device from the Intelligent Access voice family is set to external ringing mode  
(RMODE = 1), enables the ring relay, and puts the Le79R251 device in the Standby mode.  
Table 1. Operating Mode Descriptions  
Connection  
to RMGPi &  
Battery Voltage  
Selection  
RMGLi  
C3  
C2  
C1  
Operating Mode  
Operating Mode  
Resistors  
Notes  
(High ohmic feed): Loop  
supervision active, A and B  
amplifiers shut down  
Tip Open: AD at High-  
Impedance, Channel A power  
amplifier shut down  
High Battery (BATH)  
and BGND  
0
0
0
Standby  
Open  
Open  
1
High Battery (BATH)  
and BGND  
0
0
0
1
1
0
Tip Open  
1
On-Hook  
Transmission,  
Fixed Longitudinal  
Voltage  
High Battery (BATH)  
and BGND  
Fixed longitudinal voltage of  
–29 V  
AD and BD at High-Impedance,  
Channel A and B power  
amplifiers shut down  
Low Battery selection  
at VBL  
0
1
1
0
1
0
Disconnect  
High Battery (BATH)  
and Positive Battery  
(BATP)  
High Battery (BATH)  
and BGND  
A and B  
Amplifier  
Output  
Active Boosted  
Battery  
Active feed, normal or reverse  
polarity  
1
1
0
1
1
0
Active High Battery  
Active Low Battery  
Low Battery (BATL)  
and BGND  
High Battery (BATH)  
and Positive Battery  
(BATP)  
Active Internal  
Ringing  
1
1
1
Active internal ringing  
Note:  
1. In these modes, the ring lead (B-lead) output has a –50 V internal clamp to battery ground (BGND).  
14  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
Operating Mode Descriptions  
Operating Mode  
Description  
This mode disconnects both A and B output amplifiers from the AD and BD outputs. The A and B amplifiers  
are shut down and the Le79R251 device selects the low battery voltage at the VBL pin. In the Disconnect  
state, the currents on IMT and ILG represent the voltages on the SA and SB pins, respectively. These  
Disconnect  
VSA  
----------  
400  
VSB  
400  
currents are scaled to produce voltages across RMTi and RLGi of  
and ---------- , respectively.  
The power amplifiers are turned off. The AD output is driven by an internal 250 (typical) resistor, which  
connects to ground. The BD output is driven by an internal 250 (typical) resistor, which connects to the  
high battery (BATH) at the VBH pin, through a clamp circuit, which clamps to approximately –50 V with  
respect to BGND. For VBH values above–55 V, the open-circuit voltage, which appears at this output is  
~VBH + 8 V. If VBH is below –55 V, the voltage at this output is –50 V. The battery selection for the balance  
of the circuitry on the chip is VBL. Line supervision remains active. Current limiting is provided on each line  
to limit power dissipation under short-loop conditions as specified in the “Le79R251 device Current-Limit  
Behavior” section. In external ringing, the standby ISLIC state is selected.  
Standby  
In this mode, the AD (Tip) lead is opened and the BD (Ring) lead is connected to a clamp, which operates  
from the high battery on VBH pin and clamps to approximately –50 V with respect to BGND through a resistor  
of approximately 250 (typical). The battery selection for the balance of the circuitry on the chip is VBL.  
Tip Open  
In the Active High Battery mode, battery connections are connected as shown in “Operating Modes” on  
page 14. Both output amplifiers deliver the full power level determined by the programmed DC-feed  
conditions. Active High Battery mode is enabled during a call in applications when a long loop can be  
encountered. SBAT = VBH.  
Both output amplifiers deliver the full power level determined by the programmed DC-feed conditions. VBL,  
the low negative battery, is selected in the Active Low Battery mode. This is typically used during the voice  
part of a call. SBAT = VBL.  
Active High Battery  
Active Low Battery  
In the Active Boosted Battery mode, battery connections are as shown in “Operating Modes” on page 14.  
Both output amplifiers deliver the power level determined by the programmed DC-feed conditions. Active  
Boosted Battery mode is enabled during a call in applications when an extended loop can be encountered.  
SBAT = VBP - VBH.  
Active Boosted  
Battery  
In the Internal Ringing mode, the Le79R251 device selects the battery connections as shown in “Operating  
Modes” on page 14. When using internal ringing, both the AD and BD output amplifiers deliver the ringing  
signal determined by the programmed ringing level. SBAT = VBP - VBH.  
Active Internal  
Ringing  
On-Hook  
In the On-Hook Transmission, Fixed Longitudinal Voltage mode, battery connections are as shown in  
“Operating Modes” on page 14. The longitudinal voltage is fixed (as defined in the Table , “Operating Modes,”  
on page 14) to allow compliance with safety specifications for some classes of products, such as ones  
needing to meet the requirements of UL1950. SBAT = VBH.  
Transmission  
(OHT), Fixed  
Longitudinal  
Voltage  
Driver Descriptions  
Control bits RD1, RD2, and RD3 do not affect the operating mode of the Le79R251 device. These signals perform the following  
functions:  
Driver  
Description  
A logic 1 on RD1 turns the R1 driver on and operates a relay connected between the R1 pin and VCCD. R1  
R1  
R2  
drives the ring relay when external ringing is selected.  
A logic 1 on the RD2 signal turns the R2 driver on and routes current from the R2 pin to the RYE pin. In the  
option where the RYE pin is connected to ground, the R2 pin can sink current from a relay connected to VCCD.  
Another option is to connect the RYE pin to the BD (Ring) lead and connect a test load between R2 and the  
AD(Tip) lead. This technique avoids the use of a relay to connect a test load. However, it does not isolate the  
subscriber line from the line card. The test load must be connected to the Le79R251 device side of the  
protection resistor to avoid damage to the R2 driver.  
A logic 1 on the RD3 signal turns the R3 driver on and routes current from the R3 pin to the RYE pin. In the  
option where the RYE pin is connected to ground, the R3 pin can sink current from a relay connected to VCCD.  
Another option is to connect the RYE pin to the B (Ring) lead and connect a test load between R3 and the A(Tip)  
lead. This technique avoids the use of a relay to connect a test load. However, it does not isolate the subscriber  
line from the line card. The test load must be connected to the Le79R251 device side of the protection resistor  
to avoid damage to the R3 driver.  
R3  
Le79R251 ISLIC™ Data Sheet  
15  
P R E L I M I N A R Y  
Thermal-Management Equations  
Applies to all Modes except Standby and Ringing which have no thermal management:  
I < 7.5 mA  
L
TMG resistor-current is limited to be 7.5 mA < I . If I < 7.5 mA,  
no current flows in the TMG resistor and it all flows in the  
Le79R251.  
L
L
P
= (S  
– I (R + 2R  
)) • I + 0.3 W  
SLIC  
BAT  
L
L
FUSE  
L
PT  
= 0  
RTMG  
These equations are valid when  
R
• (I – 7.5 mA) < (S  
– (R + R )I ) / 2 – 2  
TMG  
L
BAT F L L  
I > 7.5 mA  
L
because the longitudinal voltage is one-half the battery voltage  
and the TMG switches require approximately 2 V.  
R
P
= (S  
– I (R + 2R  
)) / (2(I – 7.5 mA))  
)) + 0.3 W – PT  
FUSE RTMG  
TMG  
SLIC  
BAT  
L
L
FUSE  
L
To choose a power rating for RTMG:  
= I (S  
– I (R + 2R  
L
BAT  
L
L
P
> PT  
/ 2  
RATING  
RTMG  
2
PT  
= (I – 7.5 mA) (2R  
)
RTMG  
L
TMG  
Note that for reliable operation, P  
1.33 W.  
should be less than  
SLIC  
TIMING SPECIFICATIONS  
Symbol  
trSLD  
tfSLD  
tSLDPW  
tSDXSU  
tSDXHD  
tSDXD  
Signal  
Parameter  
Min  
Typ  
Max  
2
2
Unit  
LD  
LD  
LD  
Rise time Le79R251 device LD pin  
Fall time Le79R251 device LD pin  
LD minimum pulse width  
P1–3 data Setup time  
P1–3 data hold time  
Max P1–3 data delay  
3
4.5  
4.5  
µs  
P1,P2,P3  
P1,P2,P3  
P1,P2,P3  
5
Note:  
1. The P13 pins are updated continuously during operation by the LD signal.  
2. After a power-on reset or hardware reset, the relay outputs from the Le79R251 device turn all relays off. An unassuming state is to place  
the relay control pins, which are level triggered, to a reset state for all relays. Any noise encountered only raises the levels toward the register  
lock state.  
3. When writing to the ISLIC registers, the sequence is:  
a) Set LD pin to mid-state  
b) Place appropriate data on the P13 pins  
c) Assert the LD pin to High or Low to write the proper data  
d) Return LD pin to mid-state  
4. Le79R251 device registers are refreshed at 5.33 kHz when used with an ISLAC device.  
5. If the clock or MPI becomes disabled, the LD pins and P13 returns to 0 V state, thus protecting the Le79R251 device and the line  
connection.  
6. Not tested in production. Guaranteed by characterization.  
16  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
WAVEFORMS  
187.5 usec  
LD  
P1,P2,P3  
S
R
S
R
S
R
Write State Register  
Lock Registers  
VCC  
VREF  
LD  
0V  
Write Relay Register  
New State  
Data  
Previous  
Relay Data  
State Data  
Relay Data  
P1,P2,P3  
DETAIL A  
VREF  
VREF  
Write State Register  
Write Relay Register  
trSLD  
tfSLD  
LD  
tSLDPW  
tSDXHD  
tSDXSU  
P1,P2,P3  
Relay driver  
response  
tSDXD  
Le79R251 ISLIC™ Data Sheet  
17  
P R E L I M I N A R Y  
APPLICATION CIRCUIT  
Internal Ringing Line Card Schematic  
+5V  
3.3V  
VCC  
CREF  
RSAi  
RFAi  
RRXi  
SA  
AD  
RSN  
VOUTi  
DGND  
AGND  
RHLai  
CHLbi  
A
RHLbi  
VHLi  
RHLci  
RTi  
RHLdi  
CHLdi  
U3  
U5  
VREF  
CADi  
CHPi  
VCCA  
VCCD  
VCC  
+3.3VDC  
VSAB  
VTX  
VSABi  
VINi  
HPA  
HPB  
BD  
CS1  
U4  
CS2  
U6  
BATP  
BATH  
DT1i  
CSSi  
RFBi  
RSBi  
B
VLB  
IMT  
VLBi  
VIMTi  
SB  
CBDi  
TMS  
RMTi  
U1  
Am79R251  
RTEST  
U2  
ISLAC  
VREF  
RMGPi  
ILG  
VILGi  
BACK  
TMP  
TMN  
PLANE  
DT2i  
RLGi  
VREF  
RMGLi  
DHi  
DLi  
VREF  
VREF  
BATH  
VBH  
VBL  
BATL  
LD  
LDi  
P1  
SBP  
BATP  
BATL  
BATH  
GND  
RSPB  
RSLB  
RSHB  
CBATHi  
CBATPi  
CBATLi  
P1  
P2  
P3  
SLB  
SHB  
P2  
P3  
VBP  
RYE  
R2  
BATP  
IREF  
RREF  
R3  
R1  
BGND  
RSVD  
Note:  
1. CSS required for > 2.2 VRMS metering.  
2. Connections are shown for one channel.  
18  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
LINE CARD PARTS LIST  
The following list defines the parts and part values required to meet target specification limits for channel i of the line card (i =  
1,2,3,4).  
Item  
Type  
Value  
Tol.  
Rating  
Comments  
Components for Internal and External Ringing  
U1  
U2  
Le79R251 device  
Am79X22xx  
B1100CC  
B2100CC  
Diode  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
ISLIC device  
ISLAC device  
TECCOR Battrax protector  
TECCOR Battrax protector  
50 ns  
U3, U4  
U5, U6  
DHi, DLi, DT1i, DT2i  
RFAi, RFBi  
RSAi, RSBi  
RTi  
RRXi  
RREF  
RMGLi, RMGPi  
RSHB, RSLB  
RHLai  
RHLbi  
RHLci  
RHLdi  
CHLbi  
CHLdi  
RMTi  
RLGi  
RTEST  
100 V  
100 V  
100 V  
2 W  
1/4 W  
1/10 W  
1/10 W  
1/10 W  
1 W  
1/8 W  
1/10 W  
1/10 W  
1/10 W  
1/10 W  
10 V  
100 mA  
50 Ω  
200 kΩ  
80.6 kΩ  
90 kΩ  
2%  
2%  
1%  
1%  
1%  
5%  
1%  
1%  
1%  
1%  
1%  
10%  
10%  
1%  
1%  
1%  
Fusible PTC protection resistors  
Sense resistors  
69.8 kΩ  
1 kΩ  
Current reference  
Thermal management resistors  
750 kΩ  
40.2 kΩ  
4.32 kΩ  
2.87 kΩ  
2.87 kΩ  
3.3 nF  
0.82 µF  
3.01 kΩ  
6.04 kΩ  
2 kΩ  
Capacitor  
Capacitor  
Resistor  
Resistor  
Resistor  
Not Polarized  
Ceramic  
10 V  
1/8 W  
1/8 W  
1 W  
Test board  
1
Capacitor  
Capacitor  
Capacitor  
Capacitor  
22 nF  
10%  
20%  
20%  
20%  
100 V  
100 V  
100 V  
100 V  
Ceramic, not voltage sensitive  
Ceramic  
Ceramic  
CADi, CBDi  
CBATHi, CBATLi, CBATPi  
100 nF  
22 nF  
CHPi  
1
100 nF  
Protector speed up capacitor  
CS1i, CS2i  
3
Capacitor  
56 pF  
5%  
100 V  
Ceramic  
CSSi  
Note:  
1. Value can be adjusted to suit application.  
2. Can be looser for relaxed ring-trip requirements.  
3. Required for metering > 2.2 Vrms, otherwise may be omitted.  
Le79R251 ISLIC™ Data Sheet  
19  
P R E L I M I N A R Y  
PHYSICAL DIMENSIONS  
PL 032  
Dwg rev AH; 08/00  
20  
Le79R251 ISLIC™ Data Sheet  
P R E L I M I N A R Y  
The contents of this document are provided in connection with Legerity, Inc. products. Legerity makes no representations or warranties with respect to the accuracy  
or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No  
license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in Legerity's  
Standard Terms and Conditions of Sale, Legerity assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including,  
but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.  
Legerity's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other  
applications intended to support or sustain life, or in any other application in which the failure of Legerity's product could create a situation where personal injury,  
death, or severe property or environmental damage may occur. Legerity reserves the right to discontinue or make changes to its products at any time without notice.  
© 2001 Legerity, Inc.  
All rights reserved.  
Trademarks  
Legerity, the Legerity logo and combinations thereof, and ISLIC, ISLAC, Intelligent Access, and WinSLAC are trademarks of Legerity, Inc.  
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
Le79R251 ISLIC™ Data Sheet  
21  
Mailing: P.O. Box 18200  
Americas  
ATLANTA  
6465 East Johns Crossing, Suite 400  
Duluth, GA USA 30097  
MainLine: 770-814-4252  
Fax: 770-814-4253  
Austin, TX 78760-8200  
Shipping: 4509 Freidrich Lane  
Austin, TX 78744-1812  
Telephone: (512) 228-5400  
Fax: (512) 228-5510  
North America Toll Free: (800) 432-4009  
AUSTIN  
4509 Freidrich Lane  
Austin, TX USA 78744-1812  
MainLine: 512-228-5400  
Fax: 512-228-5510  
Worldwide Sales Offices  
Asia  
Europe  
BELGIUM  
BOSTON  
6 New England Executive Park Suite 400  
Burlington, MA USA 01803  
MainLine: 781-229-7320  
Fax: 781-272-3706  
HONG KONG  
Units 2401-2, 24th Floor  
Jubilee Centre, 18 Fenwick Street  
Wanchai, Hong Kong  
MainLine: 852-2864-8300  
Fax: 852-2866-1323  
Baron Ruzettelaan 27  
8310 Brugge  
Belgium  
MainLine: 32-50-28-88-10  
Fax: 32-50-27-06-44  
CHICAGO  
8770 W. Bryn Mawr, Suite 1300  
Chicago, IL USA 60631  
MainLine: 773-867-8034  
Fax: 773-867-2910  
KOREA  
FRANCE  
7, Avenue G. Pompidou  
Suite 402  
92300 Levallois-Perret, France  
MainLine: 33-1-47-48-2206  
Fax: 33-1-47-48-2568  
135-090 18th Fl., Kyoung Am Bldg  
157-26, Samsung-dong, Kangnam-ku  
Seoul, Korea  
DALLAS  
MainLine: 82-2-565-5951  
Fax: 82-2-565-3788  
4965 Preston Park Blvd., Suite 280  
Plano, TX USA 75093  
MainLine: 972-985-5474  
Fax: 972-985-5475  
SHANGHAI  
GERMANY  
Freisinger Str. 1  
85737 Ismaning, Germany  
MainLine: 49-89-1893-99-0  
Fax: 49-89-1893-99-44  
Shanghai P.O. Box 232022  
Shanghai PR China 200232  
MainLine: 86-21-54233253  
Fax: 86-21-54233254  
HUNTSVILLE  
600 Boulevard South, Suite 104  
Huntsville, AL USA 35802  
MainLine: 256-705-3504  
Fax: 256-705-3505  
SHENZHEN  
Room 310, Tower 9  
ITALY  
Via F. Rosselli 3/2  
Jinxiu Street 30 Futian District  
Shenzhen, PR China 518040  
MainLine: 86-755-3706-667  
Fax: 86-755-3706-520  
20019 Settimo Mse, Milano Italy  
MainLine: 39-02-3355521  
Fax: 39-02-33555232  
IRVINE  
1114 Pacifica Court, Suite 250  
Irvine, CA USA 92618  
MainLine: 949-753-2712  
Fax: 949-753-2713  
SWEDEN  
SINGAPORE  
Serangoon Central Post Office  
P.O. Box 537  
Singapore 915502  
MainLine: 65-2803267  
Fax: 65-2855869  
Frösundaviks Allé 15, 4tr  
SE-16970 Solna  
Sweden  
NEW JERSEY  
3000 Atrium Way, Suite 270  
Mt. Laurel, NJ USA 08054  
MainLine: 856-273-6912  
Fax: 856-273-6914  
MainLine: 46-8-509-045-45  
Fax: 46-8-509-046-36  
UK  
TOKYO  
Regus House, Windmill Hill Business Park  
Whitehill Way  
OTTAWA  
Shinjuku NS Bldg. 5F  
2-4-1 Nishi Shinjuku, Shinjuku-ku  
Tokyo, Japan 163-0805  
MainLine: 81-3-5339-2011  
Fax: 81-3-5339-2012  
600 Terry Fox Drive  
Ottawa, Ontario, Canada K26 4B6  
MainLine: 613-599-2000  
Fax: 613-599-2002  
SN5 6QR Swindon  
Wiltshire UK  
MainLine: 44-(0)1793-441408  
Fax: 44-(0)1793-441608  
RALEIGH  
2500 Regency Parkway, Suite 226  
Cary, NC USA 27511  
MainLine: 919-654-6843  
Fax: 919-654-6781  
To download or order product literature, visit our website at www.legerity.com.  
To order literature in North America, call:(800) 572-4859 or 512-349-3193  
or email: americalit@legerity.com  
SAN JOSE  
1740 Technology Drive, Suite 290  
San Jose, CA USA 95110  
MainLine: 408-573-0650  
Fax: 408-573-0402  
To order literature in Europe or Asia, call: 44-0-1179-341607  
or email: Europe — eurolit@legerity.com  
Asia — asialit@legerity.com  

相关型号:

LE79R70-1DJCT

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R70-1FQC

SLIC, Bipolar, GREEN, MO-220, QFN-32
MICROSEMI

LE79R70-1JC

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70-1JCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70DJCT

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R70JC

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70JCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70QC

SLIC, Bipolar, MO-220, QFN-32
MICROSEMI

LE79R70QCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE80535GC0251MSL8BH

RISC Microprocessor, 64-Bit, 1600MHz, CMOS, PBGA479
INTEL

LE80536GC0332M

RISC Microprocessor, 64-Bit, 1800MHz, CMOS, PBGA479
INTEL

LE80536GC0332MSL8U8

Microprocessor, 32-Bit, 1800MHz, CMOS, PBGA479, LEAD FREE, PLASTIC, UFCBGA-479
INTEL