LE79R70-1DJCT [MICROSEMI]

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32;
LE79R70-1DJCT
型号: LE79R70-1DJCT
厂家: Microsemi    Microsemi
描述:

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32

电池 电信 电信集成电路
文件: 总22页 (文件大小:465K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le79R70  
Ringing Subscriber Line Interface Circuit  
VE580 Series  
APPLICATIONS  
„ Integrated Access Devices (IADs)  
„ Network Interface Units (NIUs)  
„ Cable Modems  
„ DSL Modems  
„ Set Top / House Side Boxes  
„ Intelligent PBX  
ORDERING INFORMATION  
Device1  
Package Type2, 3  
Packing4  
Tube  
32-pin PLCC, No Pol. Rev.  
(Green package)  
Le79R70DJC  
32-pin PLCC, Pol. Rev.  
(Green package)  
32-pin QFN, Pol. Rev.  
(Green package)  
Le79R70-1DJC  
Le79R70-1FQC  
Tube  
Tray  
1. Zarlink reserves the right to fulfill all orders for this device with  
parts marked with the "Am" part number prefix until all inventory  
bearing this mark has been depleted. Note that parts marked with  
either the "Am" or the "Le" part number prefix are equivalent  
devices in terms of form, fit, and function—the prefix appearing on  
the topside mark is the only difference.  
„ Pain Gain  
„ FXS Cards  
„ Voice over ISDN or T1/E1  
„ Smart Residential Gateways  
„ WLL, APON, FITL, NGN, and all other short-loop CPE/  
2. The green package meets RoHS Directive 2002/95/EC of the  
European Council to minimize the environmental impact of  
electrical equipment.  
Enterprise telephony applications  
FEATURES  
„ Ideal for ISDN-TA and set top applications  
„ On-chip ringing with on-chip ring-trip detector  
„ Low Standby state power  
3. Due to size constraints, QFN devices are marked by omitting the  
“Le” prefix and the performance grade dash character. For  
example, Le79R70-1QC is marked 79R701QC.  
4. For delivery using a tape and reel packing system, add a "T" suffix  
to the OPN (Ordering Part Number) when placing an order.  
„ Battery operation:  
— VBAT1: –40 V to –67 V  
— VBAT2: –19 V to VBAT1  
„ On-chip battery switching and feed selection  
„ On-hook transmission  
„ Polarity reversal option  
„ Programmable constant-current feed  
„ Programmable open circuit voltage  
„ Programmable loop-detect threshold  
„ Current gain = 1000  
„ Two-wire impedance set by single component  
„ Ground-key detector  
DESCRIPTION  
The Le79R70 Ringing Subscriber Line Interface Circuit  
(RSLIC) device is a bipolar monolithic SLIC that offers on-chip  
ringing. Designers can achieve significant cost reductions at  
the system level for short-loop applications by integrating the  
ringing function on chip. Examples of such applications would  
be ISDN Terminal Adaptors and set top boxes. Using a CMOS-  
compatible input waveform and wave shaping R-C network,  
the Le79R70 Ringing SLIC device can provide trapezoidal  
wave ringing to meet various design requirements.  
„ Tip Open state for ground-start lines  
„ Internal VEE regulator (no external –5 V power supply  
required)  
„ Two on-chip relay drivers and snubber circuits  
„ Space-saving package options (8x8 QFN)  
See the Le79R70 Block Diagram, on page 3.  
RELATED LITERATURE  
„ 080917 VE790 Series RSLIC Device Product Brief  
„ 080158 Le79R70/79/100/101 Ringing SLIC Devices  
Technical Overview  
„ 080255 Le71HE0040J Evaluation Board User’s Guide  
„ 080753 Le58QL02/021/031 QLSLAC™ Data Sheet  
Document ID#: 080211 Date:  
Sep 19, 2007  
2
Rev:  
J
Version:  
Distribution:  
Public Document  
 
 
 
 
 
Le79R70  
Data Sheet  
TABLE OF CONTENTS  
Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Environmental Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Relay Driver Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
DC Feed Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Ring-Trip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Test Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
32-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision A to B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision B to C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision C to D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision D to E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision E to F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision F to G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision G1 to H1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision H1 to I1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision I1 to J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Revision J1 to J2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
PRODUCT DESCRIPTION  
The Zarlink family of subscriber line interface circuit (SLIC) products provide the telephone interface functions required  
throughout the worldwide market. Zarlink SLIC devices address all major telephony markets including central office (CO),  
private branch exchange (PBX), digital loop carrier (DLC), fiber-in-the-loop (FITL), radio-in-the-loop (RITL), hybrid fiber coax  
(HFC), and video telephony applications.  
The Zarlink SLIC devices offer support of BORSHT (battery feed, over voltage protection, ringing, supervision, hybrid, and test)  
functions with features including current limiting, on-hook transmission, polarity reversal, tip-open, and loop-current detection.  
These features allow reduction of line card cost by minimizing component count, conserving board space, and supporting  
automated manufacturing.  
The Zarlink SLIC devices provide the two- to four-wire hybrid function, DC loop feed, and two-wire supervision. Two-wire  
termination is programmed by a scaled impedance network. Transhybrid balance can be achieved with an external balance  
circuit or simply programmed using a companion Zarlink codec/filter, such as the Le58QL0xx Quad SLAC (QLSLAC™) device.  
The Le79R70 Ringing SLIC device is a bipolar monolithic SLIC that offers on-chip ringing. Now designers can achieve significant  
cost reductions at the system level for short-loop applications by integrating the ringing function on chip. Examples of such  
applications would be ISDN Terminal Adaptors and set top boxes. Using a CMOS-compatible input waveform and wave shaping  
R-C network, the Le79R70 Ringing SLIC can provide trapezoidal wave ringing to meet various design requirements.  
In order to further enhance the suitability of this device in short-loop, distributed switching applications, Zarlink has maximized  
power savings by incorporating battery switching on chip. The Le79R70 Ringing SLIC device switches between two battery  
supplies such that in the Off-hook (active) state, a low battery is used to save power. In order to meet the Open Circuit voltage  
requirements of fax machines and maintenance termination units (MTU), the SLIC automatically switches to a higher voltage in  
the On-hook (standby) state.  
Like all of the Zarlink SLIC devices, the Le79R70 Ringing SLIC device supports on-hook transmission, ring-trip detection and  
programmable loop-detect threshold. The Le79R70 Ringing SLIC device is a programmable constant-current feed device with  
two on-chip relay drivers to operate external relays. This unique device is available in the proven Zarlink 75 V bipolar process.  
Figure 1. Le79R70 Block Diagram  
Relay  
RYOUT2  
RYE  
Driver  
RTRIP1  
RTRIP2  
Relay  
Driver  
RYOUT1  
D1  
D2  
C1  
C2  
C3  
E1  
A(TIP)  
HPA  
Ring-Trip  
Detector  
Input Decoder  
and Control  
Ground-Key  
Detector  
Two-Wire  
Interface  
Off-Hook  
Detector  
DET  
HPB  
B(RING)  
VBAT2  
VBAT1  
RD  
VTX  
RSN  
Signal  
Transmission  
Power-Feed  
Controller  
RINGIN  
RDC  
RDCR  
RSGL  
RSGH  
B2EN  
Switch  
Driver  
VCC VNEG BGND AGND/DGND  
3
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
CONNECTION DIAGRAM  
4
3
2
1
32 31 30  
RYE  
5
RTRIP1  
RTRIP2  
HPB  
29  
28  
27  
26  
25  
RYOUT1  
B2EN  
6
7
8
9
VBAT1  
D1  
HPA  
32-Pin PLCC  
RINGIN  
E1  
C3  
C2  
RDCR  
VTX  
10  
11  
12  
13  
24  
23  
22  
21  
VNEG  
RSN  
DET  
14 15 16 17 18 19 20  
32 31  
1
30 29  
28 27  
26 25  
24  
RYE  
RTRIP2  
HPB  
2
23  
RYOUT1  
3
4
22  
21  
B2EN  
HPA  
VBAT1  
RINGIN  
32-pin QFN  
5
6
20  
19  
D1  
E1  
RDCR  
VTX  
18  
17  
C3  
C2  
VNEG  
RSN  
7
8
Exposed Pad  
9
10  
11 12  
13 14  
15 16  
Notes:  
1. Pin 1 is marked for orientation.  
2. NC = No connect  
3. RSVD = Reserved. Do not connect to this pin.  
4. The thermally enhanced QFN package features an exposed pad on the underside which must be electrically tied to VBAT1.  
4
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
Pin Descriptions  
Pin Names  
AGND/DGND  
A(TIP)  
Type  
Description  
Gnd  
Analog and digital ground are connected internally to a single pin.  
Output of A(TIP) power amplifier.  
Output  
VBAT2 enable. Logic Low enables operation from VBAT2. Logic High enables operation from VBAT1. TTL  
compatible.  
B2EN  
Input  
BGND  
B(RING)  
C3–C1  
D1  
Gnd  
Battery (power) ground  
Output of B(RING) power amplifier.  
Decoder. TTL compatible. C3 is MSB and C1 is LSB.  
Relay1 control. TTL compatible. Logic Low activates the Relay1 relay driver.  
(Option) Relay2 control. TTL compatible. Logic Low activates the Relay2 relay driver.  
Output  
Input  
Input  
Input  
D2  
Detector. Logic Low indicates that the selected detector is tripped. Logic inputs C3–C1 and E1 select the  
DET  
E1  
Output  
Input  
detector. Open-collector with a built-in 15 kpull-up resistor.  
(Option) A logic High selects the off-hook detector. A logic Low selects the ground-key detector. TTL  
compatible.  
HPA  
HPB  
RD  
Capacitor  
Capacitor  
Resistor  
High-pass filter capacitor. A(TIP) side of high-pass filter capacitor.  
High-pass filter capacitor. B(RING) side of high-pass filter capacitor.  
Detect resistor. Threshold modification and filter point for the off-hook detector.  
DC feed resistor. Connection point for the DC-feed current programming network, which also connects to the  
receiver summing node (RSN). VRDC is negative for normal polarity and positive for reverse polarity.  
RDC  
Resistor  
RDCR  
RINGIN  
RSGH  
Connection point for feedback during ringing.  
Ring Signal Input. Pin for ring signal input. Square-wave shaped by external RC filter. Requires 50% duty  
cycle. CMOS-compatible input.  
Input  
Input  
Saturation Guard High. Pin for resistor to adjust Open Circuit voltage when operating from VBAT1  
Saturation Guard Low. Pin for resistor to adjust the anti-saturation cut-in voltage when operating from both  
BAT1 and VBAT2  
.
RSGL  
Input  
V
.
The metallic current (AC and DC) between A(TIP) and B(RING) is equal to 1000 x the current into this pin.  
The networks that program receive gain, two-wire impedance, and feed resistance all connect to this node.  
Ring-trip detector. Ring-trip detector threshold set and filter pin.  
Ring-trip detector threshold offset (switch to VBAT1). For power conservation in any non-ringing state, this  
switch is open.  
RSN  
Input  
Input  
Input  
RTRIP1  
RTRIP2  
Common Emitter of RYOUT1/RYOUT2. Emitter output of RYOUT1 and RYOUT2. Normally connected to  
relay ground.  
RYE  
Output  
RYOUT1  
RYOUT2  
VBAT1  
VBAT2  
VCC  
Output  
Output  
Battery  
Battery  
Power  
Power  
Relay/switch driver. Open-collector driver with emitter internally connected to RYE.  
(Option) Relay/switch driver. Open-collector driver with emitter internally connected to RYE.  
Battery supply and connection to substrate.  
Power supply to output amplifiers. Connect to off-hook battery through a diode.  
Positive analog power supply.  
VNEG  
Negative analog power supply. This pin is the return for the internal VEE regulator.  
Transmit Audio. This output is a 0.5066 gain version of the A(TIP) and B(RING) metallic AC voltage. VTX also  
sources the two-wire input impedance programming network.  
This must be electrically tied to VBAT1.  
VTX  
Output  
Battery  
Exposed Pad  
5
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Stresses above those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at or above  
these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.  
Storage temperature  
Ambient temperature under bias  
VCC with respect to AGND/DGND  
–55 to +150°C  
0 to +70°C  
0.4 to + 7 V  
V
NEG with respect to AGND/DGND  
VBAT2  
BAT1 with respect to AGND/DGND:  
0.4 V to VBAT2  
VBAT2 to GND  
V
Continuous  
10 ms  
BGND with respect to AGND/DGND  
A (TIP) or B (RING) to BGND:  
Continuous  
+0.4 to -80 V  
+0.4 to -85 V  
+3 to -3 V  
VBAT1 – 5 V+ 1 V  
VBAT1 – 10 V+ 5 V  
VBAT1 – 15 V+ 8 V  
VBAT1 – 20 V+ 12 V  
10 ms (F = 0.1 Hz)  
1 µs (F = 0.1 Hz)  
250 ns (F = 0.1 Hz)  
Current from A (TIP) or B (RING)  
RYOUT1, RYOUT2 current  
RYOUT1, RYOUT2 voltage  
RYOUT1, RYOUT2 transient  
RYE voltage  
± 150 mA  
75 mA  
RYE to +7 V  
RYE to +10 V  
BGND to VBAT1  
C3-C1, D2-D1, E1, B2EN and RINGIN:  
-0.4 V to VCC + 0.4 V  
Input voltage  
Maximum continuous power dissipation, TA = 70° C1:  
In 32-pin PLCC package  
1.67 W  
3.00 W  
θJA  
In 32-pin QFN package  
Thermal Data:  
In 32-pin PLCC package  
45° C/W  
In 32-pin QFN package2  
25° C/W  
ESD Immunity (Human Body Model)  
JESD22 Class 1C compliant  
Note:  
1. Thermal limiting circuitry on the chip will shut down the circuit at a junction temperature of about 165ºC. Continuous operation above 145ºC  
junction temperature may degrade device reliability.  
2. The thermal performance of a thermally enhanced package is assured through optimized printed circuit board layout. Specified performance  
requires that the exposed thermal pad be soldered to an equally sized exposed copper surface, which, in turn, conducts heat through  
multiple vias to a large internal copper plane.  
Package Assembly  
Green package devices are assembled with enhanced, environmental compatible lead-free, halogen-free, and antimony-free  
materials. The leads possess a matte-tin plating which is compatible with conventional board assembly processes or newer lead-  
free board assembly processes. The peak soldering temperature should not exceed 245°C during printed circuit board assembly.  
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile.  
OPERATING RANGES  
Environmental Ranges  
Zarlink guarantees the performance of this device over the commercial (0º C to 70º C) temperature range by conducting  
electrical characterization and by conducting a production test with single insertion coupled to periodic sampling. These  
characterization and test procedures comply with section 4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance  
Requirements for Telecommunications Equipment.  
6
Zarlink Semiconductor Inc.  
 
Le79R70  
Data Sheet  
Environmental Ranges  
Ambient Temperature  
0 to 70° C  
Electrical Ranges  
VCC  
4.75 V to 5.25 V  
-4.75 V to VBAT2  
VNEG  
VBAT1  
-40 to -67 V  
VBAT2  
-19 V to VBAT1  
AGND/DGND  
0 V  
BGND with respect to AGND/DGND  
Load resistance on VTX to GND  
-100 mV to +100 mV  
20 kmin  
Note:  
The Operating Ranges define those limits between which the functionality of the device is guaranteed.  
7
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
ELECTRICAL CHARACTERISTICS  
Description  
Transmission Performance  
2-wire return loss  
ZVTX, analog output impedance  
VVTX, analog output offset voltage  
ZRSN, analog input impedance  
Test Conditions (See Note 1)  
Min  
26  
Typ  
Max  
Unit  
Note  
200 Hz to 3.4 kHz (Test Circuit D)  
dB  
1, 4, 6  
4
3
1
20  
+50  
20  
–50  
mV  
4
Overload level, 2-wire and 4-wire, off hook Active state  
2.5  
0.88  
Vpk  
Vrms  
2a  
2b  
Overload level, 2-wire  
On hook, RLAC = 600 Ω  
THD (Total Harmonic Distortion)  
THD, on hook, OHT state  
+3 dBm, BAT2 = –24 V  
0 dBm, RLAC = 600 ,  
BAT1 = –67 V  
–64  
–50  
–40  
dB  
5
Longitudinal Performance (See Test Circuit C)  
Longitudinal to metallic L-T, L-4 balance  
Longitudinal signal generation 4-L  
Longitudinal current per pin (A or B)  
Longitudinal impedance at A or B  
Idle Channel Noise  
200 Hz to 3.4 kHz  
200 Hz to 800 Hz, Normal polarity  
Active or OHT state  
40  
40  
12  
dB  
28  
25  
mArms  
/pin  
4
4
0 to 100 Hz, TA = +25°C  
C-message weighted noise  
Psophometric weighted noise  
+7  
–83  
+14  
–76  
dBrnC  
dBmp  
Insertion Loss and Four- to Four-Wire Balance Return Signal (See Test Circuits A and B)  
Gain accuracy  
Gain accuracy  
4- to 2-wire  
2- to 4-wire and  
4- to 4-wire  
0 dBm, 1 kHz  
0 dBm, 1 kHz  
–0.20  
0
+0.20  
–6.22 –6.02 –5.82  
Gain accuracy  
Gain accuracy  
4- to 2-wire  
2- to 4-wire and  
4- to 4-wire  
OHT state, on hook  
OHT state, on hook  
–0.35  
0
+0.35  
3
–6.37 –6.02 –5.77  
dB  
µs  
Gain accuracy over frequency  
300 to 3400 Hz  
relative to 1 kHz  
+3 dBm to –55 dBm  
relative to 0 dBm  
0 dBm to –37 dBm  
+3 dBm to 0 dBm  
0 dBm, 1 kHz  
–0.10  
–0.10  
+0.10  
+0.10  
Gain tracking  
3, 4  
Gain tracking  
OHT state, on hook  
Group delay  
–0.10  
–0.35  
+0.10  
+0.35  
3, 4  
3
1, 4, 6  
3
8
Zarlink Semiconductor Inc.  
 
Le79R70  
Data Sheet  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Description  
Line Characteristics  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
IL, Loop-current accuracy  
IL, Long loops, Active state  
IL, Accuracy, Standby state  
IL in constant-current region,  
B2EN = 0  
0.87IL  
IL  
21.7  
IL  
1.1IL  
RLDC = 600 , RSGL = open  
20  
20  
0.8IL  
RLDC = 750 , RSGL = short  
1.2IL  
VBAT1 – 10 V  
IL = --------------------------------------  
RL + 400  
mA  
IL = constant-current region  
TA = 25°C  
18  
27  
39  
ILLIM  
Active, A and B to ground  
OHT, A and B to ground  
55  
55  
110  
4
IL, Loop current, Open Circuit state  
IA, Pin A leakage, Tip Open state  
IB, Pin B current, Tip Open state  
VA, Standby, ground-start signaling  
RL = 0  
RL = 0  
B to ground  
A to –48 V = 7 k,  
B to ground = 100 Ω  
100  
100  
µA  
34  
–5  
mA  
–7.5  
42  
4
7
V
VAB, Open Circuit voltage  
Power Supply Rejection Ratio (VRIPPLE = 100 mVrms), Active Normal State  
VCC  
VNEG  
VBAT1  
VBAT2  
50 Hz to 3400 Hz  
50 Hz to 3400 Hz  
50 Hz to 3400 Hz  
50 Hz to 3400 Hz  
33  
30  
30  
30  
50  
40  
50  
50  
dB  
5
Power Dissipation  
On hook, Open Circuit state  
On hook, Standby state  
On hook, OHT state  
On hook, Active state  
Off hook, Standby state  
Off hook, OHT state  
Off hook, Active state  
Supply Currents  
ICC, On-hook VCC supply current  
VBAT1  
VBAT2  
VBAT1  
VBAT1  
VBAT1 or VBAT2  
VBAT1  
VBAT2  
48  
55  
100  
80  
9
9
200  
220  
2000  
2000  
550  
300  
350  
2800  
2200  
750  
mW  
RL = 300 Ω  
RL = 300 Ω  
RL = 300 Ω  
Open Circuit state  
Standby state  
OHT state  
Active state–normal  
3.0  
3.2  
6.2  
6.5  
4.5  
5.5  
8.0  
9.0  
INEG, On-hook VNEG supply current  
IBAT, On-hook VBAT supply current  
Open Circuit state  
Standby state  
0.1  
0.1  
0.7  
0.7  
0.45  
0.6  
2.0  
2.7  
0.2  
0.2  
1.1  
1.1  
1.0  
1.5  
4.0  
5.0  
mA  
OHT state  
Active state–normal  
Open Circuit state  
Standby state  
OHT state  
Active state–normal  
9
Zarlink Semiconductor Inc.  
Le79R70  
ELECTRICAL CHARACTERISTICS (continued)  
Data Sheet  
Description  
Logic Inputs (C3–C1, D2–D1, E1, and B2EN)  
VIH, Input High voltage  
VIL, Input Low voltage  
IIH, Input High current  
Test Conditions (See Note 1)  
Min  
Typ  
Max  
Unit  
Note  
2.0  
V
0.8  
40  
–75  
–400  
µA  
IIL, Input Low current  
Logic Output DET  
VOL, Output Low voltage  
VOH, Output High voltage  
Ring-Trip Detector Input  
Ring detect accuracy  
IOUT = 0.8 mA, 15 kto VCC  
IOUT = –0.1 mA, 15 kto VCC  
0.40  
+10  
V
2.4  
–10  
%
BAT1 – 1  
IRTD = --------------------------- + 24 µA 335  
RRT1  
Ring Signal  
VAB, Ringing  
VAB Ringing offset  
Bat1 = –67 V, ringload = 1570 Ω  
VRINGIN = 2.5 V  
57  
2
61  
0
180  
Vpk  
V
VAB/VRINGIN (RINGIN gain)  
Ground-Key Detector Thresholds  
Ground-key resistive threshold  
Ground-key current threshold  
Loop Detector  
B to ground  
B to ground  
5
11  
10  
kΩ  
mA  
RLTH, Loop-resistance detect threshold  
Active, VBAT1  
Active, VBAT2  
Standby  
–20  
–20  
–12  
20  
20  
12  
%
8
4
Relay Driver Output (RELAY1 and 2)  
VOL, On voltage (each output)  
VOL, On voltage (each output)  
IOH, Off leakage (each output)  
Zener breakover (each output)  
Zener on voltage (each output)  
IOL = 30 mA  
IOL = 40 mA  
VOH = +5 V  
IZ = 100 µA  
IZ = 30 mA  
+0.25  
+0.30  
+0.4  
+0.8  
100  
V
µA  
V
6.6  
7.9  
11  
RELAY DRIVER SCHEMATIC  
RYOUT2  
RYOUT1  
RYE  
BGND  
BGND  
10  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
Notes:  
1. Unless otherwise noted, test conditions are BAT1 = –67 V, BAT2 = –24 V, VCC = +5 V, VNEG = –5 V, RL = 600 ,  
RDC1 = 80 k, RDC2 = 20 k, RD = 75 k, no fuse resistors, CHP = 0.018 µF, CDC = 1.2 µF, D1 = D2 = 1N400x,  
two-wire AC input impedance (ZSL) is a 600 resistance synthesized by the programming network shown below.  
RSGL = open, RSGH = open, RDCR = 2 k, RRT1 = 430 k, RRT2 = 12 k, CRT = 1.5 µF, RSLEW = 150 k, CSLEW = 0.33 µF.  
VTX  
RT1 = 150 kΩ  
RT2 = 150 kΩ  
CT1 = 60 pF  
RSN  
~
VRX  
RRX = 300 kΩ  
2. a. Overload level is defined when THD = 1%.  
b. Overload level is defined when THD = 1.5%.  
3. Balance return signal is the signal generated at VTX by VRX. This specification assumes that the two-wire AC load impedance  
matches the programmed impedance.  
4. Not tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
5. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
6. Group delay can be greatly reduced by using a ZT network such as that shown in Note 1 above. The network reduces the  
group delay to less than 2 µs and increases 2WRL. The effect of group delay on line card performance may also be compen-  
sated for by synthesizing complex impedance with the QSLAC or DSLAC device.  
7. Open Circuit VAB can be modified using RSGH.  
8. RD must be greater than 56 k. Refer to Table 2 for typical value of RLTH  
.
9. Lower power is achieved by switching into low-battery state in standby. Standby loop current is returned to VBAT1 regardless  
of the battery selected.  
Table 1. SLIC Decoding  
(DET) Output  
State  
C3 C2 C1  
2-Wire Status  
Open Circuit  
E1 = 1  
Ring trip  
E1 = 0  
Ring trip  
Battery Selection  
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Ringing  
Ring trip  
Ring trip  
B2EN  
2
Active  
Loop detector  
Loop detector  
Loop detector  
Loop detector  
Loop detector  
Loop detector  
Ground key  
Ground key  
Ground key  
Ground key  
Ground key  
Ground key  
3
On-hook TX (OHT)  
Tip Open  
4
B2EN = 1**  
VBAT1  
5
Standby  
6*  
7*  
Active Polarity Reversal  
OHT Polarity Reversal  
B2EN  
Notes:  
* Only –1 performance grade devices support polarity reversal.  
** For correct ground-start operation using Tip Open, VBAT1 on-hook battery must be used.  
11  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
Table 2. User-Programmable Components  
ZT = 500(Z2WIN – 2RF)  
ZT is connected between the VTX and RSN pins. The fuse resistors are  
RF, and Z2WIN is the desired 2-wire AC input impedance. When com-  
puting ZT, the internal current amplifier pole and any external stray ca-  
pacitance between VTX and RSN must be taken into account.  
ZRX is connected from VRX to RSN. ZT is defined above, and G42L is the  
desired receive gain.  
ZL  
1000 ZT  
----------- --------------------------------------------------  
ZRX  
=
G42L ZT + 500(ZL + 2RF)  
RDC1, RDC2, and CDC form the network connected to the RDC pin.  
2500  
--------------  
ILOOP  
RDC1 + RDC2  
=
I
LOOP is the desired loop current in the constant-current region.  
R
DCR1, RDCR2, and CDCR form the network connected to the RDCR pin.  
3000  
RDCR1 + RDCR2 = ---------------------  
Iringlim  
See Applications Circuit for these components.  
RDC1 + RDC2  
---------------------------------  
CDC = 19 ms •  
R
DC1RDC2  
C
DCR sets the ringing time constant, which can be between 15 µs and  
RDCR1 + RDCR2  
----------------------------------------  
150 µs  
150 µs.  
CDCR  
=
R
DCR1RDCR2  
RD is the resistor connected from the RD pin to GND and RLTH is the  
loop-resistance threshold between on-hook and off-hook detection. RD  
should be greater than 56 kto guarantee detection will occur in the  
Standby state. Choose the value of RD for high battery state; then use  
the equation for RLTH to find where the threshold is for low battery.  
RD = RLTH 12.67 for high battery state  
Loop-Threshold Detect Equations  
This is the same equation as for RD in the preceding equation, except  
RD  
RLTH = ------------ for high battery  
solved for RLTH  
.
12.67  
For low battery, the detect threshold is slightly higher, which will avoid  
oscillating between states.  
RD  
RLTH = ------------ for low battery  
11.37  
RLTH standby < RLTH active VBAT1 < RLTH active VBAT2, which will guar-  
antee no unstable states under all operating conditions. This equation  
will show at what resistance the standby threshold will be; it is actually  
a current threshold rather than a resistance threshold, which is shown  
by the Vbat dependency.  
VBAT1 –10  
-----------------------------  
915  
RLTH  
=
RD – 400 – 2RF  
12  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
DC FEED CHARACTERISTICS  
50  
5) VAPPH  
High Battery Anti-Sat  
4) VASH  
40  
VAB  
(Volts)  
30  
20  
1) Constant-Current Region  
2) VASL  
3) VAPPL  
Low Battery Anti-Sat  
10  
0
30  
IL (mA)  
Figure 1. Typical VAB vs. IL DC Feed Characteristics  
RDC = RDC1 + RDC2 = 20 k+ 80 k= 100 kΩ  
(VBAT1= –67 V, VBAT2 = –24 V)  
Notes:  
2500  
------------  
RDC  
1. Constant-current region: VAB = ILRL  
=
RL; where RL= RL + 2RF  
1000 • (104 103 + RSGL  
)
------------------------------------------------------------------  
; where RSGL = resistor to GND, B2EN = logic Low.  
2. Low battery  
VASL  
=
=
6720 103 + (80 RSGL  
)
1000 • (RSGL – 56 103)  
--------------------------------------------------------------  
Anti-sat region:  
3.  
VASL  
; where RSGL = resistor to VCC, B2EN = logic Low.  
RSGL to VCC must be greater than 100 k.  
6720 103 + (80 RSGL  
)
VAPPL = 4.17 + VASL  
VAPPL  
ILOOPL = ------------------------------------------------------------------------------  
(RDC1 + RDC2  
)
-------------------------------------- + 2 R F + RLOOP  
600  
4. High battery  
Anti-sat region:  
VASH = VASHH + VASL  
1000 • (70 103 + RSGH  
)
----------------------------------------------------------------------  
VASHH  
=
=
; where RSGH = resistor to GND, B2EN = logic High.  
; where RSGH = resistor to VCC, B2EN = logic High.  
1934 103 + (31.75 RSGH  
)
1000 • (RSGH + 2.75 103)  
----------------------------------------------------------------------  
VASHH  
1934 103 + (31.75 RSGH  
)
RSGH to VCC must be greater than 100 k.  
VAPPH = 4.17 + VASH  
5.  
VAPPH  
ILOOPH = ------------------------------------------------------------------------------  
(RDC1 + RDC2  
)
-------------------------------------- + 2 R F + RLOOP  
600  
13  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
RING-TRIP COMPONENTS  
RRT2 = 12 kΩ  
CRT = 1.5 µF  
VBAT1  
-----------------------------------------------------------------------------------------------------------------------------------------  
RRT1 = 320 CF •  
• (RLRT + 150 + 2RF)  
VBAT1 – 5 – (24 µA 320 CF • (RLRT + 150 + 2RF))  
where RLRT = Loop-detection threshold resistance for ring trip and CF = Crest factor of ringing signal (1.25)  
RSLEW, CSLEW  
Ring waveform rise time 0.214 (RSLEW CSLEW) tr.  
For a 1.25 crest factor @ 20 Hz, tr 10 mS.  
(RSLEW = 150 k, CSLEW = 0.33 µF.)  
CSLEW should be changed if a different crest factor is desired.  
Ringing Reference  
(Input to RSLEW  
)
0
B(RING)  
A(TIP)  
Battery  
This is the best time for  
switching between RINGING  
and other states for minimizing  
detect switching transients.  
Figure 2. Ringing Waveforms  
A
a
b
RSN  
RL  
IL  
SLIC  
RDC2  
CDC  
RDC1  
B
RDC  
Feed current programmed by RDC1 and RDC2  
Figure 3. Feed Programming  
14  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
TEST CIRCUITS  
A(TIP)  
VTX  
RL  
2
SLIC  
VAB  
VL  
RT  
RRX  
AGND  
RL  
2
B(RING) RSN  
I
L2-4 = 20 log (VTX / VAB)  
A. Two- to Four-Wire Insertion Loss  
A(TIP)  
VTX  
SLIC  
VAB  
RL  
RT  
RRX  
AGND  
B(RING)  
RSN  
VRX  
IL4-2 = 20 log (VAB / VRX  
)
BRS = 20 log (VTX / VRX  
)
B. Four- to Two-Wire Insertion Loss and Four- to Four-Wire Balance Return Signal  
1
ωC  
A(TIP)  
SLIC  
AGND  
VTX  
<< RL  
RL  
2
S1  
C
RT  
S2  
VL  
VAB  
RL  
2
VL  
RRX  
B(RING) RSN  
VRX  
S2 Open, S1 Closed  
S2 Closed, S1 Open  
4-L Long. Sig. Gen. = 20 log (VL / VRX  
L-T Long. Bal. = 20 log (VAB / VL)  
L-4 Long. Bal. = 20 log (VTX / VL)  
)
C. Longitudinal Balance  
15  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
TEST CIRCUITS (continued)  
ZD  
A(TIP)  
VTX  
RT1  
R
SLIC  
VS  
VM  
AGND  
R
ZIN  
CT1  
RT2  
B(RING)  
RSN  
RRX  
ZD: The desired impedance;  
e.g., the characteristic impedance of the line  
Return loss = –20 log (2 VM / VS)  
D. Two-Wire Return Loss Test Circuit  
VCC  
6.2 kΩ  
A(TIP)  
A(TIP)  
DET  
B(RING)  
15 pF  
RL = 600 Ω  
RG  
E1  
B(RING)  
E. Loop-Detector Switching  
F. Ground-Key Switching  
RF1  
C1  
L1  
200 Ω  
50 Ω  
A
CAX  
33 nF  
RF2  
50 Ω  
200 Ω  
B
HF  
GEN  
CBX  
33 nF  
VTX  
C2  
L2  
50 Ω  
SLIC  
under test  
1.5 Vrms  
80% Amplitude  
Modulated  
100 kHz to 30 MHz  
G. RFI Test Circuit  
16  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
TEST CIRCUITS (continued)  
+5 V  
–5 V  
VCC  
RTRIP1  
RTRIP2  
VNEG  
RRT2  
RRT1  
CRT  
1.5 µF  
12 kΩ  
RD  
75 kΩ  
RSGH  
open  
430 kΩ  
RD  
RSGL  
open  
CAX  
2.2 nF  
RSGH  
RSGL  
A(TIP)  
HPA  
A(TIP)  
VTX  
VTX  
RT  
300 kΩ  
RRX  
300 kΩ  
CHP  
18 nF  
HPB  
VRX  
RSN  
B(RING)  
B(RING)  
RDC1  
RDC2  
CBX  
80 kΩ  
2.2 nF  
20 kΩ  
RDC  
RDCR  
RYOUT1  
RDCR  
2.0 kΩ  
RYOUT2  
RYE  
CDC  
1.2 µF  
B2EN  
C1  
D1  
C2  
C3  
D1  
D2  
E1  
DET  
BAT1  
VBAT1  
VBAT2  
0.1 µF  
D2  
BAT2  
0.1 µF  
RSLEW  
100 kΩ  
BGND  
RINGIN  
See Note.  
CSLEW  
0.33 µF  
AGND/  
DGND  
BATTERY  
GROUND  
ANALOG  
GROUND  
Note:  
The input should be 50% duty cycle CMOS-compatible input.  
DIGITAL  
GROUND  
H. Le79R70 Test Circuit  
17  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
APPLICATION CIRCUIT  
+5 V  
–5 V  
VCC  
RTRIP1  
RTRIP2  
VNEG  
RRT2  
RRT1  
CRT  
12 kΩ  
1.5 µF  
RD  
66 kΩ  
RSGH  
515 kΩ  
open  
RD  
RSGL  
open  
CAX = 2.2 nF  
RSGH  
RSGL  
VTX  
RFA = 50 Ω  
TIP  
A(TIP)  
HPA  
VTX  
K1  
G
K1  
RT1  
125 kΩ  
125 kΩ  
RRX  
250 kΩ  
Bat1  
A
A
TISP  
CHP  
18 nF  
CT  
RT2  
61089  
VRX  
HPB  
RSN  
K2  
K2  
RDC1  
50 kΩ  
RDC2  
50 kΩ  
B(RING)  
RING  
RFB = 50 Ω  
CBX = 2.2 nF  
RDC  
RDCR2  
15 kΩ  
CDC  
RDCR1  
820 nF  
RYOUT1  
RYOUT2  
RYE  
RDCR  
CDCR  
15 kΩ  
10 nF  
B2EN  
C1  
D1  
C2  
C3  
D1  
D2  
E1  
DET  
BAT1  
BAT2  
VBAT1  
VBAT2  
0.1 µF  
D2  
0.1 µF  
RSLEW  
150 kΩ  
BGND  
See Note.  
RINGIN  
CSLEW  
0.33 µF  
BATTERY  
GROUND  
AGND/  
DGND  
ANALOG  
GROUND  
Assumptions:  
1. 1.25 CF  
4. 5.2 kHigh Battery Loop Threshold  
5. 925 Ringing Loop Threshold  
6. 600 Two-wire Impedance,  
600 ZL  
7. G42L = 1  
8. –67 V Vbat1, –24 V Vbat2  
2. 25 mA ILOOP  
3. 100 mA Ringing Current Limit  
DIGITAL  
Note:  
GROUND  
The input should be 50% duty cycle CMOS-compatible input.  
I. Application Circuit  
18  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
PHYSICAL DIMENSIONS  
32-Pin PLCC  
NOTES:  
1
2
3
Dimensioning and tolerancing conform to ASME Y14,5M-1994.  
32-Pin PLCC  
JEDEC # MS-016  
To be measured at seating plan - C - contact point.  
Min  
Nom  
--  
Max  
0.140  
0.095  
0.495  
0.453  
Symbol  
A
0.125  
0.075  
0.485  
0.447  
Dimensions “D1” and “E1” do not include mold protrusion.  
Allowable mold protrusion is 0.010 inch per side. Dimensions  
“D” and “E” include mold mismatch and determined at the  
parting line; that is “D1” and “E1” are measured at the extreme  
material condition at the upper or lower parting line.  
A1  
D
0.090  
0.490  
0.450  
0.205 REF  
0.590  
0.550  
0.255 REF  
--  
D1  
D2  
E
0.585  
0.547  
0.595  
0.553  
4
5
Exact shape of this feature is optional.  
E1  
E2  
Ԧ
Details of pin 1 identifier are optional but must be located  
within the zone indicated.  
0 deg  
10 deg  
6
7
8
Sum of DAM bar protrusions to be 0.007 max per lead.  
Controlling dimension : Inch.  
Reference document : JEDEC MS-016  
32-Pin PLCC  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
19  
Zarlink Semiconductor Inc.  
 
Le79R70  
Data Sheet  
32-Pin QFN  
NOTES:  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
32 LEAD QFN  
Nom  
Symbol  
Min  
Max  
2. All dimensions are in millimeters.  
3. N is the total number of terminals.  
is in degrees.  
A
A2  
b
0.80  
0.90  
1.00  
0.57 REF  
0.23  
4.  
The Terminal #1 identifier and terminal numbering convention  
T
0.18  
5.70  
5.70  
0.43  
0.00  
0.28  
5.90  
5.90  
0.63  
0.05  
shall conform to JEP 95-1 and SSP-012. Details of the erminal #1  
D
8.00 BSC  
5.80  
identifier are optional, but must be located within the zone  
indicated. The Terminal #1 identifier may be either a mold or  
marked feature.  
D2  
E
8.00 BSC  
5.80  
E2  
e
5. Coplanarity applies to the exposed pad as well as the terminals.  
6. Reference Document: JEDEC MO-220.  
7. Lead width deviates from the JEDEC MO-220 standard.  
0.80 BSC  
0.53  
L
N
32  
A1  
A3  
aaa  
bbb  
ccc  
0.02  
0.20 REF  
0.20  
0.10  
0.10  
32-Pin QFN  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
20  
Zarlink Semiconductor Inc.  
Le79R70  
Data Sheet  
REVISION HISTORY  
Revision A to B  
Minor changes were made to the data sheet style and format to conform to Zarlink standards.  
Revision B to C  
The 28-pin SOIC information and package was added to the Ordering Information and the Connection Dia-  
grams sections.  
The physical dimensions (PL032 and SOW28) were added to the Physical Dimensions section.  
Updated the Pin Description table to correct inconsistencies.  
Revision C to D  
Changed Ring-Trip Components equation from:  
VBAT1  
-----------------------------------------------------------------------------------------------------------------------------------------  
RRT1 = 300 CF •  
• (RLRT + 150 + 2RF)  
Vbat – 3.5 – (15 µA 300 CF • (RLRT + 150 + 2RF))  
To:  
VBAT1  
-------------------------------------------------------------------------------------------------------------------------------------  
RRT1 = 320 CF •  
• (RLRT + 150 + 2RF)  
Vbat – 5 – (24 µA 320 CF • (RLRT + 150 + 2RF))  
Revision D to E  
In “Ordering Information” section, added description for wafer foundry facility optional character.  
Revision E to F  
Updated device name from “Am79R70” to “Le79R70” throughout document.  
Added QFN package to “Connection Diagram,” “Absolute Maximum Ratings,” and “Physical Dimensions.”  
Removed reference to PLCC package type in “General Description.”  
Ordering Information: Temperature statement updated to standard.  
Absolute Maximum Ratings: Notes updated to standard.  
Operating Ranges: Temperature statement updated to standard.  
Revision F to G1  
Added green package OPNs to Ordering Information, on page 1  
Added Package Assembly, on page 6  
Revision G1 to H1  
Added "Packing" column and Note 5 to Ordering Information, on page 1  
Updated 32QFN drawing in Physical Dimensions, on page 19  
Revision H1 to I1  
Added green package OPNs and removed OPN for SOIC package in Ordering Information, on page 1  
Removed SOIC drawing in Physical Dimensions, on page 19  
Added note to Physical Dimensions, on page 19  
Revision I1 to J1  
Removed the following OPNs from Ordering Information, on page 1: Le79R70JC, Le79R70-1JC, Le79R70QC, Le79R70-  
1QC.  
Changed IL Loop-Current Accuracy from 0.9 to 0.871 in Electrical Characteristics.  
Revision J1 to J2  
Enhanced format of package drawings in Physical Dimensions, on page 19  
Added new headers/footers due to Zarlink purchase of Legerity on August 3, 2007  
21  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are  
trademarks of Zarlink Semiconductor Inc.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

LE79R70-1FQC

SLIC, Bipolar, GREEN, MO-220, QFN-32
MICROSEMI

LE79R70-1JC

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70-1JCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70DJCT

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R70JC

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70JCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70QC

SLIC, Bipolar, MO-220, QFN-32
MICROSEMI

LE79R70QCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE80535GC0251MSL8BH

RISC Microprocessor, 64-Bit, 1600MHz, CMOS, PBGA479
INTEL

LE80536GC0332M

RISC Microprocessor, 64-Bit, 1800MHz, CMOS, PBGA479
INTEL

LE80536GC0332MSL8U8

Microprocessor, 32-Bit, 1800MHz, CMOS, PBGA479, LEAD FREE, PLASTIC, UFCBGA-479
INTEL

LE80536GC0332MSLJ8Z

Microprocessor, 32-Bit, 1800MHz, CMOS, PBGA479, LEAD FREE, PLASTIC, UFCBGA-479
INTEL