LE79R241DJC [ZARLINK]

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32;
LE79R241DJC
型号: LE79R241DJC
厂家: ZARLINK SEMICONDUCTOR INC    ZARLINK SEMICONDUCTOR INC
描述:

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32

电池 电信 电信集成电路
文件: 总31页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le79R241  
Intelligent Subscriber Line Interface Circuit  
Ve790 Series  
Data Sheet  
Document ID#: 080249  
Version 3  
May 2011  
Features  
Monitor of two-wire interface voltages and  
currents supports  
Ordering Information  
Device  
Package1,2  
Packing3  
Voice transmission  
Le79R241JC  
Le79R241DJC  
Le79R241QC  
32 Pin PLCC  
32 Pin PLCC (Green) Tubes  
32 Pin QFN Trays  
Tubes  
Programmable DC feed characteristics  
-
-
Independent of battery  
Current limited  
1. Due to size constraints, QFN devices are marked by omitting the  
“Le” prefix. For example, Le79R241QC is marked 79R241QC.  
2. The green package meets RoHS Directive 2002/95/EC of the Eu-  
ropean Council to minimize the environmental impact of electrical  
equipment.  
Selectable off-hook and ground-key  
thresholds  
3. For delivery using a tape and reel packing system, add a "T" suffix  
to the OPN (Ordering Part Number) when placing an order.  
Subscriber line diagnostics  
-
-
-
-
-
Leakage resistance  
Loop resistance  
Applications  
Line capacitance  
Bell capacitance  
Enables a cost effective voice solution for long or  
short loop applications providing POTS and  
integrated test capabilities  
Foreign voltage sensing  
CO  
Power cross and fault detection  
DLC  
Supports internal short loop or external ringing  
+5 V and battery supplies  
PBX/KTS  
Pair Gain  
Dual battery operation for system power saving  
Automatic battery switching  
Description  
Intelligent thermal management  
The Le79R241 Intelligent Subscriber Line Interface  
Circuit (ISLIC™) device, in combination with a VE790  
series ISLAC™ device, implements the telephone line  
interface function. This enables the design of a low  
cost, high performance, fully software programmable  
line interface for multiple country applications  
worldwide. All AC, DC, and signaling parameters are  
fully programmable via microprocessor or GCI  
interfaces on the VE790 series ISLAC device.  
Additionally, the Le79R241 ISLIC device has  
integrated self-test and line-test capabilities to resolve  
faults to the line or line circuit. The integrated test  
capability is crucial for remote applications where  
dedicated test hardware is not cost effective.  
Compatible with inexpensive protection networks  
Accommodates low tolerance fuse resistors or  
PTC thermistors  
Metering capable  
12 kHz and 16 kHz  
Smooth polarity reversal  
Tip-open state supports ground start signaling  
Integrated test load switches/relay drivers  
5 REN with DC offset trapezoid.  
For US standard:  
drives ring up to 4.4 kft of 26 gauge wire.  
drives ring up to 7 kft of 24 gauge wire.  
For European (British) standard:  
drives ring up to 1.7 km of 0.5 mm copper cable.  
Space Saving Package Options (8 x 8 QFN)  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2007-2011, Zarlink Semiconductor Inc. All Rights Reserved.  
Le79R241  
Data Sheet  
Related Literature  
080248 Le79231 ISLIC™ Device Data Sheet  
080253 Le79R251 ISLIC™ Device Data Sheet  
080250 Le79Q224x Quad ISLAC™ Device Data Sheet  
081065 Le79228 Quad ISLAC™ Device Data Sheet  
080262 VE790 Series Evaluation Board User’s Guide  
080804 Le79R2xx/Le79Q224x Chip Set User’s Guide  
080923 Le79R2xx/Le79228 Chip Set User’s Guide  
081103 Le79610 PacketSLAC™ Device Data Sheet  
Revision History  
Below are the changes from the September 2007 version to the May 2011 version.  
Page  
Item  
Description  
1
Ordering Information  
Obsoleted Le79R241FQC package.  
2
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
Table of Contents  
1.0 Product Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.0 Features of the VE790 Series Chipset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.0 Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.0 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.1 Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
5.2 Thermal Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2.1 Package Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.1 Environmental Ranges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.3.2 Electrical Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
6.0 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.1 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
6.2 DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.3 Relay Driver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.4 Transmission Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.5 Ringing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.6 Current-Limit Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.7 Thermal Shutdown Fault Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.0 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
7.1 Operating Mode Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.2 Driver Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.3 Thermal-Management Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
8.0 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
9.0 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
10.0 Application Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
10.1 Internal Ringing Line Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
11.0 Line Card Parts List - Internal Ringing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
11.1 External Ringing Line Schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
12.0 Line card Parts List - External Ringing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
13.0 Physical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
13.1 32-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
13.2 32-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
List of Figures  
Figure 1 - Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 2 - Le79R241 ISLIC Device Internal Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3 - Chip Set Block Diagram - Four Channel Line Card Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 4 - Le79241DJC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 5 - Le79R241QC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 6 - Relay Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
1.0 Product Description  
Zarlink’s VE790 series voice chip sets integrate all functions of the subscriber line. Two chip types are used to  
implement the line card — the Le79R241 ISLIC device and a VE790 series ISLAC device. These provide the  
following basic functions:  
1. The Le79R241 ISLIC device: A high voltage, bipolar device that drives the subscriber line, maintains longitudinal  
balance and senses line conditions.  
2. The VE790 series ISLAC devices: Low voltage CMOS ICs that provide conversion, control and DSP functions  
for the Le79R241 ISLIC device.  
A complete schematic of the line card using a VoiceEdge chip set for internal and external ringing is shown in  
“Application Circuit” on page 25.  
The Le79R241 ISLIC device uses reliable, bipolar technology to provide the power necessary to drive a wide  
variety of subscriber lines. It can be programmed by the VE790 series ISLAC device to operate in eight different  
modes that control power consumption and signaling. This enables it to have full control over the subscriber loop.  
The Le79R241 ISLIC device is designed to be used exclusively with the VE790 series ISLAC devices. The  
Le79R241 ISLIC device requires only +5 V power and the battery supplies for its operation.  
The Le79R241 ISLIC device implements a linear loop-current feeding method with the enhancement of intelligent  
thermal management. This limits the amount of power dissipated on the Le79R241 ISLIC device by dissipating  
power in external resistors in a controlled manner.  
Each codec contains high-performance circuits that provide A/D and D/A conversion for the voice (codec), DC-feed  
and supervision signals. The VE790 series ISLAC devices contain a DSP core that handles signaling, DC-feed,  
supervision and line diagnostics for all channels.  
The DSP core selectively interfaces with three types of backplanes:  
Standard PCM/MPI  
Standard GCI  
Modified GCI with a single analog line per GCI channel  
The 790 series voice chip set provides a complete software configurable solution to the BORSCHT functions as  
well as complete programmable control over subscriber line DC-feed characteristics, such as current limit and feed  
resistance. In addition, these chip sets provide system level solutions for the loop supervisory functions and  
metering. In total, they provide a programmable solution that can satisfy worldwide line card requirements by  
software configuration.  
Software programmed filter coefficients, DC-feed data and supervision data are easily calculated with WinSLAC™  
software. This PC software is provided free of charge. It allows the designer to enter a description of system  
requirements. WinSLAC then computes the necessary coefficients and plots the predicted system results.  
The Le79R241 ISLIC device interface unit inside the VE790 series ISLAC device processes information regarding  
the line voltages, loop currents and battery voltage levels. These inputs allow the VE790 series ISLAC device to  
place several key Le79R241 ISLIC device performance parameters under software control.  
The main functions that can be observed and/or controlled through the VE790 series ISLAC device backplane  
interface are:  
DC-feed characteristics  
Ground-key detection  
Off-hook detection  
Metering signal  
Longitudinal operating point  
5
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
Subscriber line voltage and currents  
Ring-trip detection  
Abrupt and smooth battery reversal  
Subscriber line matching  
Ringing generation  
Sophisticated line and circuit tests  
To accomplish these functions, the Le79R241 ISLIC device collects the following information and feeds it, in analog  
form, to the VE790 series ISLAC device:  
The metallic (IMT) and longitudinal (ILG) loop currents  
The AC (VTX) and DC (VSAB) loop voltage  
The outputs supplied by the VE790 series ISLAC devices to the Le79R241 ISLIC device are then:  
A voltage (VHLi*) that provides control for the following high-level Le79R241 ISLIC device outputs:  
DC loop current  
Internal ringing signal  
12 or 16 kHz metering signal  
A low-level voltage proportional to the voice signal (VOUTi)  
A voltage that controls longitudinal offset for test purposes (VLBi)  
The VE790 series ISLAC devices perform the codec and filter functions associated with the four-wire section of the  
subscriber line circuitry in a digital switch. These functions involve converting an analog voice signal into digital  
PCM samples and converting digital PCM samples back into an analog signal. During conversion, digital filters are  
used to band-limit the voice signals.  
The user-programmable filters set the receive and transmit gain, perform the transhybrid balancing function, permit  
adjustment of the two-wire termination impedance and provide frequency attenuation adjustment (equalization) of  
the receive and transmit paths. Adaptive transhybrid balancing is also included. All programmable digital filter  
coefficients can be calculated using WinSLAC software. The PCM codes can be either 16-bit linear  
two’s-complement or 8-bit companded A-law or µ-law.  
Besides the codec functions, the 790 series voice chip set provides all the sensing, feedback, and clocking  
necessary to completely control Le79R241 ISLIC device functions with programmable parameters. System-level  
parameters under programmable control include active loop current limits, feed resistance, and feed mode  
voltages.  
The VE790 series ISLAC devices supply complete mode control to the Le79R241 ISLIC device using the control  
bus (P1-P3) and tri-level load signal (LDi).  
The 790 series voice chip set provides extensive loop supervision capability including off-hook, ring-trip and  
ground-key detection. Detection thresholds for these functions are programmable. A programmable debounce  
timer is available that eliminates false detection due to contact bounce.  
For subscriber line diagnostics, AC and DC line conditions can be monitored using built-in test tools. Measured  
parameters can be compared to programmed threshold levels to set a pass/fail bit. The user can choose to send  
the actual measurement data directly to a higher level processor by way of the PCM voice channel. Both  
longitudinal and metallic resistance and capacitance can be measured, which allows leakage resistance, line  
capacitance, and telephones to be identified.  
*Note:  
i = channel number  
6
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
Signal  
Transmission  
RSN  
VTX  
AD  
SA  
Longitudinal  
Control  
Gain/Level  
Shift  
VLB  
HPA  
HPB  
SB  
Two-Wire  
Interface  
Attenuator  
VSAB  
VREF  
BD  
Signal  
Conditioning  
IMT  
ILG  
TMN  
TMP  
TMS  
Thermal  
Management  
Control  
CREF  
Fault  
Meas.  
VBL  
Switch Driver  
VBH  
Relay  
Control  
R2  
R3  
RYE  
Relay  
Drivers  
P1  
P2  
P3  
LD  
Input Decoder and  
Control Registers  
Relay  
R1  
Driver 1  
Figure 1 - Block Diagram  
7
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
A Amplifier  
AD  
SA  
IA sense  
RSN  
IA  
IA  
600  
+
-
Fault  
Meas.  
+
-
HPA  
VTX  
+
TMS  
HPB  
VREF  
BGND  
+
-
-
+
Fault  
Meas.  
+
β
=
0.01  
VSAB  
-
SB  
BD  
VREF  
B Amplifier  
IB  
VREF  
IB sense  
IB  
600  
VREF  
TMN  
Thermal  
Management  
Control  
Gain/Level Shift  
VLB  
TMP  
VBH  
To Power  
Amplifiers  
Thermal  
Shutdown  
High Neg.  
Bat. sel.  
IA  
IB  
+
IMT  
ILG  
VBL  
R3  
600 600  
IA  
IB  
-
600 600  
RYE  
R2  
Decoder  
C2 C3  
CREF  
RD1 RD2 RD3  
C1  
Control Register  
R1  
Demux  
Power amplifiers positive supply  
BGND  
P1  
P2  
P3  
LD  
VCC  
GND  
Figure 2 - Le79R241 ISLIC Device Internal Block Diagram  
8
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
2.0 Features of the VE790 Series Chipset  
Performs all battery feed, ringing, signaling, hybrid  
and test (BORSCHT) functions  
Supports both loop-start and ground-start  
signaling  
Two chip solution supports high density,  
multi-channel architecture  
Exceeds LSSGR and CCITT central office  
requirements  
Single hardware design meets multiple country  
requirements through software programming of:  
Selectable PCM or GCI interface  
Supports most available master clock  
frequencies from 512 kHz to 8.192 MHz  
Ringing waveform and frequency  
DC loop-feed characteristics and current-limit  
Loop-supervision detection thresholds  
On-hook transmission  
Power/service denial mode  
Line-feed characteristics independent of battery  
voltage  
-
-
Off-hook debounce circuit  
Ground-key and ring-trip filters  
Only 5 V, 3.3 V and battery supplies needed  
Low idle-power per line  
Off-hook detect de-bounce interval  
Two-wire AC impedance  
Transhybrid balance  
Linear power-feed with intelligent  
power-management feature  
Compatible with inexpensive protection networks;  
Accommodates low-tolerance fuse resistors while  
maintaining longitudinal balance  
Transmit and receive gains  
Equalization  
Digital I/O pins  
Monitors two-wire interface voltages and currents  
for subscriber line diagnostics  
A-law/µ-law and linear selection  
Built-in voice-path test modes  
Supports internal and external battery-backed  
ringing  
Power-cross, fault, and foreign voltage detection  
Integrated line-test features  
Self-contained ringing generation and control  
Leakage  
Supports external ringing generator and ring  
relay  
Line and ringer capacitance  
Loop resistance  
Ring relay operation synchronized to zero  
crossings of ringing voltage and current  
Integrated self-test features  
Echo gain, distortion, and noise  
Integrated ring-trip filter and software enabled  
manual or automatic ring-trip mode  
Guaranteed performance over commercial and  
industrial temperature ranges.  
Supports metering generation with envelope  
shaping  
Up to three relay drivers per Le79R241 ISLIC  
device  
Smooth or abrupt polarity reversal  
Adaptive transhybrid balance  
Configurable as test load switches  
Continuous or adapt and freeze  
9
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
7
7
4
4
VCCA  
A1  
B1  
Le79R241  
Le79R241  
Le79R241  
Le79R241  
LD1  
VCCD  
DGND1  
DGND2  
IO(1-4)  
TSCA/G  
TSCB  
VREF  
A2  
B2  
LD2  
RC  
Networks  
and  
AGND1  
AGND2  
7
A3  
B3  
DRA/DD  
DRB  
Protection  
LD3  
Le79Q224x  
Quad Codec/  
Filter  
P1-P3  
DXB  
3
7
DXA/DU  
DCLK/S0  
PCLK/FS  
MCLK  
A4  
B4  
LD4  
RREF  
FS/DCL  
CS/RST  
DIO/S1  
INT  
RSHB  
RSLB  
BATH  
BATL  
Figure 3 - Chip Set Block Diagram - Four Channel Line Card Example  
10  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
3.0 Connection Diagrams  
4
3
2
1
32 31 30  
5
6
29  
28  
27  
26  
25  
24  
23  
22  
21  
R1  
R2  
SB  
SA  
7
RYE  
R3  
IMT  
8
ILG  
9
TMS  
TMP  
TMN  
P1  
CREF  
RSVD  
HPB  
HPA  
VTX  
32-Pin PLCC  
10  
11  
12  
13  
P2  
14 15 16 17 18 19 20  
Figure 4 - Le79241DJC  
32 31 30 29 28 27 26 25  
1
24  
R1  
SA  
2
23  
R2  
IMT  
3
4
22  
21  
RYE  
R3  
ILG  
CREF  
32-Pin QFN  
5
6
20  
19  
TMS  
TMP  
RSVD  
HPB  
18  
17  
TMN  
P1  
HPA  
VTX  
7
8
Exposed Pad  
9
10 11 12 13 14 15 16  
Figure 5 - Le79R241QC  
Notes:  
1. Pin 1 is marked for orientation.  
2. RSVD = Reserved. Do not connect to this pin.  
3. The thermally enhanced QFN package features an exposed pad on the underside which must be electrically tied to VBH.  
11  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
4.0 Pin Descriptions  
Pin Name  
AD, BD  
BGND  
Type  
Description  
Output  
Provide the currents to the A and B leads of the subscriber loop.  
Ground return for high and low battery supplies.  
Ground  
VCCD reference. It is the digital high logic supply rail, used by the Le79R241 ISLIC device to codec  
interface.  
CREF  
+3.3 VDC  
Ground  
Output  
GND  
Analog and digital ground return for VCC.  
These pins connect to CHP, the external high-pass filter capacitor that separates the DC loop-voltage  
from the voice transmission path.  
HPA, HPB  
ILG is proportional to the common-mode line current (IAD–IBD), except in disconnect mode, where  
ILG is proportional to the current into grounded SB.  
ILG  
IMT  
Output  
Output  
IMT is proportional to the differential line current (IAD + IBD), except in disconnect mode, where IMT  
is proportional to the current into grounded SA. The Le79R241 ISLIC device indicates thermal  
overload by pulling IMT to CREF.  
The LD pin controls the input latch and responds to a 3-level input. When the LD pin is a logic 1 (CREF  
1), the logic levels on P1–P3 latch into the Le79241 control register bits that operate the  
mode-decoder. When the LD pin is a logic 0 (0.6), the logic levels on P1–P3 latch into the Am79241  
control register bits that control the relay drivers (RD1–RD3). When the LD pin level is at ~VREF ± 0.3  
LD  
Input  
V, the control register contents are locked.  
P1–P3  
R1  
Input  
Inputs to the latch for the operating-mode decoder and the relay-drivers.  
Collector connection for relay 1 driver. Emitter internally connected to BGND.  
Collector connection for relay 2 driver. Emitter internally connected to RYE  
Collector connection for relay 3 driver. Emitter internally connected to RYE.  
Output  
Output  
Output  
R2  
R3  
The metallic current between AD and BD is equal to 500 times the current into this pin. Networks that  
program receive gain and two-wire impedance connect to this node. This input is at a virtual potential  
of VREF.  
RSN  
Input  
RSVD  
RYE  
Reserved  
Output  
These pins are used during Zarlink testing. In the application, they must be left floating.  
Emitter connection for R2 and R3. Normally connected to relay ground.  
Sense the voltages on the line side of the fuse resistors at the A and B leads. External sense resistors,  
RSA and RSB, protect these pins from lightning or power-cross.  
SA, SB  
Input  
TMP,  
TMN, TMS  
External resistors connected from TMP to TMS and TMN to VBL to offload excess power from the  
Le79R241 ISLIC device.  
Output  
Connection to high-battery supply used for ringing and long loops. Connects to the substrate. When  
only a single battery is available, it connects to both VBH and VBL.  
VBH  
Battery (Power)  
Connection to low-battery supply used for short loops. When only a single battery is available, this pin  
can be connected to VBH.  
VBL  
Battery (Power)  
VCC  
+5 V Power Supply  
Positive supply for low voltage analog and digital circuits in the Le79R241 ISLIC device.  
Sets the DC longitudinal voltage of the Le79R241 ISLIC device. It is the reference for the longitudinal  
control loop. When the VLB pin is greater than VREF, the Le79R241 ISLIC device sets the  
longitudinal voltage to a voltage approximately half-way between the positive and negative power  
supply battery rails. When the VLB pin is driven to levels between 0V and VREF, the longitudinal  
voltage decreases linearly with the voltage on the VLB pin.  
VLB  
Input  
12  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
Pin Name  
VREF  
Type  
Description  
The VE790 series SLAC device provides this voltage which is used by the Le79R241 ISLIC device  
for internal reference purposes. All analog input and output signals interfacing to the VE790 series  
SLAC device are referenced to this pin.  
Input  
VSAB  
Output  
Output  
Scaled-down version of the voltage between the sense points SA and SB on this pin.  
The voltage between this pin and VREF is a scaled down version of the AC component of the voltage  
sensed between the SA and SB pins. One end of the two-wire input impedance programming network  
connects to VTX. The voltage at VTX swings positive and negative with respect to VREF.  
VTX  
Exposed  
Pad  
Battery  
This must be electrically tied to VBH.  
13  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
5.0 Electrical Characteristics  
5.1 Absolute Maximum Ratings  
Stresses above those listed under Absolute Maximum Ratings can cause permanent device failure. Functionality at  
or above these limits is not implied. Exposure to absolute maximum ratings for extended periods can affect device  
reliability.  
Storage temperature  
Ambient temperature, under bias  
Humidity  
–55° to +150° C  
–40° to +85° C  
5% to 95%  
–0.4 to +7 V  
+0.4 to –104 V  
–3 to +3 V  
VCC with respect to GND  
VBH, VBL with respect to GND (see note 2)  
BGND with respect to GND  
Voltage on relay outputs  
AD or BD to BGND:  
+7 V  
Continuous  
VBH – 1 to BGND + 1  
VBH – 5 to BGND + 5  
VBH – 10 to BGND + 10  
VBH – 15 to BGND + 15  
10 ms (F = 0.1 Hz)  
1 µs (F = 0.1 Hz)  
250 ns (F = 0.1 Hz)  
Current into SA or SB:  
10 µs rise to Ipeak  
Ipeak = ±5 mA  
1000 µs fall to 0.5 Ipeak;  
2000 µs fall to I =0  
Current into SA or SB:  
2 µs rise to Ipeak  
Ipeak = ±12.5 mA  
10 µs fall to 0.5 Ipeak;  
20 µs fall to I = 0  
SA SB continuous  
5 mA  
Current through AD or BD  
P1, P2, P3, LD to GND  
± 150 mA  
–0.4 to VCC + 0.4 V  
Maximum power dissipation (see note 1)  
TA = 70° C  
In 32-pin PLCC package  
In 32-pin QFN package  
1.67 W  
3.00 W  
TA = 85° C  
1.33 W  
2.40 W  
In 32-pin PLCC package  
In 32-pin QFN package  
ESD Immunity (Human Body Model)  
JESD22 Class 1C compliant  
Notes:  
1. Thermal limiting circuitry on chip will shut down the circuit at a junction temperature of about 165° C. Operation above 145° C junction  
temperature may degrade device reliability.  
The thermal performance of a thermally enhanced package is assured through optimized printed circuit board layout. Specified performance  
requires that the exposed thermal pad be soldered to an equally sized exposed copper surface, which, in turn, conducts heat through  
multiple vias to a large internal copper plane.  
2. Rise time of VBH (dv/dt) must be limited to less than 27 v/µs.  
14  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
5.2 Thermal Resistance  
The junction to air thermal resistance of the Le79R241 ISLIC device in a 32-pin PLCC package is 45° C/W and in a  
32-pin QFN package is 25° C/W (measured under free air convection conditions and without external heat sinking).  
5.2.1 Package Assembly  
The standard (non-green) package devices are assembled with industry-standard mold compounds, and the leads  
possess a tin/lead (Sn/Pb) plating. These packages are compatible with conventional SnPb eutectic solder board  
assembly processes. The peak soldering temperature should not exceed 225°C during printed circuit board  
assembly.  
Green package devices are assembled with enhanced, environmental compatible lead-free, halogen-free, and  
antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board  
assembly processes or newer lead-free board assembly processes. The peak soldering temperature should not  
exceed 245°C during printed circuit board assembly.  
Refer to IPC/JEDEC J-Std-020B Table 5-2 for the recommended solder reflow temperature profile.  
5.3 Operating Ranges  
Zarlink guarantees the performance of this device over commercial (0ºC to 70ºC) and industrial (-40ºC to 85ºC)  
temperature ranges by conducting electrical characterization over each range and by conducting a production test  
with single insertion coupled to periodic sampling. These characterization and test procedures comply with section  
4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications  
Equipment.  
5.3.1 Environmental Ranges  
0 to 70° C Commercial  
Ambient Temperature  
–40 to +85 ° C extended temperature  
Ambient Relative Humidity  
15 to 85%  
5.3.2 Electrical Ranges  
VCC  
5 V ± 5%  
VBL  
–15 V to VBH  
–42.5 to –99V  
–100 to +100 mV  
20 kminimum  
VBH  
BGND with respect to GND  
Load resistance on VTX to VREF  
Load resistance on VSAB to VREF  
20 kminimum  
15  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
6.0 Specifications  
6.1 Power Dissipation  
Loop resistance = 0 to unless otherwise noted (not including fuse resistors), 2 x 50 fuse resistors, BATL =  
–36 V, BATH = –90 V, VCC = +5 V. For power dissipation measurements, DC-feed conditions are as follows:  
ILA (Active mode current limit) = 25 mA (IRSN = 50 µA)  
RFD (Feed resistance) = 500   
VAS (Anti-sat activate voltage) = 10 V  
VAPP (Apparent Battery Voltage) = 48 V  
RMGLi = RMGPi (Thermal management resistors) = 1 k  
Description  
Test Conditions  
On-Hook Disconnect  
Min.  
Typ.  
55  
Max.  
70  
Unit  
On-Hook Standby  
80  
100  
On-Hook Transmission Le79R241 ISLIC device  
Fixed Longitudinal Voltage  
175  
340  
215  
400  
Power Dissipation  
Normal Polarity  
mW  
On-Hook Active High Battery Le79R241 ISLIC  
device  
Off-Hook Active Low Battery Le79R241ISLIC  
device  
700  
200  
800  
0.7  
RL = 294   
TMG  
On-Hook Disconnect  
VBH  
VBL  
VCC  
0.4  
0.1  
3.0  
3.5  
1.1  
On-Hook Standby  
VBH  
VBL  
VCC  
0.75  
0
3.1  
3.5  
2.5  
On-Hook Transmission  
Fixed Longitudinal Voltage  
VBH  
VBL  
VCC  
1.85  
0
5
Power Supply Currents  
mA  
6
4.5  
On-Hook Active High Battery  
VBH  
VBL  
VCC  
3.6  
0
7.3  
8.0  
2.0  
Off-Hook Active Low Battery  
RL = 294   
VBH  
VBL  
VCC  
0.9  
26.9  
7.5  
10  
16  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
6.2 DC Specifications  
Unless otherwise specified, test conditions are: VCC = 5 V, RMGPi = RMGLi = 1 k, BATH =  
–90 V, BATL = –36 V, RRX = 150 k, RL = 600 , RSA = RSB = 200 k, RFA = RFB = 50 ,  
CHP = 22 nF, CAD = CBD = 22 nF, IRSN = 50 A, Active low battery. DC-feed conditions are  
normally set by the 790 series codec. When the Le79R241 ISLIC device is tested by itself, its  
operating conditions must be simulated as if it were connected to an ideal 790 series codec.  
30 k  
Ω
30 k  
390 pf  
VREF  
Ω
RT Network  
No.  
Item  
Condition  
Min.  
Typ.  
Max.  
Unit  
Note  
Standby mode, open circuit,  
|VBH| < 55 V  
|VBH| > 55 V  
GND VB  
Any Active mode (does not  
VBH–6  
55.5  
55.5  
VBH – 8  
48  
13.88  
VBH–7  
51  
15  
Two-wire loop voltage  
(including offset)  
1
16.13  
V
2.  
include OHT),  
RL = 600 , IRSN = 50 µA  
OHT mode, RL = 2200   
19.8  
130  
22  
IRSN = 20 µA  
Feed resistance per leg  
at pins AD & BD  
ohm  
s
2
3
Standby mode  
250  
375  
45  
2.  
Feed current  
Standby mode, RL = 600  
Feed current limit  
IMT current  
18  
34  
56  
mA  
44.6  
Standby mode, RL = 2200   
Standby mode  
A to VBH  
B to Ground  
µA  
ILG current  
28  
28  
0.6  
VREF+0.  
3
Low boundary  
Mid boundary  
High boundary  
Input high current  
Input low current  
Mid-level current  
V
V
V
µA  
µA  
µA  
VREF–0.  
3
CREF – 1  
VREF  
Ternary input voltage  
boundaries for LD pin.  
Mid-level input source  
must be Vref.  
4
5
2.  
2.  
2.  
108  
47  
51  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
2.0  
V
V
µA  
µA  
0.8  
20  
20  
Logic Inputs P1, P2, P3  
-20  
-20  
0
0
6
7
8
VTX output offset  
VREF input current  
CREF input current  
–50  
0
50  
0
+50  
mV  
µA  
µA  
VREF = 1.4 V  
CREF = 3.3 V  
2.  
2.  
-3  
3
ß, DC Ratio of VSAB to  
loop voltage:  
9
Tj < 145°C, VSA – VSB = 22 V  
Voltage Output on IMT  
0.0088  
2.8  
0.0097  
0.0106  
CREF  
V/V  
VSAB  
---------------------------  
=  
V
SA VSB  
Fault Indicator  
Threshold  
10  
11  
CREF – 0.3 V  
30  
V
2.  
2.  
Gain from VLB pin to A  
or B pin, KLG  
V/V  
12  
13  
14  
VLB pin input current  
ILOOP/IMT  
VLB = VREF ± 1 V  
ILOOP = 10 mA  
ILONG = 10 mA  
0
100  
333  
655  
µA  
A/A  
A/A  
283  
575  
308  
615  
ILONG/ILG  
17  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
No.  
Item  
Condition  
Active modes  
Min.  
Typ.  
Max.  
Unit  
Note  
2.  
Input current, SA and  
SB pins  
15  
1.0  
3.0  
µA  
16  
17  
18  
K1  
Incremental DC current gain  
Disconnect ISA = 2 mA  
Disconnect ISB = 2 mA  
462.5  
4
500  
6
537.5  
8.75  
16  
2.  
ISA/IMT  
ISB/ILG  
A/A  
10  
12  
–40°C  
+25°C  
+85°C  
7.0  
3.6  
1.4  
19  
VSAB output offset  
mV  
20  
21  
IMT output offset  
ILG output offset  
–3  
–1  
0
0
3
1
µA  
µA  
6.3 Relay Driver Specifications  
Item  
Condition  
Min.  
Typ.  
Max.  
0.5  
Unit  
Note  
25 mA/relay sink  
40 mA/ relay sink  
0.4  
0.8  
On Voltage  
V
2
1.0  
R2,R3 = BGND  
RYE = VBH  
R2,R3 Off Leakage  
0
100  
µA  
V
Zener Break Over  
Zener On Voltage  
Iz = 100 A  
6.6  
6
7.9  
11  
10  
17  
Iz = 30 mA  
R3  
R2  
RYE  
A. Relay Driver Configuration  
R1  
BGND  
B. Ring Relay  
Figure 6 - Relay Drivers  
18  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
6.4 Transmission Specifications  
No.  
1
Item  
Condition  
Min.  
Typ.  
Max.  
Unit  
Note  
RSN input impedance  
VTX output impedance  
f = 300 to 3400 Hz  
1
3
2
2
Active High Battery or Active Low  
Battery  
3
4
5
Max, AC + DC loop current  
70  
mA  
2
Longitudinal impedance,  
A or B to GND  
Active mode  
70  
135  
–10 dBm, 1 kHz, 0 to 70°C  
–14.13  
–14.18  
–13.98  
–13.98  
–13.83  
–13.78  
2-4 wire gain  
TA = –40°C to 85°C  
2
2
300 to 3400 Hz, relative to 1 kHz  
TA = –40°C to 85°C  
2-4 wire gain variation with  
frequency  
–0.1  
–0.15  
+0.1  
+0.15  
6
7
+3 dBm to –55 dBm  
Reference: –10 dBm  
TA = –40 to 85°C  
–0.1  
+0.1  
2-4 wire gain tracking  
4-2 wire gain  
2,5  
–0.15  
+0.15  
dB  
–10 dBm, 1 kHz  
–0.15  
–0.2  
+0.15  
+0.2  
8
9
2
TA = –40°C to 85°C  
4-2 wire gain variation with  
frequency  
300 to 3400 Hz, relative to 1 kHz  
–0.1  
+0.1  
+3 dBm to –55 dBm  
Reference: –10 dBm  
–40°C to 85°C  
–0.1  
–0.15  
+0.1  
+0.15  
10  
4-2 wire gain tracking  
2,5  
Total harmonic distortion  
level  
2-wire  
300 Hz to 3400 Hz  
0 dBm  
–50  
–40  
–48  
–38  
dB  
dB  
dB  
dB  
Vp  
dB  
11.2 dBm  
–12 dBm  
–0.8 dBm  
RLOAD = 600   
VAB - 50 V 0 dBm  
11  
4-wire  
4-wire overload level at VTX  
OHT  
±1  
–50  
3
3
Idle channel noise  
C-message  
Active modes, RL = 600   
+9  
–5  
–81  
–95  
+11  
–79  
dBrnC  
2-wire  
4-wire  
2-wire  
4-wire  
12  
13  
Weighted  
Psophometric  
dBmp  
Weighted  
L - T 200 to 1000 Hz  
TA = –40°C to 85°C  
58  
53  
53  
48  
3
2
Longitudinal balance  
(IEEE method)  
Normal Polarity  
1000 to 3400 Hz  
TA = –40°C to 85°C  
T - L 200 to 3400 Hz  
40  
L - T, IL = 0 50 to 3400 Hz  
63  
3
2
dB  
L - T  
200 to 1000 Hz  
50  
48  
Reverse Polarity  
PSRR (VBH, VBL)  
PSRR (VCC)  
TA = –40°C to 85°C  
50 to 3400 Hz  
3.4 to 50 kHz  
45  
40  
3,4,1,  
2,4  
14  
15  
16  
25  
25  
20  
50 to 3400 Hz  
3.4 to 50 kHz  
45  
35  
3,4,1,  
2,4  
Longitudinal AC current per  
wire  
F = 15 to 60 Hz Active mode  
30  
mArms  
2
19  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
No.  
Item  
Condition  
Min.  
Typ.  
Max.  
Unit  
Note  
Freq = 12 kHz 2.8 Vrms  
17  
Metering distortion  
Freq = 16 kHz  
40  
dB  
2
metering load = 200   
6.5 Ringing Specifications  
Item  
Condition  
Min.  
Typ.  
VBH+6  
Max.  
Unit  
Note  
Peak Ringing Voltage  
Active Internal Ringing  
V
7
6.6 Current-Limit Behavior  
SLIC Mode  
Condition  
Min.  
Typ.  
Max.  
Unit  
Note  
Applied fault between ground and T/R  
VBH applied to Tip or Ring  
1
100  
µA  
A
Disconnect  
Tip Open  
6
VBH/200 k  
Ring Short to GND  
20  
35  
46  
Short Tip-to-VBH  
38  
35  
47  
44  
24  
26  
Standby  
mA  
Short Ring-to-GND  
Active Ringing  
790 series codec generating internal ringing  
100  
2
6.7 Thermal Shutdown Fault Indications  
Fault  
Indication  
IMT operates normally (VREF ±1 V)  
No Fault  
Thermal Shutdown  
KG, IMT above 2.8 V; ILG operates normally  
Note:  
1. These tests are performed with the following load impedances:  
Frequency < 12 kHz – Longitudinal impedance = 500 ; metallic impedance = 300   
Frequency > 12 kHz – Longitudinal impedance = 90 ; metallic impedance = 135   
2. Not tested or partially tested in production. This parameter is guaranteed by characterization or correlation to other tests.  
3. This parameter is tested at 1 kHz in production. Performance at other frequencies is guaranteed by characterization.  
4. When the Le79R241 ISLIC device and 790 series codec is in the anti-sat operating region, this parameter is degraded. The exact  
degradation depends on system design.  
5. –55 dBm gain tracking level not tested in production. This parameter is guaranteed by characterization and correlation to other tests.  
6. This spec is valid from 0 V to VBL or –50 V, whichever is lower in magnitude.  
7. Other ringing-voltage characteristics are set by the 790 series codec.  
20  
Zarlink Semiconductor Inc.  
 
Le79R241  
Data Sheet  
7.0 Operating Modes  
The Le79R241 ISLIC device receives multiplexed control data on the P1, P2 and P3 pins. The LD pin then controls  
the loading of P1, P2, and P3 values into the proper bits in the Le79R241 ISLIC device control register. When the  
LD pin is less than 0.3 V below VREF (< (VREF – 0.3 V)), P1–P3 must contain data for relay control bits RD1, RD2  
and RD3. These are latched into the first three bits in the Le79R241 ISLIC device control register. When the LD pin  
is more than 0.3 V above VREF, P1–P3 must contain Le79R241 ISLIC device control data C1, C2, and C3, which  
are latched into the last three bits of the Le79R241 ISLIC device control register. Connecting the LD pin to VREF  
locks the contents of the Le79R241 ISLIC device control register.  
The operating mode of the Le79R241 ISLIC device is determined by the C1, C2, and C3 bits in the control register  
of the Le79R241 ISLIC device. Table 1 defines the Le79R241 ISLIC device operating modes set by these signals.  
Under normal operating conditions, the Le79R241 ISLIC device does not have active relays. The Le79R241 ISLIC  
device to VE790 series ISLAC device interface is designed to allow continuous real-time control of the relay drivers  
to avoid incorrect data loads to the relay bit latches of the Le79R241 devices.  
To perform external ringing, the VE790 series ISLAC device is set to external ringing mode (RMODE = 1), enables  
the ring relay, and puts the Le79R241 ISLIC device in the Standby mode.  
Connection to  
Battery Voltage  
Selection  
RMGPi & RMGLi  
Resistors  
C3  
C2  
C1  
Operating Mode  
Operating Mode  
High Battery  
(BATH) and BGND  
(High ohmic feed): Loop supervision  
active, A and B amplifiers shut down  
0
0
0
Standby (See note 1)  
Open  
Open  
High Battery  
(BATH) and BGND  
Tip Open: AD at High-Impedance,  
Channel A power amplifier shut down  
0
0
0
1
1
0
Tip Open (See note 1)  
On-Hook  
Transmission, Fixed  
Longitudinal Voltage  
High Battery  
(BATH) and BGND  
Fixed longitudinal voltage of –28 V  
Low Battery  
selection at VBL  
AD and BD at High-Impedance, Channel A  
and B power amplifiers shut down  
0
1
1
1
0
0
1
0
1
Disconnect  
RSVD  
A and B Amplifier  
Output  
High Battery  
(BATH) and BGND  
Active High Battery  
Active feed, normal or reverse polarity  
Low Battery (BATL)  
and BGND  
1
1
1
1
0
1
Active Low Battery  
High Battery  
(BATH) and BGND  
Active Internal Ringing  
Active Internal Ringing  
Table 1 - Operating Modes  
Note:  
1. In these modes, the ring lead (B-lead) output has a –50 V internal clamp to battery ground (BGND).  
21  
Zarlink Semiconductor Inc.  
 
Le79R241  
Data Sheet  
7.1 Operating Mode Descriptions  
Operating Mode  
Description  
This mode disconnects both A and B output amplifiers from the AD and BD outputs. The A and B  
amplifiers are shut down and the Le79R241 ISLIC device selects the low battery voltage at the VBL pin.  
In the Disconnect state, the currents on IMT and ILG represent the voltages on the SA and SB pins,  
respectively. These currents are scaled to produce voltages across RMTi and RLGi of  
Disconnect  
V
V
SA  
SB  
------------ and ------------ , respectively.  
400 400  
The power amplifiers are turned off. The AD output is driven by an internal 250 (typical) resistor,  
which connects to ground. The BD output is driven by an internal 250 (typical) resistor, which  
connects to the high battery (BATH) at the VBH pin, through a clamp circuit, which clamps to  
approximately –50 V with respect to BGND. For VBH values above –55 V, the open-circuit voltage,  
which appears at this output is ~VBH + 7 V. If VBH is below –55 V, the voltage at this output is –50 V.  
The battery selection for the balance of the circuitry on the chip is VBL. Line supervision remains active.  
Current limiting is provided on each line to limit power dissipation under short-loop conditions as  
specified in “Current-Limit Behavior” on page 20. In external ringing, the Standby Le79R241 ISLIC  
device state is selected.  
Standby  
In this mode, the AD (Tip) lead is opened and the BD (Ring) lead is connected to a clamp, which  
operates from the high battery on VBH pin and clamps to approximately –50 V with respect to BGND  
through a resistor of approximately 250 (typical). The battery selection for the balance of the circuitry  
on the chip is VBL.  
Tip Open  
In the Active High Battery mode, battery connections are connected as shown in Table 1. Both output  
amplifiers deliver the full power level determined by the programmed DC-feed conditions. Active High  
Battery mode is enabled during a call in applications when a long loop can be encountered.  
Active High Battery  
Active Low Battery  
Active Internal Ringing  
Both output amplifiers deliver the full power level determined by the programmed DC-feed conditions.  
VBL, the low negative battery, is selected in the Active Low Battery mode. This is typically used during  
the voice part of a call.  
In the Internal Ringing mode, the Le79R241 ISLIC device selects the battery connections as shown in  
Table 1. When using internal ringing, both the AD and BD output amplifiers deliver the ringing signal  
determined by the programmed ringing level.  
On-Hook Transmission  
(OHT), Fixed Longitudinal  
Voltage  
In the On-Hook Transmission, Fixed Longitudinal Voltage mode, battery connections are as shown in  
Table 1. The longitudinal voltage is fixed at the voltage shown in Table 1 to allow compliance with safety  
specifications for some classes of products.  
7.2 Driver Descriptions  
Driver  
Description  
A logic 1 on RD1 turns the R1 driver on and operates a relay connected between the R1 pin and VCCD. R1  
drives the ring relay when external ringing is selected.  
R1  
A logic 1 on the RD2 signal turns the R2 driver on and routes current from the R2 pin to the RYE pin. In the  
option where the RYE pin is connected to ground, the R2 pin can sink current from a relay connected to  
VCCD.  
R2  
Another option is to connect the RYE pin to the BD (Ring) lead and connect a test load between R2 and the  
AD (Tip) lead. This technique avoids the use of a relay to connect a test load. However, it does not isolate  
the subscriber line from the line card. The test load must be connected to the Le79R241 ISLIC device side  
of the protection resistor to avoid damage to the R2 driver.  
A logic 1 on the RD3 signal turns the R3 driver on and routes current from the R3 pin to the RYE pin. In the  
option where the RYE pin is connected to ground, the R3 pin can sink current from a relay connected to  
VCCD.  
R3  
Another option is to connect the RYE pin to the B (Ring) lead and connect a test load between R3 and the A  
(Tip) lead. This technique avoids the use of a relay to connect a test load. However, it does not isolate the  
subscriber line from the line card. The test load must be connected to the Le79R241 ISLIC device side of the  
protection resistor to avoid damage to the R3 driver.  
Control bits RD1, RD2, and RD3 do not affect the operating mode of the Le79R241 ISLIC device. These signals  
usually perform the following functions.  
22  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
7.3 Thermal-Management Equations  
Applies to all modes except Standby and Ringing, which has no thermal management..  
Equation  
Description  
IL < 5 mA  
TMG resistor-current is limited to be 5 mA < IL. If IL < 5  
PSLIC = (SBAT – IL(RL + 2RFUSE)) • IL + 0.3 W  
PTRTMG = 0  
mA, no current flows in the TMG resistor and it all flows in  
the Am79241.  
IL > 5 mA  
These equations are valid when  
RMGPi = RMGLi = RTMG  
RTMG • (IL – 5 mA) < (SBAT – (RF + RL)IL) / 2 – 2  
PTRTMG: total power dissipation of RMGPi and RMGLi  
because the longitudinal voltage is one-half the battery  
voltage and the TMG switches require approximately 2 V.  
R
TMG = (SBAT – IL(RL + 2RFUSE)) / (2(IL – 5 mA))  
SLIC = IL(SBAT – IL(RL + 2RFUSE)) + 0.3 W – PTRTMG  
PTRTMG = (IL – 5 mA)2(2RTMG  
To choose a power rating for RTMG  
PRATING > PTRTMG / 2  
:
P
)
8.0 Timing Specifications  
Symbol  
trSLD  
Signal  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Rise time Le79R241 ISLIC device LD  
pin  
LD  
2
Fall time Le79R241 ISLIC device LD  
pin  
tfSLD  
LD  
LD  
2
µs  
tSLDPW  
tSDXSU  
tSDXHD  
tSDXD  
LD minimum pulse width  
P1–3 data Setup time  
P1–3 data hold time  
Max P1–3 data delay  
3
P1,P2,P3  
P1,P2,P3  
P1,P2,P3  
4.5  
4.5  
5
Note:  
1. The P13 pins are updated continuously during operation by the LD signal.  
2. After a power-on reset or hardware reset, the relay outputs from the Le79R241 ISLIC device turn all relays off. An unassuming state is to  
place the relay control pins, which are level triggered, to a reset state for all relays. Any noise encountered only raises the levels toward the  
register lock state.  
3. When writing to the Le79R241 ISLIC device registers, the sequence is:  
a) Set LD pin to mid-state  
b) Place appropriate data on the P13 pins  
c) Assert the LD pin to High or Low to write the proper data  
d) Return LD pin to mid-state  
4. Le79R241 ISLIC device registers are refreshed at 5.33 kHz when used with a 790 series codec.  
5. If the clock or MPI becomes disabled, the LD pins and P13 returns to 0 V state, thus protecting the Le79R241 ISLIC device and the line  
connection.  
6. Not tested in production. Guaranteed by characterization.  
23  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
9.0 Waveforms  
187.5 usec  
LD  
P1,P2,P3  
S
R
S
R
S
R
Write State Register  
Lock Registers  
VCC  
VREF  
LD  
0V  
Write Relay Register  
New State  
Data  
Previous  
Relay Data  
State Data  
Relay Data  
P1,P2,P3  
DETAIL A  
VREF  
VREF  
Write State Register  
Write Relay Register  
trSLD  
tfSLD  
LD  
tSLDPW  
tSDXHD  
tSDXSU  
P1,P2,P3  
Relay driver  
response  
tSDXD  
24  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
10.0 Application Circuit  
10.1 Internal Ringing Line Schematic  
+5V  
3.3V  
VCC  
CREF  
RSAi  
RFAi  
RRXi  
SA  
AD  
RSN  
VOUTi  
DGND  
AGND  
RHLai  
CHLbi  
A
RHLbi  
VHLi  
RHLci  
RTi  
RHLdi  
CHLdi  
U3  
U5  
VREF  
CADi  
CHPi  
VCCA  
VCCD  
VCC  
+3.3VDC  
VSAB  
VTX  
VSABi  
VINi  
HPA  
HPB  
BD  
CS1  
U4  
CS2  
U6  
BATP  
BATH  
DT1i  
U1  
U2  
Le79R241  
or  
Le79R251  
Le79228x  
codec  
RFBi  
RSBi  
B
VLB  
IMT  
VLBi  
VIMTi  
SB  
CBDi  
TMS  
RMTi  
RTEST  
VREF  
RMGPi  
ILG  
VILGi  
BACK  
TMP  
TMN  
PLANE  
RLGi  
VREF  
RMGLi  
DLHi  
DHi  
VREF  
VREF  
VBH  
VBL  
BATH  
BATL  
CBATHi  
DLi  
LD  
LDi  
P1  
SPB  
SLB  
SHB  
BATP  
BATL  
BATH  
CBATLi  
GND  
RSPB  
RSLB  
RSHB  
P1  
P2  
P3  
P2  
P3  
CBATPi  
VBP  
RYE  
R2  
BATP  
IREF  
RREF  
R3  
R1  
BGND  
RSVD  
XSC  
XSBi  
* Connections shown for one channel  
25  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
11.0 Line Card Parts List - Internal Ringing  
The following list defines the parts and part values required to meet target specification limits for channel i of the line  
card (i = 1, 2, 3, 4).  
Item  
Type  
Value  
Tol.  
Rating  
Comments  
Le79R241 ISLIC  
device  
U1  
U2  
-
VE790 series ISLAC  
device  
-
codec  
U3, U4, U5, U6  
DT1i, DT2i  
B1100CC  
Diode  
-
-
100 V  
100 V  
TECCOR Battrax protector  
1 A  
DHi1, DLi, DT1i, DT2i, DLHi  
Diode  
100 mA  
50   
-
100 V  
2 W  
50 ns response time  
RFAi, RFBi  
RSAi, RSBi  
RTi  
Resistor  
Resistor  
Resistor  
2%  
2%  
1%  
Fusible or PTC protection resistors  
Sense resistors  
200 k  
80.6 k  
1/4 W  
1/8 W  
Impedance control resistor  
RRXi  
Resistor  
Resistor  
Resistor  
Resistor  
90.9 k  
69.8 k  
750 k  
40.2 k  
1%  
1%  
1%  
1%  
1/8 W  
1/8 W  
1/8 W  
Receive path gain resistor  
Current reference setting resistor  
Battery sense resistors  
RREF  
RSHB, RSLB, RSPB  
RHLai  
1/10 W Feed/metering resistor  
1/10 W Feed/metering resistor  
1/10 W Feed/metering resistor  
1/10 W Feed/metering resistor  
RHLbi  
Resistor  
Resistor  
Resistor  
Capacitor  
Capacitor  
Resistor  
Resistor  
Resistor  
Capacitor  
4.32 k  
2.87 k  
2.87 k  
3.3 nF  
1%  
1%  
RHLci  
RHLdi  
1%  
CHLbi  
10%  
10 V  
10 V  
Feed/metering capacitor - Not Polarized  
CHLdi  
0.82 F 10%  
Feed/metering capacitor -Ceramic  
Metallic loop current gain resistor  
Longitudinal loop current gain resistor  
Test board  
RMTi  
3.01 k  
6.04 k  
2 k  
1%  
1%  
1/8 W  
1/8 W  
1 W  
RLGi  
RTEST  
1%  
CADi, CBDi2  
CBATHi, CBATLi, CBATPi  
CHPi  
22 nF  
10%  
100 V  
Ceramic  
Capacitor  
Capacitor  
Capacitor  
Resistor  
Resistor  
100 nF  
22 nF  
100 nF  
1 k  
20%  
20%  
20%  
5%  
100 V  
100 V  
100 V  
2 W  
Ceramic  
High pass filter capacitor - Ceramic  
Protector speed up capacitor  
Thermal management resistor  
Thermal management resistor  
CS1i, CS2i2  
RMGLi  
RMGPi  
1 k  
5%  
2 W  
Notes:  
1. Required to insure VBH < VBL during startup. May not be needed for some supplies.  
2. DT2i is optional - Should be put if Le79R251 is used.  
3. Value can be adjusted to suit application.  
26  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
11.1 External Ringing Line Schematic  
+5 V  
3.3 V  
VCC  
CREF  
RSAi  
RRXi  
SA  
AD  
RSN  
VOUTi  
VHLi  
DGND  
AGND  
RHLai  
RFAi  
A
1
8
CHLbi  
RHLbi  
KRi(A)  
CADi  
RHLci  
RHLdi  
CHLdi  
VREF  
RTi  
6
7
U5  
VCCA  
VCCD  
VCC  
+3.3 VDC  
VSAB  
VTX  
VSABi  
VINi  
2
CHPi  
HPA  
HPB  
BD  
DT1i  
U1  
U2  
BATH  
Le79231,  
Le79R241  
or  
Le79Q224x  
or Le79228x  
codec  
CS  
Le79R251  
VLB  
IMT  
VLBi  
RFBi  
CBDi  
B
4
5
VIMTi  
RSBi  
KRi (B)  
RMTi  
SB  
RTEST  
TMS  
VREF  
VILGi  
ILG  
U2  
ISLAC  
RMGPi  
DT2i***  
RLGi  
BACK  
PLANE  
TMP  
TMN  
VREF  
VREF  
VREF  
RMGLi  
DHi  
DLi  
LD  
GND  
P1  
LDi  
P1  
BATH  
VBH  
VBL  
CBATHi  
DLHi  
BATL  
P2  
P3  
P2  
P3  
SPB  
SLB  
CBATLi  
BATL  
BATH  
RSLB  
RSHB  
RSVD2  
RYE  
SHB  
VBP  
IREF  
R2H  
R3H  
RREF  
R1  
RGFDi  
KRi  
+5 V  
BGND  
RSVD  
XSBi  
XSC  
*Connections shown for one channel  
**DT2i is optional - Should be put if Le79R251 is used.  
Ring Bus  
RSRBi  
RSRC  
27  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
12.0 Line card Parts List - External Ringing  
The following list defines the parts and part values required to meet target specification limits for channel i of the line card (i = 1,  
2, 3, 4).  
Item  
Type  
Value  
Tol.  
Rating  
Comments  
U1  
U2  
Le79R241 ISLIC device  
VE790 series ISLAC  
device  
codec  
Transient Voltage Suppressor, Power  
Innovations  
U5  
TISP61089  
Diode  
80 V  
DLHi1, DHi, DLi, DT1i DT2i2  
100 mA  
100 V  
50 ns response time  
RFAi, RFBi  
RSAi, RSBi  
RTi  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
Resistor  
50   
2%  
2%  
1%  
1%  
1%  
5%  
1%  
1%  
1%  
2 W  
1/4 W  
1/8 W  
1/8 W  
1/8 W  
1 W  
Fusible or PTC protection resistors  
Sense resistors  
200 k  
80.6 k  
90.9 k  
69.8 k  
1 k  
Impedance control resistor  
Receive path gain resistor  
Current reference setting resistor  
Thermal management resistors  
Battery Sense Resistors  
Feed/Metering resistor  
RRXi  
RREF  
RMGLi, RMGPi  
RSHB, RSLB  
RHLai  
750 k  
40.2 k  
4.32 k  
1/8 W  
1/10 W  
1/10 W  
RHLbi  
RHLci  
Feed/Metering resistor  
Use 2.87kin metering  
Feed/Metering resistor  
Resistor  
Resistor  
2.49 k  
2.49 k  
1%  
1%  
1/10 W  
1/10 W  
Use 2.87kin metering  
Feed/Metering resistor  
RHLdi  
CHLbi  
CHLdi  
RMTi  
Capacitor  
Capacitor  
Resistor  
Resistor  
Resistor  
Capacitor  
3.3 nF  
0.82 µF  
3.01 k  
6.04 k  
2 k  
10%  
10%  
1%  
10 V  
10 V  
Feed/Metering capacitor - Not Polarized  
Feed/Metering capacitor - Ceramic  
Metallic Current Sense Resistors  
Longitudinal Current Sense Resistors  
Test board  
1/8 W  
1/8 W  
1 W  
RLGi  
1%  
RTEST  
1%  
3
22 nF  
10%  
100 V  
Ceramic  
CADi, CBDi  
CBATHi, CBATLi  
CHPi  
Capacitor  
Capacitor  
Capacitor  
Resistor  
Resistor  
Relay  
100 nF  
22 nF  
20%  
20%  
20%  
2%  
100 V  
100 V  
100 V  
2 W  
Ceramic  
Ceramic  
CSi3  
100 nF  
510   
Protector speed up capacitor  
1.2 W typ  
RGFDi  
RSRBi, RSRC  
KRi  
750 k  
5 V Coil  
1%  
1/4 W  
External Ringing sense resistors  
DPDT  
Notes:  
1. Required to insure VBH < VBL during startup. May not be needed for some supplies.  
2. DT2i is optional - Should be put if Le79R251 is used.  
3. Value can be adjusted to suit application.  
28  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
13.0 Physical Dimensions  
13.1 32-Pin PLCC  
NOTES:  
1
2
3
Dimensioning and tolerancing conform to ASME Y14,5M-1994.  
To be measured at seating plan - C - contact point.  
32-Pin PLCC  
JEDEC # MS-016  
Symbol  
Min  
Nom  
--  
Max  
0.140  
0.095  
0.495  
0.453  
A
A1  
D
D1  
D2  
E
E1  
E2  
Ө
0.125  
0.075  
0.485  
0.447  
Dimensions “D1” and “E1” do not include mold protrusion.  
Allowable mold protrusion is 0.010 inch per side. Dimensions  
“D” and “E” include mold mismatch and determined at the  
parting line; that is “D1” and “E1” are measured at the extreme  
material condition at the upper or lower parting line.  
0.090  
0.490  
0.450  
0.205 REF  
0.590  
0.550  
0.255 REF  
--  
0.585  
0.547  
0.595  
0.553  
4
5
Exact shape of this feature is optional.  
Details of pin 1 identifier are optional but must be located  
within the zone indicated.  
0 deg  
10 deg  
6
7
8
Sum of DAM bar protrusions to be 0.007 max per lead.  
Controlling dimension : Inch.  
Reference document : JEDEC MS-016  
32-Pin PLCC  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the  
device. Markings will vary with the mold tool used in manufacturing.  
29  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
13.2 32-Pin QFN  
NOTES:  
32 LEAD QFN  
Nom  
Symbol  
1. Dimensioning and tolerancing conform to ASME Y14.5M-1994.  
Min  
Max  
2. All dimensions are in millimeters.  
3. N is the total number of terminals.  
is in degrees.  
A
A2  
b
D
D2  
E
E2  
e
L
N
A1  
A3  
aaa  
bbb  
ccc  
0.80  
0.90  
1.00  
0.57 REF  
0.23  
8.00 BSC  
5.80  
8.00 BSC  
5.80  
0.80 BSC  
0.53  
32  
0.02  
0.20 REF  
0.20  
0.10  
0.10  
4.  
The Terminal #1 identifier and terminal numbering convention  
shall conform to JEP 95-1 and SSP-012. Details of the erminal #1  
0.18  
5.70  
5.70  
0.43  
0.00  
0.28  
5.90  
5.90  
0.63  
0.05  
T
identifier are optional, but must be located within the zone  
indicated. The Terminal #1 identifier may be either a mold or  
marked feature.  
5. Coplanarity applies to the exposed pad as well as the terminals.  
6. Reference Document: JEDEC MO-220.  
7. Lead width deviates from the JEDEC MO-220 standard.  
32-Pin QFN  
Note:  
Packages may have mold tooling markings on the surface. These markings have no impact on the form, fit or function of the de-  
vice. Markings will vary with the mold tool used in manufacturing.  
30  
Zarlink Semiconductor Inc.  
Le79R241  
Data Sheet  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable.  
However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such  
information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or  
use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual  
property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in  
certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are  
trademarks of Zarlink Semiconductor Inc.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  
31  
Zarlink Semiconductor Inc.  

相关型号:

LE79R241DJCT

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241DJCT

SLIC, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R241FQC

SLIC, Bipolar, 8 X 8 MM, GREEN, MO-220, QFN-32
MICROSEMI

LE79R241FQCT

SLIC, Bipolar, 8 X 8 MM, GREEN, MO-220, QFN-32
MICROSEMI

LE79R241JC

SLIC, Bipolar, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241JCT

SLIC, Bipolar, PQCC32, PLASTIC, MS-016, LCC-32
ZARLINK

LE79R241QCT

SLIC, Bipolar, 8 X 8 MM, MO-220, QFN-32
ZARLINK

LE79R251JC

Telecommunication IC
ETC

LE79R70-1DJCT

SLIC, 2-4 Conversion, Bipolar, PQCC32, GREEN, PLASTIC, MS-016, LCC-32
MICROSEMI

LE79R70-1FQC

SLIC, Bipolar, GREEN, MO-220, QFN-32
MICROSEMI

LE79R70-1JC

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI

LE79R70-1JCT

SLIC, 2-4 Conversion, Bipolar, PQCC32,
MICROSEMI