TC7129IPL [MICROCHIP]

1-CH DUAL-SLOPE ADC, PDIP40, 0.600 INCH, MO-011, PLASTIC, DIP-40;
TC7129IPL
型号: TC7129IPL
厂家: MICROCHIP    MICROCHIP
描述:

1-CH DUAL-SLOPE ADC, PDIP40, 0.600 INCH, MO-011, PLASTIC, DIP-40

驱动器 转换器 CD
文件: 总24页 (文件大小:550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7129  
4-1/2 Digit Analog-to-Digital Converters with  
On-Chip LCD Drivers  
Features  
General Description  
• Count Resolution: ±19,999  
The TC7129 is a 4-1/2 digit analog-to-digital converter  
(ADC) that directly drives a multiplexed liquid crystal  
display (LCD). Fabricated in high performance, low  
power CMOS, the TC7129 ADC is designed specifi-  
cally for high resolution, battery powered digital multi-  
meter applications. The traditional dual slope method  
of A/D conversion has been enhanced with a succes-  
sive integration technique to produce readings accu-  
rate to better than 0.005% of full scale, and resolution  
down to 10µV per count.  
• Resolution on 200mV Scale: 10µV  
• True Differential Input and Reference  
• Low Power Consumption: 500µA at 9V  
• Direct LCD Driver for 4-1/2 Digits, Decimal Points,  
Low Battery Indicator, and Continuity Indicator  
• Over Range and Under Range Outputs  
• Range Select Input: 10:1  
• High Common Mode Rejection Ratio: 110dB  
• External Phase Compensation Not Required  
The TC7129 includes features important to multimeter  
applications. It detects and indicates low battery condi-  
tion. A continuity output drives an annunciator on the  
display, and can be used with an external driver to  
sound an audible alarm. Over range and under range  
outputs and a range change input provide the ability to  
create auto-ranging instruments. For snapshot read-  
ings, the TC7129 includes a latch-and-hold input to  
freeze the present reading. This combination of features  
makes the TC7129 the ideal choice for full featured  
multimeter and digital measurement applications.  
Applications  
• Full Featured Multimeters  
• Digital Measurement Devices  
Device Selection Table  
Package  
Code  
Pin  
Layout  
Temperature  
Range  
Package  
TC7129CPL  
Normal  
40-Pin PDIP  
44-Pin PQFP  
44-Pin PLCC  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
TC7129CKW Formed  
TC7129CLW  
Typical Application  
Low Battery  
Continuity  
V+  
5pF  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
TC7129  
120kHz  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
330kΩ  
*
0.1µF  
10pF  
0.1  
+
µF  
20  
0.1µF  
1µF  
150kΩ  
kΩ  
V+  
10kΩ  
+
100kΩ  
*Note: RC network between Pins 26 and 28 is not required.  
9V  
+
V
IN  
2002 Microchip Technology Inc.  
DS21459B-page 1  
TC7129  
Package Type  
40-Pin PDIP  
OSC1  
OSC3  
40 OSC2  
1
2
39 DP  
1
38 DP  
2
ANNUNICATOR  
B , C , CONT  
3
37  
4
RANGE  
1
1
A , G , D  
5
36 DGND  
1
1
1
1
F , E , DP  
6
REF LO  
REF HI  
IN HI  
1
1
35  
34  
33  
32  
B , C , LO BATT  
7
2
2
A , G , D  
8
2
2
2
2
F , E , DP  
9
2
2
IN LO  
31 BUFF  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
B , C MINUS  
TC7129CPL  
3
3
,
Display  
Output  
Lines  
A , G , D  
C
C
-
30  
29  
28  
3
3
3
3
5
4
4
REF  
F , E , DP  
+
3
3
REF  
B , C BC  
COMMON  
4
4
,
A , G , D  
27 CONTINUITY  
26 INT OUT  
25 INT IN  
24 V+  
4
4
F , E , DP  
4
4
BP  
BP  
BP  
3
2
1
23 V-  
V
22  
LATCH/HOLD  
DISP  
DP /OR  
21 DP /UR  
3
4
44-Pin QFP  
44-Pin PLCC  
6
5
4
3
2
1
44 43 42 41 40  
44 43 42 41 40 39 38 37 36 35 34  
F , E , DP  
F , E , DP  
1
REF LO  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
7
39  
38 REF HI  
IN HI  
1
2
3
4
REF LO  
REF HI  
1
1
1
1
1
8
B , C , BATT  
B , C , BATT  
2 2  
2
2
A , G , D  
A , G , D  
2 2 2  
9
37  
36 IN LO  
IN HI  
IN LO  
BUFF  
NC  
2
2
2
F , E , DP  
F , E , DP  
2 2 2  
10  
11  
12  
13  
14  
15  
16  
2
2
2
B , C MINUS  
B , C MINUS  
35  
34  
33  
32  
31  
30  
29  
BUFF  
NC  
5
6
3
3
,
3
3
,
NC  
NC  
TC7129CKW  
TC7129CLW  
A , G , D  
A , G , D  
C
-
C
-
7
3
3
3
3
3
3
3
3
REF  
REF  
REF  
REF  
F , E , DP  
F , E , DP  
3 3  
C
+
8
C
+
3
3
B , C BC  
B , C BC  
4 4 5  
,
9
COMMON  
CONTINUITY  
INT OUT  
4
4
5
COMMON  
CONTINUITY  
INT OUT  
,
A , G , D  
A , G , D  
4 4 4  
10  
11  
4
4
4
F , E , DP  
F , E , DP 17  
4 4 4  
4
4
4
18 19 20 21 22 23 24 25 26 27 28  
12 13 14 15 16 17 18 19 20 21 22  
DS21459B-page 2  
2002 Microchip Technology Inc.  
TC7129  
*Stresses above those listed under "Absolute Maximum  
Ratings" may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (V+ to V-)....................................... 15V  
Reference Voltage (REF HI or REF LO) ......... V+ to V-  
Input Voltage (IN HI or IN LO) (Note 1)........... V+ to V-  
V
.......................................... V+ to (DGND – 0.3V)  
DISP  
Digital Input (Pins 1, 2, 19, 20,  
21, 22, 27, 37, 39, 40).......................... DGND to V+  
Analog Input (Pins 25, 29, 30) ........................ V+ to V-  
Package Power Dissipation (T 70°C)  
A
Plastic DIP .....................................................1.23W  
PLCC .............................................................1.23W  
Plastic QFP ....................................................1.00W  
Operating Temperature Range ............... 0°C to +70°C  
Storage Temperature Range.............. -65°C to +150°C  
TC7129 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: V+ to V- = 9V, VREF = 1V, TA = +25°C, fCLK = 120kHz, unless otherwise indicated.  
Pin numbers refer to 40-pin DIP.  
Symbol  
Input  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Zero Input Reading  
-0000  
0000  
±0.5  
+0000  
Counts VIN = 0V, 200mV Scale  
µV/°C VIN = 0V, 0°C < TA < +70°C  
Counts VIN = VREF = 1000mV, Range = 2V  
Ratio VIN = 1V on High Range,  
IN = 0.1V on Low Range  
Zero Reading Drift  
Ratiometric Reading  
Range Change Accuracy  
9997  
0.9999  
9999  
10000  
1.0001  
1.0000  
V
RE  
Rollover Error  
1
1
2
Counts VIN- = VIN+ = 199mV  
Counts 200mV Scale  
NL  
Linearity Error  
CMRR  
CMVR  
Common Mode Rejection Ratio  
Common Mode Voltage Range  
110  
dB  
V
VCM = 1V, VIN = 0V, 200mV Scale  
(V-) + 1.5  
(V+) – 1  
14  
VIN = 0V  
V
200mV Scale  
eN  
IIN  
Noise (Peak-to-Peak Value not  
Exceeded 95% of Time)  
µVP-P  
VIN = 0V  
200mV Scale  
Input Leakage Current  
1
2
10  
7
pA  
VIN = 0V, Pins 32, 33  
Scale Factor Temperature Coefficient  
ppm/°C VIN = 199mV, 0°C < TA < +70°C  
External VREF = 0ppm/°C  
Power  
VCOM  
Common Voltage  
2.8  
4.5  
6
3.2  
0.6  
10  
3.5  
V
mA  
µA  
V
V+ to Pin 28  
Common Sink Current  
Common Source Current  
Digital Ground Voltage  
Sink Current  
Common = +0.1V  
Common = -0.1V  
V+ to Pin 36, V+ to V- = 9V  
DGND = +0.5V  
V+ to V-  
DGND  
5.3  
1.2  
9
5.8  
mA  
V
Supply Voltage Range  
12  
1.3  
IS  
Supply Current Excluding Common  
Current  
0.8  
mA  
V+ to V- = 9V  
Note 1: Input voltages may exceed supply voltages, provided input current is limited to ±400µA. Currents above this value may  
result in invalid display readings, but will not destroy the device if limited to ±1mA. Dissipation ratings assume device is  
mounted with all leads soldered to printed circuit board.  
2002 Microchip Technology Inc.  
DS21459B-page 3  
TC7129  
TC7129 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: V+ to V- = 9V, VREF = 1V, TA = +25°C, fCLK = 120kHz, unless otherwise indicated.  
Pin numbers refer to 40-pin DIP.  
Symbol  
Parameter  
Clock Frequency  
Min  
Typ  
Max  
Unit  
Test Conditions  
fCLK  
120  
50  
360  
kHz  
kΩ  
V
VDISP Resistance  
VDISP to V+  
Low Battery Flag Activation Voltage  
6.3  
7.2  
7.7  
V+ to V-  
Digital  
Continuity Comparator Threshold  
Voltages  
100  
200  
200  
2
400  
10  
mV  
mV  
µA  
µA  
µA  
µA  
µA  
VOUT Pin 27 = High  
VOUT Pin 27 = Low  
Pins 37, 38, 39  
Pull-down Current  
"Weak Output" Current  
Sink/Source  
3/3  
3/9  
40  
3
Pins 20, 21 Sink/Source  
Pin 27 Sink/Source  
Pin 22 Source Current  
Pin 22 Sink Current  
Note 1: Input voltages may exceed supply voltages, provided input current is limited to ±400µA. Currents above this value may  
result in invalid display readings, but will not destroy the device if limited to ±1mA. Dissipation ratings assume device is  
mounted with all leads soldered to printed circuit board.  
DS21459B-page 4  
2002 Microchip Technology Inc.  
TC7129  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin No.  
Pin No.  
Pin No.  
Symbol  
Function  
40-Pin PDIP 44-Pin PQFP 44-Pin PLCC  
1
2
40  
41  
42  
43  
44  
1
2
3
OSC1  
OSC3  
Input to first clock inverter.  
Output of second clock inverter.  
3
4
ANNUNCIATOR Backplane square wave output for driving annunciators.  
B1, C1, CONT Output to display segments.  
4
5
5
6
A1, G1, D1  
Output to display segments.  
Output to display segments.  
6
7
F1, E1, DP1  
7
2
8
B2, C2, LO BATT Output to display segments.  
8
3
9
A2, G2, D2  
Output to display segments.  
Output to display segments.  
9
4
10  
11  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
F2, E2, DP2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
5
B3, C3, MINUS Output to display segments.  
7
A3, G3, D3  
F3, E3, DP3  
B4, C4, BC5  
A4, D4, G4  
F4, E4, DP4  
BP3  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Output to display segments.  
Backplane #3 output to display.  
Backplane #2 output to display.  
Backplane #1 output to display.  
Negative rail for display drivers.  
8
9
10  
11  
12  
13  
14  
15  
16  
BP2  
BP1  
VDISP  
DP4/OR  
Input: When HI, turns on most significant decimal point.  
Output: Pulled HI when result count exceeds ±19,999.  
21  
22  
18  
19  
24  
25  
DP3/UR  
Input: Second most significant decimal point on when HI.  
Output: Pulled HI when result count is less than ±1000.  
LATCH/HOLD Input: When floating, ADC operates in the Free Run mode. When  
pulled HI, the last displayed reading is held. When pulled LO, the  
result counter contents are shown incrementing during the  
de-integrate phase of cycle.  
Output: Negative going edge occurs when the data latches are  
updated. Can be used for converter status signal.  
23  
24  
25  
26  
27  
20  
21  
22  
23  
24  
26  
27  
28  
29  
30  
V-  
V+  
Negative power supply terminal.  
Positive power supply terminal and positive rail for display drivers.  
Input to integrator amplifier.  
INT IN  
INT OUT  
Output of integrator amplifier.  
CONTINUITY Input: When LO, continuity flag on the display is OFF. When HI,  
continuity flag is ON.  
Output: HI when voltage between inputs is less than +200mV. LO  
when voltage between inputs is more than +200mV.  
28  
25  
31  
COMMON  
CREF  
Sets Common mode voltage of 3.2V below V+ for DE, 10X, etc.  
Can be used as pre-regulator for external reference.  
29  
30  
31  
32  
33  
34  
35  
26  
27  
29  
30  
31  
32  
33  
32  
33  
35  
36  
37  
38  
39  
+
Positive side of external reference capacitor.  
Negative side of external reference capacitor.  
Output of buffer amplifier.  
CREF-  
BUFFER  
IN LO  
Negative input voltage terminal.  
Positive input voltage terminal.  
Positive reference voltage.  
IN HI  
REF HI  
REF LO  
Negative reference voltage  
2002 Microchip Technology Inc.  
DS21459B-page 5  
TC7129  
TABLE 2-1:  
PIN FUNCTION TABLE (CONTINUED)  
Pin No.  
Pin No.  
Pin No.  
Symbol  
Function  
40-Pin PDIP 44-Pin PQFP 44-Pin PLCC  
36  
34  
40  
DGND  
Internal ground reference for digital section. See Section 4.3,  
±5V Power Supply.  
37  
38  
39  
40  
35  
36  
37  
38  
41  
42  
43  
44  
RANGE  
DP2  
3µA pull-down for 200mV scale. Pulled HI externally for 2V scale.  
Internal 3µA pull-down. When HI, decimal point 2 will be on.  
Internal 3µA pull-down. When HI, decimal point 1 will be on.  
Output of first clock inverter. Input of second clock inverter.  
No connection.  
DP1  
OSC2  
NC  
6,17, 28, 39 12, 23, 34, 1  
DS21459B-page 6  
2002 Microchip Technology Inc.  
TC7129  
The resistor and capacitor values are not critical; those  
shown work for most applications. In some situations,  
the capacitor values may have to be adjusted to com-  
pensate for parasitic capacitance in the circuit. The  
capacitors can be low cost ceramic devices.  
3.0  
DETAILED DESCRIPTION  
(All Pin Designations Refer to 40-Pin PDIP.)  
The TC7129 is designed to be the heart of a high  
resolution analog measurement instrument. The only  
additional components required are a few passive ele-  
ments: a voltage reference, an LCD, and a power  
source. Most component values are not critical; substi-  
tutes can be chosen based on the information given  
below.  
Some applications can use a simple RC network  
instead of a crystal oscillator. The RC oscillator has  
more potential for jitter, especially in the least  
significant digit. See Section 4.8, RC Oscillator.  
3.2  
Integrating Resistor (RINT)  
The basic circuit for a digital multimeter application is  
shown in Figure 3-1. See Section 4.0, Typical Applica-  
tions for variations. Typical values for each component  
are shown. The sections below give component selec-  
tion criteria.  
The integrating resistor sets the charging current for  
the integrating capacitor. Choose a value that provides  
a current between 5µA and 20µA at 2V, the maximum  
full scale input. The typical value chosen gives a  
charging current of 13.3µA:  
3.1  
Oscillator (XOSC, CO1, CO2, RO)  
EQUATION 3-2:  
The primary criterion for selecting the crystal oscillator  
is to choose a frequency that achieves maximum rejec-  
tion of line frequency noise. To do this, the integration  
phase should last an integral number of line cycles.  
The integration phase of the TC7129 is 10,000 clock  
cycles on the 200mV range and 1000 clock cycles on  
the 2V range. One clock cycle is equal to two oscillator  
cycles. For 60Hz rejection, the oscillator frequency  
should be chosen so that the period of one line cycle  
equals the integration time for the 2V range:  
2V  
150kΩ  
I
=
13.3µA  
CHARGE  
Too high a value for R  
increases the sensitivity to  
INT  
noise pickup and increases errors due to leakage cur-  
rent. Too low a value degrades the linearity of the  
integration, leading to inaccurate readings.  
EQUATION 3-1:  
1/60 second = 16.7msec =  
1000 clock cycles *2 OSC cycles/clock cycle  
OSC Frequency  
This equation gives an oscillator frequency of 120kHz.  
A similar calculation gives an optimum frequency of  
100kHz for 50Hz rejection.  
2002 Microchip Technology Inc.  
DS21459B-page 7  
TC7129  
FIGURE 3-1:  
STANDARD CIRCUIT  
Low Battery  
Continuity  
V+  
C
5pF  
O1  
20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
Display Drive Outputs  
TC7129  
120  
kHz  
Crystal  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
330kΩ  
R
O
C
INT  
0.1µF  
C
10pF  
O2  
R
D
REF  
C
+
0.1  
µF  
REF  
20  
kΩ  
REF  
1µF  
C
RF  
0.1µF  
V+  
150kΩ  
C
IF  
R
INT  
10kΩ  
+
R
IF  
100kΩ  
R
BIAS  
9V  
+
V
IN  
The capacitor should have low dielectric absorption to  
ensure good integration linearity. Polypropylene and  
Teflon capacitors are usually suitable. A good mea-  
surement of the dielectric absorption is to connect the  
reference capacitor across the inputs by connecting:  
3.3  
Integrating Capacitor (CINT)  
The charge stored in the integrating capacitor during  
the integrate phase is directly proportional to the input  
voltage. The primary selection criterion for C  
choose a value that gives the highest voltage swing  
while remaining within the high linearity portion of the  
integrator output range. An integrator swing of 2V is the  
recommended value. The capacitor value can be  
calculated using the following equation:  
is to  
INT  
Pin to Pin:  
20 33 (C  
+ to IN HI)  
- to IN LO)  
REF  
30 32 (C  
REF  
A reading between 10,000 and 9998 is acceptable;  
anything lower indicates unacceptably high dielectric  
absorption.  
EQUATION 3-3:  
t
x I  
INT  
INT  
C
=
INT  
V
SWING  
3.4  
Reference Capacitor (CREF)  
Where t  
is the integration time.  
INT  
The reference capacitor stores the reference voltage  
during several phases of the measurement cycle. Low  
leakage is the primary selection criterion for this com-  
ponent. The value must be high enough to offset the  
effect of stray capacitance at the capacitor terminals. A  
value of at least 1µF is recommended.  
Using the values derived above (assuming 60Hz  
operation), the equation becomes:  
EQUATION 3-4:  
16.7msec x 13.3µA  
C
=
= 0.1µA  
INT  
2V  
DS21459B-page 8  
2002 Microchip Technology Inc.  
TC7129  
FIGURE 4-1:  
POWERING THE TC7129  
FROM A ±5V POWER  
SUPPLY  
3.5  
Voltage Reference  
(DREF, RREF, RBIAS, CRF  
)
The reference potentiometer (R  
)
provides an  
REF  
adjustment for adjusting the reference voltage; any  
+5V  
value above 20kis adequate. The bias resistor  
TC7129  
(R  
) limits the current through D  
to less than  
BIAS  
REF  
150µA. The reference filter capacitor (C ) forms an  
RF  
24  
RC filter with R  
to help eliminate noise.  
BIAS  
V+  
34  
REF HI  
0.1µF  
3.6  
Input Filter (RIF, CIF)  
35  
For added stability, an RC input noise filter is usually  
included in the circuit. The input filter resistor value  
should not exceed 100k. A typical RC time constant  
value is 16.7msec to help reject line frequency noise.  
The input filter capacitor should have low leakage for a  
high-impedance input.  
REF LO  
36  
DGND  
28  
33  
COMMON  
0.1µF  
+
IN HI  
V
IN  
32  
0.1µF  
IN LO  
V-  
3.7  
Battery  
23  
The typical circuit uses a 9V battery as a power source.  
Any value between 6V and 12V can be used. For oper-  
ation from batteries with voltages lower than 6V and for  
operation from power supplies, see Section 4.2,  
Powering the TC7129.  
-5V  
4.4  
Low Voltage Battery Source  
A battery with voltage between 3.8V and 6V can be  
used to power the TC7129, when used with a voltage  
doubler circuit, as shown in Figure 4-2. The voltage  
doubler uses the TC7660 DC-to-DC voltage converter  
and two external capacitors.  
4.0  
4.1  
TYPICAL APPLICATIONS  
TC7129 as a Replacement Part  
The TC7129 is a direct pin-for-pin replacement part for  
the ICL7129. Note, however, that part requires a  
capacitor and resistor between Pins 26 and 28 for  
phase compensation. Since the TC7129 uses internal  
phase compensation, these parts are not required and,  
in fact, must be removed from the circuit for stable  
operation.  
FIGURE 4-2:  
POWERING THE TC7129  
FROM A LOW VOLTAGE  
BATTERY  
24  
4.2  
Powering the TC7129  
V+  
34  
REF HI  
36  
While the most common power source for the TC7129  
is a 9V battery, there are other possibilities. Some of  
the more common ones are explained below.  
DGND  
+
3.8V  
to  
35  
REF LO  
6V  
28  
COMMON  
4.3  
±5V Power Supply  
TC7129  
33  
+
IN HI  
Measurements are made with respect to power supply  
ground. DGND (Pin 36) is set internally to about 5V  
less than V+ (Pin 24); it is not intended as a power sup-  
ply input and must not be tied directly to power supply  
ground. It can be used as a reference for external logic,  
as explained in Section 4.6, Connecting to External  
Logic (see Figure 4-1).  
V
IN  
8
32  
IN LO  
V-  
23  
2
+
10µF  
TC7660  
4
5
10µF  
3
+
2002 Microchip Technology Inc.  
DS21459B-page 9  
TC7129  
FIGURE 4-4:  
EXTERNAL LOGIC  
REFERENCED DIRECTLY  
TO DGND  
4.5  
+5V Power Supply  
Measurements are made with respect to power supply  
ground. COMMON (Pin 28) is connected to REF LO  
(Pin 35). A voltage doubler is needed, since the supply  
voltage is less than the 6V minimum needed by the  
TC7129. DGND (Pin 36) must be isolated from power  
supply ground (see Figure 4-3).  
+
V
24  
FIGURE 4-3:  
POWERING THE TC7129  
FROM A +5V POWER  
SUPPLY  
External  
Logic  
TC7129  
36  
+5V  
DGND  
I
LOGIC  
24  
23  
V+  
34  
0.1µF  
0.1µF  
V-  
TC7129  
35  
FIGURE 4-5:  
EXTERNAL LOGIC  
REFERENCED TO DGND  
WITH BUFFER  
36  
DGND  
28  
33  
32  
+
V
IN  
8
V+  
V+  
2
V-  
23  
+
10µF  
TC7660  
4
5
24  
GND  
3
External  
Logic  
10µF  
TC7129  
+
36  
4.6  
Connecting to External Logic  
+
DGND  
I
External logic can be directly referenced to DGND  
(Pin 36), provided that the supply current of the exter-  
nal logic does not exceed the sink current of DGND  
(Figure 4-4). A safe value for DGND sink current is  
1.2mA. If the sink current is expected to exceed this  
value, a buffer is recommended (see Figure 4-5).  
LOGIC  
23  
V-  
4.7  
Temperature Compensation  
For most applications, V  
(Pin 19) can be connected  
DISP  
directly to DGND (Pin 36). For applications with a wide  
temperature range, some LCDs require that the drive  
levels vary with temperature to maintain good viewing  
angle and display contrast. Figure 4-6 shows two cir-  
cuits that can be adjusted to give temperature com-  
pensation of about 10mV/°C between V+ (Pin 24) and  
V
. The diode between DGND and V  
should  
cannot  
DISP  
DISP  
DISP  
have a low turn-on voltage because V  
exceed 0.3V below DGND.  
DS21459B-page 10  
2002 Microchip Technology Inc.  
TC7129  
FIGURE 4-6:  
TEMPERATURE COMPENSATING CIRCUITS  
V+  
V+  
1N4148  
39kΩ  
39kΩ  
24  
24  
200kΩ  
TC7129  
20kΩ  
2N2222  
19  
TC7129  
19  
36  
V
DISP  
V
+
DISP  
5kΩ  
36  
DGND  
DGND  
75kΩ  
18kΩ  
23  
23  
V-  
V-  
4.8  
RC Oscillator  
4.9  
Measuring Techniques  
For applications in which 3-1/2 digit (100µV) resolution  
is sufficient, an RC oscillator is adequate. A recom-  
mended value for the capacitor is 51pF. Other values  
can be used as long as they are sufficiently larger than  
the circuit parasitic capacitance. The resistor value is  
calculated as:  
Two important techniques are used in the TC7129: suc-  
cessive integration and digital auto-zeroing. Succes-  
sive integration is a refinement to the traditional dual  
slope conversion technique.  
4.10 Dual Slope Conversion  
A dual slope conversion has two basic phases: inte-  
grate and de-integrate. During the integrate phase, the  
input signal is integrated for a fixed period of time; the  
integrated voltage level is thus proportional to the input  
voltage. During the de-integrate phase, the integrated  
voltage is ramped down at a fixed slope, and a counter  
counts the clock cycles until the integrator voltage  
crosses zero. The count is a measurement of the time  
to ramp the integrated voltage to zero, and is, there-  
fore, proportional to the input voltage being measured.  
This count can then be scaled and displayed as a mea-  
surement of the input voltage. Figure 4-8 shows the  
phases of the dual slope conversion.  
EQUATION 4-1:  
0.45  
R =  
Freq * C  
For 120kHz frequency and C = 51pF, the calculated  
value of R is 75k. The RC oscillator and the crystal  
oscillator circuits are shown in Figure 4-7.  
FIGURE 4-7:  
OSCILLATOR CIRCUITS  
TC7129  
FIGURE 4-8:  
DUAL SLOPE  
CONVERSION  
1
40  
2
270kΩ  
5pF  
V+  
10pF  
120kHz  
De-integrate  
Integrate  
V+  
Zero  
Crossing  
TC7129  
1
40  
2
Time  
75kΩ  
The dual slope method has a fundamental limitation.  
The count can only stop on a clock cycle, so that mea-  
surement accuracy is limited to the clock frequency. In  
addition, a delay in the zero crossing comparator can  
add to the inaccuracy. Figure 4-9 shows these errors in  
an actual measurement.  
51pF  
2002 Microchip Technology Inc.  
DS21459B-page 11  
TC7129  
FIGURE 4-9:  
ACCURACY ERRORS IN DUAL SLOPE CONVERSION  
De-integrate  
Integrate  
Over shoot due to zero crossing between  
clock pulses  
Time  
Integrator Residue Voltage  
Over shoot caused by comparator  
delay of 1 clock pulse  
Clock Pulses  
FIGURE 4-10:  
INTEGRATION WAVEFORM  
Zero Integrate  
and Latch  
INT  
Integrate  
DE  
De-integrate  
1
1
REST X10  
DE  
REST X10  
DE  
Zero Integrate  
2
3
TC7129  
Integrator  
Note: Shaded area greatly expanded in time and amplitude.  
Residual Voltage  
DS21459B-page 12  
2002 Microchip Technology Inc.  
TC7129  
4.11 Successive Integration  
4.12 Digital Auto-Zeroing  
The successive integration technique picks up where  
dual slope conversion ends. The over shoot voltage  
shown in Figure 4-9, called the "integrator residue volt-  
age," is measured to obtain a correction to the initial  
count. Figure 4-10 shows the cycles in a successive  
integration measurement.  
To eliminate the effect of amplifier offset errors, the  
TC7129 uses a digital auto-zeroing technique. After the  
input voltage is measured as described above, the  
measurement is repeated with the inputs shorted inter-  
nally. The reading with inputs shorted is a measure-  
ment of the internal errors and is subtracted from the  
previous reading to obtain a corrected measurement.  
Digital auto-zeroing eliminates the need for an external  
auto-zeroing capacitor used in other ADCs.  
The waveform shown is for a negative input signal. The  
sequence of events during the measurement cycle is  
shown in Table 4-1.  
4.13 Inside the TC7129  
TABLE 4-1:  
MEASUREMENT CYCLE  
SEQUENCE  
Figure 4-11 shows a simplified block diagram of the  
TC7129.  
Phase  
Description  
INT1 Input signal is integrated for fixed time (1000 clock  
cycles on 2V scale, 10,000 on 200 mV).  
DE1 Integrator voltage is ramped to zero. Counter  
counts up until zero crossing to produce reading  
accurate to 3-1/2 digits. Residue represents an  
over shoot of the actual input voltage.  
REST Rest; circuit settles.  
X10 Residue voltage is amplified 10 times and inverted.  
DE2 Integrator voltage is ramped to zero. Counter  
counts down until zero crossing to correct reading  
to 4-1/2 digits. Residue represents an under shoot  
of the actual input voltage.  
REST Rest; circuit settles.  
X10 Residue voltage is amplified 10 times and inverted.  
DE3 Integrator voltage is ramped to zero. Counter  
counts up until zero crossing to correct reading to  
5-1/2 digits. Residue is discarded.  
2002 Microchip Technology Inc.  
DS21459B-page 13  
TC7129  
FIGURE 4-11:  
TC7129 FUNCTIONAL BLOCK DIAGRAM  
Low Battery  
Continuity  
Backplane  
Drives  
Segment Drives  
Annunciator  
Drive  
TC7129  
OSC1  
V
Latch, Decode Display Multiplexer  
DISP  
OSC2  
OSC3  
Up/Down Results Counter  
Sequence Counter/Decoder  
Control Logic  
RANGE  
DP  
DP  
1
L/H  
2
CONT  
UR/DP  
3
OR/DP  
4
V+  
V-  
Analog Section  
REF HI  
DGND  
REF LO  
INT OUT  
INT IN  
BUFF  
COMMON  
IN IN  
HI LO  
FIGURE 4-12:  
INTEGRATOR BLOCK DIAGRAM  
C
C
REF  
R
INT  
INT  
REF HI  
REF LO  
DE  
DE  
Integrator  
X10  
Comparator 1  
10  
pF  
INT  
1
+
IN HI  
+
To Digital  
Section  
Buffer  
DE-  
DE+  
DE-  
+
100pF  
Comparator 2  
DE+  
ZI, X10  
Common  
INT  
REST  
INT INT  
1
2
,
IN LO  
500kΩ  
TC7129  
+
+
V
Continuity  
Comparator  
200mV  
Continuity  
To Display Driver  
DS21459B-page 14  
2002 Microchip Technology Inc.  
TC7129  
FIGURE 4-13:  
CONTINUITY INDICATOR  
CIRCUIT  
4.14 Integrator Section  
The integrator section includes the integrator, compar-  
ator, input buffer amplifier, and analog switches (see  
Table 4-2), used to change the circuit configuration dur-  
ing the separate measurement phases described ear-  
lier. See Integrator Block Diagram (Figure 4-12).  
+
IN HI  
COM  
Buffer  
TABLE 4-2:  
SWITCH LEGENDS  
Label  
Description  
Label  
DE  
Meaning.  
TC7129  
Open during all de-integrate phases.  
DE–  
Closed during all de-integrate phases when  
input voltage is negative.  
IN LO  
500kΩ  
DE+  
INT1  
INT2  
Closed during all de-integrate phases when  
input voltage is positive.  
200mV  
V
To Display Driver  
(Not Latched)  
+
Closed during the first integrate phase (mea-  
surement of the input voltage).  
CONT  
Closed during the second integrate phase  
(measurement of the amplifier offset).  
INT  
REST  
ZI  
Open during both integrate phases.  
Closed during the rest phase.  
FIGURE 4-14:  
INPUT/OUTPUT PIN  
SCHEMATIC  
Closed during the zero integrate phase.  
Closed during the X10 phase.  
Open during the X10 phase.  
X10  
X10  
TC7129  
The buffer amplifier has a Common mode input voltage  
range from 1.5V above V- to 1V below V+. The integra-  
tor amplifier can swing to within 0.3V of the rails,  
although for best linearity, the swing is usually limited to  
within 1V. Both amplifiers can supply up to 80µA of out-  
put current, but should be limited to 20µA for good  
linearity.  
500kΩ  
DP /OR, Pin 20  
4
DP /UR, Pin 21  
3
LATCH/HOLD Pin 22  
CONTINUITY, Pin 27  
4.15 Continuity Indicator  
A comparator with a 200mV threshold is connected  
between IN HI (Pin 33) and IN LO (Pin 32). Whenever  
the voltage between inputs is less than 200mV, the  
CONTINUITY output (Pin 27) will be pulled HIGH, acti-  
vating the continuity annunciator on the display. The  
continuity pin can also be used as an input to drive the  
continuity annunciator directly from an external source  
(see Figure 4-13).  
4.16 Common and Digital Ground  
The common and digital ground (DGND) outputs are  
generated from internal zener diodes. The voltage  
between V+ and DGND is the internal supply voltage  
for the digital section of the TC7129. Common can  
source approximately 12µA; DGND has essentially no  
source capability (see Figure 4-15).  
A schematic of the input/output nature of this pin is also  
shown in Figure 4-14.  
2002 Microchip Technology Inc.  
DS21459B-page 15  
TC7129  
FIGURE 4-15:  
DIGITAL GROUND (DGND)  
AND COMMON OUTPUTS  
4.20 LATCH/Hold  
The L/H output goes LOW during the last 100 cycles of  
each conversion. This pulse latches the conversion  
data into the display driver section of the TC7129. This  
pin can also be used as an input. When driven HIGH,  
the display will not be updated; the previous reading is  
displayed. When driven LOW, the display reading is not  
latched; the sequence counter reading will be dis-  
played. Since the counter is counting much faster than  
the backplanes are being updated, the reading shown  
in this mode is somewhat erratic.  
24  
V+  
12µA  
3.2V  
COM  
28  
N
5V  
+
Logic  
Section  
36  
DGND  
P
4.21 Display Driver  
TC7129  
N
The TC7129 drives a triplexed LCD with three back-  
planes. The LCD can include decimal points, polarity  
sign, and annunciators for continuity and low battery.  
Figure 4-16 shows the assignment of the display seg-  
ments to the backplanes and segment drive lines. The  
backplane drive frequency is obtained by dividing the  
oscillator frequency by 1200. This results in a back-  
plane drive frequency of 100Hz for 60Hz operation  
(120kHz crystal) and 83.3Hz for 50Hz operation  
(100kHz crystal).  
23  
V-  
4.17 Low Battery  
The low battery annunciator turns on when supply volt-  
age between V- and V+ drops below 6.8V. The internal  
zener has a threshold of 6.3V. When the supply voltage  
drops below 6.8V, the transistor tied to V- turns OFF,  
pulling the "Low Battery" point HIGH.  
Backplane waveforms are shown in Figure 4-17.  
These appear on outputs BP , BP , BP (Pins 16, 17,  
1
2
3
and 18). They remain the same, regardless of the seg-  
ments being driven.  
4.18 Sequence and Results Counter  
A sequence counter and associated control logic pro-  
vide signals that operate the analog switches in the  
integrator section. The comparator output from the inte-  
grator gates the results counter. The results counter is  
a six-section up/down decade counter, which holds the  
intermediate results from each successive integration.  
Other display output lines (Pins 4 through 15) have  
waveforms that vary depending on the displayed val-  
ues. Figure 4-18 shows a set of waveforms for the A, G,  
D outputs (Pins 5, 8, 11, and 14) for several combina-  
tions of "ON" segments.  
The ANNUNCIATOR DRIVE output (Pin 3) is a square  
wave, running at the backplane frequency (100Hz or  
83.3Hz) with a peak-to-peak voltage equal to DGND  
voltage. Connecting an annunciator to Pin 3 turns it  
ON; connecting it to its backplane turns it OFF.  
4.19 Over Range and Under Range  
Outputs  
When the results counter holds a value greater than  
±19,999, the DP /OR output (Pin 20) is driven HIGH.  
4
When the results counter value is less than ±1000, the  
DP /UR output (Pin 21) is driven HIGH. Both signals  
3
are valid on the falling edge of LATCH/HOLD (L/H) and  
do not change until the end of the next conversion  
cycle. The signals are updated at the end of each con-  
version, unless the L/H input (Pin 22) is held HIGH.  
Pins 20 and 21 can also be used as inputs for external  
control of decimal points 3 and 4. Figure 4-14 shows a  
schematic of the input/output nature of these pins.  
DS21459B-page 16  
2002 Microchip Technology Inc.  
TC7129  
FIGURE 4-16:  
DISPLAY SEGMENT ASSIGNMENTS  
Low Battery  
Continuity  
BP  
BP  
1
2
Backplane  
Connections  
BP  
3
Low Battery  
Continuity  
F
E
DP  
4
,
D
4
,
4
4
4
4
3
3
B
C
Continuity  
1
,
,
1
,
,
,
A
G
4
A
F
G
D
,
1
1
1
,
B
C
E
BC  
DP  
D
4
4
E
DP  
1
,
,
,
1
1
,
F
3
3
B
C
Low Battery  
,
2
2
,
,
,
A
G
A
F
G
E
D
2
3
3
,
,
2
2
,
B
C
MINUS  
3
,
DP  
2
,
3
2
2
,
,
FIGURE 4-17:  
BACKPLANE  
WAVEFORMS  
FIGURE 4-18:  
TYPICAL DISPLAY  
OUTPUT WAVEFORMS  
V
V
DD  
H
b Segment  
Line  
BP  
BP  
1
V
V
All Off  
L
DISP  
V
V
DD  
H
a Segment  
On  
2
d, g Off  
V
V
L
DISP  
V
V
DD  
H
a, g On  
d Off  
BP  
3
V
V
L
DISP  
V
V
DD  
H
All On  
V
V
L
DISP  
2002 Microchip Technology Inc.  
DS21459B-page 17  
TC7129  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
Package marking data not available a this time.  
5.2  
Taping Forms  
Component Taping Orientation for 44-Pin PLCC Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PLCC  
32 mm  
24 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
Component Taping Orientation for 44-Pin PQFP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
44-Pin PQFP  
24 mm  
16 mm  
500  
13 in  
Note: Drawing does not represent total number of pins.  
DS21459B-page 18  
2002 Microchip Technology Inc.  
TC7129  
5.3  
Package Dimensions  
40-Pin PDIP (Wide)  
PIN 1  
.555 (14.10)  
.530 (13.46)  
2.065 (52.45)  
2.027 (51.49)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
.150 (3.81)  
.115 (2.92)  
3° MIN.  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
44-Pin PLCC  
PIN 1  
.021 (0.53)  
.013 (0.33)  
.050 (1.27) TYP.  
.695 (17.65)  
.685 (17.40)  
.630 (16.00)  
.591 (15.00)  
.656 (16.66)  
.650 (16.51)  
.032 (0.81)  
.026 (0.66)  
.020 (0.51) MIN.  
.656 (16.66)  
.650 (16.51)  
.120 (3.05)  
.090 (2.29)  
.695 (17.65)  
.685 (17.40)  
.180 (4.57)  
.165 (4.19)  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21459B-page 19  
TC7129  
5.3  
Package Dimensions (Continued)  
44-Pin PQFP  
7° MAX.  
.009 (0.23)  
.005 (0.13)  
PIN 1  
.041 (1.03)  
.026 (0.65)  
.018 (0.45)  
.012 (0.30)  
.398 (10.10)  
.390 (9.90)  
.557 (14.15)  
.537 (13.65)  
.031 (0.80) TYP.  
.010 (0.25) TYP.  
.398 (10.10)  
.390 (9.90)  
.083 (2.10)  
.075 (1.90)  
.557 (14.15)  
.537 (13.65)  
.096 (2.45) MAX.  
Dimensions: inches (mm)  
DS21459B-page 20  
2002 Microchip Technology Inc.  
TC7129  
NOTES:  
2002 Microchip Technology Inc.  
DS21459B-page 21  
TC7129  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
DS21459B-page 22  
2002 Microchip Technology Inc.  
TC7129  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21459B-page 23  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Hong Kong  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
India Liaison Office  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
03/01/02  
DS21459B-page 24  
2002 Microchip Technology Inc.  

相关型号:

TC7129IPL713

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers
MICROCHIP

TC7129_06

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers
MICROCHIP

TC7129_13

4-1/2 Digit Analog-to-Digital Converters with On-Chip LCD Drivers
MICROCHIP

TC7135

4-1/2 Digit A/D Converter
MICROCHIP

TC7135

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135C/KW

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44
MICROCHIP

TC7135C/LI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135C/PI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
MICROCHIP

TC7135CBU

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CBU

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CBUTR

1-CH DUAL-SLOPE ADC, ACCESS, PQFP64, PLASTIC, QFP-64
MICROCHIP

TC7135CKW

4-1/2 Digit A/D Converter
MICROCHIP