TC7135C/KW [MICROCHIP]

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44;
TC7135C/KW
型号: TC7135C/KW
厂家: MICROCHIP    MICROCHIP
描述:

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44

转换器
文件: 总24页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7135  
4-1/2 Digit A/D Converter  
Features  
General Description  
• Low Rollover Error: ±1 Count Max  
• Nonlinearity Error: ±1 Count Max  
• Reading for 0V Input  
The TC7135 4-1/2 digit A/D Converter (ADC) offers  
50 ppm (1 part in 20,000) resolution with a maximum  
nonlinearity error of 1 count. An auto-zero cycle  
reduces zero error to below 10 µV and zero drift to  
0.5 µV/°C. Source impedance errors are minimized by  
a 10 pA maximum input current. Rollover error is  
limited to ±1 count.  
• True Polarity Indication at Zero for Null Detection  
• Multiplexed BCD Data Output  
• TTL-Compatible Outputs  
• Differential Input  
Microprocessor-based measurement systems are  
supported by the BUSY, STROBE and RUN/HOLD  
control signals. Remote data acquisition systems with  
data transfer via UARTs are also possible. The addi-  
tional control pins and multiplexed BCD outputs make  
the TC7135 the ideal converter for display or  
microprocessor-based measurement systems.  
• Control Signals Permit Interface to UARTs and  
Microprocessors  
• Blinking Display Visually Indicates Overrange  
Condition  
• Low Input Current: 1 pA  
• Low Zero Reading Drift: 2 µV/°C  
• Auto-Ranging Supported with Overrange and  
Underrange Signals  
• Available in PDIP and Surface-Mount Packages  
Applications  
• Precision Analog Signal Processor  
• Precision Sensor Interface  
• High Accuracy DC Measurements  
Functional Block Diagram  
5V  
TC7135  
Set VREF = 1V  
1
2
3
4
VREF IN  
V–  
28  
UNDERRANGE  
100 kΩ  
REF IN  
27  
OVERRANGE  
ANALOG  
COMMON  
26  
25  
24  
23  
22  
21  
20  
19  
18  
STROBE  
RUN/HOLD  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
Analog GND  
INT OUT  
1 µF  
0.47 µF  
5
6
AZ IN  
BUFF OUT  
100 kΩ  
Clock Input  
120 kHz  
7
8
9
CREF  
CREF  
+
Signal  
Input  
1 µF  
100 kΩ  
–INPUT  
(LSD) D1  
D2  
0.1 µF  
10  
11  
12  
13  
14  
+INPUT  
V+  
D3  
+
5V  
17  
16  
15  
D5 (MSD)  
D4  
B1 (LSB)  
B2  
(MSB) B8  
B4  
2004 Microchip Technology Inc.  
DS21460C-page 1  
TC7135  
Package Types  
28-Pin PLCC  
44-Pin MQFP  
4
3
2
1 28 27 26  
AZ IN  
BUFF OUT  
REF CAP–  
REF CAP+  
–INPUT  
5
6
7
8
9
25  
RUN/HOLD  
33 32 31 30 29 28 27 26 25 24 23  
24 DIGTAL GND  
NC  
34  
22 NC  
23  
22  
21  
20  
19  
POLARITY  
CLOCK IN  
BUSY  
NC 35  
STROBE 36  
OVERRANGE 37  
UNDERRANGE 38  
V– 39  
NC  
D3  
D4  
B8  
B4  
21  
20  
19  
18  
17  
TC7135  
+INPUT 10  
D1 (LSD)  
D2  
11  
V+  
12 13 14 15 16 17 18  
TC7135  
REF IN 40  
16 B2  
15 B1  
COMMON ANALOG 41  
NC 42  
14  
13  
D5  
NC 43  
NC  
NC 44  
12 NC  
4
6
9
11  
10  
1
3
8
2
5
7
28-Pin PDIP  
64-Pin MQFP  
UNDERRANGE  
28  
V–  
1
2
REF IN  
27 OVERRANGE  
ANALOG  
COM  
26  
25  
24  
STROBE  
3
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
l
RUN/HOLD  
DIGiTAL GND  
INT OUT  
4
1
2
48  
47  
46  
45  
NC  
NC  
NC  
D3  
NC  
AZ IN  
5
NC  
BUFF OUT  
6
23 POLARITY  
3
NC  
CREF  
+
CLOCK IN  
BUSY  
22  
21  
20  
19  
7
TC7135  
4
NC  
CREF  
8
5
44 D4  
NC  
9
D1 (LSD)  
D2  
–INPUT  
+INPUT  
V+  
6
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
B8  
B4  
B2  
NC  
10  
11  
12  
13  
7
OVERRANGE  
18 D3  
17 D4  
TC7135  
8
UNDERRANGE  
(MSD) D5  
(LSB) B1  
9
NC  
16  
15  
B8 (MSB)  
B4  
10  
11  
12  
13  
14  
15  
16  
V–  
B1  
B2 14  
D5  
NC  
NC  
NC  
NC  
NC  
REF IN  
ANALOG COM  
NC  
NC  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTE: NC = No internal connection.  
DS21460C-page 2  
2004 Microchip Technology Inc.  
TC7135  
Notice: Stresses above those listed under "Absolute Maxi-  
mum Ratings" may cause permanent damage to the device.  
These are stress ratings only and functional operation of the  
device at these or any other conditions above those indicated  
in the operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings†  
Positive Supply Voltage.....................................................+6V  
Negative Supply Voltage...................................................- 9V  
Analog Input Voltage (Pin 9 or 10) ...............V+ to V- (Note 2)  
Reference Input Voltage (Pin 2)................................. V+ to V-  
Clock Input Voltage ................................................... 0V to V+  
Operating Temperature Range ..........................0°C to +70°C  
Storage Temperature Range........................65°C to +150°C  
Package Power Dissipation; (T 70°C)  
A
28-Pin PDIP .......................................................... 1.14Ω  
28-Pin PLCC......................................................... 1.00Ω  
44-Pin MQFP..........................................................................  
64-Pin MQFP ........................................................ 1.14Ω  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, F  
= 120 kHz, V+ = +5V, V- = -5V.  
A
CLOCK  
(see Functional Block Diagram).  
Parameters  
Sym  
Min.  
Typ.  
Max.  
Units  
Conditions  
Analog  
Display Reading with Zero Volt  
Input  
-0.0000 ±0.0000 +0.0000 Display Reading Note 2, Note 3  
Zero Reading Temperature  
Coefficient  
TC  
0.5  
2
5
µV/°C  
V
= 0V, (Note 4)  
Z
IN  
Full Scale Temperature  
Coefficient  
TC  
ppm/°C  
V
= 2V,  
FS  
IN  
(Note 4, Note 5)  
Nonlinearity Error  
NL  
0.5  
1
Count  
LSB  
Note 6  
Differential Linearity Error  
DNL  
0.01  
Note 6  
Display Reading in Ratiometric  
Operation  
+0.9996 +0.9999 +1.0000 Display Reading  
V
= V  
(Note 2)  
REF,  
IN  
± Full Scale Symmetry Error  
(Rollover Error)  
±FSE  
0.5  
1
Count  
-V = +V (Note 7)  
IN  
IN,  
Input Leakage Current  
Noise  
I
1
10  
pA  
Note 3  
IN  
e
15  
µV  
Peak-to-Peak Value not  
Exceeded 95% of Time  
N
P-P  
Digital  
Input Low Current  
Input High Current  
Output Low Voltage  
Output High Voltage;  
I
10  
0.08  
0.2  
100  
10  
0.4  
5
µA  
V
V
= 0V  
IL  
IN  
IN  
I
µA  
V
= +5V  
IH  
V
I
I
I
= 1.6 mA  
= 1 mA  
= 10 µA  
OL  
OL  
OH  
OH  
V
2.4  
4.9  
4.4  
V
OH  
B , B , B , B , D D  
1 – 5  
4.99  
5
V
1
2
4
8
Busy, Polarity, Overrange,  
Underrange, Strobe  
Clock Frequency  
F
0
200  
1200  
kHz  
Note 8  
CLK  
Note 1: Limit input current to under 100 µA if input voltages exceed supply voltage.  
2: Full-scale voltage = 2V  
3:  
V
= 0V  
IN  
4: 30°C T +70°C  
A
5: External reference temperature coefficient less than 0.01 ppm/°C.  
6: -2V V +2V. Error of reading from best fit straight line.  
IN  
7: IV | = 1.9959  
IN  
8: Specification related to clock frequency range over which the TC7135 correctly performs its various functions.  
Increased errors result at higher operating frequencies.  
2004 Microchip Technology Inc.  
DS21460C-page 3  
 
 
 
 
 
 
 
TC7135  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, T = +25°C, F  
= 120 kHz, V+ = +5V, V- = -5V.  
A
CLOCK  
(see Functional Block Diagram).  
Parameters  
Power Supply  
Sym  
Min.  
Typ.  
Max.  
Units  
Conditions  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
V+  
V-  
I+  
4
5
-5  
6
-8  
3
V
V
-3  
1
mA  
mA  
mW  
F
F
F
= 0 Hz  
CLK  
CLK  
CLK  
I-  
0.7  
8.5  
3
= 0 Hz  
= 0 Hz  
PD  
30  
Note 1: Limit input current to under 100 µA if input voltages exceed supply voltage.  
2: Full-scale voltage = 2V  
3:  
V
= 0V  
IN  
4: 30°C T +70°C  
A
5: External reference temperature coefficient less than 0.01 ppm/°C.  
6: -2V V +2V. Error of reading from best fit straight line.  
IN  
7: IV | = 1.9959  
IN  
8: Specification related to clock frequency range over which the TC7135 correctly performs its various functions.  
Increased errors result at higher operating frequencies.  
DS21460C-page 4  
2004 Microchip Technology Inc.  
TC7135  
2.0  
PIN DESCRIPTIONS  
The description of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
28-Pin PDIP,  
28-Pin PLCC  
Pin Number  
44-Pin MQFP* 64-Pin MQFP*  
Pin Number  
Symbol  
Description  
1
2
3
4
5
6
39  
40  
41  
2
10  
11  
12  
18  
20  
22  
V–  
Negative power supply input.  
External reference input.  
REF IN  
ANALOG COMMON Reference point for REF IN.  
INT OUT  
AZ IN  
Integrator output. Integrator capacitor connection.  
Auto-zero inpt. Auto-zero capacitor connection.  
3
4
BUFF OUT  
Analog input buffer output. Integrator resistor  
connection.  
7
8
5
6
23  
26  
C
C
+
Reference capacitor input. Reference capacitor  
negative connection.  
REF  
Reference capacitor input. Reference capacitor  
positive connection.  
REF  
9
7
8
28  
30  
32  
38  
39  
–INPUT  
+INPUT  
V+  
Analog input. Analog input negative connection.  
Analog input. Analog input positive connection.  
Positive power supply input.  
10  
11  
12  
13  
9
14  
15  
D5  
Digit drive output. Most Significant Digit (MSD)  
B1  
Binary Coded Decimal (BCD) output. Least Significant  
bit (LSb).  
14  
15  
16  
17  
18  
19  
20  
21  
16  
17  
18  
19  
20  
25  
26  
27  
41  
42  
43  
44  
45  
52  
53  
54  
B2  
B4  
BCD output.  
BCD output.  
B8  
BCD output. Most Significant bit (MSb).  
Digit drive output.  
D4  
D3  
Digit drive output.  
D2  
Digit drive output.  
D1  
Digit drive output. Least Significant Digit (LSD).  
BUSY  
Busy output. At the beginning of the signal-integration  
phase, BUSY goes high and remains high until the  
first clock pulse after the integrator zero crossing.  
22  
23  
28  
29  
55  
57  
CLOCK IN  
POLARITY  
Clock input. Conversion clock connection.  
Polarity output. A positive input is indicated by a logic  
high output. The polarity output is valid at the  
beginning of the reference integrate phase and  
remains valid until determined during the next  
conversion.  
24  
25  
30  
31  
58  
59  
DGND  
Digital logic reference input.  
RUN/HOLD  
Run/Hold input. When at a logic high, conversions are  
performed continuously. A logic low holds the current  
data as long as the low condition exists.  
26  
27  
28  
36  
37  
38  
60  
7
STROBE  
Strobe output. The STROBE output pulses low in the  
center of the digit drive outputs.  
OVERRANGE  
UNDERRANGE  
Overrange output. A logic high indicates that the  
analog input exceeds the full-scale input range.  
8
Underrange output. A logic high indicates that the  
analog input is less than 9% of the full-scale input  
range.  
* Pins not identified or documented are NC (no connects).  
2004 Microchip Technology Inc.  
DS21460C-page 5  
 
TC7135  
The dual-slope converter accuracy is unrelated to the  
integrating resistor and capacitor values, as long as  
they are stable during a measurement cycle. An  
inherent benefit is noise immunity. Noise spikes are  
integrated, or averaged, to zero during the integration  
periods.  
3.0  
DETAILED DESCRIPTION  
All pin designations refer to the 28-pin PDIP package.  
3.1  
Dual-Slope Conversion Principles  
The TC7135 is a dual-slope, integrating A/D converter.  
An understanding of the dual-slope conversion  
technique will aid in following the detailed TC7135  
operational theory.  
Integrated ADCs are immune to the large conversion  
errors that plague successive approximation converters  
in high-noise environments (see Figure 3-1).  
The conventional dual-slope converter measurement  
cycle has two distinct phases:  
Analog Input  
Integrator  
Signal  
Comparator  
-
1. Input signal integration.  
-
2. Reference voltage integration (de-integration).  
+
+
The input signal being converted is integrated for a  
fixed time period. Time is measured by counting clock  
pulses. An opposite polarity constant reference voltage  
is then integrated until the integrator output voltage  
returns to zero. The reference integration time is  
directly proportional to the input signal.  
Switch  
Drive  
Clock  
Phase  
Control  
REF  
Voltage  
Control  
Logic  
Polarity Control  
In  
a
simple dual-slope converter,  
a
complete  
Counter  
Display  
conversion requires the integrator output to “ramp-up”  
and “ramp-down”.  
VIN  
VIN  
VREF  
1/2 VREF  
A simple mathematical equation relates the input  
signal, reference voltage and integration time:  
Fixed Variable  
Signal Reference  
Integrate Integrate  
Time Time  
EQUATION 3-1:  
VREFTDEINT  
TINT  
1
-----------------------  
-------------------------------  
VIN(T)DT =  
FIGURE 3-1:  
Basic Dual-Slope Converter.  
0
R
INTCINT  
RINTCINT  
Where:  
3.2 TC7135 Operational Theory  
VREF  
TINT  
=
=
=
Reference voltage  
The TC7135 incorporates a system zero phase and  
integrator output voltage zero phase to the normal two-  
phase dual-slope measurement cycle. Reduced  
system errors, fewer calibration steps and a shorter  
overrange recovery time result.  
Signal integration time (fixed)  
TDEINT  
Reference voltage integration time  
(variable)  
For a constant VIN:  
The TC7135 measurement cycle contains four phases:  
1. System zero.  
EQUATION 3-2:  
2. Analog input signal integration.  
3. Reference voltage integration.  
4. Integrator output zero.  
VREFTDEINT  
-------------------------------  
TINT  
VIN  
=
Internal analog gate status for each phase is shown in  
Figure 3-1.  
TABLE 3-1:  
INTERNAL ANALOG GATE STATUS  
Conversion Cycle Phase  
SW  
SW  
+
SW  
-
SW  
SW  
SW  
SW  
IZ  
Reference Figures  
I
RI  
RI  
Z
R
1
System Zero  
Closed  
Closed  
Closed  
Figure 3-2  
Figure 3-3  
Figure 3-4  
Figure 3-5  
Input Signal Integration  
Reference Voltage Integration  
Integrator Output Zero  
Closed  
Closed*  
Closed  
Closed  
Closed  
* Assumes a positive polarity input signal. SW would be closed for a negative input signal.  
RI  
DS21460C-page 6  
2004 Microchip Technology Inc.  
 
 
TC7135  
3.2.1  
SYSTEM ZERO  
3.2.3  
REFERENCE VOLTAGE  
INTEGRATION  
During this phase, errors due to buffer, integrator and  
comparator offset voltages are compensated for by  
charging CAZ (auto-zero capacitor) with a compensat-  
ing error voltage. With a zero input voltage, the  
integrator output will remain at zero.  
The previously charged reference capacitor is con-  
nected with the proper polarity to ramp the integrator  
output back to zero (see Figure 3-4). The digital  
reading displayed is:  
The external input signal is disconnected from the  
internal circuitry by opening the two SWI switches. The  
internal input points connect to the ANALOG  
COMMON pin. The reference capacitor charges to the  
reference voltage potential through SWR. A feedback  
loop, closed around the integrator and comparator,  
charges the CAZ capacitor with a voltage to compen-  
sate for buffer amplifier, integrator and comparator  
offset voltages (see Figure 3-2).  
EQUATION 3-3:  
[Differential Input]  
----------------------------------------------  
Reading = 10, 000  
VREF  
Analog  
Input Buffer  
SWI  
CINT  
RINT  
+
+IN  
CSZ  
Analog  
SWIZ SWZ  
Input Buffer  
SWI  
CREF  
Comparator  
SWR  
CINT  
RINT  
REF  
IN  
+
+IN  
+
+
To  
Integrator  
CSZ  
Digital  
Section  
SWZ  
SWZ  
SWIZ SWZ  
CREF  
Comparator  
SWR  
Analog  
Common  
REF  
IN  
+
SW1  
+
SWI  
Switch Open  
Switch Closed  
To  
Integrator  
IN  
SWZ  
SWZ  
Digital  
Section  
Analog  
Common  
SWI  
FIGURE 3-4:  
Integration Cycle.  
Reference Voltage  
SW1  
Switch Open  
Switch Closed  
IN  
3.2.4 INTEGRATOR OUTPUT ZERO  
FIGURE 3-2:  
System Zero Phase.  
This phase ensures the integrator output is at 0V when  
the system zero phase is entered. It also ensures that  
the true system offset voltages are compensated for.  
This phase normally lasts 100 to 200 clock cycles. If an  
overrange condition exists, the phase is extended to  
6200 clock cycles (see Figure 3-5).  
3.2.2  
ANALOG INPUT SIGNAL  
INTEGRATION  
The TC7135 integrates the differential voltage between  
the +INPUT and -INPUT pins. The differential voltage  
must be within the device Common mode range; -1V  
from either supply rail, typically. The input signal  
polarity is determined at the end of this phase.  
Analog  
Input Buffer  
+
SWI  
CINT  
RINT  
+IN  
Analog  
Input Buffer  
CSZ  
SWI  
CINT  
RINT  
+IN  
+
SWIZ SWZ  
CREF  
SWR  
Comparator  
REF  
IN  
+
CSZ  
+
To  
SWIZ SWZ  
Integrator  
SWZ  
SWZ  
Digital  
Section  
CREF  
Comparator  
SWR  
+
REF  
IN  
+
Analog  
Common  
To  
Digital  
Section  
Integrator  
SWZ  
SWZ  
SW1  
SWI  
Switch Open  
Switch Closed  
IN  
Analog  
Common  
SW1  
SWI  
Switch Open  
Switch Closed  
FIGURE 3-5:  
Integrator Output Zero  
IN  
Phase.  
FIGURE 3-3:  
Input Signal Integration  
Phase.  
2004 Microchip Technology Inc.  
DS21460C-page 7  
 
 
 
TC7135  
4.3  
Reference Voltage Input  
4.0  
ANALOG SECTION  
FUNCTIONAL DESCRIPTION  
The reference voltage input (REF IN) must be a posi-  
tive voltage with respect to ANALOG COMMON. A  
reference voltage circuit is shown in Figure 4-1.  
4.1  
Differential Inputs  
The TC7135 operates with differential voltages  
(+INPUT, pin 10 and -INPUT, pin 9) within the input  
amplifier Common mode range, which extends from 1V  
below the positive supply to 1V above the negative  
supply. Within this Common mode voltage range, an  
86 dB Common mode rejection ratio is typical.  
V+  
V+  
10 kΩ  
MCP1525  
TC7135  
2.5 V  
REF  
REF  
IN  
The integrator output also follows the Common mode  
voltage and must not be allowed to saturate. A worst-  
case condition exists, for example, when a large  
positive Common mode voltage with a near full scale  
negative differential input voltage is applied. The  
negative input signal drives the integrator positive when  
most of its swing has been used up by the positive Com-  
mon mode voltage. For these critical applications, the  
integrator swing can be reduced to less than the  
recommended 4V full scale swing, resulting in some  
loss of accuracy. The integrator output can swing within  
0.3V of either supply without loss of linearity.  
10 kΩ  
1 µF  
ANALOG  
COMMON  
Analog Ground  
FIGURE 4-1:  
Reference.  
Using An External  
4.2  
Analog Common Input  
The ANALOG COMMON pin is used as the -INPUT  
return during auto-zero and de-integrate. If -INPUT is  
different from ANALOG COMMON, a Common mode  
voltage exists in the system. However, this signal is  
rejected by the excellent CMRR of the converter. In  
most applications, –INPUT will be set at a fixed, known  
voltage (power supply common, for instance). In this  
application, ANALOG COMMON should be tied to the  
same point, thus removing the Common mode voltage  
from the converter. The reference voltage is referenced  
to ANALOG COMMON.  
DS21460C-page 8  
2004 Microchip Technology Inc.  
 
TC7135  
5.0  
DIGITAL SECTION  
FUNCTIONAL DESCRIPTION  
The major digital subsystems within the TC7135 are  
illustrated in Figure 5-1, with timing relationships  
shown in Figure 5-2. The multiplexed BCD output data  
can be displayed on LCD or LED displays. The digital  
section is best described through a discussion of the  
control signals and data outputs.  
Polarity  
D5  
MSB  
D4  
Digit  
D3  
Drive  
D2  
D1  
13 B1  
14 B2  
15 B4  
16 B8  
Signal  
LSB  
Data  
Output  
Multiplexer  
From  
Analog  
Section  
Latch  
Latch  
Latch  
Latch  
Latch  
Polarity  
FF  
Zero  
Cross  
Detect  
Counters  
Control Logic  
27  
24  
22  
25  
28  
26  
STROBE  
21  
Busy  
DGND  
Clock  
In  
RUN/  
HOLD  
Overrange Underrange  
FIGURE 5-1:  
Digital Section Functional Diagram.  
2004 Microchip Technology Inc.  
DS21460C-page 9  
 
TC7135  
5.2  
STROBE Output  
During the measurement cycle, the STROBE control  
line is pulsed low five times. The five low pulses occur  
in the center of the digit drive signals (D1, D2, D3, D5)  
(see Figure 5-3).  
Integrator  
Output  
Signal  
System Integrate Reference  
Zero 10,000  
10,001 Counts  
Counts (Fixed) Counts (Max)  
Integrate  
20,001  
Full Measurement Cycle  
40,002 Counts  
D5 (MSD) goes high for 201 counts when the  
measurement cycles end. In the center of the D5 pulse,  
101 clock pulses after the end of the measurement  
cycle, the first STROBE occurs for one half clock pulse.  
After the D5 digit strobe, D4 goes high for 200 clock  
pulses. The STROBE then goes low 100 clock pulses  
after D4 goes high. This continues through the D1 digit  
drive pulse.  
Busy  
Overrange when  
Applicable  
Underrange when  
Applicable  
Expanded Scale Below  
Digit Scan  
The digit drive signals will continue to permit display  
scanning. STROBE pulses are not repeated until a new  
measurement is completed. The digit drive signals will  
not continue if the previous signal resulted in an  
overrange condition.  
D5  
D4  
D3  
D2  
D1  
* First D5 of System Zero and  
100  
Counts  
Reference Integrate One Count  
Longer  
The active-low STROBE pulses aid BCD data transfer  
to UARTs, processors and external latches. For more  
information, please refer to Application Note 784  
(DS00784).  
STROBE  
Signal  
Integrate  
Reference  
Integrate  
Auto-Zero  
*
Digit Scan  
for Overrange  
D5  
D4  
D3  
D2  
D1  
*
TC835  
Outputs  
Busy  
End of Conversion  
*
D5  
D1  
(LSD)  
Data  
B1 B8  
D4  
Data  
D3  
D2  
D5  
Data  
(MSD)  
Data  
Data  
Data  
STROBE  
Note Absence  
of STROBE  
FIGURE 5-2:  
Timing Diagrams For  
200  
Counts  
Outputs.  
201  
Counts  
200  
D5  
D4  
D3  
D2  
D1  
Counts  
5.1  
RUN/HOLD Input  
200  
Counts  
When left open, this pin assumes a logic ‘1’ level. With  
a RUN/HOLD = 1, the TC7135 performs conversions  
continuously, with a new measurement cycle beginning  
every 40,002 clock pulses.  
200  
Counts  
200  
When RUN/HOLD changes to a logic ‘0’, the measure-  
ment cycle in progress will be completed, with the data  
held and displayed as long as the logic ‘0’ condition  
exists.  
Counts  
200  
Counts  
*Delay between Busy going Low and First STROBE pulse is  
A positive pulse (>300 nsec) at RUN/HOLD initiates a  
new measurement cycle. The measurement cycle in  
progress when RUN/HOLD initially assumed the logic  
0’ state must be completed before the positive pulse  
can be recognized as a single conversion run  
command.  
dependent on Analog Input.  
FIGURE 5-3:  
Strobe Signal Low Five  
Times Per Conversion.  
The new measurement cycle begins with a 10,001  
count auto-zero phase. At the end of this phase, the  
busy signal goes high.  
DS21460C-page 10  
2004 Microchip Technology Inc.  
 
TC7135  
5.3  
BUSY Output  
5.6  
POLARITY Output  
At the beginning of the signal integration phase, BUSY  
goes high and remains high until the first clock pulse  
after the integrator zero crossing. BUSY returns to the  
logic ‘0’ state once the measurement cycle ends in an  
overrange condition. The internal display latches are  
loaded during the first clock pulse after BUSY and are  
latched at the clock pulse end. The BUSY signal does  
not go high at the beginning of the measurement cycle,  
which starts with the auto-zero cycle.  
A positive input is registered by a logic ‘1’ polarity  
signal. The polarity bit is valid at the beginning of  
reference integrate and remains valid until determined  
during the next conversion.  
The polarity bit is valid even for a zero reading. Signals  
less than the converter's LSB will have the signal  
polarity determined correctly. This is useful in null  
applications.  
5.7  
Digit Drive Outputs  
5.4  
OVERRANGE Output  
Digit drive signals are positive-going signals. The scan  
sequence is D5 to D1. All positive pulses are 200 clock  
pulses wide, with the exception D5, which is 201 clock  
pulses wide.  
If the input signal causes the reference voltage integra-  
tion time to exceed 20,000 clock pulses, the OVER-  
RANGE output is set to a logic ‘1’. The OVERRANGE  
output register is set when BUSY goes low and is reset  
at the beginning of the next reference integration  
phase.  
All five digits are scanned continuously, unless an  
overrange condition occurs. In an overrange condition,  
all digit drives are held low from the final STROBE  
pulse until the beginning of the next reference integrate  
phase. The scanning sequence is then repeated. This  
provides a blinking visual display indication.  
5.5  
UNDERRANGE Output  
If the output count is 9% of full scale or less (-1800  
counts), the UNDERRANGE register bit is set at the  
end of BUSY. The bit is set low at the next signal  
integration phase.  
5.8  
BCD Data Outputs  
The binary coded decimal (BCD) bits B8, B4, B2 and B1  
are positive-true logic signals. The data bits become  
active at the same time as the digit drive signals. In an  
overrange condition, all data bits are at a logic ‘0’ state.  
2004 Microchip Technology Inc.  
DS21460C-page 11  
TC7135  
6.1.3  
AUTO-ZERO AND REFERENCE  
CAPACITORS  
6.0  
TYPICAL APPLICATIONS  
6.1  
Component Value Selection  
The size of the auto-zero capacitor has some influence  
on the noise of the system, with a larger capacitor  
reducing the noise. The reference capacitor should be  
large enough such that stray capacitance to ground  
from its nodes is negligible.  
6.1.1  
INTEGRATING RESISTOR  
The integrating resistor RINT is determined by the full-  
scale input voltage and the output current of the buffer  
used to charge the integrator capacitor (CINT). Both the  
buffer amplifier and the integrator have a class A output  
stage, with 100 µA of quiescent current. A 20 µA drive  
current gives negligible linearity errors. Values of 5 µA  
to 40 µA give good results. The exact value of an  
integrating resistor for a 20 µA current is easily  
calculated.  
The dielectric absorption of the reference and auto-  
zero capacitors are only important at power-on or when  
the circuit is recovering from an overload. Smaller or  
cheaper capacitors can be used if accurate readings  
are not required for the first few seconds of recovery.  
6.1.4  
The analog input required to generate a full-scale  
output is VIN = 2 VREF  
REFERENCE VOLTAGE  
EQUATION 6-1:  
.
Full Scale Voltage  
The stability of the reference voltage is a major factor in  
the overall absolute accuracy of the converter. For this  
reason, it is recommended that a high-quality reference  
be used where high-accuracy absolute measurements  
are being made.  
--------------------------------------------  
=
RINT  
20µA  
6.1.2  
INTEGRATING CAPACITOR (CINT  
)
The product of integrating resistor and capacitor should  
be selected to give the maximum voltage swing that  
ensures the tolerance build-up will not saturate the  
integrator swing (approximately 0.3V from either  
supply). For ±5V supplies and ANALOG COMMON tied  
to supply ground, a ±3.5V to ±4V full scale integrator  
6.2  
Conversion Timing  
6.2.1  
LINE FREQUENCY REJECTION  
A signal integration period at a multiple of the 60 Hz  
line frequency will maximize 60 Hz “line noise”  
rejection. A 100 kHz clock frequency will reject 50 Hz,  
60 Hz and 400 Hz noise. This corresponds to five  
readings per second (see Table 6-1 and Table 6-2).  
swing is adequate.  
A
0.10 µF to 0.47 µF is  
recommended. In general, the value of CINT is given  
by:  
EQUATION 6-2:  
TABLE 6-1:  
CONVERSION RATE VS.  
CLOCK FREQUENCY  
[10, 000 × clock period] × IINT  
---------------------------------------------------------------------------  
CINT  
=
=
integrator output voltage swing  
Oscillator Frequency  
(kHz)  
Conversion Rate  
(Conv./Sec.)  
(10, 000)(clock period) × 20µA  
-----------------------------------------------------------------------------  
integrator output voltage swing  
100  
120  
200  
300  
400  
800  
1200  
2.5  
3
A very important characteristic of the integrating  
capacitor CINT is that it has low dielectric absorption to  
prevent rollover or ratiometric errors. A good test for  
dielectric absorption is to use the capacitor with the  
input tied to the reference. This ratiometric condition  
should read half scale 0.9999, with any deviation  
probably due to dielectric absorption. Polypropylene  
capacitors give undetectable errors at reasonable cost.  
Polystyrene and polycarbonate capacitors may also be  
used in less critical applications.  
5
7.5  
10  
20  
30  
DS21460C-page 12  
2004 Microchip Technology Inc.  
 
 
TC7135  
the ratio between this resistor and the integrating  
resistor (a few tens of ohms in the recommended  
circuit), the comparator delay can be compensated and  
the maximum clock frequency extended by  
approximately a factor of 3. At higher frequencies,  
ringing and second-order breaks will cause significant  
nonlinearities in the first few counts of the instrument.  
TABLE 6-2:  
LINE FREQUENCY  
REJECTION VS. CLOCK  
FREQUENCY  
Line Frequency  
Oscillator Frequency  
(kHz)  
Rejection  
(Hz)  
300  
200  
60  
The minimum clock frequency is established by  
leakage on the auto-zero and reference capacitors.  
With most devices, measurement cycles as long as 10  
seconds give no measurable leakage error.  
150  
120  
The clock used should be free from significant phase or  
frequency jitter. Several suitable low-cost oscillators  
are shown in Section 6.0 “Typical Applications”. The  
multiplexed output means that if the display takes  
significant current from the logic supply, the clock  
should have good PSRR.  
100  
40  
33-1/3  
250  
50  
166-2/3  
125  
6.4  
Zero Crossing Flip Flop  
100  
The flip flop interrogates the data once every clock  
pulse after the transients of the previous clock pulse and  
half clock pulse have died down. False zero crossings  
caused by clock pulses are not recognized. Of course,  
the flip flop delays the true zero crossing by up to one  
count in every instance. If a correction were not made,  
the display would always be one count too high.  
Therefore, the counter is disabled for one clock pulse at  
the beginning of the reference integrate (de-integrate)  
phase. This one-count delay compensates for the delay  
of the zero crossing flip flop and allows the correct  
number to be latched into the display. Similarly, a one-  
count delay at the beginning of auto-zero gives an  
overload display of 0000 instead of 0001. No delay  
occurs during signal integrate so that true ratiometric  
readings result.  
100  
50, 60,400  
The conversion rate is easily calculated:  
EQUATION 6-3:  
Clock Frequency (Hz)  
----------------------------------------------------  
Reading 1/sec =  
4000  
6.3  
High Speed Operation  
The maximum conversion rate of most dual-slope A/D  
converters is limited by the frequency response of the  
comparator. The comparator in this circuit follows the  
integrator ramp with a 3 µsec delay, at a clock  
frequency of 160 kHz (6 µsec period). Half of the first  
reference integrate clock period is lost in delay. This  
means that the meter reading will change from 0 to 1  
with a 50 µV input, 1 to 2 with 150 µV, 2 to 3 at 250 µV,  
etc. This transition at midpoint is considered desirable  
by most users. However, if the clock frequency is  
increased appreciably above 200 kHz, the instrument  
will flash "1" on noise peaks, even when the input is  
shorted.  
6.5  
Generating a Negative Supply  
A negative voltage can be generated from the positive  
supply by using a TC7135 (see Figure 6-1).  
+5V  
11  
V+  
8
For many dedicated applications where the input signal  
is always of one polarity, the delay of the comparator  
need not be a limitation. Since the nonlinearity and  
noise do not increase substantially with frequency, clock  
rates of up to ~1 MHz may be used. For a fixed clock  
frequency, the extra count (or counts) caused by  
comparator delay will be a constant and can be  
subtracted out digitally.  
TC7135  
1
(-5V)  
5
V–  
TC7660  
10 µF  
+
4
2
3
+
24  
10 µF  
The clock frequency may be extended above 160 kHz  
without this error, however, by using a low value  
resistor in series with the integrating capacitor. The  
effect of the resistor is to introduce a small pedestal  
voltage on to the integrator output at the beginning of  
the reference integrate phase. By careful selection of  
FIGURE 6-1:  
Generator.  
Negative Supply Voltage  
2004 Microchip Technology Inc.  
DS21460C-page 13  
 
TC7135  
+5V  
20 19 18 17 12  
D1 D2 D3 D4 D5  
INT OUT  
4
5
1 µF  
0.33 µF  
200 kHz  
AZ IN  
4.7 kΩ  
23  
7
POL  
6
BUFF  
OUT  
b
c
7
7
7
7
CREF  
100 kΩ  
22  
10  
TC7135  
FIN  
1 µF  
X7  
8
CREF  
+
Blank MSD On Zero  
6
100 kΩ  
+
+INPUT  
9 15  
5
Analog  
Input  
16  
15  
14  
13  
1 µF  
B8  
D
9
3
RBI  
DM7447A  
2
1
7
–INPUT  
C
B
A
B4  
B2  
B1  
16  
+5V  
ANALOG  
COMMON  
REF  
V–  
IN  
V+  
1
2
11  
V+  
5V  
100 kΩ  
MCP1525  
1 µF  
FIGURE 6-2:  
R2  
4-1/2 Digit ADC With Multiplexed Common Anode Led Display.  
+5V  
R1  
C
16 kΩ  
1 kΩ  
FO  
56 kΩ  
2
8
V
+
OUT  
Gates are 74C04  
0.22 µF  
7
LM311  
R1R2  
1
3
--------------------------------------------------  
, RP =  
------------------  
R1 + R2  
FO  
=
1.  
1
2C(0.41RP + 0.7R1)  
30 kΩ  
4
16 kΩ  
a. If R1 = R2 = R1, F 0.55/RC  
b. If R2 >> R1, F 0.45/R1C  
c. If R2 << R1, F 0.72/R1C  
390 pF  
R
R
4
2
+5V  
6
2 kΩ  
2. Examples:  
a. F = 120 kHz, C = 420 pF  
R1 = R2 10.9 kΩ  
100 kΩ  
C
2
2
3
b. F = 120 kHz, C = 420pF, R2 = 50 kΩ  
10 pF  
+
R
7
R1 = 8.93 kΩ  
c. F = 120 kHz, C = 220 pF, R2 = 5 kΩ  
R1 = 27.3 kΩ  
2
V
LM311  
OUT  
100 kΩ  
4
R
3
1
50 kΩ  
C
1
0.1 µF  
FIGURE 6-3:  
RC Oscillator Circuit.  
FIGURE 6-4:  
Comparator Clock Circuits.  
DS21460C-page 14  
2004 Microchip Technology Inc.  
TC7135  
+5V  
+5V  
SET V  
= 1V  
REF  
5V  
28  
27  
26  
1
2
3
V–  
UR  
OR  
TC7135  
MCP1525  
100  
REF IN  
kΩ  
1 µF  
150Ω  
ANALOG  
GND  
STROBE  
47  
10  
11  
9
8
7
Analog  
GND  
kΩ  
150Ω  
25  
24  
23  
22  
21  
20  
4
5
INT  
OUT  
RUN/HOLD  
DGND  
1 µF  
0.33 µF  
12  
13  
14  
15  
AZ IN  
BUFF  
OUT  
6
6
5
4
3
2
1
MC14513  
POLARITY  
100 kΩ  
7
C
+
CLK IN  
BUSY  
(LSD) D1  
D2  
REF  
1 µF  
100  
k
8
C
REF  
+5V  
9
16  
17  
+
SIG  
IN  
–INPUT  
+INPUT  
0.1  
µF  
10  
11  
19  
18  
17  
18  
+5V  
D3  
V+  
12  
D4  
D5 (MSD)  
13  
14  
16  
15  
(MSB) B8  
B4  
B1 (LSB)  
B2  
F
= 200 kHz  
OSC  
FIGURE 6-5:  
4-1/2 Digit ADC With Multiplexed Common Cathode LED Display.  
2004 Microchip Technology Inc.  
DS21460C-page 15  
TC7135  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
28-Pin PLCC  
Example:  
1
1
M
XXXXXXXXXX  
XXXXXXXXXX  
M
TC7135CLI  
0444256  
YYWWNNN  
28-Pin PDIP (Wide)  
Example:  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
YYWWNNN  
TC7135CPI  
0444256  
*h  
*h  
44-Pin MQFP  
Example:  
M
M
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
TC7135CKW  
0444256  
64-Pin MQFP  
Example:  
M
M
TC7135CBU  
0444256  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
DS21460C-page 16  
2004 Microchip Technology Inc.  
TC7135  
28-Lead Plastic Leaded Chip Carrier (LI) – Square (PLCC)  
E
E1  
#leads=n1  
D1  
D
n
1 2  
CH1 x 45°  
CH2 x 45 °  
α
A3  
A2  
A
32°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.050  
7
1.27  
7
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.026  
.045  
.005  
.490  
.490  
.453  
.453  
.420  
.420  
.011  
.029  
.020  
5
.180  
.160  
.035  
.031  
.055  
.010  
.495  
.495  
.456  
.456  
.430  
.430  
.013  
.032  
.021  
10  
4.19  
3.68  
4.39  
3.87  
0.71  
0.66  
1.14  
0.13  
12.45  
12.45  
11.51  
11.51  
10.67  
10.67  
0.27  
0.74  
0.51  
5
4.57  
4.06  
0.89  
0.79  
1.40  
0.25  
12.57  
12.57  
11.58  
11.58  
10.92  
10.92  
0.33  
0.81  
0.53  
10  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.021  
.035  
.000  
.485  
.485  
.450  
.450  
.410  
.410  
.008  
.026  
.013  
0
§
0.51  
0.53  
0.89  
0.00  
12.32  
12.32  
11.43  
11.43  
10.41  
10.41  
0.20  
0.66  
0.33  
0
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-026  
2004 Microchip Technology Inc.  
DS21460C-page 17  
TC7135  
28-Lead Plastic Dual In-line (PI) – 600 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
B1  
β
A1  
p
B
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
28  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.505  
1.395  
.120  
.008  
.030  
.014  
.620  
5
.160  
0.38  
15.11  
12.83  
35.43  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
1.430  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
1.465  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
36.32  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
37.21  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-079  
DS21460C-page 18  
2004 Microchip Technology Inc.  
TC7135  
44-Lead Plastic Metric Quad Flatpack (KW) 10x10x2 mm Body, Lead Form (MQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
c
n
°
CH x 45  
α
A1  
A
φ
β
(F)  
L
A2  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.079  
.077  
.002  
.029  
.086  
.080  
.006  
.035  
.063  
3.5  
.093  
2.00  
1.95  
2.18  
2.03  
0.15  
0.88  
1.60  
3.5  
2.35  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.083  
.010  
.041  
2.10  
0.25  
1.03  
§
0.05  
0.73  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.510  
.510  
.390  
.390  
.005  
.012  
.025  
5
7
.530  
.530  
.398  
.398  
.009  
.018  
.045  
15  
0
12.95  
12.95  
9.90  
9.90  
0.13  
0.30  
0.64  
5
7
13.45  
13.45  
10.10  
10.10  
0.23  
0.45  
1.14  
15  
Overall Width  
E
D
.520  
.520  
.394  
.394  
.007  
.015  
.035  
10  
13.20  
13.20  
10.00  
10.00  
0.18  
0.38  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-022  
Drawing No. C04-071  
2004 Microchip Technology Inc.  
DS21460C-page 19  
TC7135  
64 Lead Metric Plastic Quad Flat (BU) (MQFP)  
E
E1  
e
D1  
D
B
2
1
n
a
A
c
A2  
b
f
A1  
(F)  
L
Units  
Dimension Limits  
INCHES  
MILLIMETERS*  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
n
e
Number of Pins  
Pitch  
64  
64  
.031 BSC  
0.80 BSC  
Overall Height  
A
A2  
A1  
E
.098  
.098  
.000  
--  
.124  
.114  
.010  
2.50  
--  
3.15  
Molded Package Thickness  
Standoff §  
.106  
2.50  
0.00  
2.70  
2.90  
0.25  
--  
.677 BSC  
.551 BSC  
.677 BSC  
.551 BSC  
.035  
--  
Overall Width  
17.20 BSC  
Molded Package Width  
Overall Length  
E1  
D
14.00 BSC  
17.20 BSC  
Molded Package Length  
Foot Length  
D1  
L
14.00 BSC  
.029  
.041  
0.73  
0.88  
1.03  
(F)  
f
c
Footprint (Reference)  
Foot Angle  
.063 REF  
--  
1.60 REF  
0°  
.004  
.011  
5°  
6°  
.009  
.018  
16°  
0°  
0.11  
0.29  
5°  
--  
--  
--  
--  
--  
7°  
0.23  
0.45  
16°  
Lead Thickness  
--  
Lead Width  
B
a
--  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
--  
b
5°  
--  
16°  
5°  
16°  
*Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash  
or protrusions shall not exceed .010" (0.254mm) per side.  
JEDEC equivalent: MS-022 BE.  
Formerly TelCom PQFP package.  
Drawing No. C04-022  
DS21460C-page 20  
2004 Microchip Technology Inc.  
TC7135  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature  
Range  
Package  
a)  
b)  
c)  
TC7135CLI:  
4-1/2 Digit A/D, BCD Output,  
PLCC package.  
4-1/2 Digit A/D, BCD Output,  
PDIP package.  
TC7135CPI:  
TC7135CLI713: 4-1/2 Digit A/D, BCD Output,  
PLCC package,  
Device  
TC7135: 4-1/2 Digit A/D, BCD Output  
Tape and Reel.  
d)  
TC7135CBU:  
4-1/2 Digit A/D, BCD Output,  
MQFP package.  
Temperature Range  
Package  
C
=
=
0°C to +70°C  
LI  
Plastic Leaded Chip Carrier (PLCC), 28-lead  
LI713 = Plastic Leaded Chip Carrier (PLCC), 28-lead,  
Tape and Reel  
PI  
KW  
BU  
=
=
=
Plastic DIP, (600 mil Body), 28-lead  
Plastic Metric Quad Flatpack, (MQFP), 44-lead  
Plastic Metric Quad Flatpack, (MQFP), 64-lead  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21460C-page 21  
TC7135  
NOTES:  
DS21460C-page 22  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,  
SmartSensor and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,  
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,  
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,  
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,  
SmartTel and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21460C-page 23  
WORLDWIDE SALES AND SERVICE  
China - Beijing  
Korea  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: www.microchip.com  
Unit 706B  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Wan Tai Bei Hai Bldg.  
No. 6 Chaoyangmen Bei Str.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Singapore  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
China - Chengdu  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Fax: 86-28-86766599  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Taiwan  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Hong Kong SAR  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Dallas  
EUROPE  
Austria  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Regus Business Centre  
Lautrup hoj 1-3  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 86-755-8295-1393  
China - Shunde  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Room 401, Hongjian Building, No. 2  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888  
Fax: 949-263-1338  
Fengxiangnan Road, Ronggui Town, Shunde  
District, Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507 Fax: 86-757-28395571  
Germany  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
San Jose  
1300 Terra Bella Avenue  
Mountain View, CA 94043  
Tel: 650-215-1444  
Italy  
India  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Japan  
Fax: 650-961-0286  
Toronto  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
Waegenburghtplein 4  
NL-5152 JR, Drunen, Netherlands  
Tel: 31-416-690399  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
ASIA/PACIFIC  
Australia  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
05/28/04  
DS21460C-page 24  
2004 Microchip Technology Inc.  

相关型号:

TC7135C/LI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135C/PI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
MICROCHIP

TC7135CBU

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CBU

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CBUTR

1-CH DUAL-SLOPE ADC, ACCESS, PQFP64, PLASTIC, QFP-64
MICROCHIP

TC7135CKW

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLI

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLI

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CLI713

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLIRT

1-CH DUAL-SLOPE ADC, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135CLITR

暂无描述
MICROCHIP

TC7135CPI

4-1/2 Digit A/D Converter
MICROCHIP