TC7135 [MICROCHIP]

4-1/2 Digit A/D Converter; 4-1 / 2位A / D转换器
TC7135
型号: TC7135
厂家: MICROCHIP    MICROCHIP
描述:

4-1/2 Digit A/D Converter
4-1 / 2位A / D转换器

转换器
文件: 总22页 (文件大小:533K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC7135  
4-1/2 Digit A/D Converter  
Features  
General Description  
• Low Rollover Error: ±1 Count Max  
• Nonlinearity Error: ±1 Count Max  
• Reading for 0V Input  
The TC7135 4-1/2 digit A/D converter (ADC) offers  
50ppm (1 part in 20,000) resolution with a maximum  
nonlinearity error of 1 count. An auto zero cycle  
reduces zero error to below 10µV and zero drift to  
0.5µV/°C. Source impedance errors are minimized by  
a 10pA maximum input current. Rollover error is limited  
to ±1 count.  
• True Polarity Indication at Zero for Null Detection  
• Multiplexed BCD Data Output  
• TTL-Compatible Outputs  
• Differential Input  
Microprocessor based measurement systems are sup-  
ported by BUSY, STROBE and RUN/HOLD control sig-  
nals. Remote data acquisition systems with data  
transfer via UARTs are also possible. The additional  
control pins and multiplexed BCD outputs make the  
TC7135 the ideal converter for display or  
microprocessor based measurement systems.  
• Control Signals Permit Interface to UARTs and  
Microprocessors  
• Blinking Display Visually Indicates Overrange  
Condition  
• Low Input Current: 1pA  
• Low Zero Reading Drift: 2µV/°C  
• Auto-Ranging Supported with Overrange and  
Underrange Signals  
Functional Block Diagram  
–5V  
TC7135  
SET V  
= 1V  
• Available in PDIP and Surface-Mount Packages  
REF  
IN  
V
1
2
3
4
REF  
V-  
28  
Applications  
UNDERRANGE  
OVERRANGE  
100kΩ  
REF IN  
27  
26  
25  
24  
23  
22  
21  
20  
19  
• Precision Analog Signal Processor  
• Precision Sensor Interface  
ANALOG  
STROBE  
COMMON  
Analog GND  
0.47µF  
RUN/HOLD  
INT OUT  
• High Accuracy DC Measurements  
1µF  
5
6
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
AZ IN  
Device Selection Table  
BUFF OUT  
100kΩ  
7
8
9
Clock  
Input  
C
C
-
REF  
REF  
100  
Signal  
Input  
Part Number  
Package  
Temperature Range  
1µF  
kΩ  
120kHz  
+
TC7135CLI  
TC7135CPI  
TC7135CBU  
28-PinPLCC  
28-Pin PDIP  
64-PinPQFP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-INPUT  
(LSD) D1  
D2  
0.1µF  
10  
11  
12  
13  
14  
+INPUT  
V+  
18  
D3  
+
5V  
17  
16  
15  
D5 (MSD)  
D4  
B1 (LSB)  
B2  
(MSB) B8  
B4  
2002 Microchip Technology Inc.  
DS21460B-page 1  
TC7135  
Package Types  
28-Pin PDIP  
28-Pin PDIP  
UNDERRANGE  
28  
V-  
1
2
27 OVERRANGE  
REF IN  
ANALOG  
COM  
INT OUT  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
STROBE  
RUN/HOLD  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
3
4
3
2
1 28 27 26  
4
AZ IN  
BUFF OUT  
REF CAP–  
REF CAP+  
INPUT  
5
6
7
8
9
25  
RUN/HOLD  
5
AZ IN  
24 DIGTAL GND  
BUFF OUT  
6
23  
22  
21  
20  
19  
POLARITY  
CLOCK IN  
BUSY  
C
-
REF  
7
TC7135  
TC7135  
C
REF  
+
8
9
D1 (LSD)  
D2  
INPUT  
+INPUT 10  
11  
D1 (LSD)  
D2  
10  
11  
12  
13  
14  
+INPUT  
V+  
D3  
V+  
(MSD) D5  
(LSB) B1  
B2  
12 13 14 15 16 17 18  
D4  
B8 (MSB)  
B4  
64-Pin PQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
l
1
2
48  
47  
46  
45  
NC  
NC  
NC  
D3  
NC  
NC  
NC  
NC  
NC  
NC  
3
4
5
44 D4  
6
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
B8  
B4  
B2  
NC  
7
OVERRANGE  
TC7135  
8
UNDERRANGE  
9
NC  
10  
11  
12  
13  
14  
15  
16  
V-  
B1  
D5  
NC  
NC  
NC  
NC  
NC  
REF IN  
ANALOG COM  
NC  
NC  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
NOTE: NC = No internal connection.  
DS21460B-page 2  
2002 Microchip Technology Inc.  
TC7135  
*Stresses above those listed under "Absolute Maximum Rat-  
ings" may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at  
these or any other conditions above those indicated in the  
operation sections of the specifications is not implied. Expo-  
sure to Absolute Maximum Rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings*  
Positive Supply Voltage..........................................+6V  
Negative Supply Voltage....................................... - 9V  
Analog Input Voltage (Pin 9 or 10) .... V+ to V- (Note 2)  
Reference Input Voltage (Pin 2)...................... V+ to V-  
Clock Input Voltage ........................................ 0V to V+  
Operating Temperature Range ...............0°C to +70°C  
Storage Temperature Range............65°C to +150°C  
Package Power Dissipation; (T 70°C)  
A
28-Pin PDIP ..................................... 1.14Ω  
28-Pin PLCC .................................... 1.00Ω  
64-Pin PQFP .....................................1.14Ω  
TC7135 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: TA = +25°C, FCLOCK = 120kHz, V+ = +5V, V- = -5V, unless otherwise specified  
(see Functional Block Diagram).  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Analog  
Display Reading with Zero Volt Input  
Zero Reading Temperature Coefficient  
-0.0000 ±0.0000 +0.0000  
Display Reading Note 2 and Note 3  
TCZ  
0.5  
2
5
µV/°C  
VIN = 0V, (Note 4)  
TCFS Full Scale Temperature Coefficient  
ppm/°C  
VIN = 2V,  
(Note 4 and Note 5)  
NL  
Nonlinearity Error  
0.5  
1
Count  
LSB  
Note 6  
Note 6  
DNL  
Differential Linearity Error  
0.01  
Display Reading in Ratiometric Operation +0.9996 +0.9999 +1.0000  
Display Reading VIN = VREF, (Note 2)  
±FSE ± Full Scale Symmetry Error  
(Rollover Error)  
0.5  
1
Count  
-VIN = +VIN, (Note 7)  
IIN  
eN  
Input Leakage Current  
Noise  
1
10  
pA  
Note 3  
15  
µVP-P  
Peak-to-Peak Value not  
Exceeded 95% of Time  
Digital  
IIL  
Input Low Current  
Input High Current  
Output Low Voltage  
10  
0.08  
0.2  
100  
10  
0.4  
5
µA  
µA  
V
VIN = 0V  
IIH  
VIN = +5V  
IOL = 1.6mA  
VOL  
VOH  
Output High Voltage;  
B1, B2, B4, B8, D1 –D5  
Busy, Polarity, Overrange,  
Underrange, Strobe  
2.4  
4.9  
4.4  
V
IOH = 1mA  
4.99  
5
V
IOH = 10µA  
FCLK  
Clock Frequency  
0
200  
1200  
kHz  
Note 8  
Note 1: Limit input current to under 100µA if input voltages exceed supply voltage.  
2: Full scale voltage = 2V.  
3: VIN = 0V.  
4: 30°C TA +70°C  
5: .External reference temperature coefficient less than 0.01ppm/°C.  
6: -2V VIN +2V. Error of reading from best fit straight line.  
7: IVIN| = 1.9959.  
8: Specification related to clock frequency range over which the TC7135 correctly performs its various functions. Increased  
errors result at higher operating frequencies.  
2002 Microchip Technology Inc.  
DS21460B-page 3  
TC7135  
TC7135 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: TA = +25°C, FCLOCK = 120kHz, V+ = +5V, V- = -5V, unless otherwise specified  
(see Functional Block Diagram).  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Power Supply  
V+  
V-  
I+  
Positive Supply Voltage  
4
5
-5  
6
-8  
3
V
V
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
-3  
1
mA  
mA  
mW  
FCLK = 0Hz  
I-  
0.7  
8.5  
3
FCLK = 0Hz  
FCLK = 0Hz  
PD  
30  
Note 1: Limit input current to under 100µA if input voltages exceed supply voltage.  
2: Full scale voltage = 2V.  
3: VIN = 0V.  
4: 30°C TA +70°C  
5: .External reference temperature coefficient less than 0.01ppm/°C.  
6: -2V VIN +2V. Error of reading from best fit straight line.  
7: IVIN| = 1.9959.  
8: Specification related to clock frequency range over which the TC7135 correctly performs its various functions. Increased  
errors result at higher operating frequencies.  
DS21460B-page 4  
2002 Microchip Technology Inc.  
TC7135  
2.0  
PIN DESCRIPTIONS  
The description of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
28-Pin PDIP  
Symbol  
Description  
1
2
V-  
Negative power supply input.  
External reference input.  
REF IN  
3
ANALOG COMMON Reference point for REF IN.  
4
INT OUT  
AZ IN  
Integrator output. Integrator capacitor connection.  
Auto zero inpt. Auto-zero capacitor connection.  
Analog input buffer output. Integrator resistor connection.  
Reference capacitor input. Reference capacitor negative connection.  
Reference capacitor input. Reference capacitor positive connection.  
Analog input. Analog input negative connection.  
Analog input. Analog input positive connection.  
Positive power supply input.  
5
6
BUFF OUT  
7
CREF  
CREF  
-
8
+
9
-INPUT  
+INPUT  
V+  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
D5  
Digit drive output. Most Significant Digit (MSD)  
Binary Coded Decimal (BCD) output. Least Significant Bit (LSB)  
BCD output.  
B1  
B2  
B4  
BCD output.  
B8  
BCD output. Most Significant Bit (MSB)  
Digit drive output.  
D4  
D3  
Digit drive output.  
D2  
Digit drive output.  
D1  
Digit drive output. Least Significant Digit (LSD)  
BUSY  
Busy output. At the beginning of the signal-integration phase, BUSY goes High and  
remains High until the first clock pulse after the integrator zero crossing.  
22  
23  
CLOCK IN  
POLARITY  
Clock input. Conversion clock connection.  
Polarity output. A positive input is indicated by a logic High output. The polarity output is  
valid at the beginning of the reference integrate phase and remains valid until determined  
during the next conversion.  
24  
25  
DGND  
Digital logic reference input.  
RUN/HOLD  
Run / Hold input. When at a logic High, conversions are performed continuously. A logic  
Low holds the current data as long as the Low condition exists.  
26  
27  
STROBE  
Strobe output. The STROBE output pulses low in the center of the digit drive outputs.  
OVERRANGE  
Over range output. A logic High indicates that the analog input exceeds the full scale input  
range.  
28  
UNDERRANGE  
Under range output. A logic High indicates that the analog input is less than 9% of the full  
scale input range.  
2002 Microchip Technology Inc.  
DS21460B-page 5  
TC7135  
ent benefit is noise immunity. Noise spikes are inte-  
grated, or averaged, to zero during the integration  
periods.  
3.0  
DETAILED DESCRIPTION  
(All Pin Designations Refer to 28-Pin DIP)  
Integrating ADCs are immune to the large conversion  
errors that plague successive approximation convert-  
ers in high-noise environments (see Figure 3-1).  
3.1  
Dual Slope Conversion Principles  
The TC7135 is a dual slope, integrating A/D converter.  
An understanding of the dual slope conversion tech-  
nique will aid in following the detailed TC7135  
operational theory.  
FIGURE 3-1:  
BASIC DUAL SLOPE  
CONVERTER  
The conventional dual slope converter measurement  
cycle has two distinct phases:  
Analog Input  
Signal  
Integrator  
-
Comparator  
1. Input signal integration  
-
+
2. Reference voltage integration (de-integration)  
+
The input signal being converted is integrated for a  
fixed time period. Time is measured by counting clock  
pulses. An opposite polarity constant reference voltage  
is then integrated until the integrator output voltage  
returns to zero. The reference integration time is  
directly proportional to the input signal.  
Switch  
Drive  
Clock  
Phase  
REF  
Control  
Logic  
Control  
Voltage  
Polarity Control  
In a simple dual slope converter, a complete conver-  
sion requires the integrator output to "ramp-up" and  
"ramp-down."  
Counter  
Display  
V
IN  
V
IN  
V  
REF  
A simple mathematical equation relates the input sig-  
nal, reference voltage, and integration time:  
1/2 V  
REF  
Fixed Variable  
Signal Reference  
Integrate Integrate  
Time Time  
EQUATION 3-1:  
T
V
T
1
INT  
REF DEINT  
R
V
(T)DT =  
IN  
R
C
C
0
INT INT  
INT INT  
3.2  
TC7135 Operational Theory  
where:  
The TC7135 incorporates a system zero phase and  
integrator output voltage zero phase to the normal two-  
phase dual-slope measurement cycle. Reduced sys-  
tem errors, fewer calibration steps, and a shorter over-  
range recovery time result.  
V
= Reference voltage  
REF  
T
T
= Signal integration time (fixed)  
INT  
= Reference voltage integration time  
(variable).  
DEINT  
The TC7135 measurement cycle contains four phases:  
For a constant V  
:
1. System zero  
IN  
2. Analog input signal integration  
3. Reference voltage integration  
4. Integrator output zero  
EQUATION 3-2:  
V
T
REF DEINT  
V
=
IN  
T
INT  
Internal analog gate status for each phase is shown in  
Figure 3-1.  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values, as long as  
they are stable during a measurement cycle. An inher-  
TABLE 3-1:  
INTERNAL ANALOG GATE STATUS  
Conversion Cycle Phase  
SWI  
SWRI  
+
SWRI  
-
SWZ  
SWR  
SW1  
SWIZ  
Reference Figures  
System Zero  
Closed  
Closed  
Closed  
Figure 3-2  
Figure 3-3  
Figure 3-4  
Figure 3-5  
Input Signal Integration  
Reference Voltage Integration  
Integrator Output Zero  
Closed  
Closed*  
Closed  
Closed  
Closed  
*Note:  
Assumes a positive polarity input signal. SWRI would be closed for a negative input signal.  
DS21460B-page 6  
2002 Microchip Technology Inc.  
TC7135  
3.2.1  
SYSTEM ZERO  
3.2.3  
REFERENCE VOLTAGE  
INTEGRATION  
During this phase, errors due to buffer, integrator, and  
comparator offset voltages are compensated for by  
charging C (auto zero capacitor) with a compensat-  
ing error voltage. With a zero input voltage the integra-  
tor output will remain at zero.  
The previously-charged reference capacitor is con-  
nected with the proper polarity to ramp the integrator  
output back to zero (see Figure 3-4). The digital  
reading displayed is:  
AZ  
The external input signal is disconnected from the inter-  
EQUATION 3-3:  
nal circuitry by opening the two SW switches. The  
I
internal input points connect to ANALOG COMMON.  
The reference capacitor charges to the reference volt-  
[Differential Input]  
Reading = 10,000  
V
REF  
age potential through SW . A feedback loop, closed  
R
around the integrator and comparator, charges the C  
AZ  
FIGURE 3-4:  
REFERENCE VOLTAGE  
INTEGRATION CYCLE  
capacitor with a voltage to compensate for buffer ampli-  
fier, integrator, and comparator offset voltages (see  
Figure 3-2).  
Analog  
SW  
I
Input Buffer  
C
R
INT  
INT  
+
+IN  
FIGURE 3-2:  
SYSTEM ZERO PHASE  
-
SW - SW  
RI  
+
RI  
C
Analog  
SZ  
Input Buffer  
SW  
I
SW  
SW  
Z
IZ  
C
R
INT  
INT  
+
+IN  
-
Comparator  
C
SW  
REF  
R
+
REF  
IN  
-
+
SW - SW  
RI  
+
RI  
-
C
To Digital  
Section  
SZ  
Integrator  
SW  
SW  
Z
Z
SW  
SW  
Z
IZ  
-
SW + SW  
RI RI  
-
C
REF  
Comparator  
SW  
R
+
Analog  
Common  
REF  
IN  
+
-
To Digital  
Section  
SW  
Integrator  
1
SW  
SW  
Z
SW  
Z
I
Switch Open  
IN  
Switch Closed  
SW + SW  
RI RI  
-
Analog  
Common  
SW  
1
SW  
3.2.4  
INTEGRATOR OUTPUT ZERO  
I
Switch Open  
Switch Closed  
IN  
This phase ensures the integrator output is at 0V when  
the system zero phase is entered. It also ensures that  
the true system offset voltages are compensated for.  
This phase normally lasts 100 to 200 clock cycles. If an  
overrange condition exists, the phase is extended to  
6200 clock cycles (see Figure 3-5).  
3.2.2  
ANALOG INPUT SIGNAL  
INTEGRATION  
The TC7135 integrates the differential voltage between  
the +INPUT and -INPUT pins. The differential voltage  
must be within the device Common mode range; - 1V  
from either supply rail, typically. The input signal polar-  
ity is determined at the end of this phase.  
FIGURE 3-5:  
INTEGRATOR OUTPUT  
ZERO PHASE  
See Figure 2-3  
Analog  
Input Buffer  
+
SW  
I
R
C
INT  
INT  
+
IN  
FIGURE 3-3:  
INPUT SIGNAL  
INTEGRATION PHASE  
-
SW - SW  
RI RI  
+
C
SZ  
Analog  
SW  
Z
SW  
IZ  
Input Buffer  
SW  
I
-
C
SW  
SW  
REF  
Comparator  
R
C
R
INT  
+
-
INT  
+
+IN  
REF  
IN  
+
-
To Digital  
Section  
SW - SW  
RI  
+
RI  
Integrator  
C
SZ  
SW  
Z
Z
SW + SW  
RI RI  
-
SW  
SW  
IZ  
Z
-
C
REF  
Comparator  
Analog  
SW  
R
+
Common  
REF  
IN  
+
SW  
1
-
SW  
To  
I
Switch Open  
Integrator  
Digital  
Section  
IN  
SW  
SW  
Z
Switch Closed  
Z
SW + SW  
RI RI  
-
Analog  
Common  
SW  
1
SW  
Switch Open  
I
IN  
Switch Closed  
.
2002 Microchip Technology Inc.  
DS21460B-page 7  
TC7135  
FIGURE 4-1:  
USING AN EXTERNAL  
REFERENCE  
4.0  
ANALOG SECTION  
FUNCTIONAL DESCRIPTION  
V+  
4.1  
Differential Inputs  
The TC7135 operates with differential voltages  
(+INPUT, pin 10 and -INPUT, pin 9) within the input  
amplifier Common mode range, which extends from 1V  
below the positive supply to 1V above the negative  
supply. Within this Common mode voltage range, an  
86dB Common mode rejection ratio is typical.  
V+  
10k  
MCP1525  
2.5 V  
TC7135  
REF  
REF  
IN  
10k  
1µF  
ANALOG  
COMMON  
The integrator output also follows the Common mode  
voltage and must not be allowed to saturate. A worst-  
case condition exists, for example, when a large posi-  
tive Common mode voltage with a near full scale neg-  
ative differential input voltage is applied. The negative  
input signal drives the integrator positive when most of  
its swing has been used up by the positive Common  
mode voltage. For these critical applications, the  
integrator swing can be reduced to less than the  
recommended 4V full scale swing, with some loss of  
accuracy. The integrator output can swing within 0.3V  
of either supply without loss of linearity.  
Analog Ground  
4.2  
Analog Common Input  
ANALOG COMMON is used as the -INPUT return dur-  
ing auto zero and de-integrate. If -INPUT is different  
from ANALOG COMMON, a Common mode voltage  
exists in the system. However, this signal is rejected by  
the excellent CMRR of the converter. In most applica-  
tions, –INPUT will be set at a fixed, known voltage  
(power supply common, for instance). In this applica-  
tion, ANALOG COMMON should be tied to the same  
point, thus removing the Common mode voltage from  
the converter. The reference voltage is referenced to  
ANALOG COMMON.  
4.3  
Reference Voltage Input  
The reference voltage input (REF IN) must be a posi-  
tive voltage with respect to ANALOG COMMON. A  
reference voltage circuit is shown in Figure 4-1.  
DS21460B-page 8  
2002 Microchip Technology Inc.  
TC7135  
5.0  
DIGITAL SECTION  
FUNCTIONAL DESCRIPTION  
The major digital subsystems within the TC7135 are  
illustrated in Figure 5-1, with timing relationships  
shown in Figure 5-2. The multiplexed BCD output data  
can be displayed on LCD or LED displays. The digital  
section is best described through a discussion of the  
control signals and data outputs.  
FIGURE 5-1:  
DIGITAL SECTION FUNCTIONAL DIAGRAM  
Polarity  
D5  
MSB  
D4  
Digit  
D3  
Drive  
D2  
D1  
13 B1  
14 B2  
15 B4  
16 B8  
Signal  
LSB  
Data  
Multiplexer  
Output  
From  
Analog  
Section  
Latch  
Latch  
Latch  
Latch  
Latch  
Polarity  
FF  
Counters  
Zero  
Cross  
Detect  
Control Logic  
27  
24  
22  
Clock  
25  
RUN/  
28  
26  
21  
DGND  
Overrange Underrange STROBE  
Busy  
In  
HOLD  
2002 Microchip Technology Inc.  
DS21460B-page 9  
TC7135  
FIGURE 5-2:  
TIMING DIAGRAMS FOR  
OUTPUTS  
5.2  
STROBE Output  
During the measurement cycle, the STROBE control  
line is pulsed low five times. The five low pulses occur  
in the center of the digit drive signals (D , D , D , D )  
Integrator  
Output  
1
2
3
5
Signal  
(see Figure 5-3).  
Integrate  
10,000  
Counts  
(Fixed)  
System  
Zero  
Reference  
Integrate  
D (MSD) goes high for 201 counts when the measure-  
10,001  
Counts  
20,001  
5
Counts (Max)  
ment cycles end. In the center of the D pulse, 101  
clock pulses after the end of the measurement cycle,  
the first STROBE occurs for one half clock pulse. After  
the D digit strobe, D goes high for 200 clock pulses.  
The STROBE then goes low 100 clock pulses after D  
5
Full Measurement Cycle  
40,002 Counts  
Busy  
5
4
Overrange when  
Applicable  
4
goes high. This continues through the D digit drive  
pulse.  
1
Underrange when  
Applicable  
Expanded Scale Below  
The digit drive signals will continue to permit display  
scanning. STROBE pulses are not repeated until a new  
measurement is completed. The digit drive signals will  
not continue if the previous signal resulted in an  
overrange condition.  
Digit Scan  
D5  
D4  
D3  
D2  
The active low STROBE pulses aid BCD data transfer  
to UARTs, processors and external latches. For more  
information, please refer to Application Note 784.  
D1  
100  
First D5 of System Zero and  
Reference Integrate One Count  
Longer  
*
Counts  
STROBE  
Reference  
Signal  
FIGURE 5-3:  
STROBE SIGNAL LOW  
FIVE TIMES PER  
CONVERSION  
Auto Zero  
Integrate  
Integrate  
*
Digit Scan  
D5  
D4  
D3  
D2  
D1  
for Overrange  
*
TC835  
Outputs  
Busy  
End of Conversion  
*
B1B8  
D3  
D2  
Data  
D1 (LSD)  
Data  
D5  
Data  
D5 (MSD)  
Data  
D4  
Data  
Data  
STROBE  
5.1  
RUN/HOLD Input  
Note Absence of  
STROBE  
200  
Counts  
When left open, this pin assumes a logic "1" level. With  
a RUN/HOLD = 1, the TC7135 performs conversions  
continuously, with a new measurement cycle beginning  
every 40,002 clock pulses.  
201  
Counts  
200  
Counts  
D5  
D4  
D3  
200  
Counts  
When RUN/HOLD changes to a logic "0," the measure-  
ment cycle in progress will be completed, data held and  
displayed, as long as the logic "0" condition exists.  
200  
Counts  
A positive pulse (>300nsec) at RUN/HOLD initiates a  
new measurement cycle. The measurement cycle in  
progress when RUN/HOLD initially assumed the logic  
"0" state must be completed before the positive pulse  
200  
Counts  
D2  
D1  
200  
Counts  
can be recognized as  
command.  
a single conversion run  
*Delay between Busy going Low and First STROBE pulse is  
dependent on Analog Input.  
The new measurement cycle begins with a 10,001-  
count auto zero phase. At the end of this phase the  
busy signal goes high.  
DS21460B-page 10  
2002 Microchip Technology Inc.  
TC7135  
5.3  
BUSY Output  
At the beginning of the signal integration phase, BUSY  
goes high and remains high until the first clock pulse  
after the integrator zero crossing. BUSY returns to the  
logic "0" state after the measurement cycle ends in an  
overrange condition. The internal display latches are  
loaded during the first clock pulse after BUSY and are  
latched at the clock pulse end. The BUSY signal does  
not go high at the beginning of the measurement cycle,  
which starts with the auto zero cycle.  
5.4  
OVERRANGE Output  
If the input signal causes the reference voltage integra-  
tion time to exceed 20,000 clock pulses, the OVER-  
RANGE output is set to a logic "1." The overrange  
output register is set when BUSY goes low and is reset  
at the beginning of the next reference integration  
phase.  
5.5  
UNDERRANGE Output  
If the output count is 9% of full scale or less (-1800  
counts), the underrange register bit is set at the end of  
BUSY. The bit is set low at the next signal integration  
phase.  
5.6  
POLARITY Output  
A positive input is registered by a logic "1" polarity sig-  
nal. The polarity bit is valid at the beginning of refer-  
ence integrate and remains valid until determined  
during the next conversion.  
The polarity bit is valid even for a zero reading. Signals  
less than the converter's LSB will have the signal polar-  
ity determined correctly. This is useful in null  
applications.  
5.7  
Digit Drive Outputs  
Digit drive signals are positive-going signals. The scan  
sequence is D5 to D1. All positive pulses are 200 clock  
pulses wide, with the exception D5, which is 201 clock  
pulses wide.  
All five digits are scanned continuously, unless an  
overrange condition occurs. In an overrange condition,  
all digit drives are held low from the final STROBE  
pulse until the beginning of the next reference integrate  
phase. The scanning sequence is then repeated. This  
provides a blinking visual display indication.  
5.8  
BCD Data Outputs  
The binary coded decimal (BCD) bits B , B , B , and B  
1
8
4
2
are positive-true logic signals. The data bits become  
active at the same time as the digit drive signals. In an  
overrange condition, all data bits are at a logic "0" state.  
2002 Microchip Technology Inc.  
DS21460B-page 11  
TC7135  
The dielectric absorption of the reference and auto zero  
capacitors are only important at power-on or when the  
circuit is recovering from an overload. Smaller or  
cheaper capacitors can be used if accurate readings  
are not required for the first few seconds of recovery.  
6.0  
6.1  
TYPICAL APPLICATIONS  
Component Value Selection  
6.1.1  
INTEGRATING RESISTOR  
The integrating resistor R  
scale input voltage and the output current of the buffer  
used to charge the integrator capacitor, C . Both the  
buffer amplifier and the integrator have a class A output  
stage, with 100µA of quiescent current. A 20µA drive  
current gives negligible linearity errors. Values of 5µA  
to 40µA give good results. The exact value of an  
integrating resistor for  
calculated.  
is determined by the full  
6.1.4  
REFERENCE VOLTAGE  
INT  
The analog input required to generate a full scale out-  
put is V = 2 V  
INT  
.
REF  
IN  
The stability of the reference voltage is a major factor in  
the overall absolute accuracy of the converter. For this  
reason, it is recommended that a high-quality reference  
be used where high-accuracy absolute measurements  
are being made.  
a 20µA current is easily  
6.2  
Conversion Timing  
EQUATION 6-1:  
Full scale voltage  
R
=
6.2.1  
LINE FREQUENCY REJECTION  
INT  
20µA  
A signal integration period at a multiple of the 60Hz line  
frequency will maximize 60Hz "line noise" rejection. A  
100kHz clock frequency will reject 50Hz, 60Hz and  
400Hz noise. This corresponds to five readings per  
second (see Table 6-1 and Table 6-2).  
6.1.2  
INTEGRATING CAPACITOR (C  
)
INT  
The product of integrating resistor and capacitor should  
be selected to give the maximum voltage swing that  
ensures the tolerance buildup will not saturate the inte-  
grator swing (approximately 0.3V from either supply).  
For ±5V supplies and ANALOG COMMON tied to sup-  
ply ground, a ±3.5V to ±4V full scale integrator swing is  
adequate. A 0.10µF to 0.47µF is recommended. In  
TABLE 6-1:  
CONVERSION RATE VS.  
CLOCK FREQUENCY  
Oscillator Frequency  
(kHz)  
Conversion Rate  
(Conv./Sec.)  
general, the value of C  
is given by:  
INT  
100  
120  
200  
300  
400  
800  
1200  
2.5  
3
EQUATION 6-2:  
[10,000 x clock period] x I  
5
INT  
C
=
INT  
7.5  
10  
20  
30  
Integrator output voltage swing  
(10,000) (clock period) (20µA)  
=
Integrator output voltage swing  
A very important characteristic of the integrating capac-  
itor C is that it has low dielectric absorption to pre-  
INT  
vent rollover or ratiometric errors. A good test for  
dielectric absorption is to use the capacitor with the  
input tied to the reference. This ratiometric condition  
should read half scale 0.9999, with any deviation  
probably due to dielectric absorption. Polypropylene  
capacitors give undetectable errors at reasonable cost.  
Polystyrene and polycarbonate capacitors may also be  
used in less critical applications.  
6.1.3  
AUTO ZERO AND REFERENCE  
CAPACITORS  
The size of the auto zero capacitor has some influence  
on the noise of the system. A large capacitor reduces  
the noise. The reference capacitor should be large  
enough such that stray capacitance to ground from its  
nodes is negligible.  
DS21460B-page 12  
2002 Microchip Technology Inc.  
TC7135  
ator delay can be compensated and the maximum  
clock frequency extended by approximately a factor of  
3. At higher frequencies, ringing and second-order  
breaks will cause significant nonlinearities in the first  
few counts of the instrument.  
TABLE 6-2:  
LINE FREQUENCY  
REJECTION VS. CLOCK  
FREQUENCY  
Oscillator Frequency  
(kHz)  
Line Frequency Rejection  
(Hz)  
The minimum clock frequency is established by leak-  
age on the auto zero and reference capacitors. With  
most devices, measurement cycles as long as 10 sec-  
onds give no measurable leakage error.  
300  
200  
60  
150  
The clock used should be free from significant phase or  
frequency jitter. Several suitable low-cost oscillators  
are shown in Section 6.0, Typical Applications. The  
multiplexed output means that if the display takes sig-  
nificant current from the logic supply, the clock should  
have good PSRR.  
120  
100  
40  
33-1/3  
250  
50  
166-2/3  
125  
6.4  
Zero Crossing Flip Flop  
100  
The flip flop interrogates the data once every clock  
pulse after the transients of the previous clock pulse and  
half clock pulse have died down. False zero crossings  
caused by clock pulses are not recognized. Of course,  
the flip flop delays the true zero crossing by up to one  
count in every instance. If a correction were not made,  
the display would always be one count too high. There-  
fore, the counter is disabled for one clock pulse at the  
beginning of the reference integrate (de-integrate)  
phase. This one-count delay compensates for the delay  
of the zero crossing flip flop and allows the correct num-  
ber to be latched into the display. Similarly, a one-count  
delay at the beginning of auto zero gives an overload  
display of 0000 instead of 0001. No delay occurs during  
signal integrate so that true ratiometric readings result.  
100  
50, 60,400  
The conversion rate is easily calculated:  
EQUATION 6-3:  
Clock Frequency (Hz)  
Reading 1/sec =  
4000  
6.3  
High Speed Operation  
The maximum conversion rate of most dual slope A/D  
converters is limited by the frequency response of the  
comparator. The comparator in this circuit follows the  
integrator ramp with a 3µsec delay, at a clock fre-  
quency of 160 kHz (6µsec period), Half of the first ref-  
erence integrate clock period is lost in delay. This  
means that the meter reading will change from 0 to 1  
with a 50µV input, 1 to 2 with 150µV, 2 to 3 at 250µV,  
etc. This transition at midpoint is considered desirable  
by most users. However, if the clock frequency is  
increased appreciably above 200kHz, the instrument  
will flash "1" on noise peaks, even when the input is  
shorted.  
6.5  
Generating a Negative Supply  
A negative voltage can be generated from the positive  
supply by using a TC7660 (see Figure 6-1).  
FIGURE 6-1:  
NEGATIVE SUPPLY  
VOLTAGE GENERATOR  
+5V  
11  
1
For many dedicated applications where the input signal  
is always of one polarity, the delay of the comparator  
need not be a limitation. Since the nonlinearity and  
noise do not increase substantially with frequency, clock  
rates of up to ~1MHz may be used. For a fixed clock fre-  
quency, the extra count, or counts, caused by compara-  
tor delay, will be a constant and can be subtracted out  
digitally.  
V+  
8
TC7135  
(-5V)  
10µF  
5
V–  
TC7660  
+
4
2
3
+
24  
10µF  
The clock frequency may be extended above 160kHz  
without this error, however, by using a low value resis-  
tor in series with the integrating capacitor. The effect of  
the resistor is to introduce a small pedestal voltage on  
to the integrator output at the beginning of the refer-  
ence integrate phase. By careful selection of the ratio  
between this resistor and the integrating resistor (a few  
tens of ohms in the recommended circuit), the compar-  
2002 Microchip Technology Inc.  
DS21460B-page 13  
TC7135  
FIGURE 6-2:  
4-1/2 DIGIT ADC WITH MULTIPLEXED COMMON ANODE LED DISPLAY  
+5V  
20 19 18 17 12  
D1 D2 D3 D4 D5  
INT OUT  
4
5
0.33µF  
1µF  
AZ IN  
4.7kΩ  
1µF  
23  
7
POL  
6
BUFF  
b
c
7
7
7
7
OUT  
C
-
100kΩ  
REF  
22  
10  
TC7135  
F
IN  
200kHz  
X7  
8
C
+
REF  
Blank MSD On Zero  
100kΩ  
+
+INPUT  
915  
5
Analog  
16  
15  
14  
13  
6
2
1
7
1µF  
Input  
B8  
D
C
B
A
9
3
RBI  
DM7447A  
INPUT  
B4  
B2  
B1  
16  
+5V  
ANALOG  
COMMON  
REF  
V–  
IN  
V+  
1
2
11  
V+  
5V  
100kΩ  
MCP1525  
1µF  
FIGURE 6-3:  
RC OSCILLATOR CIRCUIT  
FIGURE 6-4:  
COMPARATOR CLOCK  
CIRCUITS  
R
2
R
1
+5V  
C
F
O
16kΩ  
1kΩ  
56kΩ  
Gates are 74C04  
2
3
+
8
V
OUT  
0.22µF  
7
1
R R  
1
2
LM311  
, R =  
1. F  
=
P
O
-
R + R  
1
2C(0.41 R + 0.7 R )  
1
2
P
1
30kΩ  
390pF  
4
16kΩ  
a. If R1 = R2 = R1, F0.55/RC  
b. If R2 >> R1, F 0.45/R1C  
c. If R2 << R1, F 0.72/R1C  
+5V  
R2  
100kΩ  
R4  
2kΩ  
2. Examples:  
a. F = 120kHz, C = 420pF  
R1 = R2 10.9 kΩ  
C2  
10pF  
2
3
+
6
b. F = 120kHz, C = 420pF, R2 = 50kΩ  
R1 = 8.93kΩ  
7
R2  
100kΩ  
V
LM311  
OUT  
-
4
R3  
50kΩ  
c. F = 120 kHz, C = 220 pF, R2 = 5kΩ  
1
R = 27.3kΩ  
C1  
0.1µF  
1
DS21460B-page 14  
2002 Microchip Technology Inc.  
TC7135  
FIGURE 6-5:  
4-1/2 DIGIT ADC WITH MULTIPLEXED COMMON CATHODE LED DISPLAY  
+5V  
+5V  
SET V  
= 1V  
REF  
5V  
28  
27  
26  
1
2
3
V-  
UR  
OR  
TC7135  
MCP1525  
100  
REF IN  
kΩ  
150Ω  
1µF  
ANALOG  
GND  
STROBE  
47  
kΩ  
10  
11  
9
8
7
6
5
4
3
2
1
Analog  
GND  
150Ω  
25  
24  
23  
22  
21  
20  
4
5
6
7
8
9
INT  
OUT  
RUN/HOLD  
DGND  
POLARITY  
CLK IN  
BUSY  
1µF  
0.33µF  
12  
13  
14  
15  
AZ IN  
BUFF  
OUT  
MC14513  
100 kΩ  
1µF  
C
+
REF  
REF  
100  
kΩ  
+
SIG  
C
-
+5V  
16  
17  
(LSD) D1  
D2  
INPUT  
0.1  
µF  
10  
11  
12  
19  
18  
17  
+INPUT  
IN  
18  
+5V  
D3  
V+  
D4  
D5 (MSD)  
13  
14  
16  
15  
(MSB) B8  
B4  
B1 (LSB)  
B2  
F
OSC  
= 200kHz  
2002 Microchip Technology Inc.  
DS21460B-page 15  
TC7135  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Package marking data not available at this time.  
7.2  
Taping Forms  
Component Taping Orientation for 28-Pin PLCC Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
28-Pin PLCC  
24 mm  
16 mm  
750  
13 in  
Component Taping Orientation for 64-Pin PQFP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
64-Pin PQFP  
32 mm  
24 mm  
250  
13 in  
NOTE: Drawing does not represent total number of pins.  
DS21460B-page 16  
2002 Microchip Technology Inc.  
TC7135  
7.3  
Package Dimensions  
28-Pin PDIP (Wide)  
PIN 1  
.555 (14.10)  
.530 (13.46)  
1.465 (37.21)  
1.435 (36.45)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
3˚MIN.  
.150 (3.81)  
.115 (2.92)  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
28-Pin PLCC  
PIN 1  
.021 (0.53)  
.013 (0.33)  
.050 (1.27) TYP.  
.495 (12.58)  
.485 (12.32)  
.430 (10.92)  
.390 (9.91)  
.456 (11.58)  
.450 (11.43)  
.032 (0.81)  
.026 (0.66)  
.456 (11.58)  
.450 (11.43)  
.020 (0.51) MIN.  
.120 (3.05)  
.090 (2.29)  
.495 (12.58)  
.485 (12.32)  
.180 (4.57)  
.165 (4.19)  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21460B-page 17  
TC7135  
7.3  
Packaging Dimensions (Continued)  
64-Pin PQFP  
7˚ MAX.  
.009 (0.23)  
.005 (0.13)  
.041 (1.03)  
.031 (0.78)  
PIN 1  
.018 (0.45)  
.012 (0.30)  
.555 (14.10)  
.547 (13.90)  
.687 (17.45)  
.667 (16.95)  
.031 (0.80) TYP.  
.010 (0.25) TYP.  
.555 (14.10)  
.547 (13.90)  
.120 (3.05)  
.100 (2.55)  
.687 (17.45)  
.667 (16.95)  
.130 (3.30) MAX.  
Dimensions: inches (mm)  
DS21460B-page 18  
2002 Microchip Technology Inc.  
TC7135  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21460B-page 19  
TC7135  
NOTES:  
DS21460B-page 20  
2002 Microchip Technology Inc.  
TC7135  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21460B-page 21  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
China - Hong Kong SAR  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
04/20/02  
DS21460B-page 22  
2002 Microchip Technology Inc.  

相关型号:

TC7135C/KW

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44
MICROCHIP

TC7135C/LI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135C/PI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
MICROCHIP

TC7135CBU

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CBU

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CBUTR

1-CH DUAL-SLOPE ADC, ACCESS, PQFP64, PLASTIC, QFP-64
MICROCHIP

TC7135CKW

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLI

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLI

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CLI713

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLIRT

1-CH DUAL-SLOPE ADC, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135CLITR

暂无描述
MICROCHIP