TC7135 [TELCOM]

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER; 4-1 / 2位模拟数字转换器
TC7135
型号: TC7135
厂家: TELCOM SEMICONDUCTOR, INC    TELCOM SEMICONDUCTOR, INC
描述:

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
4-1 / 2位模拟数字转换器

转换器
文件: 总13页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3
TC7135  
4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER  
FEATURES  
GENERAL DESCRIPTION  
Low Roll-Over Error ......................... ±1 Count Max  
Guaranteed Nonlinearity Error ........ ±1 Count Max  
Guaranteed Zero Reading for 0V Input  
True Polarity Indication at Zero for Null Detection  
Multiplexed BCD Data Output  
TTL-Compatible Outputs  
Differential Input  
Control Signals Permit Interface to UARTs and  
µProcessors  
Auto-Ranging Supported With Overrange and  
Underrange Signals  
Blinking Display Visually Indicates Overrange  
Condition  
Low Input Current............................................. 1 pA  
Low Zero Reading Drift ............................... 2 µV/°C  
Interfaces to TC7211A (LCD) and TC7212A (LED)  
Display Drivers  
The TC7135 4-1/2 digit analog-to-digital converter (ADC)  
offers 50 ppm (1 part in 20,000) resolution with a maximum  
nonlinearity error of 1 count. An auto-zero cycle reduces zero  
error to below 10 µV and zero drift to 0.5 µV/°C. Source  
impedance errors are minimized by a 10 pA maximum input  
current. Roll-over error is limited to ±1 count.  
By combining the TC7135 with a TC7211A (LCD) or  
TC7212A (LED) driver, a 4-1/2 digit display DVM or DPM can  
be constructed. Overrange and underrange signals support  
automatic range switching and special display blanking/flash-  
ing applications.  
Microprocessor-based measurement systems are sup-  
ported by BUSY, STROBE, and RUN/HOLD control signals.  
Remote data acquisition systems with data transfer via UARTs  
are also possible. The additional control pins and multiplexed  
BCD outputs make the TC7135 the ideal converter for dis-  
play or microprocessor-based measurement systems.  
Available in DIP and Surface-Mount Packages  
ORDERING INFORMATION  
Temperature  
Part No.  
Package  
Range  
TC7135CBU  
64-Pin Plastic  
Flat Package  
28-Pin PLCC  
0°C to +70°C  
TC7135CLI  
TC7135CPI  
0°C to +70°C  
0°C to +70°C  
28-Pin Plastic DIP  
TYPICAL 4-1/2 DIGIT DVM WITH LCD  
4-1/2 DIGIT LCD  
+5V  
6.8 k  
SEGMENT  
+5V  
D
R
I
V
E
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
11615 1412 5 3 4  
CD4054A  
7 8 13 1110 9 2 6  
–5V  
V
UR  
OR  
0.1 µF  
REF IN  
100 kΩ  
0.47 µF  
1 µF  
3
TC04  
ANALOG  
COMMON  
INT OUT  
BACKPLANE  
+5V  
STROBE  
RUN/HOLD  
DGND  
POL  
4
5
ANALOG  
GROUND  
AZ IN  
120 Hz = 3 READING/SEC  
CLOCK IN  
1
+
6
BUFF OUT  
5
V
7
BP  
100 kΩ  
CD4081  
C
CLOCK  
BUSY  
D1  
REF  
1/4 CD4030  
1 µF  
31  
8
+
REF  
1
2
3
4
D
D
D
D
C
+5V  
9
32  
33  
34  
–INPUT  
SEG  
OUT  
0.1  
µF  
10  
11  
12  
13  
14  
INPUT  
+INPUT  
D2  
+
+5V  
V
D3  
2,3,4  
6–26  
37–40  
100 kΩ  
D5  
D4  
TC7135  
30  
29  
TC7211A  
B1  
B2  
B3  
B2  
B1  
B0  
B8  
15  
36  
B4  
+5V  
OSC  
28  
27  
OPTIONAL  
CAP  
35  
GND  
TC7135-10 11/6/96  
TELCOM SEMICONDUCTOR, INC.  
3-113  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
TC7135  
ABSOLUTE MAXIMUM RATINGS* (Note 1)  
Lead Temperature (Soldering, 10 sec) ................. +300°C  
Package Power Dissipation (TA 70°C)  
Positive Supply Voltage ............................................. +6V  
Negative Supply Voltage .............................................9V  
Analog Input Voltage (Pin 9 or 10) ......... V+ to V(Note 2)  
Reference Input Voltage (Pin 2) ........................... V+ to V–  
Clock Input Voltage ..............................................0V to V+  
Operating Temperature Range .................... 0°C to +70°C  
Storage Temperature Range ................. –65°C to +160°C  
Plastic DIP ........................................................1.14W  
PLCC ................................................................1.00W  
Plastic Flat Package .........................................1.14W  
*Static-sensitive device. Unused devices must be stored in conductive  
material to protect them from static discharge and static fields. Stresses  
above those listed under "Absolute Maximum Ratings" may cause perma-  
nent damage to the device. These are stress ratings only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of the specifications is not implied.  
ELECTRICAL CHARACTERISTICS: TA = +25°C, fCLOCK = 120 kHz, V+ = +5V, V= –5V (Figure 1)  
Symbol  
Analog  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
Display Reading With  
Zero Volt Input  
Notes 2 and 3  
–0.0000  
±0.0000  
0.5  
+0.0000  
Display  
Reading  
TCZ  
Zero Reading Temperature  
Coefficient  
VIN = 0V  
Note 4  
2
5
µV/°C  
TCFS  
Full-Scale Temperature  
Coefficient  
VIN = 2V  
Notes 4 and 5  
ppm/°C  
NL  
Nonlinearity Error  
Note 6  
Note 6  
0.5  
0.01  
1
Count  
LSB  
DNL  
Differential Linearity Error  
Display Reading in  
Ratiometric Operation  
VIN = VREF  
Note 2  
+0.9996  
+0.9999  
+1.0000  
Display  
Reading  
±FSE  
± Full-Scale Symmetry  
Error (Roll-Over Error)  
–VIN = +VIN  
Note 7  
0.5  
1
Count  
IIN  
Input Leakage Current  
Noise  
Note 3  
1
10  
pA  
VN  
Peak-to-Peak Value Not  
Exceeded 95% of Time  
15  
µVP-P  
Digital  
IIL  
Input Low Current  
Input High Current  
Output Low Voltage  
VIN = 0V  
10  
0.08  
0.2  
100  
10  
µA  
µA  
V
IIH  
VIN = +5V  
IOL = 1.6 mA  
VOL  
VOH  
0.4  
Output High Voltage  
B1, B2, B4, B8, D1–D5  
Busy, Polarity, Overrange,  
Underrange, Strobe  
IOH = 1 mA  
IOH = 10 µA  
2.4  
4.9  
4.4  
4.99  
5
5
V
V
fCLK  
Clock Frequency  
Note 8  
0
120  
1200  
kHz  
Power Supply  
V+  
V–  
I+  
Positive Supply Voltage  
Negative Supply Voltage  
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
4
5
6
–8  
3
V
–3  
–5  
1
V
fCLK = 0 Hz  
fCLK = 0 Hz  
fCLK = 0 Hz  
mA  
mA  
mW  
I–  
0.7  
8.5  
3
PD  
30  
5. External reference temperature coefficient less than 0.01 ppm/°C.  
6. –2V VIN +2V. Error of reading from best fit straight line.  
7. |VIN| = 1.9959.  
NOTES: 1. Limit input current to under 100µA if input  
voltages exceed supply voltage.  
2. Full-scale voltage = 2V.  
8. Specification related to clock frequency range over which the  
TC7135 correctly performs its various functions. Increased errors  
result at higher operating frequencies.  
3. VIN = 0V.  
4. 0°C TA +70°C.  
3-114  
TELCOM SEMICONDUCTOR, INC.  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
3
TC7135  
PIN CONFIGURATIONS  
UNDERRANGE  
28  
V
1
2
27 OVERRANGE  
REF IN  
ANALOG  
COM  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
STROBE  
RUN/HOLD  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
3
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
NC  
NC  
NC  
NC  
INT OUT  
4
NC  
5
AZ IN  
3
NC  
BUFF OUT  
6
4
NC  
D3  
D4  
C
7
REF  
TC7135CPI  
(PDIP)  
5
NC  
NC  
+
C
8
REF  
6
B8  
B4  
B2  
NC  
9
D1 (LSD)  
D2  
INPUT  
7
OVERRANGE  
UNDERRANGE  
NC  
+
10  
11  
12  
13  
14  
INPUT  
8
+
D3  
V
9
D4  
(MSD) D5  
(LSB) B1  
B2  
10  
11  
12  
13  
14  
15  
16  
V
B1  
D5  
NC  
NC  
NC  
NC  
NC  
TC7135CBU  
(PFP)  
(NOTES 1)  
B8 (MSB)  
B4  
REF IN  
15  
ANALOG COM  
NC  
NC  
NC  
NC  
4
3
2
1
28 27 26  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
AZ IN  
5
25  
RUN/HOLD  
BUFF OUT  
6
7
8
9
24 DIGTAL GND  
REF CAP  
23  
22  
21  
20  
19  
POLARITY  
CLOCK IN  
BUSY  
+
REF CAP  
TC7135CLI  
(PLCC)  
INPUT  
+
INPUT 10  
+
D1 (LSD)  
D2  
NOTES: 1. NC = No internal connection.  
11  
V
12 13 14 15 16 17 18  
TELCOM SEMICONDUCTOR, INC.  
3-115  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
TC7135  
–5V  
ANALOG  
SET V  
= 1V  
INPUT BUFFER  
REF  
IN  
SW  
I
C
R
INT  
+
+
INT  
1
2
3
4
IN  
V
REF  
V
28  
UNDERRANGE  
OVERRANGE  
STROBE  
+
SW  
SW  
RI  
RI  
100 k  
REF IN  
27  
26  
25  
24  
23  
22  
21  
20  
19  
C
SZ  
ANALOG  
COMMON  
SW  
SW  
Z
IZ  
+
C
COMPARATOR  
SW  
REF  
R
ANALOG GND  
+
REF  
IN  
RUN/HOLD  
INT OUT  
0.47  
µF  
1 µF  
TO  
5
6
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
DIGITAL  
SECTION  
INTEGRATOR  
AZ IN  
SW  
SW  
Z
Z
+
RI  
BUFF OUT  
SW  
SW  
RI  
100 kΩ  
100  
kΩ  
7
8
9
ANALOG  
COM  
CLOCK  
INPUT  
120 kHz  
C
REF  
SIGNAL  
INPUT  
1 µF  
+
C
SW  
REF  
1
SW  
I
SWITCH OPEN  
INPUT  
(LSD) D1  
D2  
IN  
SWITCH CLOSED  
0.1 µF  
10  
11  
12  
13  
14  
+
INPUT  
+
TC7135  
18  
D3  
+
5V  
V
Figure 3B. System Zero Phase  
17  
16  
15  
D5 (MSD)  
D4  
(MSB) B8  
B4  
B1 (LSB)  
B2  
ANALOG  
INPUT BUFFER  
SW  
SW  
Figure 1. Test Circuit  
I
C
R
INT  
+
INT  
+
IN  
+
SW  
SW  
RI  
+
RI  
C
V
SZ  
SW  
SW  
Z
IZ  
+
C
COMPARATOR  
REF  
R
+
REF  
IN  
TO  
DIGITAL  
SECTION  
INTEGRATOR  
SW  
SW  
Z
Z
+
RI  
SW  
SW  
RI  
BUFFER  
ANALOG  
COM  
LOGIC  
INPUT  
SW  
1
SW  
I
SWITCH OPEN  
IN  
SWITCH CLOSED  
Figure 3C. Input Signal Integration Phase  
Figure 2. Digital Logic Input  
ANALOG  
ANALOG  
INPUT BUFFER  
SW  
I
INPUT BUFFER  
SW  
I
C
R
INT  
+
C
+
IN  
INT  
R
INT  
+
+
INT  
IN  
+
RI  
SW  
SW  
+
RI  
RI  
SW  
SW  
RI  
C
SZ  
C
SZ  
SW  
SW  
Z
IZ  
SW  
SW  
Z
IZ  
+
COMPARATOR  
C
SW  
+
REF  
COMPARATOR  
R
C
SW  
+
REF  
R
REF  
IN  
+
REF  
IN  
TO  
TO  
DIGITAL  
SECTION  
INTEGRATOR  
DIGITAL  
SECTION  
INTEGRATOR  
SW  
SW  
Z
Z
SW  
SW  
Z
Z
+
RI  
SW  
+
RI  
SW  
RI  
SW  
SW  
RI  
ANALOG  
COM  
ANALOG  
COM  
SW  
1
SW  
SW  
1
I
SW  
I
SWITCH OPEN  
IN  
IN  
SWITCH CLOSED  
Figure 3A. Internal Analog Switches  
Figure 3D. Reference Voltage Integration Phase  
3-116  
TELCOM SEMICONDUCTOR, INC.  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
3
TC7135  
For a constant VIN:  
ANALOG  
INPUT BUFFER  
SW  
I
tRI  
C
R
Z
INT  
+
VIN = VR  
.
+
INT  
IN  
[t ]  
SI  
+
SW  
SW  
C
RI  
RI  
C
SZ  
The dual-slope converter accuracy is unrelated to the  
integratingresistorandcapacitorvalues, aslongastheyare  
stable during a measurement cycle. Noise immunity is an  
inherent benefit. Noise spikes are integrated, or averaged,  
to zero during integration periods. Integrating ADCs are  
immune to the large conversion errors that plague succes-  
sive approximation converters in high-noise environments.  
(See Figure 4.)  
SW  
IZ  
SW  
+
COMPARATOR  
SW  
REF  
R
+
REF  
IN  
TO  
DIGITAL  
SECTION  
INTEGRATOR  
SW  
SW  
Z
Z
+
RI  
SW  
SW  
RI  
ANALOG  
COM  
SW  
1
SW  
I
SWITCH OPEN  
IN  
SWITCH CLOSED  
TC7135 Operational Theory  
Figure 3E. Integrator Output Zero Phase  
The TC7135 incorporates a system zero phase and  
integrator output voltage zero phase to the normal two-  
phase dual-slope measurement cycle. Reduced system  
errors, fewer calibration steps, and a shorter overrange  
recovery time result.  
GENERAL THEORY OF OPERATION  
(All Pin Designations Refer to 28-Pin DIP)  
The TC7135 measurement cycle contains four phases:  
(1) System zero  
Dual-Slope Conversion Principles  
(2) Analog input signal integration  
(3) Reference voltage integration  
(4) Integrator output zero  
The TC7135 is a dual-slope, integrating analog-to-  
digital converter. An understanding of the dual-slope con-  
version technique will aid in following detailed TC7135  
operational theory.  
The conventional dual-slope converter measurement  
cycle has two distinct phases:  
Internal analog gate status for each phase is shown in  
Table 1.  
(1) Input signal integration  
ANALOG  
INPUT  
(2) Reference voltage integration (deintegration)  
INTEGRATOR  
SIGNAL  
COMPARATOR  
The input signal being converted is integrated for a fixed  
time period, measured by counting clock pulses. An oppo-  
site polarity constant reference voltage is then integrated  
until the integrator output voltage returns to zero. The  
referenceintegrationtimeisdirectlyproportionaltotheinput  
signal.  
Inasimpledual-slopeconverter,acompleteconversion  
requires the integrator output to "ramp-up" and "ramp-  
down."  
+
+
SWITCH  
DRIVER  
CLOCK  
PHASE  
CONTROL  
REF  
VOLTAGE  
CONTROL  
LOGIC  
POLARITY CONTROL  
Asimplemathematicalequationrelatestheinputsignal,  
reference voltage, and integration time:  
COUNTER  
DISPLAY  
tSI  
1
VR tRI  
RC  
V
V
Ϸ V  
Ϸ
VIN(t) dt =  
,
IN  
IN  
FULL SCALE  
1/2 V  
RC  
FULL SCALE  
0
where:  
FIXED VARIABLE  
SIGNAL REFERENCE  
INTEGRATE INTEGRATE  
TIME TIME  
VR = Reference voltage  
tSI = Signal integration time (fixed)  
tRI = Reference voltage integration time (variable).  
Figure 4. Basic Dual-Slope Converter  
TELCOM SEMICONDUCTOR, INC.  
3-117  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
TC7135  
Table 1. Internal Analog Gate Status  
Conversion  
Internal Analog Gate Status  
Reference  
Schematic  
Cycle Phase  
SWI  
SWR+  
SWR–  
SWZ  
SWR  
SW1  
SWIZ  
System Zero  
Closed  
Closed  
Closed  
3B  
3C  
Input Signal  
Integration  
Closed  
Reference Voltage  
Integration  
Closed*  
Closed  
Closed  
3D  
3E  
Integrator  
Closed  
Output Zero  
*NOTE: Assumes a positive polarity input signal. SWRwould be closed for a negative input signal.  
System Zero Phase  
Analog Section Functional Description  
During this phase, errors due to buffer, integrator, and  
comparator offset voltages are compensated for by charg-  
ing CAZ (auto-zero capacitor) with a compensating error  
voltage. With zero input voltage, the integrator output re-  
mains at zero.  
The external input signal is disconnected from the  
internal circuitry by opening the two SWI switches. The  
internal input points connect to analog common. The refer-  
ence capacitor charges to the reference voltage potential  
throughSWR. Afeedbackloop, closedaroundtheintegrator  
and comparator, charges the CAZ with a voltage to compen-  
sate for buffer amplifier, integrator, and comparator offset  
voltages. (See Figure 3B.)  
Differential Inputs  
The TC7135 operates with differential voltages (+IN-  
PUT, pin 10 and –INPUT, pin 9) within the input amplifier  
common-mode range which extends from 1V below the  
positive supply to 1V above the negative supply. Within this  
common-mode voltage range, an 86 dB common-mode  
rejection ratio is typical.  
The integrator output also follows the common-mode  
voltage and must not be allowed to saturate. A worst-case  
condition exists, for example, when a large positive com-  
mon-modevoltagewithanearfull-scalenegativedifferential  
input voltage is applied. The negative input signal drives the  
integrator positive when most of its swing has been used up  
by the positive common-mode voltage. For these critical  
applications, the integrator swing can be reduced to less  
than the recommended 4V full-scale swing, with some loss  
of accuracy. The integrator output can swing within 0.3V of  
either supply without loss of linearity.  
Analog Input Signal Integration Phase  
The TC7135 integrates the differential voltage between  
the +INPUT and –INPUT. The differential voltage must be  
within the device's common-mode range; –1V from either  
supply rail, typically.  
The input signal polarity is determined at the end of this  
phase. (See Figure 3C.)  
Analog Common  
ANALOG COMMON (pin 3) is used as the –INPUT  
return during the auto-zero and deintegrate phases. If  
INPUTisdifferentfromanalogcommon, acommon-mode  
voltage exists in the system. This signal is rejected by the  
excellent CMRR of the converter. In most applications,  
– INPUT will be set at a fixed known voltage (power supply  
common, for instance). In this application, analog common  
shouldbetiedtothesamepoint,thusremovingthecommon-  
mode voltage from the converter. The reference voltage is  
referenced to analog common.  
Reference Voltage Integration Phase  
The previously-charged reference capacitor is con-  
nected with the proper polarity to ramp the integrator  
output back to zero. (See Figure 3D.) The digital reading  
displayed is:  
Differential Input  
Reading = 10,000  
.
[ ]  
VREF  
Integrator Output Zero Phase  
Reference Voltage  
This phase guarantees the integrator output is at 0V  
when the system zero phase is entered and that the true  
system offset voltages are compensated for. This phase  
normally lasts 100 to 200 clock cycles. If an overrange  
conditionexists, thephaseisextendedto6200clockcycles.  
(See Figure 3E.)  
The reference voltage input (REF IN, pin 2) must be a  
positive voltage with respect to analog common. Two refer-  
ence voltage circuits are shown in Figure 5.  
3-118  
TELCOM SEMICONDUCTOR, INC.  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
3
TC7135  
Digital Section Functional Description  
+
V
The major digital subsystems within the TC7135 are  
illustrated in Figure 6, with timing relationships shown in  
Figure7. ThemultiplexedBCDoutputdatacanbedisplayed  
on an LCD with the TC7211A.  
The digital section is best described through a discus-  
sion of the control signals and data outputs.  
+
V
TC05  
REF  
IN  
2.5V  
REF  
TC7135  
I
REF  
ANALOG  
COMMON  
RUN/HOLD Input  
When left open, the RUN/HOLD (R/H) input (pin 25)  
assumes a logic "1" level. With R/H = 1, the TC7135  
performs conversions continuously, with a new measure-  
ment cycle beginning every 40,002 clock pulses.  
When R/H changes to logic "0," the measurement cycle  
in progress will be completed, and data held and displayed,  
as long as the logic "0" condition exists.  
A positive pulse (>300nsec) at R/H initiates a new  
measurement cycle. The measurement cycle in progress  
when R/H initially assumed logic "0" must be completed  
before the positive pulse can be recognized as a single  
conversion run command.  
V
+
V
6.8 k  
+
V
TC04  
1.25V REF  
REF  
IN  
20  
kΩ  
TC7135  
ANALOG  
COMMON  
The new measurement cycle begins with a 10,001-  
count auto-zero phase. At the end of this phase, the busy  
signal goes high.  
ANALOG  
GROUND  
Figure 5. Using an External Reference Voltage  
POLARITY  
D5  
MSB  
D4  
D3  
D2  
D1  
LSB  
13 B1  
14 B2  
DIGIT  
DRIVE  
SIGNAL  
DATA  
OUTPUT  
MULTIPLEXER  
15 B4  
16 B8  
FROM  
ANALOG  
SECTION  
LATCH  
LATCH  
LATCH  
LATCH  
LATCH  
POLARITY  
FF  
COUNTERS  
ZERO  
CROSS  
DETECT  
CONTROL LOGIC  
27  
24  
22  
25  
28  
26  
21  
BUSY  
DIGITAL CLOCK  
GND IN  
RUN/  
HOLD  
OVER–  
RANGE  
UNDER–  
RANGE  
STROBE  
Figure 6. Digital Section Functional Diagram  
TELCOM SEMICONDUCTOR, INC.  
3-119  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
TC7135  
TC7135  
OUTPUTS  
INTEGRATOR  
OUTPUT  
BUSY  
END OF CONVERSION  
SIGNAL  
INTE  
SYSTEM  
ZERO  
REFERENCE  
INTEGRATE  
20,001  
*
10,000  
B1–B8  
COUNTS  
(FIXED)  
10,001  
COUNTS  
D3  
D2  
DATA  
D1 (LSD)  
DATA  
D5  
DATA  
D5 (MSD)  
DATA  
D4  
DATA  
COUNTS (MAX)  
DATA  
FULL MEASUREMENT CYCLE  
40,002 COUNTS  
STROBE  
NOTE ABSENCE  
OF STROBE  
200  
COUNTS  
BUSY  
OVERRANGE  
WHEN  
201  
COUNTS  
200  
COUNTS  
APPLICABLE  
D5  
D4  
D3  
UNDERRANGE  
WHEN  
APPLICABLE  
200  
COUNTS  
EXPANDED SCALE  
BELOW  
200  
COUNTS  
DIGIT SCAN  
D5  
D4  
200  
COUNTS  
D2  
D3  
D2  
D1  
200  
COUNTS  
D1  
100  
COUNTS  
FIRST D5 OF SYSTEM ZERO  
AND REFERENCE INTEGRATE  
ONE COUNT LONGER.  
*
*
DELAY BETWEEN BUSY GOING LOW AND FIRST STROBE  
PULSE IS DEPENDENT ON ANALOG INPUT.  
STROBE  
AUTO ZERO  
REFERENCE  
INTEGRATE  
SIGNAL  
INTEGRATE  
Figure 8. Strobe Signal Pulses Low Five Times per Conversion  
*
DIGIT SCAN  
FOR  
OVERRANGE  
D5  
D4  
D3  
D2  
*
The active-low STROBE pulses aid BCD data transfer  
to UARTs, microprocessors, and external latches. (See  
Application Note AN-16.)  
BUSY Output  
At the beginning of the signal-integration phase, BUSY  
(pin21)goeshighandremainshighuntilthefirstclockpulse  
after the integrator zero crossing. BUSY returns to logic "0"  
after the measurement cycle ends in an overrange condi-  
tion. The internal display latches are loaded during the first  
clock pulse after BUSY and are latched at the clock pulse  
end. The BUSY signal does not go high at the beginning of  
the measurement cycle, which starts with the auto-zero  
phase.  
D1  
Figure 7. Timing Diagrams for Outputs  
STROBE Output  
During the measurement cycle, the STROBE output  
(pin 26) control line is pulsed low five times. The five low  
pulses occur in the center of the digit drive signals (D1, D2,  
D3, D4 and D5; see Figure 8).  
OVERRANGE Output  
D5 goes high for 201 counts when the measurement  
cycles end. In the center of D5 pulse, 101 clock pulses after  
the end of the measurement cycle, the first STROBE occurs  
forone-halfclockpulse.AfterD5 strobe,D4 goeshighfor200  
clock pulses. STROBE goes low 100 clock pulses after D4  
goes high. This continues through the D1 drive pulse.  
The digit drive signals will continue to permit display  
scanning. STROBE pulses are not repeated until a new  
measurement is completed. The digit drive signals will not  
continue if the previous signal resulted in an overrange  
condition.  
If the input signal causes the reference voltage integra-  
tion time to exceed 20,000 clock pulses, the OVERRANGE  
output (pin 27) is set to logic "1." The OVERRANGE output  
register is set when BUSY goes low and reset at the  
beginning of the next reference-integration phase.  
UNDERRANGE Output  
If the output count is 9% of full scale or less (1800  
counts), the UNDERRANGE output (pin 28) register bit is  
set at the end of BUSY. The bit is set low at the next signal-  
integration phase.  
3-120  
TELCOM SEMICONDUCTOR, INC.  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
3
TC7135  
POLARITY Output  
adequate. A0.10µFto0.47µFisrecommended. Ingeneral,  
Apositiveinputisregisteredbyalogic"1"polaritysignal.  
The POLARITY output (pin 23) is valid at the beginning of  
reference integrate and remains valid until determined dur-  
ing the next conversion.  
The POLARITY bit is valid even for a zero reading.  
Signals less than the converter's LSB will have the signal  
polarity determined correctly. This is useful in null applica-  
tions.  
the value of CINT is given by:  
[10,000 x clock period] x IINT  
CINT  
=
=
Integrator output voltage swing  
(10,000) (clock period) (20 µA)  
.
Integrator output voltage swing  
A very important characteristic of the CINT is that it has  
low dielectric absorption to prevent roll-over or ratiometric  
errors. A good test for dielectric absorption is to use the  
capacitorwiththeinputtiedtothereference.Thisratiometric  
condition should read half-scale 0.9999. Any deviation is  
probably due to dielectric absorption. Polypropylene  
capacitors give undetectable errors at reasonable cost.  
Polystyrene and polycarbonate capacitors may also be  
used in less critical applications.  
Digit Drive Outputs  
Digitdriveoutputsarepositive-goingsignals.Theirscan  
sequence is D5, D4, D3, D2 and D1 (pins 12, 17, 18, 19 and  
20, respectively). All positive signals are 200 clock pulses  
wide, except D5, which is 201 clock pulses.  
All five digits are continuously scanned, unless an  
overrange condition occurs. In an overrange condition, all  
digit drives are held low from the final STROBE pulse until  
the beginning of the next reference-integrate phase. The  
scanning sequence is then repeated, providing a blinking  
visual display.  
Auto-Zero and Reference Capacitors  
The size of the auto-zero capacitor (CAZ) has some  
influence on system noise. A large capacitor reduces noise.  
The reference capacitor (CREF) should be large enough  
such that stray capacitance from its nodes to ground is  
negligible.  
The dielectric absorption of CREF and CAZ is only impor-  
tant at power-on, or when the circuit is recovering from an  
overload. Smaller or cheaper capacitors can be used if  
accurate readings are not required during the first few  
seconds of recovery.  
BCD Data Outputs  
Thebinarycodeddecimal(BCD)outputs, B8, B4, B2 and  
B1 (pins 16, 15, 14 and 13, respectively) are positive true-  
logic signals. They become active simultaneously with digit  
drive signals. In an overrange condition, all data bits are  
logic "0".  
APPLICATIONS INFORMATION  
Component Value Selection  
Reference Voltage  
Theanaloginputrequiredtogenerateafull-scaleoutput  
Integrating Resistor  
is VIN = 2 VREF  
.
The integrating resistor (RINT) is determined by the full-  
scale input voltage and output current of the buffer used to  
chargetheintegratorcapacitor(CINT). Boththebufferampli-  
fier and the integrator have a Class A output stage, with 100  
µA of quiescent current. A 20 µA drive current gives negli-  
gible linearity errors. Values of 5 µA to 40 µA give good  
results. The exact value of RINT for a 20 µA current is easily  
calculated:  
The stability of the reference voltage is a major factor in  
overall absolute accuracy of the converter. Therefore, it is  
recommended that high-quality references be used where  
high-accuracy, absolute measurements are being made.  
Suitable references are:  
Part Type  
Manufacturer  
TC04  
TC05  
TelCom Semiconductor  
TelCom Semiconductor  
Full-scale voltage  
RINT  
=
.
20 µA  
Conversion Timing  
Integrating Capacitor  
Line Frequency Rejection  
The product of RINT and CINT should be selected to give  
themaximumvoltageswingtoensuretolerancebuild-upwill  
not saturate integrator swing (approximately 0.3V from  
eithersupply). For±5Vsupplies, andanalogcommontiedto  
supply ground, a ±3.5V to ±4V full-scale integrator swing is  
A signal-integration period at a multiple of the 60 Hz line  
frequency will maximize 60 Hz "line noise" rejection.  
A 100 kHz clock frequency will reject 50 Hz, 60 Hz and  
400 Hz noise, corresponding to 2.5 readings per second.  
TELCOM SEMICONDUCTOR, INC.  
3-121  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
TC7135  
Table 2. Line Frequency Rejection  
High-Speed Operation  
Oscillator Frequency  
(kHz)  
Frequency Rejected  
Themaximumconversionrateofmostdual-slopeADCs  
is limited by frequency response of the comparator. The  
comparator in this circuit follows the integrator ramp with a  
3µsdelay, andataclockfrequencyof160kHz(6µsperiod),  
half of the first reference integrate clock period is lost in  
delay. This means the meter reading will change from 0 to  
1 with a 50 µV input, 1 to 2 with 150 µV, 2 to 3 with 250 µV,  
etc. This transition at midpoint is considered desirable by  
most users; however, if clock frequency is increased appre-  
ciably above 160 kHz, the instrument will flash "1" on noise  
peaks even when the input is shorted.  
(Hz)  
300, 200, 150, 120,  
100, 40, 33-1/3  
60  
250, 166-2/3,  
125, 100  
50  
100  
50, 60, 400  
Table 3. Conversion Rate vs Clock Frequency  
Formanydedicatedapplications, wheretheinputsignal  
is always of one polarity, comparator delay need not be a  
limitation. Since nonlinearity and noise do not increase  
substantially with frequency, clock rates up to ~1 MHz may  
be used. For a fixed clock frequency, the extra count (or  
counts) caused by comparator delay will be constant and  
can be digitally subtracted.  
The clock frequency may be extended above 160 kHz  
without this error, however, by using a low value resistor in  
series with the integrating capacitor. The effect of the  
resistor is to introduce a small pedestal voltage onto the  
integrator output at the beginning of reference-integrate  
phase. By careful selection of the ratio between this resis-  
tor and the integrating resistor (a few tens of ohms in the  
recommended circuit), the comparator delay can be com-  
pensated for and maximum clock frequency extended  
by approximately a factor of 3. At higher frequencies, ring-  
ing and second-order breaks will cause significant  
nonlinearities during the first few counts of the instrument.  
Theminimumclockfrequencyisestablishedbyleakage  
on the auto-zero and reference capacitors. With most de-  
vices, measurement cycles as long as 10 seconds give no  
measurable leakage error.  
Conversion Rate  
(Conv/Sec)  
Clock  
Frequency (kHz)  
2.5  
3.0  
5.0  
100  
120  
200  
300  
400  
800  
1200  
7.5  
10.0  
20.0  
30.0  
Displays and Driver Circuits  
TelComSemiconductormanufacturesthreedisplayde-  
coder/drivercircuitstointerfacetheTC7135toLCDsorLED  
displays. Each driver has 28 outputs for driving four 7-  
segment digit displays.  
Device  
Package  
Description  
TC7211AIPL  
40-Pin Epoxy  
4-Digit LCD Driver/Encoder  
The clock used should be free from significant phase or  
frequency jitter. Several suitable low-cost oscillators are  
shown in the applications section. The multiplexed output  
means if the display takes significant current from the logic  
supply, the clock should have good PSRR.  
Several sources exist for LCDs and LED displays.  
Display  
Type  
Manufacturer  
Address  
Hewlett Packard  
Components  
640 Page Mill Road  
Palo Alto, CA 94304  
LED  
Zero-Crossing Flip-Flop  
AND  
720 Palomar Ave.  
Sunnyvale, CA 94086  
LCD and  
LED  
The flip-flop interrogates data once every clock pulse  
after transients of the previous clock pulse and half-clock  
pulse have died down. False zero-crossings caused by  
clock pulses are not recognized. Of course, the flip-flop  
delays the true zero-crossing by up to one count in every  
instance, and if a correction were not made, the display  
would always be one count too high. Therefore, the counter  
Epson America, Inc.  
3415 Kanhi Kawa St.  
Torrance, CA 90505  
LCD  
3-122  
TELCOM SEMICONDUCTOR, INC.  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
3
TC7135  
is disabled for one clock pulse at the beginning of the  
reference integrate (deintegrate) phase. This one-count  
delay compensates for the delay of the zero-crossing flip-  
flop, and allows the correct number to be latched into the  
display. Similarly, a one-count delay at the beginning of  
auto-zerogivesanoverloaddisplayof0000insteadof0001.  
No delay occurs during signal integrate, so true ratiometric  
readings result.  
+5V  
11  
1
+
V
V
8
(–5V)  
10 µF  
5
TC7660  
+
TC7135  
Generating a Negative Supply  
4
2
3
+
24  
A negative voltage can be generated from the positive  
supply by using a TC7660. (See Figure 9.)  
10 µF  
Figure 9. Negative Supply Voltage Generator  
TYPICAL APPLICATIONS  
Comparator Clock Circuit  
RC Oscillator Circuit  
+5V  
R
R
1
2
C
16 k  
1 kΩ  
f
O
56 kΩ  
2
3
GATES ARE 74C04  
8
+
V
OUT  
0.22 µF  
7
LM311  
1
R1 R2  
1
1. fO ≈  
, RP =  
30 kΩ  
4
2 C[0.41 RP + 0.70 R1]  
R1 + R2  
16 kΩ  
a. If R = R1 = R2, f 0.55/RC  
b. If R2 >> R1, f 0.45/R1C  
c. If R2 << R1, f 0.72/R1C  
390 pF  
+5V  
R2  
100 kΩ  
R4  
2 kΩ  
2. Examples:  
a. f = 120 kHz, C = 420 pF  
R1 = R2 10.9 kΩ  
C2  
10 pF  
2
3
b. f = 120 kHz, C = 420 pF, R2 = 50 kΩ  
R1 = 8.93 kΩ  
+
6
7
R2  
100 kΩ  
V
LM311  
OUT  
c. f = 120 kHz, C = 220 pF, R2 = 5 kΩ  
R1 = 27.3 kΩ  
4
R3  
50 kΩ  
1
C1  
0.1 µF  
TELCOM SEMICONDUCTOR, INC.  
3-123  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
TC7135  
TYPICAL APPLICATIONS (Cont.)  
4-1/2 Digit ADC With Multiplexed Common Anode LED Display  
+5V  
20 19  
18 17 12  
D1 D2 D3 D4 D5  
INT OUT  
4
5
0.47 µF  
120 kHz  
1 µF  
AZ IN  
4.7 k  
23  
7
POL  
6
BUFF  
b
c
7
7
7
7
OUT  
C
100 kΩ  
REF  
22  
10  
TC7135  
f
1 µF  
IN  
+
X7  
8
C
BLANK MSD ON ZERO  
6
REF  
100 kΩ  
+
+INPUT  
–INPUT  
9–15  
5
ANALOG  
INPUT  
16  
15  
14  
13  
1 µF  
D
B8  
9
3
RBI  
7447  
2
1
7
C
B
A
B4  
B2  
B1  
16  
+5V  
ANALOG  
COMMON  
REF  
+
V
IN  
V
1
2
11  
6.8 kΩ  
–5V  
100 kΩ  
TC04  
4-1/2 Digit ADC Interfaced to LCD With Digit Blanking on Overrange  
+5V  
4-1/2 DIGIT LCD  
SEGMENT  
DRIVE  
1/2 CD4030  
–5V  
5
1
23  
BP  
D1  
20  
V
POL  
CD4081  
1/4 CD4030  
31  
D1  
D2  
D3  
D4  
4
INT OUT  
19  
18  
17  
32  
33  
34  
0.47 µF  
1 µF  
D2  
D3  
D4  
5
6
AZ IN  
BUFF OUT  
100 k  
16  
CD4071  
TC7211A  
22  
30  
29  
28  
27  
B8  
120 kHz  
+
f
B3  
B2  
B1  
B0  
IN  
TC7135  
15  
14  
B4  
B2  
B1  
100 kΩ  
1
+
10  
9
V
+INPUT  
–INPUT  
35  
GND  
ANALOG  
INPUT  
13  
12  
D
D5  
Q
1/2  
CD4013  
CLK  
1/4 CD4081  
26  
27  
3
ANALOG  
COMMON  
STROBE  
OR  
+5V  
S
R
1/4 CD4030  
REF  
IN  
+
V
2
6.8 kΩ  
+5V  
100 kΩ  
TC04  
3-124  
TELCOM SEMICONDUCTOR, INC.  
4-1/2 DIGIT  
ANALOG-TO-DIGITAL CONVERTER  
3
TC7135  
TYPICAL APPLICATIONS (Cont.)  
4-1/2 Digit ADC With Multiplexed Common Cathode LED Display  
+5V  
+5V  
SET V  
= 1V  
REF  
–5V  
6.8V  
28  
27  
26  
1
V
UR  
OR  
100  
kΩ  
2
3
TC04  
1.22V  
REF IN  
150Ω  
ANALOG  
GND  
STROBE  
47  
kΩ  
10  
11  
9
8
7
6
5
4
3
2
1
ANALOG  
GND  
150Ω  
25  
24  
23  
22  
21  
20  
4
5
6
7
8
9
INT  
RUN/HOLD  
DGND  
OUT  
1 µF  
0.47 µF  
12  
13  
14  
15  
AZ IN  
BUFF  
OUT  
CD4513  
BE  
POLARITY  
100 kΩ  
+
C
CLK IN  
BUSY  
(LSD) D1  
D2  
REF  
1 µF  
100  
kΩ  
C
REF  
+5V  
16  
17  
+
–INPUT  
+INPUT  
SIG  
0.1  
µF  
10  
11  
12  
19  
18  
17  
IN  
18  
+
+5V  
D3  
V
TC7135  
D4  
D5 (MSD)  
13  
14  
16  
15  
(MSB) B8  
B4  
B1 (LSB)  
B2  
f
= 120 kHz  
O
4-Channel Data Acquisition System  
ADDRESS BUS  
CONTROL  
+
5V  
+
DATA BUS  
V
REF  
CAP  
GAIN: 10, 20, 50, 100  
+15V –15V  
DG529  
BUF  
AZ  
POL  
OR  
UR  
D5  
B8  
B4  
PA0  
PA1  
PA2  
1Y  
2Y  
3Y  
1B  
2B  
3B  
SEL  
1A  
2A  
INT  
11  
CHANNEL 1  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
+
8
3
TC7135  
+
D
A
157  
10  
LH0084  
9
INPUT  
3A  
B2  
D
B
14  
16  
6522  
-VIA-  
PA3  
PA4  
PA5  
PA6  
PA7  
CA1  
CA2  
B1  
D1  
D2  
D3  
D4  
STB  
R/H  
f
WR  
15  
V
R
REF  
VOLTAGE  
A
A
EN  
0
1
INPUT  
DIFFERENTIAL  
MULTIPLEXER  
ANALOG  
COMMON  
DGND  
IN  
f
IN  
GAIN SELECTION  
5V  
PB5  
PB4  
PB0 PB1 PB2 PB3  
CHANNEL SELECTION  
TELCOM SEMICONDUCTOR, INC.  
3-125  

相关型号:

TC7135C/KW

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 2 MM HEIGHT, PLASTIC, MQFP-44
MICROCHIP

TC7135C/LI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135C/PI

1-CH 4-BIT DUAL-SLOPE ADC, PARALLEL ACCESS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
MICROCHIP

TC7135CBU

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CBU

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CBUTR

1-CH DUAL-SLOPE ADC, ACCESS, PQFP64, PLASTIC, QFP-64
MICROCHIP

TC7135CKW

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLI

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLI

4-1/2 DIGIT ANALOG-TO-DIGITAL CONVERTER
TELCOM

TC7135CLI713

4-1/2 Digit A/D Converter
MICROCHIP

TC7135CLIRT

1-CH DUAL-SLOPE ADC, PQCC28, PLASTIC, LCC-28
MICROCHIP

TC7135CLITR

暂无描述
MICROCHIP