MAX1473ETJ+ [MAXIM]

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range; 315MHz的/ 433MHz ASK超外差接收器,具有更宽的动态范围
MAX1473ETJ+
型号: MAX1473ETJ+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
315MHz的/ 433MHz ASK超外差接收器,具有更宽的动态范围

消费电路 商用集成电路
文件: 总15页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2748; Rev 5; 1/11  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
General Description  
Features  
o Optimized for 315MHz or 433MHz ISM Band  
The MAX1473 fully integrated low-power CMOS super-  
heterodyne receiver is ideal for receiving amplitude-  
shift-keyed (ASK) data in the 300MHz to 450MHz  
frequency range. Its signal range is from -114dBm to  
0dBm. With few external components and a low-current  
power-down mode, it is ideal for cost- and power-sensi-  
tive applications typical in the automotive and consumer  
markets. The chip consists of a low-noise amplifier  
(LNA), a fully differential image-rejection mixer, an on-  
chip phase-locked-loop (PLL) with integrated voltage-  
controlled oscillator (VCO), a 10.7MHz IF limiting  
amplifier stage with received-signal-strength indicator  
(RSSI), and analog baseband data-recovery circuitry.  
The MAX1473 also has a discrete one-step automatic  
gain control (AGC) that drops the LNA gain by 35dB  
when the RF input signal is greater than -57dBm.  
o Operates from Single 3.3V or 5.0V Supplies  
o High Dynamic Range with On-Chip AGC  
o Selectable Image-Rejection Center Frequency  
o Selectable x64 or x32 f /f  
Ratio  
LO XTAL  
o Low 5.2mA Operating Supply Current  
o < 2.5µA Low-Current Power-Down Mode for  
Efficient Power Cycling  
o 250µs Startup Time  
o Built-In 50dB RF Image Rejection  
o Receive Sensitivity of -114dBm  
Ordering Information  
The MAX1473 is available in 28-pin TSSOP and 32-pin  
thin QFN packages. Both versions are specified for the  
extended (-40°C to +85°C) temperature range.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 TSSOP  
MAX1473EUI+  
MAX1473ETJ+  
32 Thin QFN-EP*  
Applications  
Automotive Remote Keyless Entry Security Systems  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Garage Door Openers  
Remote Controls  
Home Automation  
Functional Diagram and Typical Application Circuit appear  
at end of data sheet.  
Local Telemetry  
Systems  
Wireless Sensors  
Pin Configurations  
TOP VIEW  
+
XTAL1  
AVDD  
1
2
3
4
5
6
7
8
9
28 XTAL2  
27 PWRDN  
26 PDOUT  
25 DATAOUT  
+
LNAIN  
LNASRC  
AGND  
N.C.  
AGND  
1
2
3
4
5
6
7
8
24 DATAOUT  
23  
24  
V
DD5  
V
DD5  
MAX1473  
LNAOUT  
AVDD  
23 DSP  
LNAOUT  
AVDD  
22 DSP  
21 N.C.  
20 DFFB  
19 OPP  
18 DSN  
17 DFO  
22 DFFB  
21 OPP  
MAX1473  
MIXIN1  
MIXIN2  
MIXIN1  
MIXIN2  
AGND  
20 DSN  
AGND 10  
IRSEL 11  
19 DFO  
18 IFIN2  
17 IFIN1  
16 XTALSEL  
15 AGCDIS  
IRSEL  
MIXOUT 12  
DGND 13  
DVDD 14  
TSSOP  
THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
ABSOLUTE MAXIMUM RATINGS  
V
DD5  
to AGND.......................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
AVDD to AGND .....................................................-0.3V to +4.0V  
DVDD to DGND.....................................................-0.3V to +4.0V  
AGND to DGND.....................................................-0.1V to +0.1V  
IRSEL, DATAOUT, XTALSEL, AGCDIS,  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .1025.6mW  
32-Pin Thin QFN (derate 21.3mW/°C  
above +70°C).........................................................1702.1mW  
Operating Temperature Ranges  
PWRDN to AGND .....................................-0.3V to (V  
All Other Pins to AGND ..............................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
MAX1473E__ ..................................................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
DD5  
DD  
MAX1473  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS (3.3V OPERATION)  
(Typical Application Circuit, V  
= 3.0V to 3.6V, no RF signal applied, T = -40°C to +85°C, unless otherwise noted. Typical values  
A
DD  
are at V  
= 3.3V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
3.3V nominal supply  
MIN  
TYP  
3.3  
5.2  
5.8  
1.6  
2.5  
MAX  
3.6  
UNITS  
Supply Voltage  
V
3.0  
V
DD  
f
RF  
f
RF  
f
RF  
f
RF  
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.23  
6.88  
Supply Current  
I
V
= V  
mA  
µA  
DD  
P WRDN  
DD  
V
V
= 0V,  
= 0V  
P WRDN  
Shutdown Supply Current  
I
PWRDN  
XTALSEL  
5.3  
0.4  
Input Voltage Low  
V
V
V
IL  
IH  
IH  
Input Voltage High  
Input Logic Current High  
V
V
V
- 0.4  
DD  
I
10  
µA  
f
RF  
f
RF  
f
RF  
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
V
V
- 0.4  
IRSEL  
IRSEL  
IRSEL  
DD  
DD  
DD  
Image Reject Select (Note 2)  
= V /2  
DD  
1.1  
0.4  
- 1.5  
V
= 0V  
DATAOUT Voltage Output Low  
DATAOUT Voltage Output High  
V
0.4  
V
V
OL  
R = 5k  
L
V
- 0.4  
DD  
OH  
2
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
DC ELECTRICAL CHARACTERISTICS (5.0V OPERATION)  
(Typical Application Circuit, V  
= 4.5V to 5.5V, no RF signal applied, T = -40°C to +85°C, unless otherwise noted. Typical values  
DD  
A
are at V  
= 5.0V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
5.0V nominal supply  
MIN  
TYP  
5.0  
5.2  
5.7  
2.3  
2.8  
MAX  
5.5  
UNITS  
Supply Voltage  
V
4.5  
V
DD  
f
RF  
f
RF  
f
RF  
f
RF  
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.04  
6.76  
Supply Current  
I
V
= V  
mA  
µA  
DD  
P WRDN  
DD  
V
V
= 0V,  
= 0V  
P WRDN  
Shutdown Supply Current  
I
PWRDN  
XTALSEL  
6.2  
0.4  
Input Voltage Low  
V
V
V
IL  
IH  
IH  
Input Voltage High  
Input Logic Current High  
V
V
V
- 0.4  
DD  
I
10  
µA  
f
RF  
f
RF  
f
RF  
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
V
V
- 0.4  
IRSEL  
IRSEL  
IRSEL  
DD  
DD  
DD  
Image Reject Select (Note 2)  
= V /2  
DD  
1.1  
0.4  
- 1.5  
V
= 0V  
DATAOUT Voltage Output Low  
DATAOUT Voltage Output High  
V
0.4  
V
V
OL  
R = 5kΩ  
L
V
- 0.4  
DD  
OH  
AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
otherwise noted. Typical values are at V  
= 3.0V to 3.6V, all RF inputs are referenced to 50Ω, f = 315MHz, T = -40°C to +85°C, unless  
DD  
RF  
A
= 3.3V and T = +25°C.) (Note 1).  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Time for valid signal detection after  
Startup Time  
t
250  
µs  
ON  
V
= V  
OH  
P WRDN  
Receiver Input Frequency  
f
300  
450  
MHz  
dBm  
RF  
Maximum Receiver Input Level  
P
Modulation depth > 18dB  
Average carrier power level  
Peak power level  
0
RFIN_MAX  
-120  
-114  
8
Sensitivity (Note 3)  
AGC Hysteresis  
P
dBm  
RFIN_MIN  
dB  
ms  
LNA gain from low to high  
150  
LNA IN HIGH-GAIN MODE  
Power Gain  
16  
dB  
f
RF  
f
RF  
f
RF  
= 433MHz  
= 375MHz  
= 315MHz  
1 - j3.4  
1 - j3.9  
1 - j4.7  
-22  
Normalized to  
50Ω (Note 4)  
Input Impedance  
Z
IN_LNA  
1dB Compression Point  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order  
Intercept  
IIP3  
-12  
LNA  
_______________________________________________________________________________________  
3
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
otherwise noted. Typical values are at V  
= 3.0V to 3.6V, all RF inputs are referenced to 50Ω, f = 315MHz, T = -40°C to +85°C, unless  
DD  
RF  
A
= 3.3V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
-80  
2
MAX  
UNITS  
dBm  
dB  
LO Signal Feedthrough to  
Antenna  
Noise Figure  
NF  
LNA  
MAX1473  
LNA IN LOW-GAIN MODE  
f
RF  
f
RF  
f
RF  
= 433MHz  
= 375MHz  
= 315MHz  
1 - j3.4  
1 - j3.9  
1 - j4.7  
-10  
Normalized to  
50Ω  
Input Impedance (Note 4)  
Z
IN_LNA  
1dB Compression Point  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order  
Intercept  
IIP3  
-7  
LNA  
LO Signal Feedthrough to  
Antenna  
-80  
dBm  
Noise Figure  
Power Gain  
NF  
2
0
dB  
dB  
dB  
LNA  
Voltage Gain Reduction  
MIXER  
AGC enabled (depends on tank Q)  
35  
Input-Referred 3rd-Order  
Intercept  
IIP3  
-18  
dBm  
MIX  
Output Impedance  
Noise Figure  
Z
330  
16  
42  
44  
44  
13  
Ω
OUT_MIX  
NF  
dB  
MIX  
f
f
f
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
DD  
RF  
RF  
RF  
IRSEL  
IRSEL  
IRSEL  
Image Rejection  
(not Including LNA Tank)  
= V /2  
DD  
dB  
dB  
= 0V  
Conversion Gain  
330Ω IF filter load  
INTERMEDIATE FREQUENCY (IF)  
Input Impedance  
Z
330  
10.7  
20  
Ω
IN_IF  
Operating Frequency  
3dB Bandwidth  
f
IF  
Bandpass response  
MHz  
MHz  
dB  
RSSI Linearity  
0.5  
RSSI Dynamic Range  
80  
dB  
P
P
< -120dBm  
1.15  
2.35  
14.2  
1.45  
2.05  
RFIN  
RFIN  
RSSI Level  
V
mV/dB  
V
> 0dBm, AGC enabled  
RSSI Gain  
LNA gain from low to high  
LNA gain from high to low  
AGC Threshold  
4
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
= 3.0V to 3.6V, all RF inputs are referenced to 50, f = 315MHz, T = -40°C to +85°C, unless  
DD  
RF  
A
otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1)  
A
DD  
PARAMETER  
DATA FILTER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Bandwidth  
DATA SLICER  
BW  
100  
kHz  
DF  
Comparator Bandwidth  
Maximum Load Capacitance  
Output High Voltage  
Output Low Voltage  
BW  
100  
10  
kHz  
pF  
V
CMP  
C
LOAD  
V
DD5  
0
V
CRYSTAL OSCILLATOR  
V
V
V
V
= 0V  
6.6128  
13.2256  
4.7547  
9.5094  
50  
XTALSEL  
XTALSEL  
XTALSEL  
XTALSEL  
f
f
= 433MHz  
= 315MHz  
MHz  
MHz  
RF  
= V  
DD  
Crystal Frequency (Note 5)  
f
XTAL  
= 0V  
= V  
RF  
DD  
Crystal Tolerance  
Input Impedance  
ppm  
pF  
From each pin to ground  
6.2  
Note 1: 100% tested at T = +25°C. Guaranteed by design and characterization over temperature.  
A
Note 2: IRSEL is internally set to 375MHz IR mode. It can be left open when the 375MHz image rejection setting is desired. A 1nF  
capacitor is recommended in noisy environments.  
-3  
Note 3: BER = 2 x 10 , Manchester encoded, data rate = 4kbps, IF bandwidth = 280kHz.  
Note 4: Input impedance is measured at the LNAIN pin. Note that the impedance includes the 15nH inductive degeneration con-  
nected from the LNA source to ground. The equivalent input circuit is 50in series with 2.2pF.  
Note 5: Crystal oscillator frequency for other RF carrier frequency within the 300MHz to 450MHz range is (f - 10.7MHz)/64 for  
RF  
XTALSEL = 0V, and (f - 10.7MHz)/32 for XTALSEL = V  
.
RF  
DD  
_______________________________________________________________________________________  
5
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
RF A  
DD  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. RF FREQUENCY  
BIT-ERROR RATE  
vs. AVERAGE RF INPUT POWER  
100  
10  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
+105°C  
f
= 433MHz  
RF  
MAX1473  
+105°C  
+85°C  
1
+25°C  
f
= 315MHz  
RF  
+85°C  
+25°C  
-40°C  
0.1  
0.01  
-40°C  
-117 -116  
-121 -120 -119 -118  
-115 -114  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
250  
300  
350  
400  
450  
500  
AVERAGE INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
RF FREQUENCY (MHz)  
RSSI AND DELTA  
vs. IF INPUT POWER  
SENSITIVITY vs. TEMPERATURE  
RSSI vs. RF INPUT POWER  
MAX1473 toc06  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
3.5  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
PEAK RF INPUT POWER  
1% BER  
IF BANDWIDTH = 280MHz  
IF BANDWIDTH = 280kHz  
2.5  
V
= V  
DD  
AGCDIS  
1.5  
f
= 433MHz  
RF  
0.5  
V
= 0V  
AGCDIS  
-0.5  
-1.5  
-2.5  
-3.5  
DELTA  
RSSI  
f
= 315MHz  
60  
RF  
-40  
-15  
10  
35  
85  
-140 -120 -100 -80 -60 -40 -20  
RF INPUT POWER (dBm)  
0
110  
-90  
-70  
-50  
-30  
-10  
10  
TEMPERATURE (°C)  
IF INPUT POWER (dBm)  
IMAGE REJECTION  
vs. RF FREQUENCY  
IMAGE REJECTION  
vs. TEMPERATURE  
SYSTEM GAIN vs. FREQUENCY  
30  
20  
55  
50  
45  
40  
35  
30  
45  
45  
44  
44  
43  
43  
42  
42  
41  
41  
f
= 315MHz  
UPPER  
SIDEBAND  
RF  
10  
50dB IMAGE  
REJECTION  
LOWER  
SIDEBAND  
f
= 375MHz  
0
RF  
-10  
-20  
-30  
f
= 433MHz  
f
= 375MHz  
RF  
RF  
FROM RFIN TO  
MIXOUT  
f
= 315MHz  
430  
RF  
f
= 433MHz  
RF  
f
= 315MHz  
RF  
0
5
10  
15  
20  
25  
30  
280  
330  
380  
480  
-40  
-15  
10  
35  
60  
85  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
DD  
RF  
A
NORMALIZED IF GAIN  
vs. IF FREQUENCY  
S11 SMITH PLOT OF RFIN  
S11 MAGNITUDE-LOG PLOT OF RFIN  
MAX1473 toc12  
30  
20  
5
600MHz  
10  
0
-5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
100MHz  
-10  
-15  
315MHz  
-34dB  
-20  
10 109 208 307 406 505 604 703 802 901 1000  
RF FREQUENCY (MHz)  
1
10  
100  
IF FREQUENCY (MHz)  
REGULATOR VOLTAGE  
PHASE NOISE  
PHASE NOISE  
vs. REGULATOR CURRENT  
vs. OFFSET FREQUENCY  
vs. OFFSET FREQUENCY  
3.1  
0
0
f
= 315MHz  
f
= 433MHz  
RF  
RF  
-20  
-20  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
-40°C  
-40  
-60  
-40  
-60  
+25°C  
+85°C  
+105°C  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
V
= 5.0V  
DD  
5
15  
25  
35  
45  
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01  
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01  
REGULATOR CURRENT (mA)  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP TQFN  
1
29  
XTAL1  
1st Crystal Input. (See the Phase-Locked Loop section.)  
Positive Analog Supply Voltage. For +5V operation, pin 2 is the output of an on-chip +3.2V  
low-dropout regulator and should be bypassed to AGND with a 0.1µF capacitor as close as  
possible to the pin. Pin 7 must be externally connected to the supply from pin 2 and bypassed to  
AGND with a 0.01µF capacitor as close as possible to the pin (see the Voltage Regulator section  
and the Typical Application Circuit).  
2, 7  
4, 30  
AVDD  
MAX1473  
3
4
5
6
31  
32  
2
LNAIN  
LNASRC  
AGND  
Low-Noise Amplifier Input. (See the Low-Noise Amplifier section.)  
Low-Noise Amplifier Source for External Inductive Degeneration. Connect inductor to ground to set  
LNA input impedance. (See the Low-Noise Amplifier section.)  
Analog Ground  
Low-Noise Amplifier Output. Connect to mixer through an LC tank filter. (See the Low-Noise  
Amplifier section.)  
3
LNAOUT  
8
9
5
6
7
MIXIN1  
MIXIN2  
AGND  
1st Differential Mixer Input. Connect through a 100pF capacitor to V  
side of the LC tank.  
DD3  
2nd Differential Mixer Input. Connect through a 100pF capacitor to LC tank filter from LNAOUT.  
Analog Ground  
10  
Image Rejection Select Pin. Set V  
unconnected to center image rejection at 375MHz. Set V  
= 0V to center image rejection at 315MHz. Leave IRSEL  
IRSEL  
11  
8
IRSEL  
= V to center image rejection at 433MHz.  
DD  
IRSEL  
12  
13  
9
MIXOUT 330Ω Mixer Output. Connect to the input of the 10.7MHz bandpass filter.  
10  
DGND  
Digital Ground  
Positive Digital Supply Voltage. Connect to both of the AVDD pins. Bypass to DGND with a 0.01µF  
capacitor as close as possible to the pin (see the Typical Application Circuit).  
14  
15  
16  
11  
12  
14  
DVDD  
AGCDIS AGC Control Pin. Pull high to disable AGC.  
Crystal Divider Ratio Select Pin. Drive XTALSEL low to select divider ratio of 64, or drive XTALSEL  
high to select divider ratio of 32.  
XTALSEL  
1st Differential Intermediate Frequency Limiter Amplifier Input. Decouple to AGND with a 1500pF  
capacitor.  
17  
18  
15  
16  
IFIN1  
2nd Differential Intermediate Frequency Limiter Amplifier Input. Connect to the output of a 10.7MHz  
bandpass filter.  
IFIN2  
19  
20  
21  
22  
23  
17  
18  
19  
20  
22  
DFO  
DSN  
OPP  
DFFB  
DSP  
Data Filter Output  
Negative Data Slicer Input  
Noninverting Op-Amp Input for the Sallen-Key Data Filter  
Data Filter Feedback Node. Input for the feedback of the Sallen-Key data filter.  
Positive Data Slicer Input  
+5V Supply Voltage. Bypass to AGND with a 0.01µF capacitor as close as possible to the pin. For  
24  
23  
V
+5V operation, V  
is the input to an on-chip voltage regulator whose +3.2V output appears at the  
DD5  
DD5  
pin 2 AVDD pin. (See the Voltage Regulator section and the Typical Application Circuit.)  
DATAOUT Digital Baseband Data Output  
PDOUT Peak Detector Output  
PWRDN Power-Down Select Input. Drive this pin with a logic high to power on the IC.  
25  
26  
27  
28  
24  
26  
27  
28  
XTAL2  
N.C.  
EP  
2nd Crystal Input  
1, 13,  
21, 25  
No Connection  
Exposed Pad (TQFN Only). Connect EP to GND.  
8
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
tion, the MAX1473 can reliably produce an ASK output  
Detailed Description  
for RF input levels up to 0dBm with a modulation depth  
The MAX1473 CMOS superheterodyne receiver and a  
of 18dB.  
few external components provide the complete receive  
chain from the antenna to the digital output data.  
Depending on signal power and component selection,  
data rates as high as 100kbps can be achieved.  
The LC tank filter connected to LNAOUT comprises L3  
and C2 (see the Typical Application Circuit). Select L3  
and C2 to resonate at the desired RF input frequency.  
The resonant frequency is given by:  
The MAX1473 is designed to receive binary ASK data  
modulated in the 300MHz to 450MHz frequency range.  
ASK modulation uses a difference in amplitude of the  
carrier to represent logic 0 and logic 1 data.  
1
f =  
2π L  
C
TOTAL × TOTAL  
Voltage Regulator  
where:  
For operation with a single +3.0V to +3.6V supply volt-  
L
= L3 + L  
PARASITICS  
TOTAL  
age, connect AVDD, DVDD, and V  
to the supply  
DD5  
C
C2 + C  
PARASITICS  
TOTAL =  
voltage. For operation with a single +4.5V to +5.5V  
supply voltage, connect V to the supply voltage. An  
DD5  
L
and C  
include inductance and  
PARASITICS  
PARASITICS  
on-chip voltage regulator drives one of the AVDD pins  
to approximately +3.2V. For proper operation, DVDD  
and both the AVDD pins must be connected together.  
capacitance of the PCB traces, package pins, mixer  
input impedance, LNA output impedance, etc. These  
parasitics at high frequencies cannot be ignored, and  
can have a dramatic effect on the tank filter center fre-  
quency. Lab experimentation should be done to opti-  
mize the center frequency of the tank.  
Bypass V  
, DVDD, and the pin 7 AVDD pin to AGND  
DD5  
with 0.01µF capacitors, and the pin 2 AVDD pin to  
AGND with a 0.1µF capacitor, all placed as close as  
possible to the pins.  
Mixer  
A unique feature of the MAX1473 is the integrated  
image rejection of the mixer. This device eliminates the  
need for a costly front-end SAW filter for most applica-  
tions. Advantages of not using a SAW filter are  
increased sensitivity, simplified antenna matching, less  
board space, and lower cost.  
Low-Noise Amplifier  
The LNA is an NMOS cascode amplifier with off-chip  
inductive degeneration that achieves approximately  
16dB of power gain with a 2.0dB noise figure and an  
IIP3 of -12dBm. The gain and noise figure are depen-  
dent on both the antenna matching network at the LNA  
input and the LC tank network between the LNA output  
and the mixer inputs.  
The mixer cell is a pair of double balanced mixers that  
perform an IQ downconversion of the RF input to the  
The off-chip inductive degeneration is achieved by  
connecting an inductor from LNASRC to AGND. This  
inductor sets the real part of the input impedance at  
LNAIN, allowing for a more flexible input impedance  
match, such as a typical PCB trace antenna. A nominal  
value for this inductor with a 50input impedance is  
15nH, but is affected by PCB trace. See the Typical  
Operating Characteristics for the relationship between  
the inductance and the LNA input impedance.  
10.7MHz IF from a low-side injected LO (i.e., f = f  
-
LO  
RF  
f ). The image-rejection circuit then combines these  
IF  
signals to achieve a minimum 45dB of image rejection  
over the full temperature range. Low-side injection is  
required due to the on-chip image rejection architec-  
ture. The IF output is driven by a source-follower biased  
to create a driving impedance of 330; this provides a  
good match to the off-chip 330ceramic IF filter. The  
voltage conversion gain is approximately 13dB when  
the mixer is driving a 330load.  
The AGC circuit monitors the RSSI output. When the  
RSSI output reaches 2.05V, which corresponds to an  
RF input level of approximately -57dBm, the AGC  
switches on the LNA gain reduction resistor. The resis-  
tor reduces the LNA gain by 35dB, thereby reducing  
the RSSI output by about 500mV. The LNA resumes  
high-gain mode when the RSSI level drops back below  
1.45V (approximately -65dBm at RF input) for 150ms.  
The AGC has a hysteresis of ~8dB. With the AGC func-  
The IRSEL pin is a logic input that selects one of the  
three possible image-rejection frequencies. When  
V
V
= 0V, the image rejection is tuned to 315MHz.  
IRSEL  
IRSEL  
= V /2 tunes the image rejection to 375MHz,  
DD  
IRSEL  
and when V  
= V , the image rejection is tuned to  
DD  
433MHz. The IRSEL pin is internally set to V /2 (image  
DD  
rejection at 375MHz) when it is left unconnected, there-  
by eliminating the need for an external V /2 voltage.  
DD  
_______________________________________________________________________________________  
9
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
The AGC circuit monitors the RSSI output. When the  
Phase-Locked Loop  
The PLL block contains a phase detector, charge  
pump/integrated loop filter, VCO, asynchronous 64x  
clock divider, and crystal oscillator driver. Besides the  
crystal, this PLL does not require any external compo-  
nents. The VCO generates a low-side local oscillator  
(LO). The relationship between the RF, IF, and refer-  
ence frequencies is given by:  
RSSI output reaches 2.05V, which corresponds to an RF  
input level of approximately -57dBm, the AGC switches  
on the LNA gain reduction resistor. The resistor reduces  
the LNA gain by 35dB, thereby reducing the RSSI out-  
put by about 500mV. The LNA resumes high-gain mode  
when the RSSI level drops back below 1.45V (approxi-  
mately -65dBm at RF input) for 150ms. The AGC has a  
hysteresis of ~8dB. With the AGC function, the  
MAX1473 can reliably produce an ASK output for RF  
input levels up to 0dBm with modulation depth of 18dB.  
f
= (f - f )/(32 M)  
RF IF  
REF  
MAX1473  
where:  
M = 1 (V  
= V ) or 2 (V  
= 0V)  
XTALSEL  
XTALSEL  
DD  
Applications Information  
To allow the smallest possible IF bandwidth (for best sen-  
sitivity), the tolerance of the reference must be minimized.  
Crystal Oscillator  
The XTAL oscillator in the MAX1473 is designed to pre-  
sent a capacitance of approximately 3pF between the  
XTAL1 and XTAL2. If a crystal designed to oscillate  
with a different load capacitance is used, the crystal is  
pulled away from its stated operating frequency, intro-  
ducing an error in the reference frequency. Crystals  
designed to operate with higher differential load capac-  
itance always pull the reference frequency higher. For  
example, a 4.7547MHz crystal designed to operate  
with a 10pF load capacitance oscillates at 4.7563MHz  
with the MAX1473, causing the receiver to be tuned to  
315.1MHz rather than 315.0MHz, an error of about  
100kHz, or 320ppm.  
Intermediate Frequency/RSSI  
The IF section presents a differential 330load to pro-  
vide matching for the off-chip ceramic filter. The six  
internal AC-coupled limiting amplifiers produce an  
overall gain of approximately 65dB, with a bandpass fil-  
ter-type response centered near the 10.7MHz IF fre-  
quency with a 3dB bandwidth of approximately  
11.5MHz. The RSSI circuit demodulates the IF by pro-  
ducing a DC output proportional to the log of the IF sig-  
nal level, with a slope of approximately 14.2mV/dB (see  
the Typical Operating Characteristics).  
Table 1. Component Values for Typical Application Circuit  
COMPONENT  
VALUE FOR 433MHz RF  
VALUE FOR 315MHz RF  
DESCRIPTION  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
L1  
100pF  
100pF  
5%  
2.7pF  
4.7pF  
0.1pF  
100pF  
100pF  
5%  
100pF  
100pF  
5%  
1500pF  
1500pF  
10%  
220pF  
220pF  
5%  
470pF  
470pF  
5%  
0.47µF  
0.47µF  
20%  
10%  
220pF  
220pF  
0.01µF  
0.01µF  
20%  
0.01µF  
0.01µF  
20%  
15pF  
15pF  
Depends on XTAL  
Depends on XTAL  
TOKO LL1608-FH  
Murata LQP11A  
Murata LQP11A  
5%  
15pF  
15pF  
56nH  
110nH  
L2  
15nH  
15nH  
15nH  
27nH  
L3  
R1  
5k  
5kΩ  
X1  
6.6128MHz or 13.2256MHz  
10.7MHz ceramic filter  
4.7547MHz or 9.5094MHz  
10.7MHz ceramic filter  
X2  
Murata SFECV10.7 series  
10 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
In actuality, the oscillator pulls every crystal. The crys-  
1.000  
tal’s natural frequency is really below its specified fre-  
quency, but when loaded with the specified load  
capacitance, the crystal is pulled and oscillates at its  
specified frequency. This pulling is already accounted  
for in the specification of the load capacitance.  
C5 =  
450pF  
1.414 100k3.14 5kHz  
(
)(  
)(  
)(  
)
Choosing standard capacitor values changes C5 to  
470pF and C6 to 220pF, as shown in the Typical  
Application Circuit.  
Additional pulling can be calculated if the electrical  
parameters of the crystal are known. The frequency  
pulling is given by:  
Data Slicer  
The purpose of the data slicer is to take the analog out-  
put of the data filter and convert it to a digital signal.  
This is achieved by using a comparator and comparing  
the analog input to a threshold voltage. One input is  
supplied by the data filter output. Both comparator  
inputs are accessible off chip to allow for different  
methods of generating the slicing threshold, which is  
applied to the second comparator input.  
C
1
1
6
m
f
=
-
×10  
p
2
C
C
C
C
case + spec  
case + load  
where:  
f is the amount the crystal frequency pulled in ppm.  
p
C
C
C
C
is the motional capacitance of the crystal.  
m
The suggested data slicer configuration uses a resistor  
(R1) connected between DSN and DSP with a capaci-  
tor (C4) from DSN to DGND (Figure 2). This configura-  
tion averages the analog output of the filter and sets the  
threshold to approximately 50% of that amplitude. With  
this configuration, the threshold automatically adjusts  
as the analog signal varies, minimizing the possibility  
for errors in the digital data. The sizes of R1 and C4  
affect how fast the threshold tracks to the analog ampli-  
tude. Be sure to keep the corner frequency of the RC  
circuit much lower than the lowest expected data rate.  
is the case capacitance.  
case  
spec  
load  
is the specified load capacitance.  
is the actual load capacitance.  
When the crystal is loaded as specified, i.e., C  
spec  
=
load  
C
, the frequency pulling equals zero.  
Data Filter  
The data filter is implemented as a 2nd-order lowpass  
Sallen-Key filter. The pole locations are set by the com-  
bination of two on-chip resistors and two external  
capacitors. Adjusting the value of the external capaci-  
tors changes the corner frequency to optimize for dif-  
ferent data rates. The corner frequency should be set  
to approximately 1.5 times the fastest expected data  
rate from the transmitter. Keeping the corner frequency  
near the data rate rejects any noise at higher frequen-  
cies, resulting in an increase in receiver sensitivity.  
MAX1473  
RSSI  
The configuration shown in Figure 1 can create a  
Butterworth or Bessel response. The Butterworth filter  
offers a very flat amplitude response in the passband  
and a rolloff rate of 40dB/decade for the two-pole filter.  
The Bessel filter has a linear phase response, which  
works well for filtering digital data. To calculate the  
value of C5 and C6, use the following equations along  
with the coefficients in Table 2:  
R
R
DF1  
DF2  
100k  
100kΩ  
22  
DFFB  
19  
DFO  
21  
OPP  
C6  
C5  
b
C5 =  
a 100k π f  
(
)( )(  
c
)
)
Figure 1. Sallen-Key Lowpass Data Filter  
a
C6 =  
Table 2. Coefficents to Calculate C5 and C6  
4 100k π f  
(
)( )(  
c
FILTER TYPE  
Butterworth (Q = 0.707)  
Bessel (Q = 0.577)  
a
b
where f is the desired 3dB corner frequency.  
C
1.414  
1.3617  
1.000  
0.618  
For example, choose a Butterworth filter response with  
a corner frequency of 5kHz:  
______________________________________________________________________________________ 11  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
MAX1473  
DATA  
SLICER  
DATA  
SLICER  
MAX1473  
25  
DATAOUT  
20  
DSN  
23  
DSP  
19  
DFO  
25  
20  
19  
23  
DATAOUT  
DSN  
DFO  
DSP  
R4  
R1  
R2  
R3  
R1  
C4  
C4  
*OPTIONAL  
Figure 2. Generating Data Slicer Threshold  
Note that a long string of zeros or 1’s can cause the  
threshold to drift. This configuration works best if a cod-  
ing scheme, such as Manchester coding, which has an  
equal number of zeros and 1’s, is used.  
Figure 3. Generating Data Slicer Hysteresis  
To prevent continuous toggling of DATAOUT in the  
absence of an RF signal due to noise, hysteresis can  
be added to the data slicer as shown in Figure 3.  
MAX1473  
Peak Detector  
The peak detector output (PDOUT), in conjunction with  
an external RC filter, creates a DC output voltage equal  
to the peak value of the data signal. The resistor pro-  
vides a path for the capacitor to discharge, allowing the  
peak detector to dynamically follow peak changes of  
the data filter output voltage. For faster receiver startup,  
the circuit shown in Figure 4 can be used.  
DATA  
SLICER  
25  
DATAOUT  
23  
19  
DFO  
26  
PDOUT  
20  
DSN  
DSP  
25kΩ  
Layout Considerations  
A properly designed PCB is an essential part of any  
RF/microwave circuit. On high-frequency inputs and  
outputs, use controlled-impedance lines and keep  
them as short as possible to minimize losses and radia-  
tion. At high frequencies, trace lengths that are on the  
order of λ/10 or longer act as antennas.  
Keeping the traces short also reduces parasitic induc-  
tance. Generally, 1in of a PCB trace adds about 20nH  
of parasitic inductance. The parasitic inductance can  
have a dramatic effect on the effective inductance of a  
passive component. For example, a 0.5in trace con-  
necting a 100nH inductor adds an extra 10nH of induc-  
tance or 10%.  
47nF  
Figure 4. Using PDOUT for Faster Startup  
Chip Information  
PROCESS: CMOS  
To reduce the parasitic inductance, use wider traces  
and a solid ground or power plane below the signal  
traces. Also, use low-inductance connections to ground  
on all GND pins, and place decoupling capacitors  
close to all power-supply pins.  
12 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
Typical Application Circuit  
V
V
DD  
DD3  
IF V IS  
THEN V  
IS  
DD  
DD3  
(SEE TABLE)  
X1  
3.0V TO 3.6V CONNECTED TO V  
DD  
4.5V TO 5.5V CREATED BY LDO,  
AVAILABLE AT AVDD  
(PIN 2)  
C12  
C13  
C11  
1
2
3
4
28  
27  
26  
25  
XTAL1  
AVDD  
XTAL2  
PWRDN  
RF INPUT  
TO/FROM μP  
POWER DOWN  
DATA OUT  
C1  
L1  
L2  
LNAIN  
LNASRC  
PDOUT  
R2  
MAX1473  
DATAOUT  
C15  
5
6
24  
23  
AGND  
V
DD5  
R3  
LNAOUT  
DSP  
C14  
C3  
V
DD3  
7
22  
L3  
AVDD  
DFFB  
8
9
21  
20  
19  
18  
17  
16  
15  
C2  
MIXIN1  
MIXIN2  
AGND  
OPP  
DSN  
C7  
10  
C4  
DFO  
C9  
11  
12  
13  
14  
IRSEL  
IFIN2  
R1  
MIXOUT  
DGND  
DVDD  
IFIN1  
XTALSEL  
AGCDIS  
X2  
C5  
C6  
C8  
IF FILTER  
C10  
IN  
OUT  
GND  
COMPONENT VALUES  
IN TABLE 1  
______________________________________________________________________________________ 13  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Functional Diagram  
LNASRC  
4
AGCDIS LNAOUT MIXIN1 MIXIN2  
IRSEL  
11  
MIXOUT  
12  
IFIN1 IFIN2  
17 18  
15  
6
8
9
MAX1473  
0˚  
IF LIMITING  
AMPS  
AUTOMATIC  
GAIN  
CONTROL  
3
Q
I
LNA  
LNAIN  
AVDD  
IMAGE  
REJECTION  
2
24  
7
90˚  
3.2V REG  
MAX1473  
RSSI  
V
DD5  
AVDD  
DVDD  
DATA  
FILTER  
DIVIDE  
BY 64  
14  
VCO  
R
DF2  
R
DF1  
100kΩ  
100kΩ  
PHASE  
DETECTOR  
LOOP  
FILTER  
13  
DGND  
AGND  
DATA  
SLICER  
5,10  
÷1  
÷2  
CRYSTAL  
DRIVER  
POWER  
DOWN  
16  
1
28  
27  
25  
20 23 19  
26  
21  
22  
DFFB  
XTALSEL  
XTAL1 XTAL2  
PWRDN DATAOUT  
DSN DSP DFO  
PDOUT OPP  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
LAND  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
PATTERN NO.  
90-0171  
28 TSSOP  
U28+1  
21-0066  
21-0140  
90-0001  
32 Thin QFN-EP  
T3255+3  
14 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Added lead-free parts and exposed pad in Ordering Information and Pin  
Description tables  
4
5/10  
1, 8  
Updated Absolute Maximum Ratings, AC Electrical Characteristics, Pin  
Description, Layout Considerations, Typical Application Circuit, Functional  
Diagram, and Package Information; added Voltage Regulator section to the  
Detailed Description section  
2, 3, 4, 8, 9, 12,  
13, 14  
5
1/11  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 15  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1473ETJ+T

Consumer Circuit, CMOS, 5 X 5 MM, TQFN-32
MAXIM

MAX1473ETJ-T

Consumer Circuit, CMOS, 5 X 5 MM, TQFN-32
MAXIM

MAX1473EUI

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1473EUI+

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1473EUI-G05

Consumer Circuit, CMOS, PDSO28, TSSOP-28
MAXIM

MAX1473EUI-T

Consumer Circuit, CMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1473EUI-TG05

Consumer Circuit, CMOS, PDSO28, TSSOP-28
MAXIM

MAX1473EUI/V+

Telecom Circuit, CMOS, PDSO28,
MAXIM

MAX1473EUI/V+T

Telecom Circuit, CMOS, PDSO28,
MAXIM

MAX1473EVKIT

Evaluation Kit for the MAX1473
MAXIM

MAX1473EVKIT-315

Evaluation Kit
MAXIM

MAX1473EVKIT-433

Evaluation Kit
MAXIM