MAX1473EUI/V+ [MAXIM]

Telecom Circuit, CMOS, PDSO28,;
MAX1473EUI/V+
型号: MAX1473EUI/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Telecom Circuit, CMOS, PDSO28,

文件: 总17页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2748; Rev 3; 11/03  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
General Description  
Features  
o Optimized for 315MHz or 433MHz ISM Band  
The MAX1473 fully integrated low-power CMOS super-  
heterodyne receiver is ideal for receiving amplitude-  
shift-keyed (ASK) data in the 300MHz to 450MHz  
frequency range. Its signal range is from -114dBm to  
0dBm. With few external components and a low-current  
power-down mode, it is ideal for cost- and power-sensi-  
tive applications typical in the automotive and consumer  
markets. The chip consists of a low-noise amplifier  
(LNA), a fully differential image-rejection mixer, an on-  
chip phase-locked-loop (PLL) with integrated voltage-  
controlled oscillator (VCO), a 10.7MHz IF limiting  
amplifier stage with received-signal-strength indicator  
(RSSI), and analog baseband data-recovery circuitry.  
The MAX1473 also has a discrete one-step automatic  
gain control (AGC) that drops the LNA gain by 35dB  
when the RF input signal is greater than -57dBm.  
o Operates from Single 3.3V or 5.0V Supplies  
o High Dynamic Range with On-Chip AGC  
o Selectable Image-Rejection Center Frequency  
o Selectable x64 or x32 f /f  
Ratio  
LO XTAL  
o Low 5.2mA Operating Supply Current  
o <2.5µA Low-Current Power-Down Mode for  
Efficient Power Cycling  
o 250µs Startup Time  
o Built-In 50dB RF Image Rejection  
o Receive Sensitivity of -114dBm  
The MAX1473 is available in 28-pin TSSOP and 32-pin  
thin QFN packages. Both versions are specified for the  
extended (-40°C to +85°C) temperature range.  
Ordering Information  
PART  
MAX1473EUI  
MAX1473ETJ  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 TSSOP  
Applications  
Automotive Remote Keyless Entry Security Systems  
32 Thin QFN  
Garage Door Openers  
Remote Controls  
Home Automation  
Local Telemetry  
Systems  
Functional Diagram and Typical Application Circuit appear  
at end of data sheet.  
Wireless Sensors  
Pin Configurations  
TOP VIEW  
XTAL1  
1
2
3
4
5
6
7
8
9
28 XTAL2  
AV  
DD  
27 PWRDN  
26 PDOUT  
25 DATAOUT  
LNAIN  
LNASRC  
AGND  
N.C.  
AGND  
1
2
3
4
5
6
7
8
24 DATAOUT  
23  
24  
V
DD5  
V
DD5  
MAX1473  
LNAOUT  
23 DSP  
LNAOUT  
22 DSP  
21 N.C.  
20 DFFB  
19 OPP  
18 DSN  
17 DFO  
AV  
DD  
22 DFFB  
21 OPP  
AV  
DD  
MAX1473  
MIXIN1  
MIXIN2  
MIXIN1  
MIXIN2  
AGND  
20 DSN  
AGND 10  
IRSEL 11  
19 DFO  
18 IFIN2  
17 IFIN1  
16 XTALSEL  
15 AGCDIS  
IRSEL  
MIXOUT 12  
DGND 13  
DV  
14  
DD  
TSSOP  
THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
ABSOLUTE MAXIMUM RATINGS  
AV  
AV  
DV  
to AGND ....................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
DD5  
A
to AGND ......................................................-0.3V to +4.0V  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .1025.6mW  
DD  
DD  
to DGND......................................................-0.3V to +4.0V  
32-Pin Thin QFN (derate 21.3mW/°C  
AGND to DGND.....................................................-0.1V to +0.1V  
IRSEL, DATAOUT, XTALSEL, AGCDIS,  
above +70°C).........................................................1702.1mW  
Operating Temperature Ranges  
PWRDN to AGND .....................................-0.3V to (V  
All Other Pins to AGND ..............................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
MAX1473E__ ..................................................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
DD5  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS (3.3V OPERATION)  
(Typical Application Circuit, V  
= 3.0V to 3.6V, no RF signal applied, T = -40°C to +85°C, unless otherwise noted. Typical values  
DD  
A
are at V  
= 3.3V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
3.3V nominal supply  
MIN  
TYP  
3.3  
5.2  
5.8  
1.6  
2.5  
MAX  
3.6  
UNITS  
Supply Voltage  
V
3.0  
V
DD  
f
RF  
f
RF  
f
RF  
f
RF  
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.23  
6.88  
Supply Current  
I
V
= V  
mA  
µA  
DD  
P WRDN  
DD  
V
V
= 0V,  
= 0V  
P WRDN  
Shutdown Supply Current  
I
PWRDN  
XTALSEL  
5.3  
0.4  
Input Voltage Low  
V
V
V
IL  
IH  
IH  
Input Voltage High  
Input Logic Current High  
V
V
V
- 0.4  
DD  
I
10  
µA  
f
RF  
f
RF  
f
RF  
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
V
V
- 0.4  
IRSEL  
IRSEL  
IRSEL  
DD  
DD  
DD  
Image Reject Select (Note 2)  
= V /2  
DD  
1.1  
0.4  
- 1.5  
V
= 0V  
DATAOUT Voltage Output Low  
DATAOUT Voltage Output High  
V
0.4  
V
V
OL  
R = 5kΩ  
L
V
- 0.4  
DD  
OH  
2
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
DC ELECTRICAL CHARACTERISTICS (5.0V OPERATION)  
(Typical Application Circuit, V  
= 4.5V to 5.5V, no RF signal applied, T = -40°C to +85°C, unless otherwise noted. Typical values  
DD  
A
are at V  
= 5.0V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
5.0V nominal supply  
MIN  
TYP  
5.0  
5.2  
5.7  
2.3  
2.8  
MAX  
5.5  
UNITS  
Supply Voltage  
V
4.5  
V
DD  
f
RF  
f
RF  
f
RF  
f
RF  
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.04  
6.76  
Supply Current  
I
V
= V  
mA  
µA  
DD  
P WRDN  
DD  
V
V
= 0V,  
= 0V  
P WRDN  
Shutdown Supply Current  
I
PWRDN  
XTALSEL  
6.2  
0.4  
Input Voltage Low  
V
V
V
IL  
IH  
IH  
Input Voltage High  
Input Logic Current High  
V
V
V
- 0.4  
DD  
I
10  
µA  
f
RF  
f
RF  
f
RF  
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
V
V
- 0.4  
IRSEL  
IRSEL  
IRSEL  
DD  
DD  
DD  
Image Reject Select (Note 2)  
= V /2  
DD  
1.1  
0.4  
- 1.5  
V
= 0V  
DATAOUT Voltage Output Low  
DATAOUT Voltage Output High  
V
0.4  
V
V
OL  
R = 5kΩ  
L
V
- 0.4  
DD  
OH  
AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
erwise noted. Typical values are at V  
= 3.0V to 3.6V, all RF inputs are referenced to 50, f = 315MHz, T = -40°C to +85°C, unless oth-  
DD  
RF A  
= 3.3V and T = +25°C.) (Note 1).  
A
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Time for valid signal detection after  
Startup Time  
t
250  
µs  
ON  
V
= V  
OH  
P WRDN  
Receiver Input Frequency  
f
300  
450  
MHz  
dBm  
RF  
Maximum Receiver Input Level  
P
Modulation depth > 18dB  
Average carrier power level  
Peak power level  
0
RFIN_MAX  
-120  
-114  
8
Sensitivity (Note 3)  
AGC Hysteresis  
P
dBm  
RFIN_MIN  
dB  
ms  
LNA gain from low to high  
150  
LNA IN HIGH-GAIN MODE  
Power Gain  
16  
dB  
f
RF  
f
RF  
f
RF  
= 433MHz  
= 375MHz  
= 315MHz  
1 - j4.7  
1 - j3.9  
1 - j3.4  
-22  
Normalized to  
50(Note 4)  
Input Impedance  
S11  
LNA  
1dB Compression Point  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order  
Intercept  
IIP3  
-12  
LNA  
_______________________________________________________________________________________  
3
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
erwise noted. Typical values are at V  
= 3.0V to 3.6V, all RF inputs are referenced to 50, f = 315MHz, T = -40°C to +85°C, unless oth-  
DD  
RF A  
= 3.3V and T = +25°C.) (Note 1)  
A
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LO Signal Feedthrough to  
Antenna  
-80  
dBm  
Output Impedance  
Noise Figure  
S22  
Normalized to 50Ω  
0.12 - j4.4  
2
LNA  
NF  
dB  
LNA  
LNA IN LOW-GAIN MODE  
f
RF  
f
RF  
f
RF  
= 433MHz  
= 375MHz  
= 315MHz  
1 - j4.7  
1 - j3.9  
1 - j3.4  
-10  
Normalized to  
50Ω  
Input Impedance (Note 4)  
1dB Compression Point  
S11  
LNA  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order  
Intercept  
IIP3  
-7  
LNA  
LO Signal Feedthrough to  
Antenna  
-80  
dBm  
Output Impedance  
Noise Figure  
S22  
Normalized to 50Ω  
0.4  
2
LNA  
LNA  
NF  
dB  
dB  
dB  
Power Gain  
0
Voltage Gain Reduction  
MIXER  
AGC enabled (depends on tank Q)  
35  
Input Impedance  
S11  
IIP3  
Normalized to 50Ω  
0.25 - j2.4  
-18  
MIX  
MIX  
Input-Referred 3rd-Order  
Intercept  
dBm  
Output Impedance  
Noise Figure  
Z
330  
16  
42  
44  
44  
13  
OUT_MIX  
NF  
dB  
MIX  
f
f
f
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= V  
DD  
RF  
RF  
RF  
IRSEL  
IRSEL  
IRSEL  
Image Rejection  
(not Including LNA Tank)  
= V /2  
DD  
dB  
dB  
= 0V  
Conversion Gain  
330IF filter load  
INTERMEDIATE FREQUENCY (IF)  
Input Impedance  
Z
330  
10.7  
20  
IN_IF  
Operating Frequency  
3dB Bandwidth  
f
Bandpass response  
MHz  
MHz  
dB  
IF  
RSSI Linearity  
0.5  
RSSI Dynamic Range  
80  
dB  
P
P
< -120dBm  
1.15  
2.35  
14.2  
1.45  
2.05  
RFIN  
RFIN  
RSSI Level  
V
mV/dB  
V
> 0dBm, AGC enabled  
RSSI Gain  
LNA gain from low to high  
LNA gain from high to low  
AGC Threshold  
4
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
erwise noted. Typical values are at V  
= 3.0V to 3.6V, all RF inputs are referenced to 50, f = 315MHz, T = -40°C to +85°C, unless oth-  
DD  
RF A  
= 3.3V and T = +25°C.) (Note 1)  
A
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DATA FILTER  
Maximum Bandwidth  
DATA SLICER  
BW  
100  
kHz  
DF  
Comparator Bandwidth  
Maximum Load Capacitance  
Output High Voltage  
Output Low Voltage  
BW  
100  
10  
kHz  
pF  
V
CMP  
C
LOAD  
V
DD5  
0
V
CRYSTAL OSCILLATOR  
V
V
V
V
= 0V  
6.6128  
13.2256  
4.7547  
9.5094  
50  
XTALSEL  
XTALSEL  
XTALSEL  
XTALSEL  
f
f
= 433MHz  
= 315MHz  
MHz  
MHz  
RF  
= V  
DD  
Crystal Frequency (Note 5)  
f
XTAL  
= 0V  
= V  
RF  
DD  
Crystal Tolerance  
Input Impedance  
ppm  
pF  
From each pin to ground  
6.2  
Note 1: 100% tested at T = +25°C. Guaranteed by design and characterization over temperature.  
A
Note 2: IRSEL is internally set to 375MHz IR mode. It can be left open when the 375MHz image rejection setting is desired. A 1nF  
capacitor is recommended in noisy environments.  
-3  
Note 3: BER = 2 x 10 , Manchester encoded, data rate = 4kbps, IF bandwidth = 280kHz.  
Note 4: Input impedance is measured at the LNAIN pin. Note that the impedance includes the 15nH inductive degeneration con-  
nected from the LNA source to ground. The equivalent input circuit is 50in series with 2.2pF.  
Note 5: Crystal oscillator frequency for other RF carrier frequency within the 300MHz to 450MHz range is (f - 10.7MHz)/64 for  
RF  
XTALSEL = 0V, and (f - 10.7MHz)/32 for XTALSEL = V  
.
RF  
DD  
_______________________________________________________________________________________  
5
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
RF A  
DD  
SUPPLY CURRENT  
vs. RF FREQUENCY  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
BIT-ERROR RATE  
vs. AVERAGE RF INPUT POWER  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
100  
10  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
+105°C  
f
= 433MHz  
RF  
+105°C  
+85°C  
1
+25°C  
f
= 315MHz  
RF  
+85°C  
+25°C  
-40°C  
0.1  
0.01  
-40°C  
-117 -116  
250  
300  
350  
400  
450  
500  
-121 -120 -119  
-115 -114  
-118  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
RF FREQUENCY (MHz)  
AVERAGE INPUT POWER (dBm)  
SUPPLY VOLTAGE (V)  
RSSI AND DELTA  
vs. IF INPUT POWER  
RSSI vs. RF INPUT POWER  
SENSITIVITY vs. TEMPERATURE  
MAX1473 toc06  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
3.5  
-105  
-106  
-107  
-108  
-109  
-110  
-111  
-112  
-113  
-114  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
PEAK RF INPUT POWER  
1% BER  
IF BANDWIDTH = 280MHz  
IF BANDWIDTH = 280kHz  
2.5  
V
= V  
DD  
AGCDIS  
1.5  
f
RF  
= 433MHz  
0.5  
V
= 0V  
AGCDIS  
-0.5  
-1.5  
-2.5  
-3.5  
DELTA  
RSSI  
f
RF  
= 315MHz  
60  
-140 -120 -100 -80 -60 -40 -20  
RF INPUT POWER (dBm)  
0
-40  
-15  
10  
35  
85  
-90  
-70  
-50  
-30  
-10  
10  
110  
TEMPERATURE (°C)  
IF INPUT POWER (dBm)  
IMAGE REJECTION  
vs. RF FREQUENCY  
IMAGE REJECTION  
vs. TEMPERATURE  
SYSTEM GAIN vs. FREQUENCY  
55  
50  
45  
40  
35  
30  
45  
45  
44  
44  
43  
43  
42  
42  
41  
41  
30  
20  
f
RF  
= 315MHz  
UPPER  
SIDEBAND  
10  
50dB IMAGE  
REJECTION  
LOWER  
SIDEBAND  
f
RF  
= 375MHz  
0
-10  
-20  
-30  
f
RF  
= 433MHz  
f
RF  
= 375MHz  
FROM RFIN TO  
MIXOUT  
f
RF  
= 315MHz  
430  
f
RF  
= 433MHz  
f
RF  
= 315MHz  
280  
330  
380  
480  
-40  
-15  
10  
35  
60  
85  
0
5
10  
15  
20  
25  
30  
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
IF FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
DD  
RF  
A
NORMALIZED IF GAIN  
vs. IF FREQUENCY  
S11 SMITH PLOT OF RFIN  
S11 MAGNITUDE-LOG PLOT OF RFIN  
MAX1473 toc12  
5
30  
20  
600MHz  
0
-5  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-15  
100MHz  
315MHz  
-34dB  
-20  
1
10  
100  
10 109 208 307 406 505 604 703 802 901 1000  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
PHASE NOISE  
vs. OFFSET FREQUENCY  
PHASE NOISE  
vs. OFFSET FREQUENCY  
REGULATOR VOLTAGE  
vs. REGULATOR CURRENT  
0
0
3.1  
f
RF  
= 315MHz  
f
RF  
= 433MHz  
-20  
-20  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
-40°C  
-40  
-60  
-40  
-60  
+25°C  
+85°C  
+105°C  
-80  
-80  
-100  
-100  
-120  
-140  
-120  
-140  
V
= 5.0V  
DD  
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01  
1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01  
5
15  
25  
35  
45  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
REGULATOR CURRENT (mA)  
_______________________________________________________________________________________  
7
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP  
QFN  
29  
1
2, 7  
3
XTAL1  
1st Crystal Input. (See Phase-Locked Loop section.)  
4, 30  
31  
AV  
Positive Analog Supply Voltage for RF Sections. (See Typical Application Circuit.)  
Low-Noise Amplifier Input. (See Low-Noise Amplifier section.)  
DD  
LNAIN  
LNASRC  
AGND  
Low-Noise Amplifier Source for External Inductive Degeneration. Connect inductor to ground to  
set LNA input impedance. (See Low-Noise Amplifier section.)  
4
5
6
32  
2
Analog Ground  
Low-Noise Amplifier Output. Connect to mixer through an LC tank filter. (See Low-Noise  
Amplifier section.)  
3
LNAOUT  
8
9
5
6
7
MIXIN1  
MIXIN2  
AGND  
1st Differential Mixer Input. Connect through a 100pF capacitor to V  
side of the LC tank.  
DD  
2nd Differential Mixer Input. Connect through a 100pF capacitor to LC tank filter from LNAOUT.  
Analog Ground  
10  
Image Rejection Select Pin. Set V  
= 0V to center image rejection at 315MHz. Leave IRSEL  
IRSEL  
11  
8
IRSEL  
floating to center image rejection at 375MHz. Set V  
433MHz.  
= V  
to center image rejection at  
IRSEL  
DD  
12  
13  
14  
15  
9
MIXOUT 330Mixer Output. Connect to the input of the 10.7MHz bandpass filter.  
10  
11  
12  
DGND  
DV  
Digital Ground  
Positive Digital Supply Voltage. Decouple to DGND with a 0.01µF capacitor.  
DD  
AGCDIS AGC Control Pin. Pull high to disable AGC.  
Crystal Divider Ratio Select Pin. Drive XTALSEL low to select divider ratio of 64, or drive  
XTALSEL high to select divider ratio of 32.  
16  
17  
18  
14  
15  
16  
XTALSEL  
1st Differential Intermediate Frequency Limiter Amplifier Input. Decouple to AGND with a 1500pF  
capacitor.  
IFIN1  
2nd Differential Intermediate Frequency Limiter Amplifier Input. Connect to the output of a  
10.7MHz bandpass filter.  
IFIN2  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
17  
18  
19  
20  
22  
23  
24  
26  
27  
28  
DFO  
DSN  
OPP  
DFFB  
DSP  
Data Filter Output  
Negative Data Slicer Input  
Noninverting Op-Amp Input for the Sallen-Key Data Filter  
Data Filter Feedback Node. Input for the feedback of the Sallen-Key data filter.  
Positive Data Slicer Input  
V
5V Supply Voltage. V  
is shorted to AV for 3.3V operation.  
DD5 DD  
DD5  
DATAOUT Digital Baseband Data Output  
PDOUT Peak Detector Output  
PWRDN Power-Down Select Input. Drive this pin with a logic high to power on the IC.  
XTAL2  
2nd Crystal Input  
1, 13,  
21, 25  
N.C.  
No Connection  
8
_______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
C
C
TOTAL = C2 + PARASITICS  
Detailed Description  
L
and C  
include inductance and  
PARASITICS  
PARASITICS  
The MAX1473 CMOS superheterodyne receiver and a  
few external components provide the complete receive  
chain from the antenna to the digital output data.  
Depending on signal power and component selection,  
data rates as high as 100kbps can be achieved.  
capacitance of the PC board traces, package pins,  
mixer input impedance, LNA output impedance, etc.  
These parasitics at high frequencies cannot be  
ignored, and can have a dramatic effect on the tank fil-  
ter center frequency. Lab experimentation should be  
done to optimize the center frequency of the tank.  
The MAX1473 is designed to receive binary ASK data  
modulated in the 300MHz to 450MHz frequency range.  
ASK modulation uses a difference in amplitude of the  
carrier to represent logic 0 and logic 1 data.  
Mixer  
A unique feature of the MAX1473 is the integrated  
image rejection of the mixer. This device eliminates the  
need for a costly front-end SAW filter for most applica-  
tions. Advantages of not using a SAW filter are  
increased sensitivity, simplified antenna matching, less  
board space, and lower cost.  
Low-Noise Amplifier  
The LNA is an NMOS cascode amplifier with off-chip  
inductive degeneration that achieves approximately  
16dB of power gain with a 2.0dB noise figure and an  
IIP3 of -12dBm. The gain and noise figure are depen-  
dent on both the antenna matching network at the LNA  
input and the LC tank network between the LNA output  
and the mixer inputs.  
The mixer cell is a pair of double balanced mixers that  
perform an IQ downconversion of the RF input to the  
10.7MHz IF from a low-side injected LO (i.e., f = f  
-
LO  
RF  
f ). The image-rejection circuit then combines these  
IF  
The off-chip inductive degeneration is achieved by  
connecting an inductor from LNASRC to AGND. This  
inductor sets the real part of the input impedance at  
LNAIN, allowing for a more flexible input impedance  
match, such as a typical PC board trace antenna. A  
nominal value for this inductor with a 50input imped-  
ance is 15nH, but is affected by PC board trace. See  
Typical Operating Characteristics for the relationship  
between the inductance and the LNA input impedance.  
signals to achieve a minimum 45dB of image rejection  
over the full temperature range. Low-side injection is  
required due to the on-chip image rejection architec-  
ture. The IF output is driven by a source-follower biased  
to create a driving impedance of 330; this provides a  
good match to the off-chip 330ceramic IF filter. The  
voltage conversion gain is approximately 13dB when  
the mixer is driving a 330load.  
The IRSEL pin is a logic input that selects one of the  
three possible image-rejection frequencies. When  
The AGC circuit monitors the RSSI output. When the  
RSSI output reaches 2.05V, which corresponds to an  
RF input level of approximately -57dBm, the AGC  
switches on the LNA gain reduction resistor. The resis-  
tor reduces the LNA gain by 35dB, thereby reducing  
the RSSI output by about 500mV. The LNA resumes  
high-gain mode when the RSSI level drops back below  
1.45V (approximately -65dBm at RF input) for 150ms.  
The AGC has a hysteresis of ~8dB. With the AGC func-  
tion, the MAX1473 can reliably produce an ASK output  
for RF input levels up to 0dBm with a modulation depth  
of 18dB.  
V
V
= 0V, the image rejection is tuned to 315MHz.  
= V /2 tunes the image rejection to 375MHz,  
IRSEL  
IRSEL  
DD  
and when V  
= V , the image rejection is tuned to  
DD  
IRSEL  
433MHz. The IRSEL pin is internally set to V /2 (image  
DD  
rejection at 375MHz) when it is left floating, thereby  
eliminating the need for an external V /2 voltage.  
DD  
Phase-Locked Loop  
The PLL block contains a phase detector, charge  
pump/integrated loop filter, VCO, asynchronous 64x  
clock divider, and crystal oscillator driver. Besides the  
crystal, this PLL does not require any external compo-  
nents. The VCO generates a low-side local oscillator  
(LO). The relationship between the RF, IF, and refer-  
ence frequencies is given by:  
The LC tank filter connected to LNAOUT comprises L3  
and C2 (see Typical Application Circuit). Select L3 and  
C2 to resonate at the desired RF input frequency. The  
resonant frequency is given by:  
f
= (f - f ) / (32 M)  
RF IF  
REF  
1
f =  
where:  
2π L  
C
TOTAL × TOTAL  
M = 1 (V  
= V ) or 2 (V  
= 0V)  
XTALSEL  
XTALSEL  
DD  
To allow the smallest possible IF bandwidth (for best  
sensitivity), the tolerance of the reference must be mini-  
mized.  
where:  
L
= L3 + L  
PARASITICS  
TOTAL  
_______________________________________________________________________________________  
9
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Intermediate Frequency/RSSI  
Applications Information  
The IF section presents a differential 330load to pro-  
vide matching for the off-chip ceramic filter. The six  
internal AC-coupled limiting amplifiers produce an  
overall gain of approximately 65dB, with a bandpass fil-  
ter-type response centered near the 10.7MHz IF fre-  
quency with a 3dB bandwidth of approximately  
11.5MHz. The RSSI circuit demodulates the IF by pro-  
ducing a DC output proportional to the log of the IF sig-  
nal level, with a slope of approximately 14.2mV/dB (see  
Typical Operating Characteristics).  
Crystal Oscillator  
The XTAL oscillator in the MAX1473 is designed to pre-  
sent a capacitance of approximately 3pF between the  
XTAL1 and XTAL2. If a crystal designed to oscillate  
with a different load capacitance is used, the crystal is  
pulled away from its stated operating frequency, intro-  
ducing an error in the reference frequency. Crystals  
designed to operate with higher differential load capac-  
itance always pull the reference frequency higher. For  
example, a 4.7547MHz crystal designed to operate  
with a 10pF load capacitance oscillates at 4.7563MHz  
with the MAX1473, causing the receiver to be tuned to  
315.1MHz rather than 315.0MHz, an error of about  
100kHz, or 320ppm.  
The AGC circuit monitors the RSSI output. When the  
RSSI output reaches 2.05V, which corresponds to an  
RF input level of approximately -57dBm, the AGC  
switches on the LNA gain reduction resistor. The resis-  
tor reduces the LNA gain by 35dB, thereby reducing  
the RSSI output by about 500mV. The LNA resumes  
high-gain mode when the RSSI level drops back below  
1.45V (approximately -65dBm at RF input) for 150ms.  
The AGC has a hysteresis of ~8dB. With the AGC func-  
tion, the MAX1473 can reliably produce an ASK output  
for RF input levels up to 0dBm with modulation depth of  
18dB.  
In actuality, the oscillator pulls every crystal. The crys-  
tals natural frequency is really below its specified fre-  
quency, but when loaded with the specified load  
capacitance, the crystal is pulled and oscillates at its  
specified frequency. This pulling is already accounted  
for in the specification of the load capacitance.  
Table 1. Component Values for Typical Application Circuit  
COMPONENT  
VALUE FOR 433MHz RF  
VALUE FOR 315MHz RF  
DESCRIPTION  
L1  
L2  
56nH  
110nH  
Toko LL1608-FH  
15nH  
15nH  
Murata LQP11A  
L3  
15nH  
27nH  
Murata LQP11A  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
R1  
100pF  
100pF  
5%  
2.7pF  
4.7pF  
0.1pF  
100pF  
100pF  
5%  
100pF  
100pF  
5%  
1500pF  
1500pF  
10%  
220pF  
220pF  
5%  
470pF  
470pF  
5%  
0.47µF  
0.47µF  
20%  
220pF  
220pF  
10%  
0.01µF  
0.01µF  
20%  
0.01µF  
0.01µF  
20%  
Depends on XTAL  
Depends on XTAL  
5%  
15pF  
15pF  
15pF  
15pF  
5kΩ  
5kΩ  
X1  
6.6128MHz or 13.2256MHz  
10.7MHz ceramic filter  
4.7547MHz or 9.5094MHz  
10.7MHz ceramic filter  
X2  
Murata SFECV10.7 series  
10 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Additional pulling can be calculated if the electrical  
parameters of the crystal are known. The frequency  
pulling is given by:  
MAX1473  
C
1
1
6
m
f
=
-
×10  
p
2
C
C
C
C
case + spec  
RSSI  
R
case + load  
where:  
f is the amount the crystal frequency pulled in ppm.  
R
DF1  
100k  
DF2  
100kΩ  
p
C
C
C
C
is the motional capacitance of the crystal.  
m
22  
DFFB  
19  
DFO  
21  
OPP  
is the case capacitance.  
case  
spec  
load  
C6  
C5  
is the specified load capacitance.  
is the actual load capacitance.  
When the crystal is loaded as specified, i.e., C  
spec  
=
load  
C
, the frequency pulling equals zero.  
Data Filter  
Figure 1. Sallen-Key Lowpass Data Filter  
The data filter is implemented as a 2nd-order lowpass  
Sallen-Key filter. The pole locations are set by the com-  
bination of two on-chip resistors and two external  
capacitors. Adjusting the value of the external capaci-  
tors changes the corner frequency to optimize for dif-  
ferent data rates. The corner frequency should be set  
to approximately 1.5 times the fastest expected data  
rate from the transmitter. Keeping the corner frequency  
near the data rate rejects any noise at higher frequen-  
cies, resulting in an increase in receiver sensitivity.  
Choosing standard capacitor values changes C5 to  
470pF and C6 to 220pF, as shown in the Typical  
Application Circuit.  
Table 2. Coefficents to Calculate C5 and C6  
FILTER TYPE  
Butterworth (Q = 0.707)  
Bessel (Q = 0.577)  
a
b
1.414  
1.3617  
1.000  
0.618  
The configuration shown in Figure 1 can create a  
Butterworth or Bessel response. The Butterworth filter  
offers a very flat amplitude response in the passband  
and a rolloff rate of 40dB/decade for the two-pole filter.  
The Bessel filter has a linear phase response, which  
works well for filtering digital data. To calculate the  
value of C5 and C6, use the following equations along  
with the coefficients in Table 2:  
Data Slicer  
The purpose of the data slicer is to take the analog out-  
put of the data filter and convert it to a digital signal.  
This is achieved by using a comparator and comparing  
the analog input to a threshold voltage. One input is  
supplied by the data filter output. Both comparator  
inputs are accessible off chip to allow for different  
methods of generating the slicing threshold, which is  
applied to the second comparator input.  
b
C5 =  
The suggested data slicer configuration uses a resistor  
(R1) connected between DSN and DSP with a capaci-  
tor (C4) from DSN to DGND (Figure 2). This configura-  
tion averages the analog output of the filter and sets the  
threshold to approximately 50% of that amplitude. With  
this configuration, the threshold automatically adjusts  
as the analog signal varies, minimizing the possibility  
for errors in the digital data. The sizes of R1 and C4  
affect how fast the threshold tracks to the analog ampli-  
tude. Be sure to keep the corner frequency of the RC  
circuit much lower than the lowest expected data rate.  
a 100k π f  
(
)( )(  
c
)
)
a
C6 =  
4 100k π f  
(
)( )(  
c
where f is the desired 3dB corner frequency.  
C
For example, choose a Butterworth filter response with  
a corner frequency of 5kHz:  
1.000  
C5 =  
450pF  
Note that a long string of zeros or 1s can cause the  
threshold to drift. This configuration works best if a cod-  
1.414 100k3.14 5kHz  
(
)(  
)(  
)(  
)
______________________________________________________________________________________ 11  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
MAX1473  
MAX1473  
DATA  
SLICER  
DATA  
SLICER  
25  
20  
19  
DFO  
23  
DSP  
25  
DATAOUT  
20  
DSN  
23  
DSP  
19  
DFO  
DATAOUT  
DSN  
R4  
R1  
R2  
R3  
R1  
C4  
C4  
*OPTIONAL  
Figure 2. Generating Data Slicer Threshold  
Figure 3. Generating Data Slicer Hysteresis  
ing scheme, such as Manchester coding, which has an  
equal number of zeros and 1s, is used.  
To prevent continuous toggling of DATAOUT in the  
absence of an RF signal due to noise, hysteresis can  
be added to the data slicer as shown in Figure 3.  
MAX1473  
Peak Detector  
The peak detector output (PDOUT), in conjunction with  
an external RC filter, creates a DC output voltage equal  
to the peak value of the data signal. The resistor pro-  
vides a path for the capacitor to discharge, allowing the  
peak detector to dynamically follow peak changes of  
the data filter output voltage. For faster receiver startup,  
the circuit shown in Figure 4 can be used.  
DATA  
SLICER  
25  
DATAOUT  
23  
19  
DFO  
26  
PDOUT  
20  
DSN  
DSP  
25kΩ  
Layout Considerations  
A properly designed PC board is an essential part of  
any RF/microwave circuit. On high-frequency inputs  
and outputs, use controlled-impedance lines and keep  
them as short as possible to minimize losses and radia-  
tion. At high frequencies, trace lengths that are on the  
order of λ/10 or longer act as antennas.  
47nF  
Figure 4. Using PDOUT for Faster Startup  
Keeping the traces short also reduces parasitic induc-  
tance. Generally, 1in of a PC board trace adds about  
20nH of parasitic inductance. The parasitic inductance  
can have a dramatic effect on the effective inductance  
of a passive component. For example, a 0.5in trace  
connecting a 100nH inductor adds an extra 10nH of  
inductance or 10%.  
Chip Information  
TRANSISTOR COUNT: 3035  
PROCESS: CMOS  
To reduce the parasitic inductance, use wider traces  
and a solid ground or power plane below the signal  
traces. Also, use low-inductance connections to ground  
on all GND pins, and place decoupling capacitors  
close to all V  
connections.  
DD  
12 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Application Circuit  
VDD5  
VDD3  
X1  
C12  
C13  
C11  
1
2
3
4
5
6
7
8
9
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
XTAL1  
AV  
XTAL2  
PWRDN  
RF INPUT  
TO/FROM µP  
POWER DOWN  
DATA OUT  
DD  
C1  
L1  
LNAIN  
PDOUT  
MAX1473  
LNASRC  
AGND  
DATAOUT  
L2  
R2  
V
DD5  
R3  
LNAOUT  
DSP  
DFFB  
VDD3  
L3  
AV  
DD  
C3  
C4  
C2  
MIXIN1  
MIXIN2  
AGND  
OPP  
C7  
DSN  
10  
DFO  
C9  
11  
12  
13  
14  
IRSEL  
IFIN2  
R1  
MIXOUT  
DGND  
IFIN1  
XTALSEL  
AGCDIS  
DV  
DD  
X2  
C5  
C6  
C8  
IF FILTER  
C10  
IN  
OUT  
GND  
COMPONENT VALUES  
IN TABLE 1  
______________________________________________________________________________________ 13  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Functional Diagram  
LNASRC  
4
AGCDIS LNAOUT MIXIN1 MIXIN2  
IRSEL  
11  
MIXOUT  
12  
IFIN1 IFIN2  
17 18  
15  
6
8
9
0˚  
IF LIMITING  
AMPS  
AUTOMATIC  
GAIN  
CONTROL  
3
Q
I
LNA  
LNAIN  
IMAGE  
REJECTION  
2,7  
24  
90˚  
AVDD  
VDD5  
3.3V REG  
MAX1473  
RSSI  
DATA  
FILTER  
DIVIDE  
BY 64  
14  
13  
VCO  
DVDD  
R
R
DF1  
100kΩ  
DF2  
100kΩ  
PHASE  
DETECTOR  
LOOP  
FILTER  
DGND  
AGND  
DATA  
SLICER  
5,10  
÷1  
÷2  
CRYSTAL  
DRIVER  
POWER  
DOWN  
16  
1
28  
27  
25  
20 23 19  
26  
21  
22  
DFFB  
XTALSEL  
XTAL1 XTAL2  
PWRDN DATAOUT  
DSN DSP DFO  
PDOUT OPP  
14 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 15  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
16 ______________________________________________________________________________________  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1473EUI/V+T

Telecom Circuit, CMOS, PDSO28,
MAXIM

MAX1473EVKIT

Evaluation Kit for the MAX1473
MAXIM

MAX1473EVKIT-315

Evaluation Kit
MAXIM

MAX1473EVKIT-433

Evaluation Kit
MAXIM

MAX1473_1

Evaluation Kit
MAXIM

MAX1473_11

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1473_12

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1473_V01

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1474

Miniature Electronically Trimmable Capacitor
MAXIM

MAX14740

Provides Robust Bidirectional Power Path
MAXIM

MAX14740EWP+T

Power Supply Support Circuit,
MAXIM

MAX14741EWP+T

Provides Robust Bidirectional Power Path
MAXIM