MAX1473EVKIT-433 [MAXIM]

Evaluation Kit; 评估套件
MAX1473EVKIT-433
型号: MAX1473EVKIT-433
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kit
评估套件

文件: 总6页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2960; Rev 1; 5/05  
MAX1473 Evaluation Kit  
General Description  
Features  
Proven PC Board Layout  
The MAX1473 evaluation kit (EV kit) allows for a  
detailed evaluation of the MAX1473 superheterodyne  
receiver. It enables testing of the device’s RF perfor-  
mance and requires no additional support circuitry. The  
RF input uses a 50 matching network and an SMA  
connector for convenient connection to test equipment.  
The EV kit can also directly interface to the user’s  
embedded design for easy data decoding.  
Proven Components Parts List  
Multiple Test Points Provided On-Board  
Available in 315MHz or 433.92MHz Optimized  
Versions  
Adjustable Frequency Range from 300MHz to  
The MAX1473 EV kit comes in two versions: a 315MHz  
version and a 433.92MHz version. The passive compo-  
nents are optimized for these frequencies. These com-  
ponents can easily be changed to work at RF frequen-  
cies from 300MHz to 450MHz. In addition, the 5kbps  
data rate received can be adjusted from 0 to 100kbps  
by changing two more components.  
450MHz*  
Fully Assembled and Tested  
Can Operate as a Stand-Alone Receiver with  
Addition of an Antenna  
*Requires component changes  
For easy implementation into the customer’s design, the  
MAX1473 EV kit also features a proven PC board lay-  
out, which can be easily duplicated for quicker time-to-  
market. The EV kit Gerber files are available for down-  
load at www.maxim-ic.com.  
Ordering Information  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
IC PACKAGE  
28 TSSOP  
MAX1473EVKIT-315  
MAX1473EVKIT-433  
28 TSSOP  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
0.01µF 10% ceramic capacitors (0603)  
Murata GRM188R71H103KA01  
15pF 5%, 50V ceramic capacitors  
(0603)  
C1, C2  
2
C14, C15  
2
Murata GRM1885C1H150JZ01  
1500pF 10%, 50V X7R ceramic  
capacitor (0603)  
Murata GRM188R71H152KA01  
C3  
1
0.01µF +80% - 20% ceramic  
capacitor (0603), not installed  
Murata GRM188R71H103KA01  
C17  
C21  
F_IN  
0
1
0
0.47µF +80% - 20% ceramic  
capacitor (0603)  
Murata GRM188F51C474ZA01  
0
resistor (0603)  
C4  
1
SMA connector edge mount, not  
installed  
Johnson 142-0701-801  
470pF 5% ceramic capacitor (0603)  
Murata GRM1885C1H471JA01  
C5  
1
2
3
1
1
2
0
JU1, JU2, JU5,  
JU6  
3-pin headers  
Digi-Key S1012-36-ND or equivalent  
220pF 5% ceramic capacitors (0603)  
Murata GRM1885C1H221JA01  
4
C6, C10  
JU7  
JU3, JU4  
JU8  
1
0
1
2-pin header  
Not installed  
Shorted  
100pF 5% ceramic capacitors (0603)  
Murata GRM1885C1H101JA01  
C7, C8, C11  
C9 (315MHz)  
C9 (433MHz)  
C12, C20  
4pF 0.1pF ceramic capacitor (0603)  
Murata GRM1885C1H4R0BZ01  
Shunts (JU1)  
Digi-Key S9000-ND or equivalent  
5
1
2.2pF 0.1pF ceramic capacitor (0603)  
Murata GRM1885C1H2R2BD01  
27nH 5% inductor (0603)  
Coilcraft 0603CS-27NXJB  
L1 (315MHz)  
0.1µF 5% ceramic capacitors (0603)  
Murata GRM188R71C104KA01  
C13, C16, C18,  
C19  
Not installed  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX1473 Evaluation Kit  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
15nH 5% inductor (0603)  
Coilcraft 0603CS-15NXJB  
1000pF 10%, 50V X7R ceramic  
capacitor (0603)  
Murata GRM188R71H102KA01  
L1 (433MHz)  
L2 (315MHz)  
L2 (433MHz)  
L3  
1
1
1
1
R9  
1
120nH 5% inductor (0603)  
Coilcraft 0603CS-R12XJB  
SMA connector top mount  
Digi-Key J500-ND  
Johnson 142-0701-201  
RF IN  
1
0
56nH 5% inductor (0603)  
Coilcraft 0603CS-56NXJB  
TP2, TP4–TP12  
Not installed  
15nH 5% inductor (0603)  
Murata LQG18HN15NJ00  
VDD, GND,  
SHDN,  
DATA_OUT,  
TP3  
Test points  
Mouser 151-203 or equivalent  
SMA connector top mount, not installed  
Digi-Key J500-ND  
Johnson 142-0701-201  
5
1
MIX OUT  
0
Crystal 4.754687MHz  
Hong Kong Crystal  
SSL4754687E03FAFZ8A0 or  
Crystek 016867  
R1  
1
0
5.1kresistor (0603), any  
R2, R4, R6  
Resistor (0603), not installed  
Y1 (315MHz)  
R3  
R5  
0
1
270resistor (0603), any, not installed  
10kresistor (0603), any  
Crystal 6.6128MHz  
Hong Kong Crystal  
SSL6612813E03FAFZ8A0 or Crystek  
016868  
10pF 5%, 50V ceramic capacitor (0603)  
Murata GRM1885C1H100JZ01  
R7  
R8  
1
1
Y1 (433MHz)  
Y2  
1
1
10kresistor (0603), any  
10.7MHz ceramic filter  
Murata SFTLA10M7FA00-B0  
Quick Start  
The following procedure allows for proper device evalu-  
ation.  
U1  
1
1
MAX1473EUI  
MAX1473 EV kit PC board  
Required Test Equipment  
• Regulated power supply capable of providing +3.3V  
AM-modulated square wave (or a 2kHz pulse-modu-  
lated signal).  
• RF signal generator capable of delivering from  
-120dBm to 0dBm of output power at the operating  
frequency, in addition to AM or pulse-modulation  
capabilities (Agilent E4420B or equivalent)  
3) Connect the oscilloscope to test point TP3.  
4) Turn on the DC supply. The supply current should  
read approximately 5mA.  
5) Activate the RF generator’s output without modulation.  
The scope should display a DC voltage that varies  
from approximately 1.2V to 2.0V as the RF generator  
amplitude is changed from -115dBm to 0dBm. (Note:  
At an input amplitude of around -60dBm, this DC  
voltage will drop suddenly to about 1.5V and then  
rise again with increasing input amplitude. This is  
normal; the AGC is turning on the LNA gain reduc-  
tion resistor).  
• Optional ammeter for measuring supply current  
• Oscilloscope  
Connections and Setup  
This section provides a step-by-step guide to operating  
the EV kit and testing the device’s functionality. Do not  
turn on the DC power or RF signal generator until all  
connections are made:  
1) Connect a DC supply set to +3.3V (through an  
ammeter, if desired) to the VDD and GND terminals  
on the EV kit. Do not turn on the supply.  
6) Set the RF generator to -100dBm. Activate the RF  
generator’s modulation and set the scope’s coupling  
to AC. The scope now displays a lowpass-filtered  
square wave at TP3 (filtered analog baseband data).  
Use the RF generator’s LF OUTPUT (modulation out-  
put) to trigger the oscilloscope.  
2) Connect the RF signal generator to the RF_IN SMA  
connector. Do not turn on the generator output. Set  
the generator for an output frequency of 315MHz (or  
433.92MHz) at a power level of -100dBm. Set the  
modulation of the generator to provide a 2kHz 100%  
7) Monitor the DATA_OUT terminal and verify the pres-  
ence of a 2kHz square wave.  
2
_______________________________________________________________________________________  
MAX1473 Evaluation Kit  
for continuous shutdown, or pins 1 and 2 for continuous  
operation. Remove the JU1 shunt for external control.  
Table 1 describes jumper functions.  
Additional Evaluation  
1) With the modulation still set to AM, observe the  
effect of reducing the RF generator’s amplitude on  
the DATA_OUT terminal output. The error in this  
sliced digital signal increases with reduced RF sig-  
nal level. The sensitivity is usually defined as the  
point at which the error in interpreting the data (by  
the following embedded circuitry) increases beyond  
a set limit (BER test).  
Power Supply  
The MAX1473 can operate from 3.3V or 5V supplies.  
For 5V operation, remove JU7 before connecting the  
supply to VDD. For 3.3V operation, connect JU7.  
IF Input/Output  
The 10.7MHz IF can be monitored with the help of a  
spectrum analyzer using the MIX_OUT SMA connector  
(not provided). Remove the ceramic filter for such a  
measurement and include R3 (270 ) and C17 (0.01µF)  
to match the 330 mixer output with the 50 spectrum  
analyzer. Jumper JU3 needs to connect pins 1 and 2. It  
is also possible to use the MIX_OUT SMA connector to  
inject an external IF as a means of evaluating the base-  
band data slicing section. Jumper JU3 needs to con-  
nect pins 2 and 3.  
2) With the above settings, a 315MHz-tuned EV kit  
should display a sensitivity of about -117dBm (0.2%  
BER) while a 433.92MHz kit displays a sensitivity of  
about -115dBm (0.2% BER). Note: The above sensi-  
tivity values are given in terms of average peak  
power is 3dB higher.  
3) Capacitors C5 and C6 are used to set the corner fre-  
quency of the 2nd-order lowpass Sallen-Key data fil-  
ter. The current values were selected for bit rates up  
to 5kbps. Adjusting these values accommodates  
higher data rates (refer to the MAX1473 data sheet  
for more details).  
F_IN External Frequency Input  
For applications where the correct frequency crystal is  
not available, it is possible to directly inject an external  
frequency through the F_IN SMA connector (not provid-  
ed). Connect the SMA connector to a function genera-  
tor. The addition of C18 and C19 is necessary (use  
0.01µF capacitors).  
Layout Issues  
A properly designed PC board is an essential part of  
any RF/microwave circuit. On high-frequency inputs  
and outputs, use controlled-impedance lines and keep  
them as short as possible to minimize losses and radia-  
tion. At high frequencies, trace lengths that are on the  
order of /10 or longer can act as antennas.  
AGC Control  
Jumper JU5 controls whether the AGC is enabled.  
Connect pins 2 and 3 to enable the AGC.  
Keeping the traces short also reduces parasitic induc-  
tance. Generally, 1in of a PC board trace adds about  
20nH of parasitic inductance. The parasitic inductance  
can have a dramatic effect on the effective inductance.  
For example, a 0.5in trace connecting a 100nH inductor  
adds an extra 10nH of inductance or 10%.  
Crystal Select  
Jumper JU2 controls the crystal divide ratio.  
Connecting pins 1 and 2 sets the divide ratio to 64,  
while connecting pins 2 and 3 sets the ratio to 32. This  
determines the frequency of the crystal to be used.  
To reduce the parasitic inductance, use wider traces  
and a solid ground or power plane below the signal  
traces. Also, use low-inductance connections to ground  
on all GND pins, and place decoupling capacitors  
close to all VDD connections.  
Image Rejection Frequency Select  
A unique feature of the MAX1473 is its ability to vary at  
which frequency the image rejection is optimized. JU6  
allows the selection of three possible frequencies:  
315MHz, 375MHz, and 433.92MHz. See Table 1 for set-  
tings.  
The EV kit PC board can serve as a reference design  
for laying out a board using the MAX1473. All required  
components have been enclosed in a 1.25in 1.25in  
square, which can be directly “inserted” into the appli-  
cation circuit.  
Test Points and I/O Connections  
Additional test points and I/O connectors are provided  
to monitor the various baseband signals and for exter-  
nal connections. See Tables 2 and 3 for a description.  
Detailed Description  
For additional information and a list of application  
notes, consult the www.maxim-ic.com website.  
Power-Down Control  
The MAX1473 can be controlled externally using the  
SHDN connector. The IC draws approximately 1.25µA  
in shutdown mode. Jumper JU1 is used to control this  
mode. The shunt can be placed between pins 2 and 3  
________________________________________________________________________________________  
3
MAX1473 Evaluation Kit  
Table 1. Jumper Functions  
Table 3. I/O Connectors  
SIGNAL  
RF_IN  
DESCRIPTION  
JUMPER  
JU1  
STATE  
1-2  
FUNCTION  
Normal operation  
RF input  
F_IN  
External reference frequency input  
IF input/output  
JU1  
2-3  
Power-down mode  
MIX_OUT  
GND  
JU1  
NC  
External power-down control  
Crystal divide ratio = 32  
Crystal divide ratio = 64  
Mixer output to MIX_OUT  
External IF input  
Ground  
JU2  
2-3  
VDD  
Supply input  
JU2  
1-2  
DATA_OUT  
SHDN  
Sliced data output  
External power-down control  
JU3  
1-2  
JU3  
2-3  
JU3  
NC  
Normal operation  
Uses PDOUT for faster receiver  
startup  
JU4  
JU4  
1-2  
2-3  
GND connection for peak detector  
filter  
JU5  
JU5  
JU6  
JU6  
JU6  
JU7  
JU7  
1-2  
2-3  
1-2  
2-3  
NC  
1-2  
NC  
Disables AGC  
Enables AGC  
IR centered at 433MHz  
IR centered at 315MHz  
IR centered at 375MHz  
Connect VDD to +3.3V supply  
Connect VDD to +5.0V supply  
Table 2. Test Points  
TP  
DESCRIPTION  
Data slicer negative input  
2
3
Data filter output  
Peak detector out  
+3.3V  
4
5
Figure 1. MAX1473 EV Kit  
6
GND  
7
Data filter feedback node  
Data out  
8
9
Power-down select input  
VDD  
10  
11  
12  
AGC control  
Crystal select  
4
_______________________________________________________________________________________  
MAX1473 Evaluation Kit  
VDD  
*
AT 315MHz  
4pF  
AT 433.92MHz  
2.2pF  
+3.3V  
JU7  
C9  
L1  
L2  
Y1  
C20  
0.1 F  
C14  
15pF  
C15  
15pF  
C19  
OPEN  
VDD  
27nH  
15nH  
Y1  
*
TP5  
120nH  
56nH  
F_IN  
TP10  
C16  
OPEN  
4.754689MHz  
6.6128MHz  
VDD  
C18  
OPEN  
28  
27  
26  
1
2
XTAL2  
1
2
SHDN  
TP9  
XTAL1  
JU1  
+3.3V  
PWRDN  
PDOUT  
3
TP4  
DSN  
1
AV  
DD  
C13  
OPEN  
C12  
0.1 F  
JU4  
2
3
R2  
OPEN  
TP8  
L2  
*
R5  
RF_IN  
3
DATA_OUT  
10k  
LNAIN  
25  
24  
DATAOUT  
C7  
100pF  
4
5
V
V
LNASRC  
AGND  
DD5  
DD  
L3  
15nH  
U1  
R7  
10pF  
C21  
0
6
7
MAX1473  
LNAOUT  
23  
+3.3V  
DSP  
AV  
DD  
C2  
0.01 F  
R9  
1000pF  
R6  
OPEN  
8
9
MIXIN1  
MIXIN2  
L1  
*
C9  
*
JU8  
SHORT  
C11  
100pF  
+3.3V  
C10  
220pF  
C8  
100pF  
22  
DFFB  
TP7  
C6  
220pF  
21  
20  
OPP  
DSN  
DSN  
TP2  
0.47 F  
GND  
TP6  
C4  
TP3  
C5  
470pF  
R1  
5.1k  
19  
18  
DFO  
+3.3V  
1
C3  
1500pF  
10  
AGND  
IFIN2  
R8  
10k  
2
11  
12  
IR_SEL  
17  
16  
IFIN1  
JU6  
3
MIXOUT  
C17  
OPEN  
XT_SEL  
+3.3V  
R3  
OPEN  
3
13  
14  
MIX_OUT  
15  
DGND  
JU3  
2
AGC_OFF  
1
3
JU2  
2
DV  
DD  
+3.3V  
C1  
0.01 F  
+3.3V  
1
R4  
OPEN  
1
Y2  
10.7MHz  
JU5  
2
TP12  
IN  
1
GND OUT  
2
3
3
TP11  
Figure 2. MAX1473 EV Kit Schematic  
_______________________________________________________________________________________  
5
MAX1473 Evaluation Kit  
Figure 3. MAX1473 EV Kit Component Placement Guide—  
Component Side  
Figure 4. MAX1473 EV Kit PC Board Layout—Component Side  
Figure 5. MAX1473 EV Kit PC Board Layout—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1473_1

Evaluation Kit
MAXIM

MAX1473_11

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1473_12

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1473_V01

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range
MAXIM

MAX1474

Miniature Electronically Trimmable Capacitor
MAXIM

MAX14740

Provides Robust Bidirectional Power Path
MAXIM

MAX14740EWP+T

Power Supply Support Circuit,
MAXIM

MAX14741EWP+T

Provides Robust Bidirectional Power Path
MAXIM

MAX14742

Provides Robust Bidirectional Power Path
MAXIM

MAX14742EWP+T

Provides Robust Bidirectional Power Path
MAXIM

MAX14745

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM

MAX14745AEWX

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM