MAX1473_V01 [MAXIM]

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range;
MAX1473_V01
型号: MAX1473_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

315MHz/433MHz ASK Superheterodyne Receiver with Extended Dynamic Range

文件: 总16页 (文件大小:1472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
General Description  
Features  
The MAX1473 fully integrated low-power CMOS  
superheterodyne receiver is ideal for receiving amplitude-  
shift-keyed (ASK) data in the 300MHz to 450MHz frequency  
range. Its signal range is from -114dBm to 0dBm. With few  
external components and a low-current power-down mode,  
it is ideal for cost- and power-sensitive applications typical  
in the automotive and consumer markets. The chip consists  
of a low-noise amplifier (LNA), a fully differential image-  
rejection mixer, an on-chip phase-locked-loop (PLL) with  
integrated voltage-controlled oscillator (VCO), a 10.7MHz IF  
limiting amplifier stage with received-signal-strength indicator  
(RSSI), and analog baseband data-recovery circuitry. The  
MAX1473 also has a discrete one-step automatic gain  
control (AGC) that drops the LNA gain by 35dB when the RF  
input signal is greater than -57dBm.  
Optimized for 315MHz or 433MHz ISM Band  
Operates from Single 3.3V or 5.0V Supplies  
High Dynamic Range with On-Chip AGC  
Selectable Image-Rejection Center Frequency  
Selectable x64 or x32 f /f  
Ratio  
LO XTAL  
● Low 5.2mA Operating Supply Current  
● < 2.5μA Low-Current, Power-Down Mode for Efficient  
Power Cycling  
● 250μs Startup Time  
Built-In 50dB RF Image Rejection  
Receive Sensitivity of -114dBm  
Ordering Information  
The MAX1473 is available in 28-pin TSSOP and 32-pin  
thin QFN packages. Both versions are specified for the  
extended (-40°C to +85°C) temperature range.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
28 TSSOP  
MAX1473EUI+  
MAX1473ETJ+  
Applications  
32 Thin QFN-EP*  
Automotive Remote  
Keyless Entry  
Security Systems  
Home Automation  
● Local Telemetry  
Systems  
+ Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Garage Door Openers  
Remote Controls  
Wireless Sensors  
Functional Diagram and Typical Application Circuit appear  
at end of data sheet.  
Pin Configurations  
TOP VIEW  
+
XTAL1  
1
2
3
4
5
6
7
8
9
28 XTAL2  
AVDD  
LNAIN  
27 PWRDN  
26 PDOUT  
25 DATAOUT  
+
LNASRC  
AGND  
N.C.  
AGND  
1
2
3
4
5
6
7
8
24 DATAOUT  
23  
24  
V
DD5  
V
DD5  
MAX1473  
LNAOUT  
AVDD  
23 DSP  
LNAOUT  
AVDD  
22 DSP  
21 N.C.  
20 DFFB  
19 OPP  
18 DSN  
17 DFO  
22 DFFB  
21 OPP  
MAX1473  
MIXIN1  
MIXIN2  
MIXIN1  
MIXIN2  
AGND  
20 DSN  
AGND 10  
IRSEL 11  
MIXOUT 12  
DGND 13  
DVDD 14  
19 DFO  
18 IFIN2  
17 IFIN1  
16 XTALSEL  
15 AGCDIS  
IRSEL  
TSSOP  
THIN QFN  
19-2748; Rev 7; 1/19  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Absolute Maximum Ratings  
V
to AGND .....................................................-0.3V to +6.0V  
Continuous Power Dissipation (T = +70°C)  
A
DD5  
AVDD to AGND ....................................................-0.3V to +4.0V  
DVDD to DGND....................................................-0.3V to +4.0V  
AGND to DGND ...................................................-0.1V to +0.1V  
IRSEL, DATAOUT, XTALSEL, AGCDIS,  
28-Pin TSSOP (derate 12.8mW/°C above +70°C).1025.6mW  
32-Pin Thin QFN (derate 21.3mW/°C  
above +70°C) .........................................................1702.1mW  
Operating Temperature Ranges  
PWRDN to AGND................................... -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
MAX1473E__ ..................................................... -40°C to +85°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
DD5  
All Other Pins to AGND..........................-0.3V to (AV  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
DC Electrical Characteristics (3.3V Operation)  
(Typical Application Circuit, AV  
= DV  
= V  
= 3.0V to 3.6V, no RF signal applied, T = -40°C to +85°C, unless otherwise noted.  
DD  
DD  
DD5 A  
Typical values are at V  
= 3.3V and T = +25°C.) (Note 1)  
DD  
A
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
3.3V nominal supply  
MIN  
TYP  
3.3  
5.2  
5.8  
1.6  
2.5  
MAX  
3.6  
UNITS  
V
3.0  
V
DD  
f
f
f
f
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.23  
6.88  
RF  
RF  
RF  
RF  
Supply Current  
I
V
= V  
mA  
µA  
DD  
PWRDN  
DD5  
V
V
= 0V,  
PWRDN  
Shutdown Supply Current  
I
PWRDN  
= 0V  
XTALSEL  
5.3  
0.4  
Input Voltage Low  
V
V
V
IL  
IH  
IH  
Input Voltage High  
Input Logic Current High  
V
AV  
- 0.4  
- 0.4  
DD  
I
10  
µA  
f
f
f
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= AV  
DD  
AV  
RF  
RF  
RF  
IRSEL  
DD  
Image Reject Select (Note 2)  
= AV /2  
DD  
1.1  
AV  
- 1.5  
V
IRSEL  
IRSEL  
DD  
= 0V  
0.4  
0.4  
DATAOUT Voltage Output Low  
DATAOUT Voltage Output High  
V
V
V
OL  
R = 5kΩ  
L
V
V
- 0.4  
OH  
DD5  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Electrical Characteristics (5V Operation)  
(Typical Application Circuit, V  
= 4.5V to 5.5V, AV  
= DV  
= ~3.2V, no RF signal applied, T = -40°C to +85°C, unless otherwise  
DD5  
DD  
DD A  
noted. Typical values are at V  
= 5.0V and T = +25°C.) (Note 1)  
A
DD  
PARAMETER  
SYMBOL  
CONDITIONS  
5.0V nominal supply  
MIN  
TYP  
5.0  
5.2  
5.7  
2.3  
2.8  
MAX  
5.5  
UNITS  
Supply Voltage  
V
4.5  
V
DD  
f
f
f
f
= 315MHz  
= 433MHz  
= 315MHz  
= 433MHz  
6.04  
6.76  
RF  
RF  
RF  
RF  
Supply Current  
I
mA  
µA  
V
= V  
DD5  
DD  
PWRDN  
V
= 0V,  
PWRDN  
Shutdown Supply Current  
I
PWRDN  
VXTALSEL = 0V  
6.2  
0.4  
Input Voltage Low  
V
V
V
IL  
IH  
IH  
Input Voltage High  
Input Logic Current High  
V
AV  
- 0.4  
- 0.4  
DD  
I
10  
µA  
f
f
f
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= AV  
DD  
AV  
RF  
RF  
RF  
IRSEL  
IRSEL  
IRSEL  
DD  
Image Reject Select (Note 2)  
= AV /2  
DD  
1.1  
AV  
- 1.5  
V
DD  
= 0V  
0.4  
0.4  
DATAOUT Voltage Output Low  
DATAOUT Voltage Output High  
V
V
V
OL  
R = 5kΩ  
L
V
V
- 0.4  
OH  
DD5  
AC Electrical Characteristics  
(Typical Application Circuit, AV  
= DV  
= V  
= 3.0V to 3.6V, all RF inputs are referenced to 50Ω, f  
= 315MHz, T = -40°C to  
RF A  
DD  
DD  
DD5  
+85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1).  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL CHARACTERISTICS  
Time for valid signal detection after  
= V  
Startup Time  
t
250  
µs  
ON  
V
PWRDN  
OH  
Receiver Input Frequency  
Maximum Receiver Input Level  
Sensitivity (Note 3)  
f
300  
450  
MHz  
dBm  
dBm  
dB  
RF  
P
Modulation depth > 18dB  
Peak power level  
0
-114  
8
RFIN_MAX  
P
RFIN_MIN  
AGC Hysteresis  
LNA gain from low to high  
150  
ms  
LNA IN HIGH-GAIN MODE  
Power Gain  
16  
dB  
f
f
f
= 433MHz  
= 375MHz  
= 315MHz  
1 - j3.4  
1 - j3.9  
1 - j4.7  
-22  
RF  
RF  
RF  
Input Impedance (Note 4)  
Z
Normalized to 50Ω  
IN_LNA  
1dB Compression Point  
P1dB  
dBm  
dBm  
LNA  
Input-Referred 3rd-Order Intercept  
IIP3  
-12  
LNA  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
AC Electrical Characteristics (continued)  
(Typical Application Circuit, AV  
= DV  
= V  
= 3.0V to 3.6V, all RF inputs are referenced to 50Ω, f  
= 315MHz, T = -40°C to  
RF A  
DD  
DD  
DD5  
+85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1).  
DD  
A
PARAMETER  
LO Signal Feedthrough to Antenna  
Noise Figure  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
dBm  
dB  
-80  
2
NF  
LNA  
LNA IN LOW-GAIN MODE  
f
f
f
= 433MHz  
= 375MHz  
= 315MHz  
1 - j3.4  
1 - j3.9  
1 - j4.7  
-10  
RF  
RF  
RF  
Input Impedance (Note 4)  
Z
Normalized to 50Ω  
IN_LNA  
1dB Compression Point  
Input-Referred 3rd-Order Intercept  
LO Signal Feedthrough to Antenna  
Noise Figure  
P1dB  
dBm  
dBm  
dBm  
dB  
LNA  
IIP3  
-7  
LNA  
-80  
NF  
2
LNA  
Power Gain  
0
dB  
Voltage Gain Reduction  
MIXER  
AGC enabled (depends on tank Q)  
35  
dB  
Input-Referred 3rd-Order Intercept  
Output Impedance  
IIP3  
-18  
330  
16  
dBm  
MIX  
Z
OUT_MIX  
Noise Figure  
NF  
dB  
MIX  
f
f
f
= 433MHz, V  
= 375MHz, V  
= 315MHz, V  
= AV  
DD  
42  
RF  
RF  
RF  
IRSEL  
IRSEL  
IRSEL  
Image Rejection  
(not Including LNA Tank)  
= AV /2  
DD  
44  
dB  
dB  
= 0V  
44  
Conversion Gain  
330Ω IF filter load  
13  
INTERMEDIATE FREQUENCY (IF)  
Input Impedance  
Z
330  
10.7  
20  
IN_IF  
Operating Frequency  
3dB Bandwidth  
f
Bandpass response  
MHz  
MHz  
dB  
IF  
RSSI Linearity  
±0.5  
80  
RSSI Dynamic Range  
dB  
P
P
< -120dBm  
1.15  
2.35  
14.2  
1.45  
2.05  
RFIN  
RSSI Level  
V
mV/dB  
V
> 0dBm, AGC enabled  
RFIN  
RSSI Gain  
LNA gain from low to high  
LNA gain from high to low  
AGC Threshold  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
AC Electrical Characteristics (continued)  
(Typical Application Circuit, AV  
= DV  
= V  
= 3.0V to 3.6V, all RF inputs are referenced to 50Ω, f  
= 315MHz, T = -40°C to  
RF A  
DD  
DD  
DD5  
+85°C, unless otherwise noted. Typical values are at V  
= 3.3V and T = +25°C.) (Note 1).  
DD  
A
PARAMETER  
DATA FILTER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Bandwidth  
DATA SLICER  
BW  
100  
100  
kHz  
DF  
Comparator Bandwidth  
Output High Voltage  
Output Low Voltage  
CRYSTAL OSCILLATOR  
BW  
kHz  
V
CMP  
V
DD5  
0
V
V
V
V
V
= 0V  
= AV  
= 0V  
= AV  
6.6128  
13.2256  
4.7547  
9.5094  
50  
XTALSEL  
XTALSEL  
XTALSEL  
XTALSEL  
f
f
= 433MHz  
MHz  
MHz  
RF  
RF  
DD  
DD  
Crystal Frequency (Note 5)  
f
XTAL  
= 315MHz  
Crystal Tolerance  
Input Capacitance  
ppm  
pF  
From each pin to ground  
6.2  
Recommended Crystal Load  
Capacitance  
C
C
3
pF  
pF  
LOAD  
LOAD  
Maximum Crystal Load  
Capacitance  
10  
Note 1: Note 1: 100% tested at T = +25°C. Guaranteed by design and characterization over temperature.  
A
Note 2: IRSEL is internally set to 375MHz IR mode. It can be left open when the 375MHz image rejection setting is desired. A 1nF  
capacitor is recommended in noisy environments.  
Note 3: BER = 2 x 10-3, Manchester encoded, data rate = 4kbps, IF bandwidth = 280kHz.  
Note 4: Input impedance is measured at the LNAIN pin. Note that the impedance includes the 15nH inductive degeneration con-  
nected from the LNA source to ground. The equivalent input circuit is 50Ω in series with 2.2pF.  
Note 5: Crystal oscillator frequency for other RF carrier frequency within the 300MHz to 450MHz range is (f - 10.7MHz)/64 for  
RF  
XTALSEL = 0V, and (f - 10.7MHz)/32 for XTALSEL = AV  
.
RF  
DD  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
RF A  
DD  
SUPPLY CURRENT  
SUPPLY CURRENT  
BIT-ERROR RATE  
vs. SUPPLY VOLTAGE  
vs. RF FREQUENCY  
vs. AVERAGE RF INPUT POWER  
ꢜꢛꢞ  
ꢜꢛꢜ  
ꢜꢛꢄ  
ꢜꢛꢆ  
ꢜꢛꢝ  
ꢜꢛꢃ  
ꢜꢛꢊ  
ꢄꢛꢟ  
ꢅꢞꢊ  
ꢟꢞꢝ  
ꢟꢞꢊ  
ꢝꢞꢝ  
ꢝꢞꢊ  
ꢄꢞꢝ  
ꢀꢁꢁ  
ꢀꢁ  
ꢠꢃꢊꢜꢡꢗ  
ꢥ ꢉꢍꢍꢊꢦꢧ  
ꢓꢤ  
ꢠꢃꢊꢝꢡꢒ  
ꢠꢢꢜꢡꢗ  
ꢠꢝꢜꢡꢗ  
ꢥ ꢍꢀꢢꢊꢦꢧ  
ꢓꢤ  
ꢠꢢꢝꢡꢒ  
ꢄꢝꢊ  
ꢠꢋꢝꢡꢒ  
ꢣꢄꢊꢡꢒ  
ꢁꢂꢀ  
ꢁꢂꢁꢀ  
ꢣꢄꢊꢡꢗ  
ꢆꢛꢜ  
ꢃꢀꢀꢇ ꢃꢀꢀꢈ  
ꢆꢛꢊ  
ꢆꢛꢃ  
ꢆꢛꢝ  
ꢆꢛꢆ  
ꢆꢛꢄ  
ꢆꢛꢞ  
ꢋꢝꢊ  
ꢆꢊꢊ  
ꢆꢝꢊ  
ꢄꢊꢊ  
ꢝꢊꢊ  
ꢃꢀꢄꢀ ꢃꢀꢄꢁ ꢃꢀꢀꢆ ꢃꢀꢀꢅ  
ꢃꢀꢀꢢ ꢃꢀꢀꢉ  
ꢋꢌꢍꢍꢎꢏ ꢐꢑꢎꢒꢁꢓꢔ ꢕꢐꢖ  
ꢌꢍ ꢍꢌꢎꢏꢐꢎꢑꢒꢓ ꢔꢀꢕꢖꢗ  
ꢋꢑꢒꢓꢋꢔꢒ ꢕꢖꢗꢘꢙ ꢗꢚꢛꢒꢓ ꢜꢝꢞꢟꢠ  
RSSI AND DELTA  
vs. IF INPUT POWER  
RSSI vs. RF INPUT POWER  
SENSITIVITY vs. TEMPERATURE  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢆꢟꢞ  
ꢝꢃꢊꢊ  
ꢝꢃꢊꢞ  
ꢝꢃꢊꢄ  
ꢝꢃꢊꢟ  
ꢝꢃꢊꢜ  
ꢝꢃꢃꢊ  
ꢝꢃꢃꢞ  
ꢝꢃꢃꢄ  
ꢝꢃꢃꢟ  
ꢝꢃꢃꢜ  
ꢞꢡꢄ  
ꢞꢡꢞ  
ꢞꢡꢊ  
ꢃꢡꢠ  
ꢃꢡꢟ  
ꢃꢡꢄ  
ꢃꢡꢞ  
ꢃꢡꢊ  
ꢠꢟꢄ  
ꢠꢟꢠ  
ꢠꢟꢊ  
ꢃꢟꢡ  
ꢃꢟꢋ  
ꢃꢟꢄ  
ꢃꢟꢠ  
ꢃꢟꢊ  
ꢍꢌꢁꢠ ꢎꢡ ꢖꢕꢍꢏꢋ ꢍꢢꢣꢌꢎ  
ꢊꢤꢞꢥ ꢚꢌꢎ  
ꢖꢡ ꢚꢁꢕꢦꢣꢖꢦꢋꢧ ꢨ ꢞꢜꢊꢩꢧꢪ  
ꢎꢍ ꢘꢁꢏꢢꢔꢎꢢꢒꢣ ꢤ ꢞꢠꢊꢥꢣꢦ  
ꢤ ꢜ  
ꢠꢟꢞ  
ꢁꢧꢨꢢꢎꢛ  
ꢢꢢ  
ꢃꢟꢞ  
ꢊꢟꢞ  
ꢨ ꢄꢆꢆꢀꢧꢪ  
ꢎꢡ  
ꢤ ꢊꢜ  
ꢝꢊꢟꢞ  
ꢝꢃꢟꢞ  
ꢝꢠꢟꢞ  
ꢝꢆꢟꢞ  
ꢁꢧꢨꢢꢎꢛ  
ꢢꢔꢣꢑꢁ  
ꢨ ꢆꢃꢬꢀꢧꢪ  
ꢎꢡ  
ꢕꢛꢛꢌ  
ꢄꢊ  
ꢋꢌꢀꢍꢌꢎꢁꢋꢏꢎꢌ ꢐꢑꢒꢓ  
ꢝꢄꢊ ꢝꢞꢊ  
ꢞꢊ  
ꢟꢊ ꢜꢊ ꢃꢊꢊ ꢃꢞꢊ  
ꢝꢃꢄꢊ ꢝꢃꢞꢊ ꢝꢃꢊꢊ ꢝꢠꢊ ꢝꢟꢊ ꢝꢄꢊ ꢝꢞꢊ  
ꢌꢍ ꢎꢏꢐꢑꢒ ꢐꢓꢔꢕꢌ ꢖꢗꢘꢙꢚ  
ꢝꢤꢊ  
ꢝꢅꢊ  
ꢝꢞꢊ  
ꢝꢆꢊ  
ꢝꢃꢊ  
ꢃꢊ  
ꢌꢍ ꢌꢎꢏꢐꢑ ꢏꢒꢓꢔꢕ ꢖꢗꢘꢙꢚ  
IMAGE REJECTION  
vs. RF FREQUENCY  
IMAGE REJECTION  
vs. TEMPERATURE  
SYSTEM GAIN vs. FREQUENCY  
ꢆꢊ  
ꢝꢊ  
ꢃꢊ  
ꢟꢟ  
ꢟꢊ  
ꢄꢟ  
ꢄꢊ  
ꢆꢟ  
ꢆꢊ  
ꢄꢝ  
ꢏꢢ  
ꢣ ꢆꢃꢝꢀꢤꢥ  
ꢐꢠꢠꢎꢍ  
ꢘꢋꢡꢎꢜꢁꢑꢡ  
ꢄꢝ  
ꢄꢄ  
ꢄꢄ  
ꢄꢆ  
ꢄꢆ  
ꢄꢟ  
ꢄꢟ  
ꢄꢃ  
ꢄꢃ  
ꢞꢊꢛꢜ ꢋꢀꢁꢚꢎ  
ꢍꢎꢧꢎꢒꢙꢋꢣꢑ  
ꢢꢣꢤꢎꢍ  
ꢘꢋꢡꢎꢜꢁꢑꢡ  
ꢣ ꢆꢅꢝꢀꢤꢥ  
ꢏꢢ  
ꢟꢃꢊ  
ꢟꢝꢊ  
ꢟꢆꢊ  
ꢣ ꢄꢆꢆꢀꢤꢥ  
ꢏꢢ  
ꢢ ꢆꢅꢟꢀꢕꢖ  
ꢌꢍ  
ꢌꢍꢣꢀ ꢍꢌꢋꢑ ꢙꢣ  
ꢀꢋꢂꢣꢐꢙ  
ꢦ ꢆꢃꢞꢀꢕꢖ  
ꢌꢍ  
ꢢ ꢆꢃꢟꢀꢕꢖ  
ꢄꢆꢊ  
ꢢ ꢄꢆꢆꢀꢕꢖ  
ꢌꢍ  
ꢍꢌ  
ꢃꢊ  
ꢃꢞ  
ꢝꢊ  
ꢝꢞ  
ꢆꢊ  
ꢠꢋꢊ  
ꢆꢆꢊ  
ꢆꢋꢊ  
ꢄꢋꢊ  
ꢞꢄꢊ  
ꢞꢃꢝ  
ꢃꢊ  
ꢆꢝ  
ꢜꢊ  
ꢠꢝ  
ꢋꢌ ꢌꢍꢎꢏꢐꢎꢑꢒꢓ ꢔꢀꢕꢖꢗ  
ꢌꢍ ꢍꢌꢎꢏꢐꢎꢑꢒꢓ ꢔꢀꢕꢖꢗ  
ꢌꢍꢀꢎꢍꢏꢁꢌꢐꢏꢍ ꢑꢒꢓꢔ  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 3.3V, f = 315MHz, T = +25°C, unless otherwise noted.)  
DD  
RF  
A
NORMALIZED IF GAIN  
vs. IF FREQUENCY  
S11 MAGNITUDE-LOG PLOT OF RFIN  
S11 SMITH PLOT OF RFIN  
ꢀꢁꢂꢃꢄꢅꢆ ꢇꢈꢉꢃꢊ  
ꢆꢝ  
ꢟꢝ  
ꢋꢌꢌꢀꢍꢎ  
ꢃꢝ  
ꢁꢀ  
ꢢꢃꢝ  
ꢢꢟꢝ  
ꢢꢆꢝ  
ꢢꢄꢝ  
ꢢꢡꢝ  
ꢢꢠꢝ  
ꢢꢅꢝ  
ꢃꢌꢌꢀꢍꢎ  
ꢁꢄꢃ  
ꢁꢄꢀ  
ꢆꢃꢡꢀꢓꢔ  
ꢢꢆꢄꢚꢛ  
ꢁꢂꢃ  
ꢄꢃ  
ꢄꢃꢃ  
ꢃꢝ ꢃꢝꢜ ꢟꢝꢞ ꢆꢝꢅ ꢄꢝꢠ ꢡꢝꢡ ꢠꢝꢄ ꢅꢝꢆ ꢞꢝꢟ ꢜꢝꢃ ꢃꢝꢝꢝ  
ꢊꢋ ꢋꢊꢌꢍꢎꢌꢏꢐꢑ ꢒꢀꢓꢔꢕ  
ꢎꢏ ꢏꢐꢑꢒꢓꢑꢔꢕꢖ ꢗꢅꢘꢙꢚ  
REGULATOR VOLTAGE  
vs. REGULATOR CURRENT  
PHASE NOISE  
vs. OFFSET FREQUENCY  
PHASE NOISE  
vs. OFFSET FREQUENCY  
ꢆꢙꢃ  
ꢧ ꢖꢐꢔꢌꢍꢎ  
ꢧ ꢕꢖꢖꢌꢍꢎ  
ꢅꢁ  
ꢅꢁ  
ꢒꢗꢓ  
ꢒꢗꢓ  
ꢆꢙꢝ  
ꢘꢙꢜ  
ꢘꢙꢛ  
ꢘꢙꢅ  
ꢘꢙꢚ  
ꢘꢙꢗ  
ꢠꢄꢝꢟꢑ  
ꢞꢘꢗꢟꢑ  
ꢒꢕꢓ  
ꢒꢡꢓ  
ꢒꢕꢓ  
ꢒꢡꢓ  
ꢞꢛꢗꢟꢑ  
ꢞꢃꢝꢗꢟꢑ  
ꢒꢠꢓ  
ꢒꢠꢓ  
ꢒꢐꢓꢓ  
ꢒꢐꢓꢓ  
ꢒꢐꢗꢓ  
ꢒꢐꢕꢓ  
ꢒꢐꢗꢓ  
ꢒꢐꢕꢓ  
ꢢ ꢗꢙꢝꢖ  
ꢡꢡ  
ꢃꢗ  
ꢘꢗ  
ꢆꢗ  
ꢄꢗ  
ꢐꢑꢃꢒꢓꢔ ꢐꢑꢃꢒꢓꢕ ꢐꢑꢃꢒꢓꢖ ꢐꢑꢃꢒꢓꢗ ꢐꢑꢃꢒꢓꢐ ꢐꢑꢃꢘꢓꢓ ꢐꢑꢃꢘꢓꢐ  
ꢐꢑꢃꢒꢓꢔ ꢐꢑꢃꢒꢓꢕ ꢐꢑꢃꢒꢓꢖ ꢐꢑꢃꢒꢓꢗ ꢐꢑꢃꢒꢓꢐ ꢐꢑꢃꢘꢓꢓ ꢐꢑꢃꢘꢓꢐ  
ꢊꢋꢌꢍꢎꢁꢏꢐꢊ ꢑꢍꢊꢊꢋꢒꢏ ꢓꢔꢁꢕ  
ꢀꢁꢁꢂꢃꢄ ꢁꢅꢃꢆꢇꢃꢈꢉꢊ ꢋꢌꢍꢎꢏ  
ꢀꢁꢁꢂꢃꢄ ꢁꢅꢃꢆꢇꢃꢈꢉꢊ ꢋꢌꢍꢎꢏ  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Pin Description  
PIN  
NAME  
FUNCTION  
TSSOP TQFN  
1
29  
XTAL1  
1st Crystal Input. (See the Phase-Locked Loop section.)  
Positive Analog Supply Voltage. For +5V operation, pin 2 (TSSOP package) is the output of an on-  
chip +3.2V low-dropout regulator and should be bypassed to AGND with a 0.1µF capacitor as close  
as possible to the pin. Pin 7 must be externally connected to the supply from pin 2 and bypassed to  
AGND with a 0.01µF capacitor as close as possible to the pin (see the Voltage Regulator section and  
the Typical Application Circuit).  
2, 7  
4, 30  
AVDD  
3
4
5
6
31  
32  
2
LNAIN  
LNASRC  
AGND  
Low-Noise Amplifier Input. (See the Low-Noise Amplifier section.)  
Low-Noise Amplifier Source for External Inductive Degeneration. Connect inductor to ground to set  
LNA input impedance. (See the Low-Noise Amplifier section.)  
Analog Ground  
Low-Noise Amplifier Output. Connect to mixer through an LC tank filter. (See the Low-Noise Amplifier  
section.)  
3
LNAOUT  
8
9
5
6
7
MIXIN1 1st Differential Mixer Input. Connect through a 100pF capacitor to LC tank filter from LNAOUT.  
MIXIN2 2nd Differential Mixer Input. Connect through a 100pF capacitor to AV side of the LC tank.  
DD  
10  
AGND  
Analog Ground  
Image Rejection Select Pin. Set V  
= 0V to center image rejection at 315MHz. Leave IRSEL  
IRSEL  
11  
8
IRSEL  
unconnected to center image rejection at 375MHz. Set V  
= AV to center image rejection at 433MHz.  
DD  
IRSEL  
Input logic level based on AV , ~3.2V supply.  
DD  
12  
13  
9
MIXOUT 330Ω Mixer Output. Connect to the input of the 10.7MHz bandpass filter.  
10  
DGND  
Digital Ground  
Positive Digital Supply Voltage. Connect to both of the AVDD pins. Bypass to DGND with a 0.01µF  
capacitor as close as possible to the pin (see the Typical Application Circuit).  
14  
15  
16  
11  
12  
14  
DVDD  
AGCDIS AGC Control Pin. Pull high to disable AGC. Input logic level based on V  
voltage.  
DD5  
Crystal Divider Ratio Select Pin. Drive XTALSEL low to select divider ratio of 64, or drive XTALSEL  
high to select divider ratio of 32. Input logic level based on AV , ~3.2V supply.  
DD  
1st Differential Intermediate Frequency Limiter Amplifier Input. Decouple to AGND with a 1500pF  
capacitor.  
XTALSEL  
IFIN1  
17  
18  
15  
16  
2nd Differential Intermediate Frequency Limiter Amplifier Input. Connect to the output of a 10.7MHz  
bandpass filter.  
IFIN2  
19  
20  
21  
22  
23  
17  
18  
19  
20  
22  
DFO  
DSN  
OPP  
DFFB  
DSP  
Data Filter Output  
Negative Data Slicer Input  
Noninverting Op-Amp Input for the Sallen-Key Data Filter  
Data Filter Feedback Node. Input for the feedback of the Sallen-Key data filter.  
Positive Data Slicer Input  
+5V Supply Voltage. Bypass to AGND with a 0.01µF capacitor as close as possible to the pin. For  
24  
23  
V
+5V operation, V  
is the input to an on-chip voltage regulator whose +3.2V output appears at the  
DD5  
DD5  
pin 2 AVDD pin. (See the Voltage Regulator section and the Typical Application Circuit.)  
25  
26  
24  
26  
DATAOUT Digital Baseband Data Output. Output logic level based on V  
PDOUT Peak Detector Output  
voltage.  
DD5  
Power-Down Select Input. Drive this pin with a logic high to power on the IC.  
27  
27  
28  
PWRDN  
Input logic level based on V  
voltage.  
DD5  
28  
XTAL2  
N.C.  
EP  
2nd Crystal Input  
1, 13,  
21, 25  
No Connection  
Exposed Pad (TQFN Only). Connect EP to GND.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
The LC tank filter connected to LNAOUT comprises L3  
and C2 (see the Typical Application Circuit). Select L3 and  
C2 to resonate at the desired RF input frequency. The  
resonant frequency is given by:  
Detailed Description  
The MAX1473 CMOS superheterodyne receiver and a few  
external components provide the complete receive chain  
from the antenna to the digital output data. Depending on  
signal power and component selection, data rates as high  
as 100kbps can be achieved. The MAX1473 is designed  
to receive binary ASK data modulated in the 300MHz  
to 450MHz frequency range. ASK modulation uses a  
difference in amplitude of the carrier to represent logic 0  
and logic 1 data.  
1
f =  
2π  
L
C
TOTAL × TOTAL  
where:  
L
= L3 + L  
PARASITICS  
TOTAL  
C
= C2 + C  
PARASITICS  
TOTAL  
Voltage Regulator  
For operation with a single +3.0V to +3.6V supply voltage,  
connect AVDD, DVDD, and V  
L
and C  
include inductance and  
PARASITICS  
PARASITICS  
capacitance of the PCB traces, package pins, mixer input  
impedance, LNA output impedance, etc. These parasitics  
at high frequencies cannot be ignored, and can have a  
dramatic effect on the tank filter center frequency. Lab  
experimentation should be done to optimize the center  
frequency of the tank.  
to the supply voltage.  
DD5  
For operation with a single +4.5V to +5.5V supply voltage,  
connect V to the supply voltage. An on-chip voltage  
DD5  
regulator drives one of the AVDD pins to approximately  
+3.2V. For proper operation, DVDD and both the AVDD  
pins must be connected together. Bypass V  
, DVDD,  
DD5  
and the pin 7 AVDD pin to AGND with 0.01μF capacitors,  
and the pin 2 AVDD pin to AGND with a 0.1μF capacitor,  
all placed as close as possible to the pins.  
Mixer  
A unique feature of the MAX1473 is the integrated image  
rejection of the mixer. This device eliminates the need  
for a costly front-end SAW filter for most applications.  
Advantages of not using a SAW filter are increased  
sensitivity, simplified antenna matching, less board space,  
and lower cost.  
Low-Noise Amplifier  
The LNA is an NMOS cascode amplifier with off-chip  
inductive degeneration that achieves approximately 16dB  
of power gain with a 2.0dB noise figure and an IIP3 of  
-12dBm. The gain and noise figure are dependent on both  
the antenna matching network at the LNA input and the LC  
tank network between the LNA output and the mixer inputs.  
The mixer cell is a pair of double balanced mixers that  
perform an IQ downconversion of the RF input to the  
10.7MHz IF from a low-side injected LO (i.e., f  
= f  
LO  
RF  
- f ). The image-rejection circuit then combines these  
IF  
The off-chip inductive degeneration is achieved by  
connecting an inductor from LNASRC to AGND. This  
inductor sets the real part of the input impedance at  
LNAIN, allowing for a more flexible input impedance  
match, such as a typical PCB trace antenna. A nominal  
value for this inductor with a 50Ω input impedance is  
15nH, but is affected by PCB trace. See the Typical  
Operating Characteristics for the relationship between the  
inductance and the LNA input impedance.  
signals to achieve a minimum 45dB of image rejection  
over the full temperature range. Low-side injection is  
required due to the on-chip image rejection architecture.  
The IF output is driven by a source-follower biased to  
create a driving impedance of 330Ω; this provides a good  
match to the off-chip 330Ω ceramic IF filter. The voltage  
conversion gain is approximately 13dB when the mixer is  
driving a 330Ω load.  
The IRSEL pin is a logic input that selects one of the three  
The AGC circuit monitors the RSSI output. When the  
RSSI output reaches 2.05V, which corresponds to an RF  
input level of approximately -57dBm, the AGC switches  
on the LNA gain reduction resistor. The resistor reduces  
the LNA gain by 35dB, thereby reducing the RSSI output  
by about 500mV. The LNA resumes high-gain mode when  
the RSSI level drops back below 1.45V (approximately  
-65dBm at RF input) for 150ms. The AGC has a hysteresis  
of ~8dB. With the AGC function, the MAX1473 can reliably  
produce an ASK output for RF input levels up to 0dBm  
with a modulation depth of 18dB.  
possible image-rejection frequencies. The input logic level  
is based on the AV , supply voltage generated by the  
DD  
on-chip voltage regulator (~3.2V). When V  
= 0V, the  
IRSEL  
image rejection is tuned to 315MHz. V  
= AV /2  
IRSEL  
DD  
tunes the image rejection to 375MHz, and when V  
=
IRSEL  
AV , the image rejection is tuned to 433MHz. The IRSEL  
DD  
pin is internally set to AV /2 (image rejection at 375MHz)  
DD  
when it is left unconnected, thereby eliminating the need  
for an external AV /2 voltage.  
DD  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
causing the receiver to be tuned to 315.1MHz rather than  
315.0MHz, an error of about 100kHz, or 320ppm.  
Phase-Locked Loop  
The PLL block contains a phase detector, charge pump/  
integrated loop filter, VCO, asynchronous 64x clock  
divider, and crystal oscillator driver. Besides the crystal,  
this PLL does not require any external components.  
The VCO generates a low-side local oscillator (LO). The  
relationship between the RF, IF, and crystal reference  
frequencies is given by:  
In actuality, the oscillator pulls every crystal. The crystal’s  
natural frequency is really below its specified frequency,  
but when loaded with the specified load capacitance, the  
crystal is pulled and oscillates at its specified frequency.  
This pulling is already accounted for in the specification of  
the load capacitance.  
f
= (f - f )/(32 x M)  
RF IF  
Additional pulling can be calculated if the electrical  
parameters of the crystal are known. The frequency  
pulling is given by:  
XTAL  
where:  
M = 1 (V  
= AV ) or 2 (V  
= 0V)  
XTALSEL  
DD  
XTALSEL  
C
1
1
m
6
To allow the smallest possible IF bandwidth (for best  
sensitivity), the tolerance of the reference must be  
minimized.  
f
=
-
× 10  
p
2
C
C
C
C
case + spec  
case + load  
where:  
f is the amount the crystal frequency pulled in ppm.  
Intermediate Frequency/RSSI  
p
The IF section presents a differential 330Ω load to  
provide matching for the off-chip ceramic filter. The six  
internal AC-coupled limiting amplifiers produce an overall  
gain of approximately 65dB, with a bandpass filter-type  
response centered near the 10.7MHz IF frequency with  
a 3dB bandwidth of approximately 11.5MHz. The RSSI  
circuit demodulates the IF by producing a DC output  
proportional to the log of the IF signal level, with a slope  
of approximately 14.2mV/dB (see the Typical Operating  
Characteristics).  
C
C
C
C
is the motional capacitance of the crystal.  
m
is the case capacitance.  
case  
spec  
load  
is the specified load capacitance.  
is the actual load capacitance.  
When the crystal is loaded as specified, i.e., C  
=
load  
C
, the frequency pulling equals zero.  
spec  
Data Filter  
The data filter is implemented as a 2nd-order lowpass  
Sallen-Key filter. The pole locations are set by the  
combination of two on-chip resistors and two external  
capacitors. Adjusting the value of the external capacitors  
changes the corner frequency to optimize for different  
data rates. The corner frequency should be set to  
approximately 1.5 times the fastest expected data rate  
from the transmitter. Keeping the corner frequency near  
the data rate rejects any noise at higher frequencies,  
resulting in an increase in receiver sensitivity.  
The AGC circuit monitors the RSSI output. When the  
RSSI output reaches 2.05V, which corresponds to an RF  
input level of approximately -57dBm, the AGC switches  
on the LNA gain reduction resistor. The resistor reduces  
the LNA gain by 35dB, thereby reducing the RSSI output  
by about 500mV. The LNA resumes high-gain mode when  
the RSSI level drops back below 1.45V (approximately  
-65dBm at RF input) for 150ms. The AGC has a hysteresis  
of ~8dB. With the AGC function, the MAX1473 can reliably  
produce an ASK output for RF input levels up to 0dBm  
with modulation depth of 18dB.  
The configuration shown in Figure 1 can create a  
Butterworth or Bessel response. The Butterworth filter  
offers a very flat amplitude response in the passband and  
a rolloff rate of 40dB/decade for the two-pole filter. The  
Bessel filter has a linear phase response, which works well  
for filtering digital data. To calculate the value of C7 and  
C6, use the following equations along with the coefficients  
in Table 1:  
Applications Information  
Crystal Oscillator  
The XTAL oscillator in the MAX1473 is designed to  
present a capacitance of approximately 3pF between the  
XTAL1 and XTAL2. If a crystal designed to oscillate with  
a different load capacitance is used, the crystal is pulled  
away from its stated operating frequency, introducing an  
error in the reference frequency. Crystals designed to  
operate with higher differential load capacitance always  
pull the reference frequency higher. For example, a  
4.7547MHz crystal designed to operate with a 10pF load  
capacitance oscillates at 4.7563MHz with the MAX1473,  
Table 1. Coefficents to Calculate C7 and C6  
FILTER TYPE  
Butterworth (Q = 0.707)  
Bessel (Q = 0.577)  
a
b
1.414  
1.3617  
1.000  
0.618  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Data Slicer  
b
C7 =  
C6 =  
The purpose of the data slicer is to take the analog  
output of the data filter and convert it to a digital signal.  
This is achieved by using a comparator and comparing  
the analog input to a threshold voltage. The output logic  
a 100k π f  
(
)( )  
(
)
c
a
4 100k π f  
( ) ( )  
( )  
c
level is based on V  
voltage supply. One input is  
DD5  
supplied by the data filter output. Both comparator inputs  
are accessible off chip to allow for different methods of  
generating the slicing threshold, which is applied to the  
second comparator input.  
where f is the desired 3dB corner frequency.  
C
For example, choose a Butterworth filter response with a  
corner frequency of 5kHz:  
1.000  
The suggested data slicer configuration uses a resistor  
(R1) connected between DSN and DSP with a capacitor  
(C8) from DSN to DGND (Figure 2). This configuration  
averages the analog output of the filter and sets the  
threshold to approximately 50% of that amplitude. With  
this configuration, the threshold automatically adjusts as  
the analog signal varies, minimizing the possibility for  
errors in the digital data. The sizes of R1 and C8 affect  
how fast the threshold tracks to the analog amplitude. Be  
sure to keep the corner frequency of the RC circuit much  
lower than the lowest expected data rate.  
C7 =  
450pF  
1.414 100k3.14 5kHz  
)( )( )(  
(
)
Choosing standard capacitor values changes C7 to 470pF  
and C6 to 220pF, as shown in the Typical Application  
Circuit.  
MAX1473  
Note that a long string of zeros or 1s can cause the  
threshold to drift. This configuration works best if a coding  
scheme, such as Manchester coding, which has an equal  
number of zeros and 1s, is used.  
ꢀꢁꢁꢂ  
ꢃꢄꢅ  
ꢃꢄꢈ  
ꢅꢆꢆꢇ  
ꢅꢆꢆꢇΩ  
To prevent continuous toggling of DATAOUT in the  
absence of an RF signal due to noise, hysteresis can be  
added to the data slicer as shown in Figure 3.  
ꢈꢈ  
ꢃꢄꢄꢎ  
ꢅꢋ  
ꢃꢄꢌ  
ꢈꢅ  
ꢌꢍꢍ  
ꢉꢏ  
ꢉꢊ  
For further information on Data Slicer options, please refer  
to Maxim Application Note 3671, Data Slicing Techniques  
Figure 1. Sallen-Key Lowpass Data Filter  
MAX1473  
ꢀꢁꢂꢁ  
ꢃꢄꢅꢆꢇꢈ  
MAX1473  
ꢀꢁꢂꢁ  
ꢃꢄꢅꢆꢇꢈ  
ꢊꢍ  
ꢊꢔ  
ꢀꢃꢑ  
ꢌꢒ  
ꢀꢓꢎ  
ꢊꢉ  
ꢀꢃꢐ  
ꢀꢁꢂꢁꢎꢏꢂ  
ꢈꢌ  
ꢈꢊ  
ꢈꢋ  
ꢈꢉ  
ꢊꢋ  
ꢊꢎ  
ꢀꢃꢏ  
ꢊꢒ  
ꢀꢃꢓ  
ꢉꢐ  
ꢀꢑꢌ  
ꢀꢁꢂꢁꢌꢍꢂ  
ꢆꢕ  
ꢋꢎꢐꢂꢅꢎꢑꢁꢄ  
ꢈꢉ  
ꢆꢔ  
Figure 2. Generating Data Slicer Threshold  
Figure 3. Generating Data Slicer Hysteresis  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
for UHF ASK Receivers.  
Peak Detector  
MAX1473  
The peak detector output (PDOUT), in conjunction with  
an external RC filter, creates a DC output voltage equal  
to the peak value of the data signal. The resistor provides  
a path for the capacitor to discharge, allowing the peak  
detector to dynamically follow peak changes of the data  
filter output voltage. For faster receiver startup, the circuit  
shown in Figure 4 can be used.  
ꢀꢁꢂꢁ  
ꢃꢄꢅꢆꢇꢈ  
ꢉꢊ  
ꢉꢕ  
ꢐꢑ  
ꢉꢓ  
ꢉꢎ  
ꢀꢁꢂꢁꢌꢍꢂ  
ꢀꢃꢔ  
ꢀꢒꢌ  
ꢔꢀꢌꢍꢂ  
ꢀꢃꢏ  
Layout Considerations  
ꢉꢊꢋ  
A properly designed PCB is an essential part of any RF/  
microwave circuit. On high-frequency inputs and outputs,  
use controlled-impedance lines and keep them as short  
as possible to minimize losses and radiation. At high  
frequencies, trace lengths that are on the order of λ/10 or  
longer act as antennas.  
ꢖꢗꢘꢒ  
Keepingthetracesshortalsoreducesparasiticinductance.  
Generally, 1in of a PCB trace adds about 20nH of parasitic  
inductance. The parasitic inductance can have a dramatic  
effect on the effective inductance of a passive component.  
For example, a 0.5in trace connecting a 100nH inductor  
adds an extra 10nH of inductance or 10%.  
Figure 4. Using PDOUT for Faster Startup  
Control Interface Considerations  
When operating the MAX1473 with a +4.5V to +5.5V  
supply voltage, the PWRDN and AGCDIS pins may be  
driven by a microcontroller with either 3V or 5V interface  
logic levels. When operating the MAX1473 with a +3.0V  
to +3.6V supply, the microcontroller must produce logic  
To reduce the parasitic inductance, use wider traces and  
a solid ground or power plane below the signal traces.  
Also, use low-inductance connections to ground on all  
GND pins, and place decoupling capacitors close to all  
power-supply pins.  
levels which conform to the V and V specifications in  
IH  
IL  
the DC Electrical Characteristics Table for the MAX1473.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Table 2. Component Values for Typical Application Circuit  
COMPONENT  
VALUE FOR f = 433MHz  
VALUE FOR f = 315MHz  
DESCRIPTION  
RF  
RF  
C1  
C2  
100pF  
2.7pF  
100pF  
4.7pF  
5%  
±0.1pF  
C3  
100pF  
100pF  
5%  
C4  
100pF  
100pF  
5%  
C5  
1500pF  
220pF  
1500pF  
220pF  
10%  
C6  
5%  
C7  
470pF  
470pF  
5%  
C8  
0.47µF  
220pF  
0.47µF  
220pF  
20%  
C9  
10%  
C10  
C11  
C12  
C13  
C14  
C15  
L1  
0.01µF  
0.1µF  
0.01µF  
0.1µF  
20%  
20%  
15pF  
15pF  
Depends on XTAL  
15pF  
15pF  
Depends on XTAL  
0.01µF  
0.01µF  
56nH  
0.01µF  
0.01µF  
120nH  
20%  
20%  
5% or better**  
L2  
15nH  
15nH  
5% or better**  
L3  
15nH  
27nH  
5% or better**  
R1  
5.1kΩ  
5.1kΩ  
5%  
R2  
Open  
Open  
R3  
Short  
Short  
X1(÷64)  
X1 (÷32)  
Y1  
6.6128MHz*  
13.2256MHz*  
10.7MHz ceramic filter  
4.7547MHz*  
9.5094MHz*  
10.7MHz ceramic filter  
Crystek or Hong Kong X’tal  
Crystek or Hong Kong X’tal  
Murata  
*Crystal frequencies shown are for ÷64 (V  
**Wirewound recommended.  
= 0V) and ÷32 (V  
= V ).  
XTALSEL  
XTALSEL DD  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Typical Application Circuit  
V
DD  
AV  
DD  
IF V IS  
DD  
THEN AV IS  
DD  
(SEE TABLE)  
X1  
3.0V TO 3.6V CONNECTED TO V  
DD  
4.5V TO 5.5V CREATED BY LDO,  
AVAILABLE AT AVDD  
(PIN 2)  
C12  
C13  
C11  
1
2
3
4
28  
XTAL1  
AVDD  
XTAL2  
RF INPUT  
TO/FROM µP  
POWER DOWN  
DATA OUT  
27  
PWRDN  
PDOUT  
C1  
L1  
L2  
26  
25  
LNAIN  
LNASRC  
R2  
MAX1473  
DATAOUT  
C15  
5
6
24  
23  
AGND  
V
DD5  
R3  
LNAOUT  
DSP  
C14  
C3  
AV  
DD  
7
8
9
22  
21  
20  
19  
18  
17  
16  
L3  
AVDD  
DFFB  
OPP  
DSN  
C2  
MIXIN1  
MIXIN2  
AGND  
IRSEL  
MIXOUT  
DGND  
C7  
10  
C4  
DFO  
IFIN2  
C9  
11  
12  
13  
14  
**  
R1  
IFIN1  
XTALSEL  
AGCDIS  
15  
DVDD  
FROM µP  
*
Y1  
C5  
C6  
C8  
IF FILTER  
C10  
IN  
OUT  
GND  
COMPONENT VALUES  
IN TABLE 2  
** SEE MIXER SECTION  
* SEE PHASE-LOCKED LOOP SECTION  
Chip Information  
PROCESS: CMOS  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Functional Diagram  
ꢀꢁꢂꢍꢌꢗ  
ꢂꢛꢗꢎꢇꢍ ꢀꢁꢂꢃꢄꢅ ꢆꢇꢈꢇꢁꢉ ꢆꢇꢈꢇꢁꢊ  
ꢇꢌꢍꢒꢀ  
ꢉꢉ  
ꢆꢇꢈꢃꢄꢅ  
ꢉꢊ  
ꢇꢋꢇꢁꢉ ꢇꢋꢇꢁꢊ  
ꢉꢣ ꢉꢢ  
ꢉꢠ  
0˚  
ꢇꢋ ꢀꢇꢆꢇꢅꢇꢁꢛ  
ꢂꢆꢘꢍ  
ꢂꢄꢅꢃꢆꢂꢅꢇꢗ  
ꢛꢂꢇꢁ  
ꢗꢃꢁꢅꢌꢃꢀ  
ꢀꢁꢂ  
ꢀꢁꢂꢇꢁ  
ꢂꢑꢎꢎ  
ꢇꢆꢂꢛꢒ  
ꢌꢒꢝꢒꢗꢅꢇꢃꢁ  
ꢊꢖ  
90˚  
MAX1473  
ꢞꢟꢊꢑ ꢌꢒꢛ  
ꢌꢍꢍꢇ  
ꢎꢎꢠ  
ꢂꢑꢎꢎ  
ꢎꢑꢎꢎ  
ꢎꢂꢅꢂ  
ꢋꢇꢀꢅꢒꢌ  
ꢎꢇꢑꢇꢎꢒ  
ꢓꢔ ꢕꢖ  
ꢉꢖ  
ꢑꢗꢃ  
ꢎꢋꢉ  
ꢎꢋꢊ  
ꢉꢏꢏꢐΩ  
ꢉꢏꢏꢐΩ  
ꢘꢙꢂꢍꢒ  
ꢀꢃꢃꢘ  
ꢉꢞ  
ꢎꢛꢁꢎ  
ꢂꢛꢁꢎ  
ꢎꢒꢅꢒꢗꢅꢃꢌ  
ꢋꢇꢀꢅꢒꢌ  
ꢎꢂꢅꢂ  
ꢍꢀꢇꢗꢒꢌ  
ꢠꢡꢉꢏ  
ꢗꢌꢔꢍꢅꢂꢀ  
ꢎꢌꢇꢑꢒꢌ  
ꢘꢃꢚꢒꢌ  
ꢎꢃꢚꢁ  
ꢉꢕ  
ꢊꢢ  
ꢊꢣ  
ꢊꢠ  
ꢊꢏ ꢊꢞ ꢉꢤ  
ꢊꢕ  
ꢊꢉ  
ꢊꢊ  
ꢈꢅꢂꢀꢍꢒꢀ  
ꢈꢅꢂꢀꢉ ꢈꢅꢂꢀꢊ  
ꢘꢚꢌꢎꢁ ꢎꢂꢅꢂꢃꢄꢅ  
ꢎꢍꢁ ꢎꢍꢘ ꢎꢋꢃ  
ꢘꢎꢃꢄꢅ ꢃꢘꢘ  
ꢎꢋꢋꢓ  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
28 TSSOP  
PACKAGE CODE  
U28+1  
OUTLINE NO.  
21-0066  
LAND PATTERN NO.  
90-0171  
32 Thin QFN-EP  
T3255+3  
21-0140  
90-0001  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX1473  
315MHz/433MHz ASK Superheterodyne  
Receiver with Extended Dynamic Range  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
Added lead-free parts and exposed pad in Ordering Information and Pin Description  
tables  
4
5/10  
1, 8  
Updated Absolute Maximum Ratings, AC Electrical Characteristics, Pin Description,  
Layout Considerations, Typical Application Circuit, Functional Diagram, and Package  
Information; added Voltage Regulator section to the Detailed Description section  
2, 3, 4, 8, 9, 12,  
13, 14  
5
1/11  
Updated DC Electrical and AC Electrical Characteristics tables, replaced TOC 4,  
updated Tables 1 and 2 and Figure 1; updated Phase-Locked Loop, Data Filter, Data  
Slicer, and Layout Considerations sections  
6
7
1/12  
1/19  
3, 5, 6, 10–13  
2–5, 8–11, 14  
Updated Absolute Maximum Ratings, DC Electrical Characteristics, DC Electrical  
Characteristics, Pin Description table, Detailed Description, and Typical Application Circuit  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2019 Maxim Integrated Products, Inc.  
16  

相关型号:

MAX1474

Miniature Electronically Trimmable Capacitor
MAXIM

MAX14740

Provides Robust Bidirectional Power Path
MAXIM

MAX14740EWP+T

Power Supply Support Circuit,
MAXIM

MAX14741EWP+T

Provides Robust Bidirectional Power Path
MAXIM

MAX14742

Provides Robust Bidirectional Power Path
MAXIM

MAX14742EWP+T

Provides Robust Bidirectional Power Path
MAXIM

MAX14745

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM

MAX14745AEWX

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM

MAX14745AEWXT

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM

MAX14745BEWX

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM

MAX14745BEWX+T

Power Supply Management Circuit,
MAXIM

MAX14745BEWXT

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems
MAXIM