LTC3350EUHF#PBF [Linear]

LTC3350 - High Current Supercapacitor Backup Controller and System Monitor; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C;
LTC3350EUHF#PBF
型号: LTC3350EUHF#PBF
厂家: Linear    Linear
描述:

LTC3350 - High Current Supercapacitor Backup Controller and System Monitor; Package: QFN; Pins: 38; Temperature Range: -40°C to 85°C

文件: 总46页 (文件大小:731K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3350  
High Current Supercapacitor  
Backup Controller and  
System Monitor  
FeaTures  
DescripTion  
TheLTC®3350isabackuppowercontrollerthatcancharge  
and monitor a series stack of one to four supercapacitors.  
The LTC3350’s synchronous step-down controller drives  
N-channelMOSFETsforconstantcurrent/constantvoltage  
n
High Efficiency Synchronous Step-Down CC/CV  
Charging of One to Four Series Supercapacitors  
n
Step-Up Mode in Backup Provides Greater  
Utilization of Stored Energy in Supercapacitors  
n
14-Bit ADC for Monitoring System Voltages/Currents, chargingwithprogrammableinputcurrentlimit.Inaddition,  
Capacitance and ESR  
the step-down converter can run in reverse as a step-up  
converter to deliver power from the supercapacitor stack  
to the backup supply rail. Internal balancers eliminate the  
need for external balance resistors and each capacitor has  
a shunt regulator for overvoltage protection.  
n
n
n
Active Overvoltage Protection Shunts  
Internal Active Balancers—No Balance Resistors  
V : 4.5V to 35V, V  
: Up to 5V per Capacitor,  
CAP(n)  
IN  
Charge/Backup Current: 10+A  
n
Programmable Input Current Limit Prioritizes System  
Load Over Capacitor Charge Current  
The LTC3350 monitors system voltages, currents, stack  
capacitance and stack ESR which can all be read over  
n
n
n
Dual Ideal Diode PowerPath™ Controller  
All N-FET Charger Controller and PowerPath Controller  
Compact 38-Lead 5mm × 7mm QFN Package  
2
the I C/SMBus. The dual ideal diode controller uses  
N-channel MOSFETs for low loss power paths from the  
input and supercapacitors to the backup system supply.  
The LTC3350 is available in a low profile 38-lead 5mm ×  
7mm × 0.75mm QFN surface mount package.  
applicaTions  
n
High Current 12V Ride-Through UPS  
Servers/Mass Storage/High Availability Systems  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
PowerPath are trademarks of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Patents pending.  
n
Typical applicaTion  
High Current Supercapacitor Charger and Backup Supply  
I
(STEP-DOWN)  
I
BACKUP  
CHG  
V
OUT  
V
IN  
Backup Operation  
INFET VOUTSP VOUTSN  
P
= 25W  
BACKUP  
PFI  
OUTFB  
V
> V  
OUT  
V
CAP  
(DIRECT  
CONNECT)  
OUT  
2V/DIV  
OUTFET  
TGATE  
V
< V  
OUT  
CAP  
(STEP-UP)  
V
OUT  
V
CAP  
2V/DIV  
SW  
V
CAP  
V
IN  
BGATE  
2V/DIV  
LTC3350  
V
IN  
ICAP  
VCAP  
CAP4  
0V  
2
V
CAP  
I C  
10F  
10F  
10F  
10F  
3350 TA01a  
400ms/DIV  
BACK PAGE APPLICATION CIRCUIT  
CAP3  
CAP2  
CAP1  
CAPRTN  
3350 TA01a  
CAPFB  
3350fc  
1
For more information www.linear.com/LTC3350  
LTC3350  
Table oF conTenTs  
Features..................................................... 1  
Applications ................................................ 1  
Typical Application ........................................ 1  
Description.................................................. 1  
Absolute Maximum Ratings.............................. 3  
Order Information.......................................... 3  
Pin Configuration .......................................... 3  
Electrical Characteristics................................. 4  
Typical Performance Characteristics ................... 7  
Pin Functions..............................................10  
Block Diagram.............................................13  
Timing Diagram...........................................14  
Operation...................................................14  
Introduction............................................................ 14  
Bidirectional Switching Controller—Step-Down  
Applications Information ................................21  
Digital Configuration...............................................21  
Capacitor Configuration..........................................21  
Capacitor Shunt Regulator Programming ...............21  
Setting Input and Charge Currents .........................21  
Low Current Charging and High Current Backup ....22  
Setting V  
Voltage...............................................22  
CAP  
Power-Fail Comparator Input Voltage Threshold ...22  
Setting V Voltage in Backup Mode....................23  
OUT  
Compensation.........................................................24  
Minimum V Voltage in Backup Mode.................24  
CAP  
Optimizing Supercapacitor Energy Storage Capacity..  
25  
Capacitor Selection Procedure ...............................26  
Inductor Selection...................................................26  
Mode ...................................................................... 14  
Bidirectional Switching Controller—Step-Up Mode 15  
Ideal Diodes............................................................ 16  
C
OUT  
and C  
Capacitance....................................27  
CAP  
Power MOSFET Selection .......................................28  
Schottky Diode Selection........................................28  
Gate Drive Supply (DRV ) .................................... 17  
Top MOSFET Driver Supply (C , D ).......................29  
B B  
CC  
Undervoltage Lockout (UVLO) ............................... 17  
RT Oscillator and Switching Frequency .................. 17  
Input Overvoltage Protection ................................. 17  
INTV /DRV and IC Power Dissipation ...............29  
CC CC  
Minimum On-Time Considerations..........................30  
Ideal Diode MOSFET Selection ...............................30  
PCB Layout Considerations ....................................30  
Register Map ..............................................32  
Register Descriptions ....................................33  
Typical Applications......................................39  
Package Description .....................................44  
Revision History ..........................................45  
Typical Application .......................................46  
Related Parts..............................................46  
V
CAP  
DAC ............................................................... 17  
Power-Fail (PF) Comparator.................................... 17  
Charge Status Indication......................................... 17  
Capacitor Voltage Balancer .................................... 17  
Capacitor Shunt Regulators.................................... 18  
2
I C/SMBus and SMBALERT.................................... 18  
Analog-to-Digital Converter .................................... 18  
Capacitance and ESR Measurement ...................... 18  
Monitor Status Register.......................................... 19  
Charge Status Register...........................................20  
Limit Checking and Alarms.....................................20  
Die Temperature Sensor .........................................20  
General Purpose Input............................................20  
3350fc  
2
For more information www.linear.com/LTC3350  
LTC3350  
absoluTe MaxiMuM raTings  
(Note 1)  
pin conFiguraTion  
V , VOUTSP, VOUTSN............................... –0.3V to 40V  
IN  
VCAP.......................................................... –0.3V to 22V  
TOP VIEW  
CAP4-CAP3, CAP3-CAP2, CAP2-CAP1,  
CAP1-CAPRTN.......................................... –0.3V to 5.5V  
DRV , OUTFB, CAPFB, SMBALERT, CAPGD,  
CC  
38 37 36 35 34 33 32  
PFO, GPI, SDA, SCL .................................. –0.3V to 5.5V  
BST......................................................... –0.3V to 45.5V  
PFI ............................................................. –0.3V to 20V  
CAP_SLCT0, CAP_SLCT1................................–0.3 to 3V  
BST to SW ................................................ –0.3V to 5.5V  
VOUTSP to VOUTSN, ICAP to VCAP ......... –0.3V to 0.3V  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
31 VOUTSP  
30 VOUTSN  
SMBALERT  
CAPGD  
VC  
INTV  
DRV  
29  
28  
CC  
CC  
27 BGATE  
BST  
CAPFB  
OUTFB  
SGND  
RT  
26  
39  
PGND  
25 TGATE  
24 SW  
I
.................................................................100mA  
INTVCC  
I
, I  
, I  
............................................ 600mA  
.........................................10mA  
CAP(1,2,3,4) CAPRTN  
23 VCC2P5  
22 ICAP  
21 VCAP  
I
, I  
GPI 10  
ITST 11  
CAPGD PFO SMBALERT  
Operating Junction Temperature Range  
20  
CAPRTN 12  
OUTFET  
(Notes 2, 3)..............................................–40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
13 14 15 16 17 18 19  
UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
T
JMAX  
= 125°C, θ = 34°C/W  
JA  
EXPOSED PAD (PIN 39) IS PGND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3350EUHF#PBF  
LTC3350IUHF#PBF  
TAPE AND REEL  
PART MARKING*  
3350  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3350EUHF#TRPBF  
LTC3350IUHF#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
3350  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3350fc  
3
For more information www.linear.com/LTC3350  
LTC3350  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = VOUT = 12V, VDRVCC = VINTVCC unless otherwise  
noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switching Regulator  
l
l
V
Input Supply Voltage  
4.5  
35  
V
IN  
I
Input Quiescent Current (Note 4)  
4
mA  
Q
V
Maximum Regulated V  
Feedback Voltage  
V
Full Scale (1111b)  
Zero Scale (0000b)  
1.188  
1.176  
1.200  
1.200  
1.212  
1.224  
V
V
CAPFBHI  
CAP  
CAPDAC  
CAPDAC  
V
Minimum Regulated V  
Feedback Voltage  
V
V
0.628  
–50  
0.638  
0.647  
50  
V
CAPFBLO  
CAPFB  
CAP  
l
l
I
CAPFB Input Leakage Current  
Regulated V Feedback Voltage  
= 1.2V  
nA  
CAPFB  
V
1.188  
1.176  
1.200  
1.200  
1.212  
1.224  
V
V
OUTFB  
OUT  
V
OUTFET Turn-Off Threshold  
OUTFB Input Leakage Current  
Falling Threshold  
1.27  
–50  
4.5  
1.3  
1.33  
50  
V
nA  
V
OUTFB(TH)  
OUTFB  
l
l
I
V = 1.2V  
OUTFB  
V
V
V
Voltage in Step-Up Mode  
V = 0V  
IN  
35  
OUTBST  
UVLO  
OUT  
l
l
INTV Undervoltage Lockout  
Rising Threshold  
Falling Threshold  
4.3  
4
4.45  
V
V
CC  
3.85  
l
l
V
V
V
V
DRV Undervoltage Lockout  
Rising Threshold  
Falling Threshold  
4.2  
3.9  
4.35  
V
V
DRVUVLO  
DUVLO  
OVLO  
CC  
3.75  
l
l
V
V
– V  
Differential Undervoltage Lockout  
Rising Threshold  
Falling Threshold  
145  
55  
185  
90  
225  
125  
mV  
mV  
IN  
IN  
CAP  
l
l
Overvoltage Lockout  
Rising Threshold  
Falling Threshold  
37.7  
36.3  
38.6  
37.2  
39.5  
38.1  
V
V
Charge Pump Output Voltage  
Relative to V , 0V ≤ V ≤ 20V  
CAP  
5
V
VCAPP5  
CAP  
Input Current Sense Amplifier  
V
Regulated Input Current Sense Voltage  
(VOUTSP – VOUTSN)  
31.36  
31.04  
32.00  
32.00  
32.64  
32.96  
mV  
mV  
SNSI  
l
l
Charge Current Sense Amplifier  
V
Regulated Charge Current Sense Voltage  
(ICAP – VCAP)  
V
CAP  
= 10V  
31.36  
31.04  
32.00  
32.00  
32.64  
32.96  
mV  
mV  
SNSC  
V
V
V
Common Mode Range (ICAP, VCAP)  
Peak Inductor Current Sense Voltage  
Reverse Inductor Current Sense Voltage  
ICAP Pin Current  
0
20  
65  
10  
V
mV  
mV  
CMC  
PEAK  
REV  
l
l
51  
58  
7
Step-Down Mode  
3.867  
I
Step-Down Mode, V  
= 32mV  
30  
135  
µA  
µA  
ICAP  
SNSC  
Step-Up Mode, V  
= 32mV  
SNSC  
Error Amplifier  
g
g
g
g
V
Voltage Loop Transconductance  
CAP  
1
mmho  
μmho  
μmho  
μmho  
MV  
MC  
MI  
Charge Current Loop Transconductance  
Input Current Loop Transconductance  
64  
64  
V
Voltage Loop Transconductance  
OUT  
400  
MO  
Oscillator  
f
Switching Frequency  
R = 107k  
T
495  
490  
500  
500  
505  
510  
kHz  
kHz  
SW  
l
Maximum Programmable Frequency  
Minimum Programmable Frequency  
R = 53.6k  
1
MHz  
kHz  
T
R = 267k  
T
200  
3350fc  
4
For more information www.linear.com/LTC3350  
LTC3350  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = VOUT = 12V, VDRVCC = VINTVCC unless otherwise  
noted.  
SYMBOL  
DC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum Duty Cycle  
Step-Down Mode  
Step-Up Mode  
97  
87  
98  
93  
99.5  
%
%
MAX  
Gate Drivers  
R
R
R
R
TGATE Pull-Up On-Resistance  
TGATE Pull-Down On-Resistance  
BGATE Pull-Up On-Resistance  
BGATE Pull-Down On-Resistance  
TGATE 10% to 90% Rise Time  
TGATE 10% to 90% Fall Time  
BGATE 10% to 90% Rise Time  
BGATE 10% to 90% Fall Time  
Non-Overlap Time  
2
0.6  
2
Ω
Ω
UP-TG  
DOWN-TG  
UP-BG  
DOWN-BG  
r-TG  
Ω
0.6  
18  
8
Ω
t
t
t
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 3.3nF  
= 3.3nF  
= 3.3nF  
= 3.3nF  
25  
15  
25  
15  
ns  
ns  
ns  
ns  
ns  
ns  
f-TG  
18  
8
r-BG  
f-BG  
50  
85  
NO  
ON(MIN)  
INTV Linear Regulator  
CC  
V
Internal V Voltage  
5.2V ≤ V ≤ 35V  
5
V
INTVCC  
CC  
IN  
Load Regulation  
I
= 50mA  
–1.5  
–2.5  
%
V  
INTVCC  
INTVCC  
PowerPath/Ideal Diodes  
V
V
V
Forward Turn-On Voltage  
Forward Regulation  
Reverse Turn Off  
65  
30  
mV  
mV  
mV  
µs  
FTO  
FR  
–30  
560  
1.5  
RTO  
t
t
t
t
INFET Rise Time  
INFET – V > 3V, C  
= 3.3nF  
= 3.3nF  
IF(ON)  
IF(OFF)  
OF(ON)  
OF(OFF)  
IN  
INFET  
INFET Fall Time  
INFET – V < 1V, C  
µs  
IN  
INFET  
OUTFET Rise Time  
OUTFET Fall Time  
OUTFET – V  
OUTFET – V  
> 3V, C  
< 1V, C  
= 3.3nF  
0.13  
0.26  
µs  
CAP  
CAP  
OUTFET  
OUTFET  
= 3.3nF  
µs  
Power-Fail Comparator  
l
l
l
V
V
PFI Input Threshold (Falling Edge)  
PFI Hysteresis  
1.147  
–50  
1.17  
30  
1.193  
50  
V
mV  
nA  
mV  
μA  
ns  
PFI(TH)  
PFI(HYS)  
I
PFI  
PFI Input Leakage Current  
PFO Output Low Voltage  
PFO High-Z Leakage Current  
PFI Falling to PFO Low Delay  
PFI Rising to PFO High Delay  
V
= 0.5V  
= 5mA  
= 5V  
PFI  
V
I
200  
PFO  
PFO  
SINK  
I
V
PFO  
1
85  
0.4  
μs  
CAPGD  
l
V
V
V
CAPGD Rising Threshold as % of Regulated V  
Feedback Voltage  
V
V
= Full Scale (1111b)  
= Full Scale (1111b)  
90  
92  
94  
1
%
%
CAPFB(TH)  
CAP  
capfb_dac  
CAPGD Hysteresis at CAPFB as a % of Regulated  
Feedback Voltage  
1.25  
200  
CAPFB(HYS)  
capfb_dac  
V
CAP  
CAPGD Output Low Voltage  
I
= 5mA  
mV  
μA  
CAPGD  
CAPGD  
SINK  
l
I
CAPGD High-Z Leakage Current  
V
= 5V  
CAPGD  
3350fc  
5
For more information www.linear.com/LTC3350  
LTC3350  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = VOUT = 12V, VDRVCC = VINTVCC unless otherwise  
noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Analog-to-Digital Converter  
V
V
Measurement Resolution  
16  
Bits  
RES  
General Purpose Input Voltage Range  
Unbuffered  
Buffered  
0
0
5
3.5  
V
V
GPI  
I
General Purpose Input Pin Leakage Current  
GPI Pin Resistance  
Buffered Input  
Buffer Disabled  
1
μA  
GPI  
R
2.5  
MΩ  
GPI  
Measurement System Error  
Measurement Error (Note 5)  
V
ERR  
V
IN  
V
IN  
= 0V  
= 30V  
100  
1.5  
mV  
%
V
V
= 5V  
= 30V  
100  
1.5  
mV  
%
OUTSP  
OUTSP  
V
CAP  
V
CAP  
= 0V  
= 10V  
100  
1.5  
mV  
%
V
V
= 0V, Unbuffered  
= 3.5V, Unbuffered  
2
1
mV  
%
GPI  
GPI  
V
CAP1  
V
CAP1  
= 0V  
= 2V  
2
1
mV  
%
V
CAP2  
V
CAP2  
= 0V  
= 2V  
2
1
mV  
%
V
CAP3  
V
CAP3  
= 0V  
= 2V  
2
1
mV  
%
V
CAP4  
V
CAP4  
= 0V  
= 2V  
2
1
mV  
%
V
V
= 0mV  
= 32mV  
200  
2
µV  
%
SNSI  
SNSI  
V
SNSC  
V
SNSC  
= 0mV  
= 32mV  
200  
2
µV  
%
CAP1 to CAP4  
R
Shunt Resistance  
Maximum Capacitor Voltage with Shunts Enabled 2 or More Capacitors in Stack  
Programming Pins  
ITST Voltage  
I C/SMBus – SDA, SCL, SMBALERT  
0.5  
Ω
V
SHNT  
DV  
3.6  
CAPMAX  
V
ITST  
R
TST  
= 121Ω  
1.185  
1.197  
1.209  
V
2
I
I
Input Leakage Low  
–1  
–1  
1
1
µA  
µA  
V
IL,SDA,SCL  
IH,SDA,SCL  
Input Leakage High  
V
V
Input High Threshold  
1.5  
IH  
Input Low Threshold  
0.8  
V
IL  
f
t
t
t
t
t
SCL Clock Frequency  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
SCL  
Low Period of SCL Clock  
1.3  
0.6  
1.3  
0.6  
0.6  
LOW  
HIGH  
BUF  
High Period of SCL Clock  
Bus Free Time Between Start and Stop Conditions  
Hold Time, After (Repeated) Start Condition  
Setup Time After a Repeated Start Condition  
HD,STA  
SU,STA  
3350fc  
6
For more information www.linear.com/LTC3350  
LTC3350  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = VOUT = 12V, VDRVCC = VINTVCC unless otherwise  
noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.6  
0
TYP  
MAX  
UNITS  
µs  
t
t
t
t
t
Stop Condition Set-Up Time  
Output Data Hold Time  
SU,STO  
HD,DATO  
HD,DATI  
SU,DAT  
SP  
900  
ns  
Input Data Hold Time  
0
ns  
Data Set-Up Time  
100  
ns  
Input Spike Suppression Pulse Width  
SMBALERT Output Low Voltage  
SMBALERT High-Z Leakage Current  
50  
1
ns  
V
I
= 1mA  
200  
mV  
μA  
SMBALERT  
SMBALERT  
SINK  
l
I
V
= 5V  
SMBALERT  
Note 3: The LTC3350 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125˚C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3350 is tested under pulsed load conditions such that  
Note 4: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency. See the Applications Information  
section.  
T ≈ T . The LTC3350E is guaranteed to meet specifications from  
J
A
0°C to 125°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3350I is guaranteed over the –40°C to 125°C operating junction  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
impedance and other environmental factors. The junction temperature  
Note 5: Measurement error is the magnitude of the difference between the  
actual measured value and the ideal value. V  
VOUTSP and VOUTSN, representing input current. V  
is the voltage between  
SNSI  
is the voltage  
SNSC  
between ICAP and VCAP, representing charge current. Error for V  
and  
SNSI  
V
is expressed in μV, a conversion to an equivalent current may be  
SNSC  
made by dividing by the sense resistors, R  
and R , respectively.  
SNSC  
SNSI  
(T , in °C) is calculated from the ambient temperature (T , in °C) and  
J
A
power dissipation (P , in Watts) according to the formula:  
D
T = T + (P θ )  
JA  
J
A
D
where θ = 34°C/W for the UHF package.  
JA  
Typical perForMance characTerisTics  
TA = 25°C, Application Circuit 4 unless otherwise noted.  
Supercapacitor Backup Operation HV Electrolytic Backup Operation  
Shunt Operation Using VCAP2  
5
4
3
2
V
= 2.7V  
P
= 25W  
P
= 25W  
SHUNT  
BACKUP  
BACKUP  
V
OUT  
V
CAP  
2V/DIV  
5V/DIV  
V
CAP  
I
2V/DIV  
CHARGE  
V
OUT  
5V/DIV  
V
IN  
V
2V/DIV  
IN  
5V/DIV  
0V  
1
0
0V  
I
CAP2  
3350 G01  
3350 G02  
400ms/DIV  
BACK PAGE APPLICATION CIRCUIT  
20ms/DIV  
APPLICATION CIRCUIT 6  
–1  
2.68  
2.70 2.71  
3350 G03  
2.64 2.65 2.66 2.67  
2.69  
V
(V)  
CAP2  
3350fc  
7
For more information www.linear.com/LTC3350  
LTC3350  
Typical perForMance characTerisTics  
TA = 25°C, Application Circuit 4 unless otherwise noted.  
IIN and ICHARGE vs VIN  
ICHARGE vs VCAP  
ICHARGE vs VCAP  
4.1  
3.5  
2.9  
2.3  
1.7  
5.00  
3.75  
2.50  
1.25  
0
5.00  
3.75  
2.50  
1.25  
0
I
= 1A  
= 6V  
OUT  
CAP  
V
125°C  
25°C  
–40°C  
I
CHARGE  
I
I
= 2A  
I
I
= 2A  
IN(MAX)  
OUT  
IN(MAX)  
OUT  
= 1A  
= 0A  
V
= 12V  
= 24V  
= 35V  
V
= 12V  
= 24V  
= 35V  
IN  
IN  
IN  
I
IN  
IN  
IN  
IN  
V
V
V
V
21  
26  
(V)  
31  
4
11  
36  
0
6
8
16  
2
4
6
0
8
2
V
V
CAP  
(V)  
V
(V)  
IN  
CAP  
3350 G04  
3350 G06  
3350 G05  
IIN and ICHARGE vs IOUT  
Charger Efficiency vs VCAP  
VCAP vs vcapfb_dac  
5.00  
3.75  
2.50  
1.25  
0
8.00  
6.75  
5.50  
4.25  
3.00  
100  
75  
50  
25  
0
I
= 2A  
I
= 2A  
CHARGE  
IN(MAX)  
V
= 12V  
= 24V  
= 35V  
IN  
IN  
IN  
V
V
I
CHARGE  
I
IN  
I
I
= 2A  
IN(MAX)  
OUT  
= 0A  
V
V
V
= 12V  
IN  
IN  
IN  
= 24V  
= 35V  
1.50  
(A)  
2.25  
0
3.00  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0.75  
3.6  
(V)  
0
5.4  
7.2  
1.8  
I
vcapfb_dac (CODE)  
V
OUT  
CAP  
3350 G07  
3350 G09  
3350 G08  
VCAP vs Temperature  
Efficiency in Boost Mode  
Load Regulation in Boost Mode  
7.210  
7.205  
7.200  
7.195  
7.190  
7.185  
100  
75  
5.000  
4.994  
4.988  
50  
V
V
V
= 2V  
= 3V  
= 4V  
V
CAP  
V
CAP  
V
CAP  
= 2V  
= 3V  
= 4V  
25  
0
CAP  
CAP  
CAP  
4.981  
4.975  
capfb_dac = 15  
I
= 2A  
APPLICATION CIRCUIT 5  
APPLICATION CIRCUIT 5  
CHARGE  
–3  
–2  
–1  
0
1
–3  
–2  
–1  
0
1
28  
TEMPERATURE (°C)  
62  
96  
–40  
130  
–6  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
I
(A)  
I
(A)  
OUT  
OUT  
3350 G11  
3350 G12  
3350 G10  
3350fc  
8
For more information www.linear.com/LTC3350  
LTC3350  
Typical perForMance characTerisTics  
TA = 25°C, Application Circuit 4 unless otherwise noted.  
DRVCC Current vs Boost Inductor  
Current  
IQ vs VIN, Pulse Skipping GPI Code vs Temperature  
4.90  
4.75  
4.60  
4.45  
4.30  
5480  
5475  
5470  
5465  
5460  
5455  
10.0  
7.5  
5.0  
2.5  
0
V
= 1V  
GPI  
V
CAP  
= 4V  
125°C  
25°C  
–40°C  
125°C  
25°C  
–40°C  
APPLICATION CIRCUIT 5  
25  
30  
28  
62  
96  
3
4.5  
10  
35  
–40  
130  
0
6
15  
20  
–6  
1.5  
V
(V)  
TEMPERATURE (°C)  
I
L
(A)  
IN  
3350 G13  
3350 G14  
3350 G15  
INTVCC vs Charge Current  
INTVCC vs Temperature  
5.000  
4.938  
4.875  
4.813  
4.750  
5.000  
V
IN  
= 12V  
4.938  
4.875  
4.813  
4.750  
125°C  
25°C  
–40°C  
2
3
0
4
1
28  
62  
96  
–40  
130  
–6  
I
(A)  
TEMPERATURE (°C)  
CHARGE  
3350 G16  
3350 G17  
3350fc  
9
For more information www.linear.com/LTC3350  
LTC3350  
pin FuncTions  
SCL (Pin 1): Clock Pin for the I C/SMBus Serial Port.  
2
RT (Pin 9): Timing Resistor. The switching frequency of  
the synchronous controller is set by placing a resistor, R ,  
2
T
SDA (Pin 2): Bidirectional Data Pin for the I C/SMBus  
Serial Port.  
from this pin to SGND. This resistor is always required.  
If not present the synchronous controller will not start.  
SMBALERT (Pin 3): Interrupt Output. This open-drain  
output is pulled low when an alarm threshold is exceeded,  
andwillremainlowuntiltheacknowledgementofthepart’s  
response to an SMBus ARA.  
GPI (Pin 10): General Purpose Input. The voltage on this  
pin is digitized directly by the ADC. For high impedance  
inputs an internal buffer can be selected and used to drive  
the ADC. The GPI pin can be connected to a negative  
temperature coefficient (NTC) thermistor to monitor the  
temperature of the supercapacitor stack. A low drift bias  
CAPGD (Pin 4): Capacitor Power Good. This open-drain  
output is pulled low when CAPFB is below 92% of its  
regulation point.  
resistor is required from INTV to GPI and a thermistor  
CC  
is required from GPI to ground. Connect GPI to SGND if  
not used. The digitized voltage on this pin can be read in  
the meas_gpi register.  
VC (PIN 5): Control Voltage Pin. This is the compensation  
node for the charge current, input current, supercapacitor  
stack voltage and output voltage control loops. An RC  
network is connected between VC and SGND. Nominal  
voltage range for this pin is 1V to 3V.  
ITST(Pin 11): Programming Pin forCapacitance TestCur-  
rent. This current is used to partially discharge the capaci-  
tor stack at a precise rate for capacitance measurement.  
This pin servos to 1.2V during a capacitor measurement.  
CAPFB (Pin 6): Capacitor Stack Feedback Pin. This pin  
closes the feedback loop for constant voltage regulation.  
An external resistor divider between VCAP and SGND with  
the center tap connected to CAPFB programs the final  
supercapacitor stack voltage. This pin is nominally equal  
A resistor, R , from this pin to SGND programs the test  
TST  
current. R must be at least 121Ω.  
TST  
CAPRTN (Pin 12): Capacitor Stack Shunt Return Pin. This  
pin is connected to the grounded bottom plate of the first  
super capacitor in the stack through a shunt resistor.  
to the output of the V  
DAC when the synchronous  
CAP  
controller is in constant voltage mode while charging.  
OUTFB (Pin 7): Step-Up Mode Feedback Pin. This pin  
CAP1 (Pin 13): First Supercapacitor Pin. The top plate of  
the first supercapacitor and the bottom plate of the second  
supercapacitor are connected to this pin through a shunt  
resistor.CAP1andCAPRTNareusedtomeasurethevoltage  
acrossthefirstsupercapacitorandtoshuntcurrentaround  
thecapacitortoprovidebalancingandpreventovervoltage.  
The voltage between this pin and CAPRTN is digitized and  
can be read in the meas_vcap1 register.  
closes the feedback loop for voltage regulation of V  
OUT  
duringinputpowerfailureusingthesynchronouscontroller  
in step-up mode. An external resistor divider between  
V
OUT  
and SGND with the center tap connected to OUTFB  
programs the minimum backup supply rail voltage when  
inputpowerisunavailable.Thispinisnominally1.2Vwhen  
in backup and the synchronous controller is not in current  
limit. To disable step-up mode tie OUTFB to INTV .  
CC  
CAP2 (Pin 14): Second Supercapacitor Pin. The top plate  
of the second supercapacitor and the bottom plate of the  
third supercapacitor are connected to this pin through a  
shunt resistor. CAP2 and CAP1 are used to measure the  
voltage across the second supercapacitor and to shunt  
SGND (Pin 8): Signal Ground. All small-signal and com-  
pensation components should be connected to this pin,  
which in turn connects to PGND at one point. This pin  
shouldalsoKelvintothebottomplateofthecapacitorstack.  
3350fc  
10  
For more information www.linear.com/LTC3350  
LTC3350  
pin FuncTions  
current around the capacitor to provide balancing and  
prevent overvoltage. If not used this pin should be shorted  
toCAP1.ThevoltagebetweenthispinandCAP1isdigitized  
and can be read in the meas_vcap2 register.  
VCAP (Pin 21): Supercapacitor Stack Voltage and Charge  
Current Sense Amplifier Negative Input. Connect this pin  
to the top of the supercapacitor stack. The voltage at this  
pin is digitized and can be read in the meas_vcap register.  
CAP3 (Pin 15): Third Supercapacitor Pin. The top plate of  
the third supercapacitor and the bottom plate of the fourth  
supercapacitor are connected to this pin through a shunt  
resistor. CAP3 and CAP2 are used to measure the voltage  
acrossthethirdsupercapacitorandtoshuntcurrentaround  
thecapacitortoprovidebalancingandpreventovervoltage.  
IfnotusedthispinshouldbeshortedtoCAP2. Thevoltage  
between this pin and CAP2 is digitized and can be read in  
the meas_vcap3 register.  
ICAP (Pin 22): Charge Current Sense Amplifier Positive  
Input.TheICAPandVCAPpinsmeasurethevoltageacross  
the sense resistor, R  
, to provide instantaneous cur-  
SNSC  
rent signals for the control loops and ESR measurement  
system. The maximum charge current is 32mV/R  
.
SNSC  
VCC2P5 (Pin 23): Internal 2.5V Regulator Output. This  
regulator provides power to the internal logic circuitry.  
Decouple this pin to ground with a minimum 1μF low ESR  
tantalum or ceramic capacitor.  
CAP4(Pin16):FourthSupercapacitorPin. Thetopplateof  
the fourth supercapacitor is connected to this pin through  
a shunt resistor. CAP4 and CAP3 are used to measure  
the voltage on the capacitor and to shunt current around  
the supercapacitor to provide balancing and prevent  
overvoltage.IfnotusedthispinshouldbeshortedtoCAP3.  
The voltage between this pin and CAP3 is digitized and  
can be read in the meas_vcap4 register. The capacitance  
test current set by the ITST pin is pulled from this pin.  
SW (Pin 24): Switch Node Connection to the Inductor.  
The negative terminal of the boot-strap capacitor, C , is  
B
connected to this pin. The voltage on this pin is also used  
as the source reference for the top side N-channel MOS-  
FET gate drive. In step-down mode, the voltage swing on  
this pin is from a diode (external) forward voltage below  
groundtoV .Instep-upmodethevoltageswingisfrom  
OUT  
ground to a diode forward voltage above V  
.
OUT  
TGATE (Pin 25): Top Gate Driver Output. This pin is the  
outputofafloatinggatedriverforthetopexternalN-channel  
CFP (Pin 17): VCAPP5 Charge Pump Flying Capacitor  
Positive Terminal. Place a 0.1μF between CFP and CFN.  
MOSFET. The voltage swing at this pin is ground to V  
OUT  
CFN (Pin 18): VCAPP5 Charge Pump Flying Capacitor  
Negative Terminal. Place a 0.1μF between CFP and CFN.  
+ DRV .  
CC  
BST (Pin 26): TGATE Driver Supply Input. The positive  
VCAPP5 (Pin 19): Charge Pump Output. The internal  
terminal of the boot-strap capacitor, C , is connected to  
B
charge pump drives this pin to VCAP + INTV which is  
this pin. This pin swings from a diode voltage drop below  
CC  
used as the high side rail for the OUTFET gate drive and  
charge current sense amplifier. Connect a 0.1μF capacitor  
from VCAPP5 to VCAP.  
DRV up to V  
+ DRV .  
OUT CC  
CC  
BGATE (Pin 27): Bottom Gate Driver Output. This pin  
drives the bottom external N-channel MOSFET between  
OUTFET (Pin 20): Output Ideal Diode Gate Drive Out-  
PGND and DRV .  
CC  
put. This pin controls the gate of an external N-channel  
DRV (Pin 28): Power Rail for Bottom Gate Driver. Con-  
CC  
MOSFET used as an ideal diode between V  
and V  
.
OUT  
CAP  
nect to INTV or to an external supply. Decouple this pin  
CC  
The gate drive receives power from the internal charge  
pump output VCAPP5. The source of the N-channel  
MOSFETshouldbeconnectedtoVCAPandthedrainshould  
beconnectedtoVOUTSN.IftheoutputidealdiodeMOSFET  
is not used, OUTFET should be left floating.  
to ground with a minimum 2.2μF low ESR tantalum or  
ceramic capacitor. Do not exceed 5.5V on this pin.  
3350fc  
11  
For more information www.linear.com/LTC3350  
LTC3350  
pin FuncTions  
INTV (Pin29):Internal5VRegulatorOutput.Thecontrol  
INFET (Pin 33): Input Ideal Diode Gate Drive Output. This  
CC  
circuits and gate drivers (when connected to DRV ) are  
pin controls the gate of an external N-channel MOSFET  
CC  
powered from this supply. If not connected to DRV ,  
used as an ideal diode between V and V . The gate  
CC  
IN OUT  
decouple this pin to ground with a minimum 1μF low ESR  
drive receives power from an internal charge pump. The  
source of the N-channel MOSFET should be connected  
tantalum or ceramic capacitor.  
to V and the drain should be connected to VOUTSP. If  
IN  
VOUTSN (Pin 30): Input Current Limiting Amplifier Nega-  
tive Input. A sense resistor, R  
the input ideal diode MOSFET is not used, INFET should  
, between VOUTSP and  
SNSI  
be left floating.  
VOUTSN sets the input current limit. The maximum input  
current is 32mV/R . An RC network across the sense  
V (Pin 34): External DC Power Source Input. Decouple  
SNSI  
IN  
resistor can be used to modify loop compensation. To  
disable input current limit, connect this pin to VOUTSP.  
this pin with at least 0.1μF to ground. The voltage at this  
pin is digitized and can be read in the meas_vin register.  
VOUTSP (Pin 31): Backup System Supply Voltage and  
InputCurrentLimitingAmplifierPositiveInput.Thevoltage  
acrosstheVOUTSPandVOUTSNpinsareusedtoregulate  
input current. This pin also serves as the power supply  
for the IC. The voltage at this pin is digitized and can be  
read in the meas_vout register.  
CAP_SLCT0, CAP_SLCT1 (Pins 35, 36): CAP_SLCT0 and  
CAP_SLCT1 set the number of super-capacitors used.  
Refer to Table 1 in the Applications Information section.  
PFI (Pin 37): Power-Fail Comparator Input. When the  
voltage at this pin drops below 1.17V, PFO is pulled low  
and step-up mode is enabled.  
VOUTM5 (Pin 32): V  
– 5V Regulator. This pin is regu-  
OUT  
OUT  
PFO (Pin 38): Power-Fail Status Output. This open-drain  
output is pulled low when a power fault has occurred.  
lated to 5V below V  
or to ground if V  
< 5V. This  
OUT  
rail provides power to the input current sense amplifier.  
PGND(ExposedPadPin39):PowerGround.Theexposed  
pad must be connected to a continuous ground plane on  
thesecondlayeroftheprintedcircuitboardbyseveralvias  
directlyundertheLTC3350forratedthermalperformance.  
It must be tied to the SGND pin.  
Decouple this pin with at least 1μF to V  
.
OUT  
3350fc  
12  
For more information www.linear.com/LTC3350  
LTC3350  
block DiagraM  
34  
33  
INFET  
31  
VOUTSP  
32  
VOUTM5  
30  
VOUTSN  
20  
OUTFET  
17  
CFP  
18  
CFM  
V
IN  
VCAPP5  
19  
INTV  
+
+
CC  
CHARGE  
PUMP  
+
–5V LDO  
30mV  
+
30mV  
V
+
x37.5  
+
REF  
+
VCAP  
21  
x37.5  
I
IN  
22  
ICAP  
V
Vcapfb_dac  
REF  
+
D/A  
vcapfb_dac[3:0]  
CAPFB  
+ I  
REF  
BST  
26  
6
V
+
REF  
OUTFB  
VC  
TGATE  
25  
I
CHG  
7
5
SW  
24  
BIDIRECTIONAL  
SWITCHING  
DRV  
CC  
RT  
CONTROLLER  
28  
27  
9
OSC  
BGATE  
CAP4  
INTV  
CC  
29  
V
5V LDO  
OUTSP  
16  
15  
VCC2P5  
CAPGD  
23  
4
2.5V LDO  
V
REF  
BANDGAP  
INTV  
CC  
SHUNT  
BALANCER  
BALANCER  
BALANCER  
BALANCER  
+
Vcapfb_dac  
CAPFB  
CONTROLLER  
CAP3  
CAP2  
CAP1  
INTV  
CC  
SHUNT  
I
IN  
CONTROLLER  
ICHG  
VCAP  
OUT  
+
V
REF  
PFI  
V
REF  
14  
13  
37  
38  
V
V
IN  
PFO  
CAP4  
CAP3  
CAP2  
CAP1  
CAPRTN  
DTEMP  
A/D  
SHUNT  
CONTROLLER  
LOGIC  
CAP_SLCT0  
CAP_SLCT1  
SMBALERT  
SDA  
35  
36  
3
SHUNT  
CONTROLLER  
CAPRTN  
ITST  
12  
11  
+
V
REF  
2
SCL  
1
+
GPI  
10  
8
GPIBUF  
SGND  
PGND  
39  
3350 BD  
3350fc  
13  
For more information www.linear.com/LTC3350  
LTC3350  
TiMing DiagraM  
Definition of Timing for F/S Mode Devices on the I2C Bus  
SDA  
t
t
SU(DAT)  
t
t
BUF  
r
LOW  
HD(SDA)  
t
f
t
f
t
SP  
t
t
r
SCL  
t
t
t
SU(STO)  
HD(SDA)  
SU(STA)  
t
t
HIGH  
HD(DAT)  
S
Sr  
P
S
3350 TD  
S = START, Sr = REPEATED START, P = STOP  
operaTion  
Introduction  
The LTC3350 monitors system voltages, currents, and  
die temperature. A general purpose input (GPI) pin is  
provided to measure an additional system parameter or  
implement a thermistor measurement. In addition, the  
LTC3350canmeasurethecapacitanceandresistanceofthe  
supercapacitorstack.Thisprovidesindicationofthehealth  
TheLTC3350isahighlyintegratedbackuppowercontroller  
and system monitor. It features a bidirectional switching  
controller, input and output ideal diodes, supercapacitor  
shunts/balancers, a power-fail comparator, a 14-bit ADC  
2
and I C/SMBus programmability with status reporting.  
of the supercapacitors and, along with the V  
voltage  
CAP  
If V is above an externally programmable PFI threshold  
measurement, provides information on the total energy  
stored and the maximum power that can be delivered.  
IN  
voltage,thesynchronouscontrolleroperatesinstep-down  
mode and charges a stack of supercapacitors. A program-  
mable input current limit ensures that the supercapacitors  
willautomaticallybechargedatthehighestpossiblecharge  
Bidirectional Switching Controller—Step-Down Mode  
Thebidirectionalswitchingcontrollerisdesignedtocharge  
a series stack of supercapacitors (Figure 1). Charging  
proceeds at a constant current until the supercapacitors  
reach their maximum charge voltage determined by the  
current that the input can support. If V is below the PFI  
IN  
threshold, then the synchronous controller will run in  
reverse as a step-up converter to deliver power from the  
supercapacitor stack to V  
.
OUT  
CAPFBservovoltageandtheresistordividerbetweenV  
CAP  
The two ideal diode controllers drive external MOSFETs to  
provide low loss power paths from V and V to V  
and CAPFB. The maximum charge current is determined  
.
by the value of the sense resistor, R , used in series  
IN  
CAP  
OUT  
SNSC  
The ideal diodes work seamlessly with the bidirectional  
with the inductor. The charge current loop servos the  
voltageacrossthesenseresistorto32mV.Whencharging  
begins, aninternalsoft-start ramp willincrease the charge  
controller to provide power from the supercapacitors to  
V
without backdriving V .  
IN  
OUT  
current from zero to full current in 2ms. The V  
voltage  
CAP  
The LTC3350 provides balancing and overvoltage protec-  
tion to a series stack of one to four supercapacitors. The  
internal capacitor voltage balancers eliminate the need  
for external balance resistors. Overvoltage protection is  
provided by shunt regulators that use an internal switch  
and an external resistor across each supercapacitor.  
and charge current can be read from the meas_vcap and  
meas_ichrg registers, respectively.  
3350fc  
14  
For more information www.linear.com/LTC3350  
LTC3350  
operaTion  
V
OUT  
V
IN  
(TO SYSTEM)  
R
SNSI  
V
INFET  
VOUTSP VOUTSN  
IN  
LTC3350  
+ –  
+
30mV  
INPUT  
CURRENT  
CONTROLLER  
V
+
REF  
+
I
IN  
TGATE  
BGATE  
BIDIRECTIONAL  
SWITCHING  
CONTROLLER  
STEP-DOWN MODE  
CHARGE  
CURRENT  
CONTROLLER  
I
+
REF  
ICAP  
+
37.5  
R
SNSC  
I
CHG  
VCAP  
CAPACITOR  
VOLTAGE  
CONTROLLER  
+
V
REF  
D/A  
vcapfb_dac[3:0]  
CAPFB  
+
+
+
+
VC  
3350 F01  
Figure 1. Power Path Block Diagram—Power Available from VIN  
Bidirectional Switching Controller—Step-Up Mode  
TheLTC3350providesconstantpowercharging(forafixed  
IN  
V ) by limiting the input current drawn by the switching  
The bidirectional switching controller acts as a step-up  
converter to provide power from the supercapacitors to  
controller in step-down mode. The input current limit will  
reduce charge current to limit the voltage across the input  
V
when input power is unavailable (Figure 2). The PFI  
OUT  
sense resistor, R , to 32mV. If the combined system  
SNSI  
comparator enables step-up mode. V  
regulation is set  
OUT  
loadplussupercapacitorchargecurrentislargeenoughto  
cause the switching controller to reach the programmed  
input current limit, the input current limit loop will reduce  
the charge current by precisely the amount necessary  
to enable the external load to be satisfied. Even if the  
charge current is programmed to exceed the allowable  
input current, the input current will not be violated; the  
supercapacitor charger will reduce its current as needed.  
Note that the part’s quiescent and gate drive currents are  
not included in the input current measurement.The input  
current can be read from the meas_iin register.  
by a resistor divider between V  
and OUTFB. To disable  
OUT  
step-up mode tie OUTFB to INTV .  
CC  
Step-up mode can be used in conjunction with the output  
ideal diode. The V  
regulation voltage can be set below  
OUT  
the capacitor stack voltage. Upon removal of input power,  
power to V will be provided from the supercapacitor  
OUT  
stack via the output ideal diode. V  
and V  
will fall as  
CAP  
OUT  
the load current discharges the supercapacitor stack. The  
output ideal diode will shut off when the voltage on OUTFB  
falls below 1.3V and V  
will fall a PN diode (~700mV)  
OUT  
below V . If OUTFB falls below 1.2V when the output  
CAP  
3350fc  
15  
For more information www.linear.com/LTC3350  
LTC3350  
operaTion  
V
< V  
OUT  
CAP  
V
OUT  
(TO SYSTEM)  
LTC3350  
OUTFB  
VOUTSN  
OUTPUT  
VOLTAGE  
CONTROLLER  
V
> V  
OUT  
CAP  
+
V
REF  
+
OUTFET  
+
30mV  
TGATE  
BGATE  
BIDIRECTIONAL  
SWITCHING  
R
SNSC  
CONTROLLER  
+
+
+
+
STEP-UP MODE  
ICAP  
VCAP  
3350 F02  
VC  
Figure 2. Power Path Block Diagram—Power Backup  
ideal diode shuts off, the synchronous controller will turn  
on immediately. If OUTFB is above 1.2V when the output  
ideal diode shuts off, the load current will flow through the  
bodydiodeoftheoutputidealdiodeN-channelMOSFETfor  
aperiodoftimeuntilOUTFBfallsto1.2V.Thesynchronous  
controller will regulate OUTFB to 1.2V when it turns on,  
30mV (V ) below the voltage at V or V . Within  
FWD IN CAP  
the amplifier’s linear range, the small-signal resistance  
of the ideal diode will be quite low, keeping the forward  
drop near 30mV. At higher current levels, the MOSFETs  
will be in full conduction.  
The input ideal diode prevents the supercapacitors from  
holding up V  
ground.  
while the supercapacitors discharge to  
OUT  
back driving V during backup mode. A Fast-Off com-  
IN  
parator shuts off the N-channel MOSFET if V falls 30mV  
IN  
The synchronous controller in step-up mode will run  
nonsynchronously when V is less than 100mV below  
belowV .ThePFIcomparatoralsoshutsofftheMOSFET  
OUT  
during power failure.  
CAP  
V
. It will run synchronously when V  
falls 200mV  
OUT  
below V  
CAP  
Theoutputidealdiodeprovidesapathforthesupercapaci-  
.
OUT  
torstopowerV  
whenV isunavailable. Inadditiontoa  
OUT  
IN  
Fast-Offcomparator,theoutputidealdiodealsohasaFast-  
Ideal Diodes  
On comparator that turns on the external MOSFET when  
The LTC3350 has two ideal diode controllers that drive  
external N-channel MOSFETs. The ideal diodes consist of  
a precision amplifier that drives the gates of N-channel  
V
drops 65mV below V . The output ideal diode will  
CAP  
OUT  
shut off when OUTFB is just above regulation allowing the  
synchronous controller to power V in step-up mode.  
OUT  
MOSFETs whenever the voltage at V  
is approximately  
OUT  
3350fc  
16  
For more information www.linear.com/LTC3350  
LTC3350  
operaTion  
Gate Drive Supply (DRV )  
defaults to full scale (1.2V) and is programmed via the  
vcapfb_dac register.  
CC  
The bottom gate driver is powered from the DRV pin. It  
is normally connected to the INTV pin. An external LDO  
can also be used to power the gate drivers to minimize  
power dissipation inside the IC. See the Applications  
Information section for details.  
CC  
Supercapacitors lose capacitance as they age. By initially  
CC  
setting the V  
DAC to a low setting, the final charge  
CAP  
voltage on the supercapacitors can be increased as they  
age to maintain a constant level of stored backup energy  
throughout the lifetime of the supercapacitors.  
Undervoltage Lockout (UVLO)  
Power-Fail (PF) Comparator  
Internal undervoltage lockout circuits monitor both the  
INTV and DRV pins. The switching controller is kept  
The LTC3350 contains a fast power-fail (PF) comparator  
which switches the part from charging to backup mode in  
CC  
CC  
off until INTV rises above 4.3V and DRV rises above  
CC  
CC  
4.2V. Hysteresis on the UVLOs turn off the controller if  
either INTV falls below 4V or DRV falls below 3.9V.  
the event the input voltage, V , falls below an externally  
IN  
programmedthresholdvoltage.Inbackupmode,theinput  
idealdiodeshutsoffandthesupercapacitorspowertheload  
either directly through the output ideal diode or through  
the synchronous controller in step-up mode.  
CC  
CC  
ChargingisnotenableduntilVOUTSNis185mVabovethe  
supercapacitor voltage and V is above the PFI threshold.  
IN  
ChargingisdisabledwhenVOUTSNfallstowithin90mVof  
thesupercapacitorvoltageorV isbelowthePFIthreshold.  
The PF comparator threshold voltage is programmed by  
an external resistor divider via the PFI pin. The output of  
the PF comparator also drives the gate of an open-drain  
NMOStransistortoreportthestatusviathePFOpin.When  
input power is available the PFO pin is high impedance.  
IN  
RT Oscillator and Switching Frequency  
The RT pin is used to program the switching frequency.  
A resistor, R , from this pin to ground sets the switching  
T
When V falls below the PF comparator threshold, PFO  
IN  
frequency according to:  
is pulled down to ground.  
53.5  
fSW MHz =  
(
)
The output of the PF comparator may also be read from  
the chrg_pfo bit in the chrg_status register.  
R kΩ  
(
)
T
R alsosetsthescalefactorforthecapacitormeasurement  
T
Charge Status Indication  
value reported in the meas_cap register, described in the  
Capacitance and ESR Measurement section of this data  
sheet.  
The LTC3350 includes a comparator to report the status  
of the supercapacitors via an open-drain NMOS transistor  
on the CAPGD pin. This pin is pulled to ground until the  
Input Overvoltage Protection  
CAPFB pin voltage rises to within 8% of the V  
DAC  
CAP  
setting. Once the CAPFB pin is above this threshold, the  
CAPGD pin goes high impedance.  
The LTC3350 has overvoltage protection on its input. If  
IN  
V exceeds 38.6V, the switching controller will hold the  
switchingMOSFETsoff.Thecontrollerwillresumeswitch-  
The output of this comparator may also be read from the  
chrg_cappg bit in the chrg_status register.  
ing if V falls below 37.2V. The input ideal diode MOSFET  
IN  
remains on during input overvoltage.  
Capacitor Voltage Balancer  
V
CAP  
DAC  
The LTC3350 has an integrated active stack balancer. This  
balancer slowly balances all of the capacitor voltages to  
within about 10mV of each other. This maximizes the life  
of the supercapacitors by keeping the voltage on each as  
low as possible to achieve the needed total stack voltage.  
3350fc  
The feedback reference for the CAPFB servo point can  
be programmed using an internal 4-bit digital-to-analog  
converter(DAC).Thereferencevoltagecanbeprogrammed  
from 0.6375V to 1.2V in 37.5mV increments. The DAC  
17  
For more information www.linear.com/LTC3350  
LTC3350  
operaTion  
When the difference between any two capacitor volt-  
ages exceeds about 10mV, the capacitor with the largest  
voltage is discharged with a resistive balancer at about  
10mA until all capacitor voltages are within 10mV. The  
balancers are disabled in backup mode.  
happens (see Limit Check and Alarms and Monitor Status  
Register). The LTC3350 will deassert the SMBALERT  
pin only after responding to an SMBus alert response  
address (ARA), an SMBus protocol used to respond to a  
SMBALERT. ThehostwillreadfromtheARA(0b0001100)  
and each part asserting SMBALERT will begin to respond  
with its address. The responding parts arbitrate in such a  
way that only the part with the lowest address responds.  
Only when a part has responded with its address does it  
release the SMBALERT signal. If multiple parts are as-  
serting the SMBALERT signal then multiple reads from  
the ARA are needed. For more information refer to the  
SMBus specification.  
Capacitor Shunt Regulators  
In addition to balancing, there is a need to protect each  
capacitorfromovervoltageduringcharging.Thecapacitors  
in the stack will not have exactly the same capacitance due  
to manufacturing tolerances or uneven aging. This will  
cause the capacitor voltages to increase at different rates  
with the same charge current. If this mismatch is severe  
enough or if the capacitors are being charged to near their  
maximum voltage, it becomes necessary to limit the volt-  
age increase on some capacitors while still charging the  
other capacitors. Up to 500mA of current may be shunted  
around a capacitor whose voltage is approaching the pro-  
grammable shunt voltage. This shunt current reduces the  
chargerateofthatcapacitorrelativetotheothercapacitors.  
If a capacitor continues to approach its shunt voltage, the  
charge current is reduced. This protects the capacitor  
from overvoltage while still charging the other capacitors,  
although at a reduced rate of charge. The shunt voltage is  
programmable in the vshunt register. Shunt voltages up  
to 3.6V may be programmed in 183.5µV increments. The  
shunt regulators can be disabled by programming vshunt  
to zero (0x0000). The default value is 0x3999, resulting  
in a shunt voltage of 2.7V.  
Details on the registers accessible through this interface  
areavailableintheRegisterMapandRegisterDescriptions  
sections of this data sheet.  
Analog-to-Digital Converter  
TheLTC3350hasanintegrated14-bitsigma-deltaanalog-  
to-digital converter (ADC). This converter is automatically  
multiplexed between all of the measured channels and  
2
its results are stored in registers accessible via the I C/  
SMBus port. There are 11 channels measured by the ADC,  
each of which takes approximately 1.6ms to measure. In  
addition to providing status information about the system  
voltages and currents, some of these measurements are  
used by the LTC3350 to balance, protect, and measure  
the capacitors in the stack.  
The result of the analog-to-digital conversion is stored in  
a 16-bit register as a signed, two’s complement number.  
The lower two bits of this number are sub-bits. These bits  
are ADC outputs which are too noisy to be reliably used  
on any single conversion, however, they may be included  
if multiple samples are averaged.  
2
I C/SMBus and SMBALERT  
2
TheLTC3350containsanI C/SMBusport.Thisportallows  
communication with the LTC3350 for configuration and  
readingbacktelemetrydata.TheportsupportstwoSMBus  
formats, read word and write word. Refer to the SMBus  
specification for details of these formats. The registers  
accessible via this port are organized on an 8-bit address  
busandeachregisteris16bitswide.Thecommandcode”  
(or sub-address) of the SMBus read/write word formats is  
the 8-bit address of each of these registers. The address  
of the LTC3350 is 0b0001001.  
The measurements from the ADC are directly stored in the  
meas_vcap1, meas_vcap2, meas_vcap3, meas_vcap4,  
meas_gpi, meas_vin, meas_vcap, meas_vout, meas_iin,  
meas_ichg and meas_dtemp registers.  
Capacitance and ESR Measurement  
The LTC3350 has the ability to measure the capacitance  
andequivalentseriesresistance(ESR)ofitssupercapacitor  
The SMBALERT pin is asserted (pulled low) whenever an  
enabled limit is exceeded or when an enabled status event  
3350fc  
18  
For more information www.linear.com/LTC3350  
LTC3350  
operaTion  
stack.Thismeasurementisperformedwithminimalimpact  
to the system, and can be done while the supercapacitor  
backup system is online. This measurement discharges  
the capacitor stack by a small amount (200mV). If input  
power fails during this test, the part will go into backup  
mode and the test will terminate.  
The capacitance and capacitor ESR measurements do not  
automatically run as the other measurements do. They  
must be initiated by setting the ctl_strt_capesr bit in the  
ctl_reg register. This bit will automatically clear once the  
measurement begins. If the cap_esr_per register is set to  
a non-zero value, the measurement will be repeated after  
the time programmed in the cap_esr_per register. Each  
LSB in the cap_esr_per register represents 10 seconds.  
The capacitance test is performed only once the  
supercapacitors have finished charging. The test  
temporarily disables the charger, then discharges the  
supercapacitors by 200mV with a precision current.  
The discharge time is measured and used to calculate  
the capacitance with the result of this measurement  
stored in the meas_cap register. The number reported is  
proportional to the capacitance of the entire stack. Two  
different scales can be set using the ctl_cap_scale bit in  
the ctl_reg register. If ctl_cap_scale is set to 0 (for large  
value capacitor stacks), use the following equation to  
convert the meas_cap value to Farads:  
The capacitance and ESR measurements may fail to  
complete for several reasons, in which case the respective  
mon_cap_failed or mon_esr_failed bit will be set. The ca-  
pacitancetestmayfailduetoapowerfailureorifthe200mV  
dischargetripstheCAPGDcomparator.TheESRtestwillalso  
failifthecapacitancetestfails.TheESRtestusesthecharger  
to supply a current and then measures the supercapacitor  
stack voltage with and without that current. If the ESR is  
greater than 1024 times R , the ESR measurement will  
SNSC  
fail.TheESRmeasurementisadaptive;itusesknowledgeof  
the ESR from previous measurements to program the test  
current. The capacitance and ESR tests should initially be  
run several times when first powering up to get the most  
accuracy out of the system. It is possible for the first few  
measurementstogivelowqualityresultsorfailtocomplete  
and after running several times will complete with a quality  
result. The leakage on supercapacitors is initially very high  
after being charged. Many supercapacitor manufacturers  
specifytheleakagecurrentafterbeingchargedfor72hours.  
Itisexpectedthatcapacitormeasurementsconductedprior  
to this time will read low.  
RT  
RTST  
CSTACK  
=
336µF meas_cap  
Ifctl_cap_scaleissetto1(forsmallvaluecapactorstacks),  
use the following equation to convert the meas_cap value  
to Farads:  
RT  
RTST  
CSTACK  
=
3.36µF meas_cap  
In the two previous equations R is the resistor on the RT  
T
pin and R is the resistor on the ITST pin.  
TST  
Monitor Status Register  
The ESR test is performed immediately following the  
capacitance test. The switching controller is switched on  
and off several times. The changes in charge current and  
stack voltage are measured. These measurements are  
used to calculate the ESR relative to the charge current  
sense resistor. The result of this measurement is stored  
in the meas_esr register. The value reported in meas_esr  
can be converted to ohms using the following equation:  
The LTC3350 has a monitor status register (mon_status)  
which contains status bits indicating the state of the ca-  
pacitance and ESR monitoring system. These bits are set  
and cleared by the capacitor monitor upon certain events  
during a capacitor and ESR measurement, as described  
in the Capacitance and ESR Measurement section.  
Thereisacorrespondingmsk_mon_statusregister.Writing  
a one to any of these bits will cause the SMBALERT pin to  
pull low when the corresponding bit in the msk_mon_sta-  
tus register has a rising edge. This allows reduced polling  
of the LTC3350 when waiting for a capacitance or ESR  
measurement to complete.  
RSNSC  
64  
RESR  
=
meas_esr  
where R  
is the charge current sense resistor in series  
SNSC  
with the inductor.  
3350fc  
19  
For more information www.linear.com/LTC3350  
LTC3350  
operaTion  
Details of the mon_status and msk_mon_status registers  
can be found in the Register Descriptions section of this  
data sheet.  
Alloftheindividualmeasuredvoltageshaveacorresponding  
undervoltage (uv) and overvoltage (ov) alarm level. All of  
theindividualcapacitorvoltagesarecomparedtothesame  
alarmlevels,setinthecap_ov_lvlandcap_uv_lvlregisters.  
The input current measurement has an overcurrent (oc)  
alarm programmed in the iin_oc_lvl register. The charge  
current has an undercurrent alarm programmed in the  
ichg_uc_lvl register.  
Charge Status Register  
TheLTC3350chargerstatusregister(chrg_status)contains  
data about the state of the charger, switcher, shunts, and  
balancers. Details of this register may be found in the  
Register Description sections of this data sheet.  
Die Temperature Sensor  
Limit Checking and Alarms  
The LTC3350 has an integrated die temperature sensor  
monitored by the ADC and digitized to the meas_dtemp  
register. An alarm may be set on die temperature by  
settingthedtemp_cold_lvland/ordtemp_hot_lvlregisters  
and enabling their respective alarms in the msk_alarms  
register. To convert the code in the meas_dtemp register  
to degrees Celsius use the following:  
The LTC3350 has a limit checking function that will check  
each measured value against I C/SMBus programmable  
limits. This feature is optional, and all the limits are dis-  
abled by default. The limit checking is designed to simplify  
system monitoring, eliminating the need to continuously  
poll the LTC3350 for measurement data.  
2
T
(°C) = 0.028 • meas_dtemp – 251.4  
DIE  
If a measured parameter goes outside of the programmed  
levelofanenabledlimit,theassociatedbitinthealarm_reg  
register is set high and the SMBALERT pin is pulled low.  
General Purpose Input  
2
Thegeneralpurposeinput(GPI)pincanbeusedtomeasure  
an additional system parameter. The voltage on this pin is  
directly digitized by the ADC. For high impedance inputs,  
an internal buffer may be selected and used to drive the  
ADC.Thisbufferisenabledbysettingthectl_gpi_buffer_en  
bit in the ctl_reg register. With this buffer, the input range  
is limited from 0V to 3.5V. If this buffer is not used, the  
range is from 0V to 5V, however, the input stage of the  
ADC will draw about 0.4µA per volt from this pin. The ADC  
input is a switched capacitor amplifier running at about  
1MHz, so this current draw will be at that frequency. The  
pin current can be eliminated at the cost of reduced range  
and increased offset by enabling the buffer.  
ThisinformstheI C/SMBushostalimithasbeenexceeded.  
The alarms register may then be read to determine exactly  
which programmed limits have been exceeded.  
AsingleADCissharedbetweenthe11channelswithabout  
18ms between consecutive measurements of the same  
channel. In a transient condition, it is possible for these  
parameters to exceed their programmed levels in between  
consecutiveADCmeasurementswithoutsettingthealarm.  
Once the LTC3350 has responded to an SMBus ARA the  
SMBALERT pin is released. The part will not pull the pin  
low again until another limit is exceeded. To reset a limit  
that has been exceeded, it must be cleared by writing a  
one to the respective bit in the clr_alarms register.  
Alarms are available for this pin voltage with levels  
programmedusingthegpi_uv_lvlandgpi_ov_lvlregisters.  
These alarms are enabled using the msk_gpi_uv and  
msk_gpi_ov bits in the msk_alarms register.  
A number of the LTC3350’s registers are used for limit  
checking. Individual limits are enabled or disabled in the  
msk_alarmsregisters.Onceanenabledalarm’smeasured  
valueexceedstheprogrammedlevelforthatalarmthealarm  
is set. That alarm may be cleared by writing a one to the  
appropriate bit of the clr_alarms register or by writing a  
zero to the appropriate bit to the msk_alarms register. All  
alarms that have been set and have not yet been cleared  
may be read in the alarm_reg register.  
To monitor the temperature of the supercapacitor stack,  
the GPI pin can be connected to a negative temperature  
coefficient (NTC) thermistor. A low drift bias resistor is  
required from INTV to GPI and a thermistor is required  
CC  
from GPI to ground. Connect GPI to SGND if not used.  
3350fc  
20  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
Digital Configuration  
V . CAPRTN, CAP1, CAP2, CAP3 and CAP4 must be  
SHUNT  
connected to the supercapacitors through resistors which  
serve as ballasts for the internal shunts. The shunt cur-  
Although the LTC3350 has extensive digital features, only  
a few are required for basic use. The shunt voltage should  
be programmed via the vshunt register if a value other  
than the default 2.7V is required. The capacitor voltage  
feedback reference defaults to 1.2V; it may be changed  
in the vcapfb_dac register.  
rent is approximately V  
divided by twice the shunt  
SHUNT  
resistance value. For a V  
of 2.7V, 2.7Ω resistors  
SHUNT  
should be used for 500mA of shunt current. The shunts  
have a duty cycle of up to 75%. The power dissipated in  
a single shunt resistor is approximately:  
All other digital features are optional and used for moni-  
toring. The ADC automatically runs and stores conver-  
sionstoregisters(e.g.,meas_vcap).CapacitanceandESR  
measurements only run if requested, however, they may  
bescheduledtorepeatifdesired(ctl_strt_capesrandcap_  
esr_per). Each measured parameter has programmable  
limits (e.g., vcap_uv_lvl and vcap_ov_lvl) which may  
trigger an alarm and SMBALERT when enabled. These  
alarms are disabled by default.  
3VS2HUNT  
16RSHUNT  
PSHUNT  
andtheresistorsshouldbesizedaccordingly.Iftheshunts  
are disabled, make R 100Ω.  
SHUNT  
Since the shunt current is less than what the switcher can  
supply, the on-chip logic will automatically reduce the  
chargingcurrenttoallowtheshunttoprotectthecapacitor.  
This greatly reduces the charge rate once any one shunt is  
Capacitor Configuration  
activated. For this reason, V  
should be programmed  
SHUNT  
The LTC3350 may be used with one to four supercapaci-  
tors. If less than four capacitors are used, the capacitors  
mustbepopulatedfromCAPRTNtoCAP4, andtheunused  
CAP pins must be tied to the highest used CAP pin. For  
example, if three capacitors are used, CAP4 should be tied  
to CAP3. If only two capacitors are used, both CAP4 and  
CAP3 should be tied to CAP2. The number of capacitors  
used must be programmed on the CAP_SLCT0 and  
CAP_SLCT1 pins by tying the pins to VCC2P5 for a one  
and ground for a zero as shown in Table 1. The value  
programmed on these pins may be read back from the  
as high as possible to reduce the likelihood of it activating  
during a charge cycle. Ideally, V would be set high  
SHUNT  
enough so that any likely capacitor mismatches would not  
causetheshuntstoturnon.Thiskeepsthechargeroperat-  
ing at the highest possible charge current and reduces the  
charge time. If the shunts never turn on, the charge cycle  
completes quickly and the balancers eventually equalize  
the voltage on the capacitors. The shunt setting may also  
be used to discharge the capacitors for testing, storage  
or other purposes.  
2
Setting Input and Charge Currents  
num_caps register via I C/SMBus.  
The maximum input current is determined by the resis-  
Table 1  
tance across the VOUTSP and VOUTSN pins, R  
. The  
SNSI  
num_caps  
NUMBER OF  
CAPACITORS  
CAP_SLCT1 CAP_SLCT0 REGISTER VALUE  
maximum charge current is determined by the value of  
the sense resistor, R , used in series with the induc-  
0
0
1
1
0
1
0
1
0
1
2
3
1
2
3
4
SNSC  
tor. The input and charge current loops servo the voltage  
across their respective sense resistor to 32mV. Therefore,  
the maximum input and charge currents are:  
32mV  
RSNSI  
Capacitor Shunt Regulator Programming  
I
=
IN(MAX)  
2
V
is programmed via the I C/SMBus interface and  
SHUNT  
32mV  
RSNSC  
defaults to 2.7V at initial power-up. V  
the voltage on any individual capacitor by turning on a  
serves to limit  
SHUNT  
ICHG(MAX)  
=
shunt around that capacitor as the voltage approaches  
3350fc  
21  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
The peak inductor current limit, I  
, is 80% higher than  
PEAK  
The following equation can be used to determine charging  
input current as a function of system load current:  
the maximum charge current and is equal to:  
58mV  
RSNSC  
32mV  
SNSI1+RSNSI2  
RSNSI1  
SNSI1+RSNSI2  
IPEAK  
=
IINCHG  
=
ILOAD  
R
R
Note that the input current limit does not include the part’s  
quiescent and gate drive currents. The total current drawn  
ThecontactresistanceofthenegativeterminalofR  
and  
SNSI1  
the positive terminal of R  
as well as the resistance of  
SNSI2  
by the part will be I  
+ I + I , where I is the non-  
IN(MAX)  
Q G Q  
thetraceconnectingthemwillcausevariabilityintheinput  
currentlimit.To minimizetheerror,placebothinputcurrent  
sense resistors close together with a large PCB pad area  
betweenthemasthesystemloadcurrentispulledfromthe  
trace connecting the two sense resistors.  
switchingquiescentcurrentandI isthegatedrivecurrent.  
G
Low Current Charging and High Current Backup  
The LTC3350 can accommodate applications requiring  
low charge currents and high backup currents. In these  
applications, program the desired charge current using  
Note that the backup current will flow through R  
SNSI2  
power dissipation.  
. The  
SNSI2  
R
package should be sized accordingly to handle the  
R
. The higher current needed during backup can be  
SNSI  
set using R  
. The input current limit will override the  
SNSC  
V
(TO SYSTEM)  
chargecurrentlimitwhenthesupercapacitorsarecharging  
while the charge current limit provides sufficient current  
capability for backup operation.  
OUT  
I
LOAD  
V
IN  
R
R
SNSI1 SNSI2  
I
INCHG  
The charge current will be limited to I  
at low  
CHG(MAX)  
rises, the switching  
V
IN  
INFET VOUTSP  
LTC3350  
VOUTSN  
TGATE  
V
(i.e., low duty cycles). As V  
CAP  
CAP  
controller’s input current will increase until it reaches  
I
. The input current will be maintained at I  
IN(MAX)  
IN(MAX)  
rises further.  
BGATE  
and the charge current will decrease as V  
CAP  
3350 F03  
Some applications may want to use only a portion of the  
inputcurrentlimittochargethesupercapacitors.Two input  
current sense resistors placed in series can be used to  
accomplish this as shown in Figure 3. VOUTSP is kelvin  
Figure 3  
Setting V  
Voltage  
CAP  
The LTC3350 V  
voltage is set by an external feedback  
connected to the positive terminal of R  
and VOUTSN  
CAP  
SNSI1  
resistordivider,asshowninFigure4.Theregulatedoutput  
is kelvin connected to the negative terminal of R  
.
SNSI2  
voltage is determined by:  
The load current is pulled across R  
while the input  
SNSI1  
SNSI1  
current to the charger is pulled across R  
The input current limit is:  
and R  
.
SNSI2  
RFBC1  
RFBC2  
VCAP = 1+  
CAPFBREF  
32mV = R  
I  
+ (R  
+ R ) • I  
SNSI2 INCHG  
SNSI1 LOAD  
SNSI1  
where CAPFBREF is the output of the V  
DAC, pro-  
CAP  
For example, suppose that only 2A of input current is de-  
sired to charge the supercapacitors but the system load  
and charger combined can pull a total of up to 4A from the  
grammed in the vcapfb_dac register. Great care should  
be taken to route the CAPFB line away from noise sources,  
such as the SW line.  
supply. Setting R  
= R  
= 8mΩ will set a 4A cur-  
SNSI1  
SNSI2  
rent limit for the load + charger while setting a 2A limit for  
the charger. With no system load, the charger can pull up  
to 2A of input current. As the load pulls 0A to 4A of current  
thecharger’sinputcurrentwillreducefrom2Adownto0A.  
Power-Fail Comparator Input Voltage Threshold  
The input voltage threshold below which the power-fail  
status pin, PFO, indicates a power-fail condition and the  
3350fc  
22  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
V
V
IN  
CAP  
R
LTC3350  
CAPFB  
R
R
FBC1  
PF1  
PF2  
PFI  
V
DD  
R
FBC2  
LTC3350  
PFO  
R
PF3  
3350 F04  
MP1  
Figure 4. VCAP Voltage Feedback Divider  
MN1  
LTC3350bidirectionalcontrollerswitchestostep-upmode  
is programmed using a resistor divider from the V pin  
IN  
3350 F06  
to SGND via the PFI pin such that:  
Figure 6. PFI Threshold Divider with Added Hystersis  
RPF1  
RPF2  
V = 1+  
VPFI(TH)  
MN1 and MP1 can be implemented with a single pack-  
age N-channel and P-channel MOSFET pair such as the  
Si1555DLorSi1016CX. ThedrainleakagecurrentofMN1,  
when its gate voltage is at ground, can introduce an offset  
in the threshold. To minimize the effect of this leakage cur-  
IN  
where V  
is 1.17V. Typical values for R and R  
PF1 PF2  
PFI(TH)  
are in the range of 40k to 1M. See Figure 5.  
The input voltage above which the power-fail status pin  
PFO is high impedance and the bidirectional controller  
switches to step-down mode is:  
rent R , R and R should be between 1k and 100k.  
PF1 PF2  
PF3  
Setting V  
Voltage in Backup Mode  
OUT  
RPF1  
RPF2  
The output voltage for the controller in step-up mode is  
set by an external feedback resistor divider, as shown in  
Figure 7. The regulated output voltage is determined by:  
V = 1+  
VPFI(TH) + VPFI(HYS)  
(
)
IN  
where V  
is the hysteresis of the PFI comparator  
PFI(HYS)  
and is equal to 30mV.  
RFBO1  
RFBO2  
V
OUT = 1+  
1.2V  
V
IN  
R
R
LTC3350  
PFI  
PF1  
Great care should be taken to route the OUTFB line away  
from noise sources, such as the SW line.  
PF2  
3350 F05  
V
OUT  
R
Figure 5. PFI Threshold Voltage Divider  
LTC3350  
OUTFB  
C
FBO1  
R
FO  
FBO1  
FBO2  
Additional hysteresis can be added by switching in an  
(OPT)  
additional resistor, R , in parallel with R  
when the  
PF3  
PF2  
C
FO  
R
voltage at PFI falls below 1.17V as shown in Figure 6. The  
(OPT)  
+
VC  
falling V threshold is the same as before but the rising  
IN  
R
V
C
REF  
(OPT)  
V threshold becomes:  
IN  
C
C
3350 F07  
RPF1 RPF1  
+
V = 1+  
VPFI(TH) + VPFI(HYST)  
(
)
IN  
RRP2 RPF3  
Figure 7. VOUT Voltage Divider and Compensation Network  
3350fc  
23  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
Compensation  
The output ideal diode provides a low loss power path  
from the supercapacitors to V . The minimum internal  
OUT  
The input current, charge current, V  
voltage, and V  
OUT  
CAP  
(open-circuit) supercapacitor voltage will be equal to  
voltage loops all require a 1nF to 10nF capacitor from the  
VC node to ground. When using the output ideal diode and  
backing up to low voltages (<8V) use 8.2nF to 10nF on  
VC. When not using the output ideal diode 4.7nF to 10nF  
on VC is recommended. For very high backup voltages  
(>15V) 1nF to 4.7nF is recommended.  
the minimum V  
necessary for the system to operate  
OUT  
plus the voltage drops due to the output ideal diode and  
equivalent series resistance, R , of each supercapacitor  
in the stack.  
SC  
Example: System needs 5V to run and draws 1A during  
backup. There are four supercapacitors in the stack, each  
In addition to the VC node capacitor, the V  
voltage loop  
OUT  
with an R of 45mΩ. The output ideal diode forward  
SC  
requires a phase-lead capacitor, C  
, for stability and  
FBO1  
regulation voltage is 30mV (OUTFET R  
The minimum open-circuit supercapacitor voltage is:  
< 30mΩ).  
DS(ON)  
improved transient response during input power failure  
(Figure 7). The product of the top divider resistor and the  
phase-lead capacitor should be used to create a zero at  
approximately 2kHz:  
V
= 5V + 0.030V + (1A • 4 • 45mΩ) = 5.21V  
CAP(MIN)  
Using the synchronous controller in step-up mode allows  
the supercapacitors to be discharged to a voltage much  
1
RFBO1 CFBO1  
lower than the minimum V  
needed to run the system.  
OUT  
2π 2kHz  
(
)
The amount of power that the supercapacitor stack can  
deliveratitsminimuminternal(open-circuit)voltageshould  
be greater than what is needed to power the output and  
the step-up converter.  
Choose an R  
such that C  
is ≥ 100pF to minimize  
FBO1  
FBO1  
theeffectsofparasiticpincapacitance.Becausethephase-  
lead capacitor introduces a larger ripple at the input of  
the V  
transconductance amplifier, an additional RC  
According to the maximum power transfer rule:  
OUT  
lowpass filter from the V  
divider to the OUTFB pin may  
OUT  
2
VCAP(MIN)  
P
BACKUP  
beneededtoeliminatevoltageripplespikes. Thefiltertime  
constant should be located at the switching frequency of  
the synchronous controller:  
PCAP(MIN)  
=
>
4nRSC  
η
In the equation above η is the efficiency of the synchro-  
nous controller in step-up mode and n is the number of  
supercapacitors in the stack.  
1
RFO CFO =  
2πfSW  
Example: System needs 5V to run and draws 1A during  
backup.Therearefoursupercapacitorsinthestack(n=4),  
with C > 10pF to minimize the effects of parasitic pin  
FO  
capacitance. For back up applications where the V  
OUT  
each with an R of 45mΩ. The converter efficiency is  
SC  
regulation voltage is low (~5V to 6V), an additional 1k to  
90%.Theminimumopen-circuitsupercapacitorvoltageis:  
3kresistor,R ,inserieswiththeVCcapacitorcanimprove  
C
4445mΩ 5V 1A  
stability and transient response.  
VCAP(MIN)  
=
= 2.0V  
0.9  
Minimum V  
Voltage in Backup Mode  
CAP  
In this case, the voltage seen at the terminals of the ca-  
pacitor stack is half this voltage, or 1V, according to the  
maximum power transfer rule.  
In backup mode, power is provided to the output from the  
supercapacitors either through the output ideal diode or  
the synchronous controller operating in step-up mode.  
3350fc  
24  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
Note the minimum V  
voltage can also be limited by the  
where:  
γMAX =1+ 1–  
CAP  
peakinductorcurrentlimit(180%ofmaximumchargecur-  
rent)andthemaximumdutycycleinstep-upmode(~90%).  
4RSC P  
BACKUP  
and,  
2
n
VCELL(MAX)  
Optimizing Supercapacitor Energy Storage Capacity  
4RSC P  
BACKUP  
In most systems the supercapacitors will provide backup  
powertooneormoreDC/DCconverters.ADC/DCconverter  
presentsaconstantpowerloadtothesupercapacitor.When  
the supercapacitors are near their maximum voltage, the  
loads will draw little current. As the capacitors discharge,  
the current drawn from supercapacitors will increase to  
maintainconstantpowertotheload.Theamountofenergy  
required in back up mode is the product of this constant  
γMin =1+ 1–  
2
n
VCELL(MIN)  
R
is the equivalent series resistance (ESR) of a single  
supercapacitorinthestack. Notethatthemaximumpower  
transfer rule limits the minimum cell voltage to:  
SC  
VCAP(MIN)  
4RSC P  
BACKUP  
n
VCELL(MIN)  
=
n
backup power, P  
, and the backup time, t  
.
BACKUP  
BACKUP  
To minimize the size of the capacitance for a given amount  
of backup energy, the maximum voltage on the stack,  
CELL(MAX)  
limited to a maximum of 2.7V and this may lead to an  
unacceptably low capacitor lifetime.  
The energy stored in a stack of n supercapacitors available  
for backup is:  
V
, can be increased. However, the voltage is  
1
2
V2  
VCELL(MIN)  
2
nCSC  
(
)
CELL(MAX)  
whereC , V  
andV  
arethecapacitance,  
SC CELL(MAX)  
CELL(MIN)  
An alternative option would be to keep V  
at a  
CELL(MAX)  
maximum voltage and minimum voltage of a single ca-  
pacitor in the stack, respectively. The maximum voltage  
voltage that leads to reasonably long lifetime and increase  
the capacitor utilization ratio of the supercapacitor stack.  
on the stack is V  
= n V  
CAP(MIN)  
. The minimum  
CELL(MIN)  
CAP(MAX)  
voltage on the stack is V  
CELL(MAX)  
= n V  
The capacitor utilization ratio, α , can be defined as:  
B
.
2
2
VCELL(MAX) VCELL(MIN)  
Some of this energy will be dissipated as conduction loss  
in the ESR of the supercapacitor stack. A higher backup  
power requirement leads to a higher conduction loss for  
a given stack ESR.  
αB =  
VC2ELL(MAX)  
Ifthesynchronouscontrollerinstep-upmodeisusedthen  
thesupercapacitorscanberundowntoavoltagesetbythe  
Theamountofcapacitanceneededcanbefoundbysolving  
the following equation for C :  
SC  
γMAX VCELL(MAX)  
1
4
4RSC P  
BACKUP ln  
2
2
P
BACKUP tBACKUP = nCSC  
γ
γMIN  
VCELL(MIN)  
VCELL(MAX)  
MAX  
n
γMIN VCELL(MIN)  
3350fc  
25  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
maximum power transfer rule to maximize the utilization  
ratio. The minimum voltage in this case is:  
7. Ifasuitablecapacitorisnotavailable,iteratebychoosing  
morecapacitance,ahighercellvoltage,morecapacitors  
in the stack and/or a lower utilization ratio.  
4RSC P  
BACKUP  
VCELL(MIN)  
=
8. Make sure to take into account the lifetime degrada-  
tion of ESR and capacitance, as well as the maximum  
discharge current rating of the supercapacitor. A list of  
supercapacitor suppliers is provided in Table 2.  
nη  
where η is the efficiency of the boost converter  
(~90% to 96%). For the backup equation, γ and γ  
,
MAX  
MIN  
Table 2. Supercapacitor Suppliers  
substitute P  
/η for P  
. In this case the energy  
needed for backup is governed by the following equation:  
BACKUP  
BACKUP  
AVX  
www.avx.com  
Bussman  
CAP-XX  
www.cooperbussman.com  
www.cap-xx.com  
www.illcap.com  
P
1
2
BACKUP  
2
tBACKUP nC •  
VCELL(MAX)  
SC  
η
Illinois Capacitor  
Maxwell  
www.maxwell.com  
www.murata.com  
www.nesscap.com  
www.tecategroup.com  
αB + αB  
1+ αB  
1α  
B ln  
Murata  
2
2
1αB ⎥  
NESS CAP  
Tecate Group  
Once a capacitance is found using the above equation the  
maximum ESR allowed needs to be checked:  
Inductor Selection  
2
The switching frequency and inductor selection are inter-  
related. Higher switching frequencies allow the use of  
smallerinductorandcapacitorvalues,butgenerallyresults  
inlowerefficiencyduetoMOSFETswitchingandgatecharge  
losses. In addition, the effect of inductor value on ripple  
current must also be considered. The inductor ripple cur-  
rent decreases with higher inductance or higher frequency  
η 1α n  
(
)
VCELL(MAX)  
B
RSC ≤  
4P  
BACKUP  
Capacitor Selection Procedure  
1. Determine backup requirements P  
and t  
.
BACKUP  
BACKUP  
2. Determine maximum cell voltage that provides accept-  
able capacitor lifetime.  
and increases with higher V . Accepting larger values of  
IN  
ripple current allows the use of low inductances but results  
in higher output voltage ripple and greater core losses.  
3. Choose number of capacitors in the stack.  
4. Choose a desired utilization ratio, α , for the superca-  
For the LTC3350, the best overall performance will be  
attained if the inductor is chosen to be:  
B
pacitor (e.g., 80%).  
5. Solve for capacitance, C :  
V
SC  
IN(MAX)  
L =  
2PBACKUP tBACKUP  
ICHG(MAX) fSW  
CSC ≥  
2
nη  
VCELL(MAX)  
for V  
≤ 2V  
and:  
IN(MAX)  
CAP  
–1  
1+ α  
αB + αB  
(
)
1α  
B
VCAP  
VCAP  
0.25ICHG(MAX) fSW  
B ln  
L = 1–  
2
2
1αB  
V
IN(MAX)  
6. FindsupercapacitorwithsufficientcapacitanceC and  
SC  
for V  
≥ 2V , where V  
is the final supercapaci-  
CAP  
IN(MAX)  
tor stack voltage, V  
CAP  
minimum R :  
SC  
is the maximum input voltage,  
IN(MAX)  
I
f
is the maximum regulated charge current, and  
2
CHG(MAX)  
η 1α n  
(
)
VCELL(MAX)  
B
is the switching frequency. Using these equations, the  
SW  
RSC ≤  
4P  
inductor ripple will be at most 25% of I  
.
BACKUP  
CHG(MAX)  
3350fc  
26  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
Using the above equation, the inductor may be too large  
to provide a fast enough transient response to hold up  
Maximum ripple occurs at the lowest V that can supply  
CAP  
OUT(BACKUP)  
high frequency filtering.  
I
. Multilayer ceramics are recommended for  
V
when input power goes away. This occurs in cases  
OUT  
where the maximum V can be high (e.g. 25V) and the  
IN  
If step-up mode is unused, then the specification for  
backup voltage low (e.g. 6V). In these situations it would  
C
will be determined by the desired ripple voltage in  
OUT  
be best to choose an inductor that is smaller resulting in  
step-down mode:  
maximumpeak-to-peakrippleashighas40%ofI  
.
CHG(MAX)  
VOUT  
=
Once the value for L is known, the type of inductor core  
must be selected. Ferrite cores are recommended for their  
very low core loss. Selection criteria should concentrate  
on minimizing copper loss and preventing saturation.  
Ferrite core material saturates “hard,” which means that  
inductancecollapsesabruptlywhenthepeakdesigncurrent  
is exceeded. This causes an abrupt increase in inductor  
ripple current and consequent output voltage ripple. Do  
not allow the core to saturate. The saturation current  
for the inductor should be at least 80% higher than the  
I
VCAP  
VOUT  
VCAP  
VOUT  
CHG(MAX)  
1–  
+ICHG(MAX) RESR  
C
OUT fSW  
In continuous conduction mode, the source current of the  
top MOSFET is a square wave of duty cycle V /V  
.
CAP OUT  
To prevent large voltage transients, a low ESR capacitor  
sized for the maximum RMS current must be used. The  
maximum RMS capacitor current is given by:  
VCAP VOUT  
VOUT VCAP  
maximum regulated current, I  
. A list of inductor  
CHG(MAX)  
suppliers is provided in Table 3.  
IRMS ICHG(MAX)  
–1  
Table 3. Inductor Vendors  
This formula has a maximum at V  
= 2V , where  
OUT  
CAP  
VENDOR  
Coilcraft  
Murata  
URL  
I
= I  
/2. This simple worst-case condition is  
RMS  
CHG(MAX)  
www.coilcraft.com  
www.murata.com  
www.sumida.com  
www.tdk.com  
commonlyusedfordesignbecauseevensignificantdevia-  
tions do not offer much relief.  
Sumida  
TDK  
Mediumvoltage(20Vto35V)ceramic,tantalum,OS-CON,  
and switcher-rated electrolytic capacitors can be used as  
inputcapacitors.SanyoOS-CONSVP,SVPDseries,Sanyo  
POSCAP TQC series, or aluminum electrolytic capacitors  
from Panasonic WA series or Cornel Dublilier SPV series  
in parallel with a couple of high performance ceramic  
capacitors can be used as an effective means of achieving  
low ESR and high bulk capacitance.  
Toko  
www.toko.com  
Vishay  
www.vishay.com  
www.we-online.com  
Würth Electronic  
C
OUT  
and C  
Capacitance  
CAP  
V
serves as the input to the synchronous controller in  
OUT  
step-down mode and as the output in step-up (backup)  
mode. If step-up mode is used, place 100µF of bulk  
(aluminum electrolytic, OS-CON, POSCAP) capacitance  
for every 2A of backup current desired. For 5V system  
applications, 100µF per 1A of backup current is recom-  
mended. In addition, a certain amount of high frequency  
bypass capacitance is needed to minimize voltage ripple.  
The voltage ripple in step-up mode is:  
V
serves as the input to the controller in step-up mode  
CAP  
and as the output in step-down mode. The purpose of the  
V
CAP  
V
CAP  
capacitor is to filter the inductor current ripple. The  
ripple (V ) is approximated by:  
CAP  
1
VCAP ≈ ∆IPP  
+RESR  
8CCAP fSW  
where f  
is the switching frequency, C  
is the ca-  
VOUT  
=
SW  
CAP  
pacitance on V  
and I is the ripple current in the  
CAP  
PP  
VCAP  
VOUT  
1
VOUT  
OUT fSW VCAP  
inductor. The output ripple is highest at maximum input  
voltage since I increases with input voltage.  
1–  
+
RESR  
I
OUT(BACKUP)  
C
PP  
3350fc  
27  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
Because supercapacitors have low series resistance, it is  
Both MOSFET switches have conduction loss. However,  
transition loss occurs only in the top MOSFET in step-  
important that C  
be sized properly so that the bulk of  
CAP  
down mode and only in the bottom MOSFET in step-up  
the inductor current ripple flows through the filter capaci-  
2
mode. These losses are proportional to V  
and can  
tor and not the supercapacitor. It is recommended that:  
OUT  
be considerably large in high voltage applications (V  
> 20V). The maximum transition loss is:  
OUT  
1
nRSC  
+RESR  
8CCAP fSW  
5
k
2
P
TRAN VOUT2 ICHG(MAX) CRSS fSW  
where n is the number of supercapacitors in the stack and  
is the ESR of each supercapacitor. The capacitance  
R
SC  
where k is related to the drive current during the Miller  
plateau and is approximately equal to one.  
on VCAP can be a combination of bulk and high frequency  
capacitors. Aluminum electrolytic, OS-CON and POSCAP  
capacitorsaresuitableforbulkcapacitancewhilemultilayer  
ceramics are recommended for high frequency filtering.  
Thesynchronouscontrollercanoperateinbothstep-down  
and step-up mode with different voltages on V  
in each  
OUT  
mode. If V  
is 12V in step-down mode (input power  
OUT  
available) and 10V in step-up mode (backup mode) then  
Power MOSFET Selection  
bothMOSFETscanbesizedtominimizeconductionloss.If  
Two external power MOSFETs must be selected for  
the LTC3350’s synchronous controller: one N-channel  
MOSFET for the top switch and one N-channel MOSFET  
for the bottom switch. The selection criteria of the external  
N-channelpowerMOSFETsincludemaximumdrain-source  
V
canbeashighas25VwhilechargingandV  
isheld  
OUT  
OUT  
to 6V in backup mode, then the MOSFETs should be sized  
to minimize losses during backup mode. This may lead to  
choosing a high side MOSFET with significant transition  
loss which may be tolerable when input power is avail-  
able so long as thermal issues do not become a limiting  
factor. The bottom MOSFET can be chosen to minimize  
conductionloss.Ifstep-upmodeisunused,thenchoosing  
voltage(V ),thresholdvoltage,on-resistance(R  
),  
G
DSS  
DS(ON)  
reversetransfercapacitance(C ),totalgatecharge(Q ),  
RSS  
and maximum continuous drain current.  
V
of both MOSFETs should be selected to be higher  
a high side MOSFET that that has a higher R  
device  
DSS  
DS(ON)  
than the maximum input supply voltage (including  
and lower C  
would minimize overall losses.  
RSS  
transient). The peak-to-peak drive levels are set by the  
AnotherpowerlossrelatedtoswitchingMOSFETselection  
isthepowerlosttodrivingthegates.Thetotalgatecharge,  
DRV voltage. Logic-level threshold MOSFETs should  
CC  
be used because DRV is powered from either INTV  
CC  
CC  
Q ,mustbechargedanddischargedeachswitchingcycle.  
G
(5V) or an external LDO whose output voltage must be  
ThepowerislosttotheinternalLDOandgatedriverswithin  
the LTC3350. The power lost due to charging the gates is:  
less than 5.5V.  
MOSFET power losses are determined by R  
, C  
DS(ON) RSS  
P ≈ (Q  
+ Q ) • f V  
GBOT SW OUT  
G
GTOP  
and Q . The conduction loss at maximum charge current  
G
where Q  
is the top MOSFET gate charge and Q  
GBOT  
for the top and bottom MOSFET switches are:  
GTOP  
is the bottom MOSFET gate charge. Whenever possible,  
utilizeMOSFETswitchesthatminimizethetotalgatecharge  
to limit the internal power dissipation of the LTC3350.  
VCAP  
VOUT  
PCOND(TOP)  
=
ICHG(MAX)2 RDS(ON) 1+δT  
(
)
VCAP  
VOUT  
P
COND(BOT) = 1–  
ICHG(MAX)2 RDS(ON) 1+δT  
Schottky Diode Selection  
(
)
Optional Schottky diodes can be placed in parallel with the  
top and bottom MOSFET switches. These diodes clamp  
SW during the non-overlap times between conduction of  
the top and bottom MOSFET switches. This prevents the  
The term (1+ δ∆T) is generally given for a MOSFET in the  
form of a normalized R  
vs Temperature curve, but  
DS(ON)  
δ = 0.005/°C can be used as an approximation for low  
voltage MOSFETs.  
3350fc  
28  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
body diodes of the MOSFET switches from turning on,  
storing charge during the non-overlap time and requiring  
a reverse recovery period that could cost as much as 3%  
INTV /DRV and IC Power Dissipation  
CC CC  
The LTC3350 features a low dropout linear regulator  
(LDO) that supplies power to INTV from the V sup-  
CC  
OUT  
in efficiency at high V . One or both diodes can be omit-  
IN  
ply. INTV powers the gate drivers (when connected to  
CC  
ted if the efficiency loss can be tolerated. The diode can  
be rated for about one-third to one-fifth of the full load  
current since it is on for only a fraction of the duty cycle.  
Larger diodes result in additional switching losses due to  
their larger junction capacitance. In order for the diodes  
to be effective, the inductance between them and the top  
and bottom MOSFETs must be as small as possible. This  
mandates that these components be placed next to each  
other on the same layer of the PC board.  
DRV ) and much of the LTC3350’s internal circuitry. The  
CC  
LDO regulates the voltage at the INTV pin to 5V. The  
CC  
LDO can supply a maximum current of 50mA and must  
be bypassed to ground with a minimum of 1μF when not  
connected to DRV . DRV should have at least a 2.2μF  
CC  
CC  
ceramic or low ESR electrolytic capacitor. No matter what  
type of bulk capacitor is used on DRV , an additional  
CC  
0.1μF ceramic capacitor placed directly adjacent to the  
DRV pin is highly recommended. Good bypassing is  
CC  
needed to supply the high transient currents required by  
Top MOSFET Driver Supply (C , D )  
B
B
the MOSFET gate drivers.  
An external bootstrap capacitor, C , connected to the BST  
B
High input voltage applications in which large MOSFETs  
are being driven at high frequencies may cause the maxi-  
mum junction temperature rating for the LTC3350 to be  
pin supplies the gate drive voltage for the top MOSFET.  
Capacitor C , in Figure 8, is charged though an external  
B
diode, D , from DRV when the SW pin is low. The value  
B
CC  
exceeded. The INTV current, which is dominated by the  
CC  
of the bootstrap capacitor, C , needs to be 20 times that  
B
gate charge current, is supplied by the 5V LDO.  
of the total input capacitance of the top MOSFET.  
Power dissipation for the IC in this case is highest and is  
With the top MOSFET on, the BST voltage is above the  
system supply rail:  
approximately equal to (V ) • (I + I ), where I is the  
OUT  
Q
G
Q
non-switching quiescent current of ~4mA and I is gate  
G
V
BST  
= V + V  
OUT DRVCC  
chargecurrent.Thejunctiontemperaturecanbeestimated  
by using the equations given in Note 2 of the Electrical  
The reverse break down of the external diode, D , must  
B
Characteristics.Forexample,theI suppliedbytheINTV  
G
CC  
be greater than V  
+ V  
.
OUT(MAX)  
DRVCC(MAX)  
LDO is limited to less than 42mA from a 35V supply in the  
The step-up converter can briefly run nonsynchronously  
when used in conjunction with the output ideal diode. Dur-  
ingthistimetheBSTtoSWvoltagecanpumpuptovoltages  
QFN package at a 70°C ambient temperature:  
T = 70°C + (35V)(4mA + 42mA)(34°C/W) = 125°C  
J
exceeding5.5VifD isaSchottkydiode.FastswitchingPN  
To prevent the maximum junction temperature from being  
B
diodesarerecommendedduetotheirlowleakageandjunc-  
tioncapacitance.ASchottkydiodecanbeusedifthestep-up  
converter runs synchronous throughout backup mode.  
exceeded, the INTV LDO current must be checked while  
CC  
operating in continuous conduction mode at maximum  
V
OUT  
.
The power dissipation in the IC is drastically reduced if  
BST  
DRV is powered from an external LDO. In this case the  
CC  
C
B
LTC3350  
power dissipation in the IC is equal to power dissipation  
D
B
SW  
due to I and the power dissipated in the gate drivers,  
Q
DRV  
CC  
CC  
(V  
) • (I ). Assuming the external DRV LDO output  
DRVCC  
G CC  
0.1µF  
>2.2µF  
is 5V and is supplying 42mA to the gate drivers, the junc-  
INTV  
3350 F07  
tion temperature rises to only 82°C:  
1µF  
OPT  
T = 70°C + [(35V)(4mA)+(5V)(42mA)](34°C/W) = 82°C  
J
Figure 8. Bootstrap Capacitor/Diode and DRVCC Connections  
3350fc  
29  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
The external LDO should be powered from V . It must  
Achievingforwardregulationwillminimizepowerlossand  
heat dissipation, but it is not a necessity. If a forward volt-  
age drop of more than 30mV is acceptable, then a smaller  
MOSFET can be used but must be sized compatible with  
the higher power dissipation. Care should be taken to  
ensure that the power dissipated is never allowed to rise  
above the manufacturer’s recommended maximum level.  
OUT  
be enabled after the INTV LDO has powered up and its  
CC  
output must be less than 5.5V. INTV should no longer  
CC  
be tied to DRV .  
CC  
Minimum On-Time Considerations  
Minimum on-time, t  
, is the smallest time dura-  
ON(MIN)  
tion that the LTC3350 is capable of turning on the top  
MOSFET in step-down mode. It is determined by internal  
timing delays and the gate charge required to turn on the  
top MOSFET. The minimum on-time for the LTC3350 is  
approximately 85ns. Low duty cycle applications may  
approach this minimum on-time limit and care should be  
taken to ensure that:  
During backup mode, the output ideal diode shuts off  
when the voltage on OUTFB falls below 1.3V. For high  
V
backup voltages (>8.4V), the output ideal diode will  
OUT  
shut off when V  
above the V  
is more than a diode drop (~700mV)  
CAP  
regulation point (i.e., OUTFB > 1.2V). The  
OUT  
body diode of the output ideal diode N-channel MOSFET  
will carry the load current until V drops to within a  
CAP  
diode drop of the V  
regulation voltage at which point  
OUT  
VCAP  
VOUT fSW  
tON(MIN)  
<
the synchronous controller takes over. During this period  
the power dissipation in the output ideal diode MOSFET  
increases significantly. Diode conduction time is small  
comparedtotheoverallbackuptimebutcanbesignificant  
whendischargingverylargesupercapacitors(>600F).Care  
should be taken to properly heat sink the MOSFET to limit  
the temperature rise.  
If the duty cycle falls below what can be accommodated  
by the minimum on-time, the controller will begin to skip  
cycles.ThechargecurrentandV voltagewillcontinueto  
CAP  
beregulated,buttheripplevoltageandcurrentwillincrease.  
Ideal Diode MOSFET Selection  
PCB Layout Considerations  
AnexternalN-channelMOSFETisrequiredfortheinputand  
outputidealdiodes.Importantparametersfortheselection  
oftheseMOSFETsarethemaximumdrain-sourcevoltage,  
When laying out the printed circuit board, the following  
guidelines should be used to ensure proper operation of  
the IC. Check the following in your layout:  
V
DSS  
, gate threshold voltage and on-resistance (R  
).  
DS(ON)  
1. Keep MN1, MN2, D1, D2 and C  
close together.  
The high di/dt loop formed by the MOSFETs, Schottky  
diodes and the V capacitance, shown in Figure 9,  
should have short, wide traces to minimize high  
frequency noise and voltage stress from inductive  
ringing. Surface mount components are preferred to  
reduce parasitic inductances from component leads.  
D1  
Whentheinputisgrounded,eitherthesupercapacitorstack  
voltageorthestep-upcontroller’sbackupvoltageisapplied  
OUT  
acrosstheinputidealdiodeMOSFET.Therefore,theV of  
OUT  
DSS  
theinputidealdiodeMOSFETmustwithstandthemaximum  
voltage on V  
in backup mode. When the supercapaci-  
OUT  
torsareat0V,theinputvoltageisappliedacrosstheoutput  
idealdiodeMOSFET.Therefore,theV oftheoutputideal  
diode MOSFET must withstand the highest voltage on V .  
DSS  
IN  
The gate drive for both ideal diodes is 5V. This allows the  
use of logic-level threshold N-channel MOSFETs.  
R
L1  
MN1  
SNSC  
V
CAP  
V
OUT  
+
As a general rule, select MOSFETs with a low enough  
+
+
+
HIGH  
FREQUENCY  
CIRCULATING  
PATH  
C
OUT  
C
CAP  
R
to obtain the desired V while operating at full  
DS(ON)  
DS  
MN2  
D2  
loadcurrent.TheLTC3350willregulatetheforwardvoltage  
drop across the input and output ideal diode MOSFETs to  
3350 F09  
30mVifR  
islowenough.TherequiredR  
canbe  
DS(ON)  
DS(ON)  
Figure 9. High Speed Switching Path  
calculated by dividing 0.030V by the load current in amps.  
3350fc  
30  
For more information www.linear.com/LTC3350  
LTC3350  
applicaTions inForMaTion  
DIRECTION OF SENSED CURRENT  
Connect the drain of the top MOSFET and cathode of  
the top diode directly to the positive terminal of C  
.
OUT  
R
Connect the source of the bottom MOSFET and anode  
of the bottom diode directly to the negative terminal  
SNSC  
OR  
R
SNSI  
of C . This capacitor provides the AC current to the  
OUT  
3350 F10  
MOSFETs.  
TO VCAP  
OR  
VOUTSN  
TO ICAP  
OR  
VOUTSP  
2. Ground is referenced to the negative terminal of the  
V
decoupling capacitor in step-down mode and to  
CAP  
Figure 10. Kelvin Current Sensing  
thenegativeterminaloftheV  
decouplingcapacitor  
OUT  
instep-upmode.ThenegativeterminalofC  
should  
7. Locate the DRV and BST decoupling capacitors in  
OUT  
CC  
be as close as possible to the negative terminal of  
by placing the capacitors next to each other and  
close proximity to the IC. These capacitors carry the  
C
MOSFETdrivershighpeakcurrents.Anadditional0.1μF  
CAP  
away from the switching loop described above. The  
combined IC SGND pin/PGND paddle and the ground  
ceramiccapacitorplacedimmediatelynexttotheDRV  
CC  
pin can help improve noise performance substantially.  
returnsofC  
andC  
mustreturntothecom-  
INTVCC  
DRVCC  
8. Locate the small-signal components away from high  
frequencyswitchingnodes(BST,SW,TG,andBG).All  
ofthesenodeshaveverylargeandfastmovingsignals  
and should be kept on the output side of the LTC3350.  
bined negative terminal of C  
and C  
.
OUT  
CAP  
3. Effectivegroundingtechniquesarecriticalforsuccess-  
fulDC/DCconverterlayouts.Orientpowercomponents  
such that switching current paths in the ground plane  
do not cross through the SGND pin and exposed pad  
on the backside of the LTC3350 IC. Switching path  
currents can be controlled by orienting the MOSFET  
9. The input ideal diode senses the voltage between V  
IN  
andVOUTSP.V shouldbeconnectednearthesource  
IN  
of the input ideal diode MOSFET. VOUTSP is used for  
Kelvin sensing the input current. Place the input cur-  
switches,Schottkydiodes,theinductor,andV  
CAP  
other.  
and  
OUT  
rent sense resistor, R  
, near the input ideal diode  
SNSI  
V
decoupling capacitors in close proximity to each  
MOSFETwithashort,widetracetominimizeresistance  
betweenthedrainoftheidealdiodeMOSFETandR  
.
SNSI  
4. Locate V  
and V  
dividers near the part and away  
CAP  
OUT  
10. The output ideal diode senses the voltage between  
VOUTSN and VCAP. VCAP is used for Kelvin sensing  
the charge current. Place the output ideal diode near  
from switching components. Kelvin the top of resistor  
dividers to the positive terminals of C and C  
,
OUT  
CAP  
respectively.Thebottomoftheresistivedividersshould  
go back to the SGND pin. The feedback resistor con-  
nectionsshouldnotberunalongthehighcurrentfeeds  
thechargecurrentsenseresistor, R  
, withashort,  
SNSC  
wide trace to minimize resistance between the source  
of the ideal diode MOSFET and R  
.
SNSC  
from the C  
capacitor.  
OUT  
11. TheINFETandOUTFETpinsfortheexternalidealdiode  
controllers have extremely limited drive current. Care  
mustbetakentominimizeleakagetoadjacentPCboard  
traces.100nAofleakagefromthesepinswillintroduce  
anadditionaloffsettotheidealdiodesofapproximately  
10mV. To minimize leakage, the INFET trace can be  
guarded on the PC board by surrounding it with VOUT  
connectedmetal.Similarly,theOUTFETtraceshouldbe  
guardedbysurroundingitwithVCAPconnectedmetal.  
5. RouteICAPandVCAPsenselinestogether, keepthem  
short. Same with VOUTSP and VOUTSN. Filter com-  
ponents should be placed near the part and not near  
the sense resistors. Ensure accurate current sensing  
with Kelvin connections at the sense resistors. See  
Figure 10.  
6. Thetracefromthepositiveterminaloftheinputcurrent  
sense resistor, R  
, to the VOUTSP pin carries the  
SNSI  
part’s quiescent and gate drive currents. To maintain  
accurate measurement of the input current keep this  
12. TheVCC2P5bypasscapacitorshouldreturntoground  
away from switching and gate drive current paths.  
3350fc  
trace short and wide by placing R  
near the part.  
SNSI  
31  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer Map  
REGISTER  
clr_alarms  
msk_alarms  
msk_mon_status  
cap_esr_per  
vcapfb_dac  
vshunt  
SUB ADDR  
0x00  
0x01  
0x02  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
BITS  
15:0  
15:0  
9:0  
DESCRIPTION  
DEFAULT  
0x0000  
0x0000  
0x0000  
0x0000  
0xF  
PAGE  
33  
33  
34  
34  
34  
34  
34  
34  
34  
34  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
35  
36  
36  
36  
37  
37  
38  
38  
38  
38  
38  
38  
38  
38  
38  
38  
38  
38  
38  
Clear alarms register  
Enable/mask alarms register  
Enable/mask monitor status alerts  
Capacitance/ESR measurement period  
15:0  
3:0  
V
voltage reference DAC setting  
CAP  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
3:0  
Capacitor shunt voltage setting  
Capacitor undervoltage alarm level  
Capacitor overvoltage alarm level  
GPI undervoltage alarm level  
GPI overvoltage alarm level  
0x3999  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0b0000  
cap_uv_lvl  
cap_ov_lvl  
gpi_uv_lvl  
gpi_ov_lvl  
vin_uv_lvl  
vin_ov_lvl  
vcap_uv_lvl  
vcap_ov_lvl  
vout_uv_lvl  
vout_ov_lvl  
iin_oc_lvl  
V
V
V
V
V
V
undervoltage alarm level  
overvoltage alarm level  
IN  
IN  
undervoltage alarm level  
overvoltage alarm level  
undervoltage alarm level  
overvoltage alarm level  
CAP  
CAP  
OUT  
OUT  
I
I
overcurrent alarm level  
IN  
ichg_uc_lvl  
dtemp_cold_lvl  
dtemp_hot_lvl  
esr_hi_lvl  
undercurrent alarm level  
CHG  
Die temperature cold alarm level  
Die temperature hot alarm level  
ESR high alarm level  
cap_lo_lvl  
ctl_reg  
Capacitance low alarm level  
Control register  
num_caps  
chrg_status  
mon_status  
alarm_reg  
meas_cap  
meas_esr  
1:0  
Number of capacitors configured  
Charger status register  
R
11:0  
9:0  
R
Monitor status register  
R
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
Active alarms register  
0x0000  
R
Measured capacitance value  
Measured ESR value  
R
meas_vcap1  
meas_vcap2  
meas_vcap3  
meas_vcap4  
meas_gpi  
R
Measured capacitor one voltage  
Measured capacitor two voltage  
Measured capacitor three voltage  
Measured capacitor four voltage  
Measured GPI pin voltage  
R
R
R
R
meas_vin  
R
Measured V voltage  
IN  
meas_vcap  
meas_vout  
meas_iin  
R
Measured V  
Measured V  
voltage  
voltage  
CAP  
OUT  
R
R
Measured I current  
IN  
meas_ichg  
meas_dtemp  
R
Measured I  
current  
CHG  
R
Measured die temperature  
Registers at sub address 0x03, 0x18, 0x19, 0x2B-0xFF are unused.  
3350fc  
32  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer DescripTions  
clr_alarms (0x00)  
Clear Alarms Register: This register is used to clear alarms caused by exceeding a programmed limit. Writing a one to any bit in this register will cause its  
respective alarm to be cleared. The one written to this register is automatically cleared when its respective alarm is cleared.  
BIT(S)  
0
BIT NAME  
DESCRIPTION  
clr_cap_uv  
clr_cap_ov  
clr_gpi_uv  
clr_gpi_ov  
clr_vin_uv  
clr_vin_ov  
clr_vcap_uv  
clr_vcap_ov  
clr_vout_uv  
clr_vout_ov  
clr_iin_oc  
Clear capacitor undervoltage alarm  
Clear capacitor overvoltage alarm  
Clear GPI undervoltage alarm  
Clear GPI overvoltage alarm  
1
2
3
4
Clear V undervoltage alarm  
IN  
5
Clear V overvoltage alarm  
IN  
6
Clear V  
Clear V  
Clear V  
Clear V  
undervoltage alarm  
overvoltage alarm  
undervoltage alarm  
overvoltage alarm  
CAP  
CAP  
OUT  
OUT  
7
8
9
10  
11  
12  
13  
14  
15  
Clear input overcurrent alarm  
Clear charge undercurrent alarm  
Clear die temperature cold alarm  
Clear die temperature hot alarm  
Clear ESR high alarm  
clr_ichg_uc  
clr_dtemp_cold  
clr_dtemp_hot  
clr_esr_hi  
clr_cap_lo  
Clear capacitance low alarm  
msk_alarms (0x01)  
Mask Alarms Register: Writing a one to any bit in the Mask Alarms Register enables its respective alarm to trigger an SMBALERT.  
BIT(S)  
0
BIT NAME  
DESCRIPTION  
msk_cap_uv  
msk_cap_ov  
msk_gpi_uv  
msk_gpi_ov  
msk_vin_uv  
msk_vin_ov  
msk_vcap_uv  
msk_vcap_ov  
msk_vout_uv  
msk_vout_ov  
msk_iin_oc  
Enable capacitor undervoltage alarm  
Enable capacitor overvoltage alarm  
Enable GPI undervoltage alarm  
Enable GPI overvoltage alarm  
1
2
3
4
Enable V undervoltage alarm  
IN  
5
Enable V overvoltage alarm  
IN  
6
Enable V  
Enable V  
Enable V  
Enable V  
undervoltage alarm  
overvoltage alarm  
undervoltage alarm  
overvoltage alarm  
CAP  
CAP  
OUT  
OUT  
7
8
9
10  
11  
12  
13  
14  
15  
Enable input overcurrent alarm  
Enable charge undercurrent alarm  
Enable die temperature cold alarm  
Enable die temperature hot alarm  
Enable ESR high alarm  
msk_ichg_uc  
msk_dtemp_cold  
msk_dtemp_hot  
msk_esr_hi  
msk_cap_lo  
Enable capacitance low alarm  
3350fc  
33  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer DescripTions  
msk_mon_status (0x02)  
Mask Monitor Status Register: Writing a one to any bit in this register enables a rising edge of its respective bit in the mon_status register to trigger an  
SMBALERT.  
BIT(S)  
BIT NAME  
DESCRIPTION  
0
msk_mon_capesr_active  
msk_mon_capesr_scheduled  
msk_mon_capesr_pending  
msk_mon_cap_done  
msk_mon_esr_done  
msk_mon_cap_failed  
msk_mon_esr_failed  
Set the SMBALERT when there is a rising edge on mon_capesr_active  
Set the SMBALERT when there is a rising edge on mon_capesr_scheduled  
Set the SMBALERT when there is a rising edge on mon_capesr_pending  
Set the SMBALERT when there is a rising edge on mon_cap_done  
Set the SMBALERT when there is a rising edge on mon_esr_done  
Set the SMBALERT when there is a rising edge on mon_cap_failed  
Set the SMBALERT when there is a rising edge on mon_esr_failed  
Reserved, write to 0  
1
2
3
4
5
6
7
8
msk_mon_power_failed  
msk_mon_power_returned  
Set the SMBALERT when there is a rising edge on mon_power_failed  
Set the SMBALERT when there is a rising edge on mon_power_returned  
Reserved, write to 0  
9
15:10  
cap_esr_per (0x04)  
10 seconds per LSB  
Capacitance and ESR Measurement Period: This register sets the period of repeated capacitance and ESR measurements. Each LSB represents 10  
seconds. Capacitance and ESR measurements will not repeat if this register is zero.  
vcapfb_dac (0x05)  
CAPFBREF = 37.5mV vcapfb_dac + 637.5mV  
V
CAP  
Regulation Reference: This register is used to program the capacitor voltage feedback loop’s reference voltage. Only bits 3:0 are active.  
vshunt (0x06)  
183.5µV per LSB  
Shunt Voltage Register: This register programs the shunt voltage for each capacitor in the stack. The charger will limit current and the active shunts will  
shunt current to prevent this voltage from being exceeded. As a capacitor voltage nears this level, the charge current will be reduced. This should be  
programmed higher than the intended final balanced individual capacitor voltage. Setting this register to 0x0000 disables the shunt.  
cap_uv_lvl (0x07)  
183.5µV per LSB  
Capacitor Undervoltage Level: This is an alarm threshold for each individual capacitor voltage in the stack. If enabled, any capacitor voltage falling below  
this level will trigger an alarm and an SMBALERT.  
cap_ov_lvl (0x08)  
183.5µV per LSB  
Capacitor Overvoltage Level: This is an alarm threshold for each individual capacitor in the stack. If enabled, any capacitor voltage rising above this level  
will trigger an alarm and an SMBALERT.  
gpi_uv_lvl (0x09)  
183.5µV per LSB  
General Purpose Input Undervoltage Level: This is an alarm threshold for the GPI pin. If enabled, the voltage falling below this level will trigger an alarm  
and an SMBALERT.  
gpi_ov_lvl (0x0A)  
183.5µV per LSB  
General Purpose Input Overvoltage Level: This is an alarm threshold for the GPI pin. If enabled, the voltage rising above this level will trigger an alarm and  
an SMBALERT.  
3350fc  
34  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer DescripTions  
vin_uv_lvl (0x0B)  
2.21mV per LSB  
2.21mV per LSB  
1.476mV per LSB  
V
Undervoltage Level: This is an alarm threshold for the input voltage. If enabled, the voltage falling below this level will trigger an alarm and an  
IN  
SMBALERT.  
vin_ov_lvl (0x0C)  
V
Overvoltage Level: This is an alarm threshold for the input voltage. If enabled, the voltage rising above this level will trigger an alarm and an  
IN  
SMBALERT.  
vcap_uv_lvl (0x0D)  
V
Undervoltage Level: This is an alarm threshold for the capacitor stack voltage. If enabled, the voltage falling below this level will trigger an alarm and  
CAP  
an SMBALERT.  
vcap_ov_lvl (0x0E)  
1.476mV per LSB  
V
Overvoltage Level: This is an alarm threshold for the capacitor stack voltage. If enabled, the voltage rising above this level will trigger an alarm and  
CAP  
an SMBALERT.  
vout_uv_lvl (0x0F)  
2.21mV per LSB  
V
Undervoltage Level: This is an alarm threshold for the output voltage. If enabled, the voltage falling below this level will trigger an alarm and an  
OUT  
SMBALERT.  
vout_ov_lvl (0x10)  
2.21mV per LSB  
V
Overvoltage Level: This is an alarm threshold for the output voltage. If enabled, the voltage rising above this level will trigger an alarm and an  
OUT  
SMBALERT.  
iin_oc_lvl (0x11)  
1.983µV/R  
per LSB  
SNSI  
Input Overcurrent Level: This is an alarm threshold for the input current. If enabled, the current rising above this level will trigger an alarm and an  
SMBALERT.  
ichg_uc_lvl (0x12)  
1.983µV/R  
SNSC  
per LSB  
Charge Undercurrent Level: This is an alarm threshold for the charge current. If enabled, the current falling below this level will trigger an alarm and an  
SMBALERT.  
dtemp_cold_lvl (0x13)  
Temperature = 0.028°C per LSB – 251.4°C  
Die Temperature Cold Level: This is an alarm threshold for the die temperature. If enabled, the die temperature falling below this level will trigger an alarm  
and an SMBALERT.  
dtemp_hot_lvl (0x14)  
Temperature = 0.028°C per LSB – 251.4°C  
Die Temperature Hot Level: This is an alarm threshold for the die temperature. If enabled, the die temperature rising above this level will trigger an alarm  
and an SMBALERT.  
esr_hi_lvl (0x15)  
R /64 per LSB  
SNSC  
ESR High Level: This is an alarm threshold for the measured stack ESR. If enabled, a measurement of stack ESR exceeding this level will trigger an alarm  
and an SMBALERT.  
cap_lo_lvl (0x16)  
336µF R /R per LSB  
T TST  
Capacitance Low Level: This is an alarm threshold for the measured stack capacitance. If enabled, if the measured stack capacitance is less than this level  
it will trigger an alarm and an SMBALERT. When ctl_cap_scale is set to one the constant is 3.36 • R /R  
.
T
TST  
3350fc  
35  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer DescripTions  
ctl_reg (0x17)  
Control Register: Several Control Functions are grouped into this register.  
BIT(S)  
BIT NAME  
DESCRIPTION  
0
ctl_strt_capesr  
Begin a capacitance and ESR measurement when possible; this bit clears itself  
once a cycle begins.  
1
ctl_gpi_buffer_en  
A one in this bit location enables the input buffer on the GPI pin. With a zero in this  
location the GPI pin is measured without the buffer.  
2
3
ctl_stop_capesr  
ctl_cap_scale  
Stops an active capacitance/ESR measurement.  
Increases capacitor measurement resolution by 100x, this is used when measuring  
smaller capacitors.  
15:4  
Reserved  
num_caps (0x1A)  
Number of Capacitors: This register shows the state of the CAP_SLCT1, CAP_SLCT0 pins. The value read in this register is the number of capacitors  
programmed minus one.  
VALUE  
0b00  
0b01  
0b10  
0b11  
CAPACITORS  
1 Capacitor Selected  
2 Capacitors Selected  
3 Capacitors Selected  
4 Capacitors Selected  
chrg_status (0x1B)  
Charger Status Register: This register provides real time status information about the state of the charger system. Each bit is active high.  
BIT(S)  
BIT NAME  
chrg_stepdown  
chrg_stepup  
chrg_cv  
DESCRIPTION  
0
1
The synchronous controller is in step-down mode (charging)  
The synchronous controller is in step-up mode (backup)  
The charger is in constant voltage mode  
The charger is in undervoltage lockout  
The charger is in input current limit  
The capacitor voltage is above power good threshold  
The capacitor manager is shunting  
The capacitor manager is balancing  
The charger is temporarily disabled for capacitance measurement  
The charger is in constant current mode  
Reserved  
2
3
chrg_uvlo  
chrg_input_ilim  
chrg_cappg  
chrg_shnt  
chrg_bal  
chrg_dis  
chrg_ci  
4
5
6
7
8
9
10  
11  
15:12  
chrg_pfo  
Input voltage is below PFI threshold  
Reserved  
3350fc  
36  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer DescripTions  
mon_status (0x1C)  
Monitor Status: This register provides real time status information about the state of the monitoring system. Each bit is active high.  
BIT(S)  
BIT NAME  
DESCRIPTION  
0
1
2
3
4
5
6
7
8
mon_capesr_active  
mon_capesr_scheduled  
mon_capesr_pending  
mon_cap_done  
mon_esr_done  
mon_cap_failed  
mon_esr_failed  
Capacitance/ESR measurement is in progress  
Waiting programmed time to begin a capacitance/ESR measurement  
Waiting for satisfactory conditions to begin a capacitance/ESR measurement  
Capacitance measurement has completed  
ESR Measurement has completed  
The last attempted capacitance measurement was unable to complete  
The last attempted ESR measurement was unable to complete  
Reserved  
mon_power_failed  
This bit is set when V falls below the PFI threshold or the charger is unable to  
IN  
charge. It is cleared only when power returns and the charger is able to charge.  
9
mon_power_returned  
This bit is set when the input is above the PFI threshold and the charger is able to  
charge. It is cleared only when mon_power_failed is set.  
15:10  
Reserved  
alarm_reg (0x1D)  
Alarms Register: A one in any bit in the register indicates its respective alarm has triggered. All bits are active high.  
BIT(S)  
0
BIT NAME  
DESCRIPTION  
alarm_cap_uv  
alarm_cap_ov  
alarm_gpi_uv  
alarm_gpi_ov  
alarm_vin_uv  
alarm_vin_ov  
alarm_vcap_uv  
alarm_vcap_ov  
alarm_vout_uv  
alarm_vout_ov  
alarm_iin_oc  
alarm_ichg_uc  
alarm_dtemp_cold  
alarm_dtemp_hot  
alarm_esr_hi  
alarm_cap_lo  
Capacitor undervoltage alarm  
Capacitor overvoltage alarm  
GPI undervoltage alarm  
GPI overvoltage alarm  
1
2
3
4
V
V
V
V
V
V
undervoltage alarm  
overvoltage alarm  
IN  
5
IN  
6
undervoltage alarm  
overvoltage alarm  
undervoltage alarm  
overvoltage alarm  
CAP  
CAP  
OUT  
OUT  
7
8
9
10  
11  
12  
13  
14  
15  
Input overcurrent alarm  
Charge undercurrent alarm  
Die temperature cold alarm  
Die temperature hot alarm  
ESR high alarm  
Capacitance low alarm  
3350fc  
37  
For more information www.linear.com/LTC3350  
LTC3350  
regisTer DescripTions  
meas_cap (0x1E)  
336µF R /R per LSB  
T
TST  
Measured capacitor stack capacitance value. When ctl_cap_scale is set to one the constant is 3.36µF R /R  
.
T
TST  
meas_esr (0x1F)  
R /64 per LSB  
SNSC  
Measured capacitor stack equivalent series resistance (ESR) value  
meas_vcap1 (0x20)  
183.5µV per LSB  
183.5µV per LSB  
183.5µV per LSB  
183.5µV per LSB  
183.5µV per LSB  
2.21mV per LSB  
1.476mV per LSB  
2.21mV per LSB  
Measured voltage between the CAP1 and CAPRTN pins.  
meas_vcap2 (0x21)  
Measured voltage between the CAP2 and CAP1 pins.  
meas_vcap3 (0x22)  
Measured voltage between the CAP3 and CAP2 pins.  
meas_vcap4 (0x23)  
Measured voltage between the CAP4 and CAP3 pins.  
meas_gpi (0x24)  
Measurement of GPI pin voltage.  
meas_vin (0x25)  
Measured Input Voltage.  
meas_vcap (0x26)  
Measured Capacitor Stack Voltage.  
meas_vout (0x27)  
Measured Output Voltage.  
meas_iin (0x28)  
1.983µV/R  
per LSB  
per LSB  
SNSI  
Measured Input Current.  
meas_ichg (0x29)  
1.983µV/R  
SNSC  
Measured Charge Current.  
meas_dtemp (0x2A)  
Temperature = 0.028°C per LSB – 251.4°C  
Measured die temperature.  
3350fc  
38  
For more information www.linear.com/LTC3350  
LTC3350  
Typical applicaTions  
Application Circuit 1. 25V to 35V, 6.4A Supercapacitor Charger with 2A Input Current Limit and 28V, 50W Backup Mode  
R
MN1  
SiS434DN  
SNSI  
0.016Ω  
V
OUT  
V
IN  
28V  
25V TO 35V  
50W IN BACKUP  
C2  
1µF  
C1  
0.1µF  
25V RISING THRESHOLD  
22V FALLING THRESHOLD  
R
PF1  
80.6k  
V
IN  
INFET VOUTM5VOUTSP VOUTSN OUTFET  
PFI  
R
R
PF3  
39.2k  
PF2  
4.53k  
C
OUT2  
V
+
DD  
C
10µF  
FBO1  
R
C
Si1555DL  
FBO1  
665k  
OUT1  
82µF  
120pF  
×2  
R1  
10k  
R2  
10k  
R3  
10k  
OUTFB  
R
29.4k  
DRV  
FBO2  
CC  
R7  
10k  
INTV  
CC  
C3  
C4  
0.1µF  
D
B
4.7µF  
B0540WS  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.1µF  
MN2  
SiS434DN  
CAPGD  
SMBALERT  
SCL  
TGATE  
L1  
6.8µH  
R
SNSC  
0.005Ω  
SDA  
SDA  
SW  
MN3  
SiS434DN  
C
CAP  
47µF  
BGATE  
VCC2P5  
LTC3350  
R4  
100k  
CAP_SLCT0  
CAP_SLCT1  
ICAP  
VCAP  
CFP  
R
R
R
R
2.7Ω  
CAP4  
CAP3  
CAP2  
CAP1  
C5  
1µF  
C
C
CP5  
0.1µF  
GPI  
VC  
F
+
0.1µF  
2.7Ω  
2.7Ω  
2.7Ω  
CFN  
VCAPP5  
CAP4 5F  
R
FBC1  
866k  
+
+
+
CAP3 5F  
RT  
R
T1  
100k  
CAP4  
CAP3  
CAP2  
CAP1  
T
R
FBC2  
ITST  
CAP2 5F  
CAP1 5F  
118k  
C
C
R5  
R6  
1.2nF 107k 121Ω  
R
2.7Ω  
CAPRTN  
SGND  
PGND  
CAPRTN  
CAPFB  
3350 TA02  
CAP1-4: NESSCAP ESHSR-0005C0-002R7  
L1: COILCRAFT XAL7070-682ME  
3350fc  
39  
For more information www.linear.com/LTC3350  
LTC3350  
Typical applicaTions  
Application Circuit 2. 11V to 20V, 16A Supercapacitor Charger with 6.4A Input Current Limit and 10V, 60W Backup Mode  
R
MN1  
SiR422DP  
SNSI  
0.005Ω  
V
OUT  
V
IN  
11V TO 20V  
10V  
60W IN BACKUP  
C2  
1µF  
C1  
0.1µF  
C
+
C
OUT2  
OUT1  
C
R
FBO1  
R
PF1  
FBO1  
619k  
22µF  
82µF  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
120pF  
IN  
806k  
×4  
×4  
V
PFI  
DD  
R
89.5k  
R
DRV  
FBO2  
PF2  
CC  
100k  
INTV  
CC  
R1  
10k  
R2  
10k  
R3  
10k  
C3  
C4  
0.1µF  
D
B
4.7µF  
B0540WS  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.47µF  
MN2  
CAPGD  
SMBALERT  
SCL  
BSC026N02KS  
TGATE  
L1  
2.2µH  
R
SNSC  
0.002Ω  
SDA  
SDA  
SW  
MN3  
C
CAP  
BSC046N02KS ×2  
47µF  
BGATE  
VCC2P5  
LTC3350  
R4  
100k  
CAP_SLCT0  
CAP_SLCT1  
ICAP  
VCAP  
CFP  
R
R
R
R
2.7Ω  
CAP4  
CAP3  
CAP2  
CAP1  
C5  
1µF  
C
C
CP5  
0.1µF  
GPI  
VC  
F
+
0.1µF  
2.7Ω  
2.7Ω  
2.7Ω  
CFN  
VCAPP5  
CAP4 360F  
CAP3 360F  
CAP2 360F  
CAP1 360F  
R
FBC1  
845k  
+
+
+
RT  
R
T1  
100k  
CAP4  
CAP3  
CAP2  
CAP1  
T
R
FBC2  
ITST  
150k  
C
C
10nF  
R5  
R6  
133k 121Ω  
R
2.7Ω  
CAPRTN  
SGND  
PGND  
CAPRTN  
CAPFB  
3350 TA03  
CAP1-4: NESSCAP ESHSR-0360CO-002R7  
L1: VISHAY IHLP5050FDER2R2MO1  
Application Circuit 3. 11V to 20V, 5.3A LiFePO4 Battery Charger with 4.6A Input Current Limit and 12V, 48W Backup Mode  
R
MN1  
SiS438DN  
SNSI  
0.007Ω  
V
OUT  
V
IN  
11V TO 20V  
12V  
48W IN BACKUP  
C2  
1µF  
C1  
0.1µF  
C
C
OUT2  
OUT1  
C
R
FBO1  
R
PF1  
FBO1  
649k  
47µF  
2.2µF  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
120pF  
IN  
806k  
×2  
×2  
V
PFI  
DD  
R
71.5k  
R
DRV  
FBO2  
PF2  
CC  
100k  
INTV  
CC  
R1  
10k  
R2  
10k  
R3  
10k  
C3  
C4  
0.1µF  
D
B
4.7µF  
B0540WS  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.1µF  
MN2  
BSZ060NE2LS  
CAPGD  
SMBALERT  
SCL  
TGATE  
L1  
3.3µH  
R
SNSC  
0.006Ω  
SDA  
SDA  
SW  
C
MN3  
BSZ060NE2LS  
CAP  
22µF  
BGATE  
VCC2P5  
×4  
LTC3350  
R4  
100k  
CAP_SLCT1  
CAP_SLCT0  
ICAP  
VCAP  
CFP  
C5  
1µF  
C
C
CP5  
0.1µF  
GPI  
VC  
F
0.1µF  
R
R
R
3.6Ω  
CAP3  
CAP2  
CAP1  
CFN  
VCAPP5  
+
+
+
3.6Ω  
3.6Ω  
RT  
R
T1  
100k  
CAP4  
CAP3  
CAP2  
CAP1  
T
R
FBC1  
909k  
ITST  
C
C
R5  
R6  
4.7nF 71.5k 10M  
R
118k  
FBC2  
R
3.6Ω  
CAPRTN  
SGND  
PGND  
CAPRTN  
CAPFB  
3350 TA04  
V
= 3.6V  
SHUNT  
L1: COILCRAFT XAL7070-332ME  
3350fc  
40  
For more information www.linear.com/LTC3350  
LTC3350  
Typical applicaTions  
Application Circuit 4. 11V to 35V, 4A Supercapacitor Charger with 2A Input Current Limit and 10V, 1A Backup Mode  
R
MN1  
SiR426DP  
SNSI  
0.016Ω  
V
OUT  
V
IN  
11V TO 35V  
10V  
10W IN BACKUP  
C2  
1µF  
C1  
0.1µF  
C
OUT2  
+
C
R
10µF  
FBO1  
R
C
PF1  
806k  
FBO1  
665k  
OUT1  
82µF  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
100pF  
IN  
×2  
V
PFI  
DD  
R
90.9k  
R
DRV  
INTV  
CC  
FBO2  
PF2  
100k  
CC  
R1  
10k  
R2  
R3  
10k  
C3  
C4  
0.1µF  
D
B
10k  
4.7µF  
1N4448HWT  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.1µF  
MN2  
SiR426DP  
CAPGD  
SMBALERT  
SCL  
D1  
DFLS240  
TGATE  
L1  
R
SNSC  
0.008Ω  
4.7µH  
SDA  
SDA  
SW  
MN3  
SiR426DP  
C
CAP  
D2  
DFLS240  
47µF  
BGATE  
VCC2P5  
LTC3350  
R4  
100k  
CAP_SLCT0  
ICAP  
C6  
220pF  
CAP_SLCT1  
VCAP  
CFP  
C5  
1µF  
R
R
R
R
2.7Ω  
CAP4  
CAP3  
CAP2  
CAP1  
C
C
CP5  
0.1µF  
GPI  
VC  
F
+
0.1µF  
2.7Ω  
2.7Ω  
2.7Ω  
CFN  
VCAPP5  
CAP4 10F  
R
+
+
+
FBC1  
590k  
CAP3 10F  
CAP2 10F  
CAP1 10F  
RT  
R
T1  
100k  
CAP4  
CAP3  
CAP2  
CAP1  
T
R
FBC2  
ITST  
118k  
C
C
R5  
R6  
121Ω  
10nF 107k  
R
2.7Ω  
CAPRTN  
SGND  
PGND  
CAPRTN  
CAPFB  
3350 TA05  
CAP1-4: NESSCAP ESHSR-0010C0-002R7  
L1: VISHAY IHLP5050FDER47MO1  
Application Circuit 5. 11V to 20V, 4A Supercapacitor Charger with 2A Input Current Limit and 5V, 2A Backup Mode  
R
MN1  
SiR412DP  
SNSI  
0.016Ω  
V
OUT  
5V  
V
IN  
11V TO 20V  
10W IN BACKUP  
C2  
MN4  
SiR412DP  
1µF  
C1  
0.1µF  
C
OUT2  
+
C
R
10µF  
FBO1  
R
C
PF1  
806k  
FBO1  
665k  
OUT1  
82µF  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
100pF  
IN  
×2  
V
PFI  
DD  
R
R
DRV  
INTV  
CC  
FBO2  
210k  
PF2  
100k  
CC  
R1  
10k  
R2  
R3  
10k  
C3  
4.7µF  
C4  
0.1µF  
D
B
10k  
1N4448HWT  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.1µF  
MN2  
SiR426DP  
CAPGD  
SMBALERT  
SCL  
D1  
DFLS240  
TGATE  
L1  
R
SNSC  
0.008Ω  
4.7µH  
SDA  
SDA  
SW  
MN3  
SiR426DP  
C
CAP  
D2  
DFLS240  
47µF  
BGATE  
VCC2P5  
LTC3350  
R4  
100k  
CAP_SLCT0  
ICAP  
C6  
220pF  
CAP_SLCT1  
VCAP  
CFP  
C5  
1µF  
R
R
R
R
2.7Ω  
CAP4  
CAP3  
CAP2  
CAP1  
C
C
CP5  
0.1µF  
GPI  
VC  
F
+
0.1µF  
2.7Ω  
2.7Ω  
2.7Ω  
CFN  
VCAPP5  
CAP4 10F  
R
+
+
+
FBC1  
590k  
CAP3 10F  
CAP2 10F  
CAP1 10F  
RT  
R
T1  
100k  
CAP4  
CAP3  
CAP2  
CAP1  
T
R
FBC2  
ITST  
118k  
C
C
R5  
R6  
121Ω  
10nF 107k  
R
2.7Ω  
CAPRTN  
SGND  
PGND  
CAPRTN  
CAPFB  
3350 TA06  
CAP1-4: NESSCAP ESHSR-0010C0-002R7  
L1: VISHAY IHLP5050FDER47MO1  
3350fc  
41  
For more information www.linear.com/LTC3350  
LTC3350  
Typical applicaTions  
Application Circuit 6. 11V to 15V, 2.3A Zeta-SEPIC High Voltage Capacitor Charger with 2A Input Current Limit and 10V, 25W Backup Mode  
R
MN1  
FDMC7660S  
SNSI  
0.016Ω  
V
OUT  
V
IN  
11V TO 15V  
10V  
25W IN BACKUP  
C2  
1µF  
C1  
0.1µF  
C
OUT  
R
22µF  
R
PF1  
158k  
FBO1  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
IN  
×5  
768k  
PFI  
R
100k  
R
DRV  
INTV  
CC  
FBO2  
PF2  
20k  
CC  
V
DD  
C3  
4.7µF  
C4  
0.1µF  
R1  
10k  
R2  
10k  
R3  
10k  
Q1  
Si1555DL  
L1  
4.7µH  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
C
B2  
4.7µF  
CAPGD  
SMBALERT  
SCL  
B
0.1µF  
10µF  
1Ω  
TGATE  
MP1  
Si7415DN  
SDA  
SDA  
L2  
4.7µH  
10µF  
VCC2P5  
SW  
LTC3350  
CAP  
2200µF  
35V  
R
+
FBC3  
C7  
MN2  
FDMC86520L  
604k  
FBC  
BGATE  
10µF  
CAP_SLCT0  
CAP_SLCT1  
C
CFP  
CFN  
ICAP  
×2  
820pF  
C5  
1µF  
R
CAPTOP  
255k  
R
GPI  
VC  
FBC1  
C6  
470pF  
R
787k  
SNSC  
0.014Ω  
R
CAPBOT  
24.3k  
R
FBC2  
28k  
VCAP  
VCAPP5  
RT  
CAP4  
CAP3  
CAP2  
CAP1  
CAPRTN  
CAPFB  
ITST  
C
R5  
R6  
C
22nF  
107k 10M  
SGND  
PGND  
3350 TA07  
CAP: NICHICON UHW1V222MHD  
L1, L2: COILCRAFT XAL4030-472ME  
SET ctl_cap_scale TO 1  
In a Zeta-SEPIC application there are several differences  
in the monitoring features due to differences in how the  
LTC3350isconfigured. Thecapacitorvoltageismeasured  
differently, it is no longer measured in the meas_vcap  
register, but in the meas_vcap1 register. The scale factor  
for meas_vcap1 must be adjusted for the resistor divider  
connected to the CAP1 pin. Also in this configuration  
the precision current load (ITST) for the capacitance test  
cannotbeused. Theloadonthecapacitorsaretheexternal  
dividers only. A capacitance measurement may still be  
done. The results in the meas_cap_register will have an  
LSB in Farads of:  
where R is the total resistance to ground in parallel with  
L
the capacitor, R  
is the top divider resistor from  
CAPTOP  
the capacitor to CAP1 and R  
is the bottom divider  
CAPBOT  
resistor from CAP1 to ground. The above equation is for  
whenthectl_cap_scalebitissettoone.ESRmeasurements  
may be possible with large capacitors with larger ESR’s.  
However, the accuracy of the ESR measurement in this  
applicationissignificantlyreduced.TheESRmeasurement  
in the meas_esr register must be scaled up by the resistor  
divider ratio. The voltage at the CAP1 pin should be kept  
below the V  
setting.  
SHUNT  
The voltage at the CAP1 pin will be above the default shunt  
value (2.7V) when V is greater than 31V. In order to  
–5.610–7  
RT  
CAP  
CLSB  
=
continue charging to 35V, the shunts should be disabled  
by setting vshunt to zero (0x0000).  
R
⎞ ⎛  
⎟ ⎜  
0.2  
RCAPTOP  
L
In 1–  
1+  
V
RCAPBOT  
CAP ⎠ ⎝  
3350fc  
42  
For more information www.linear.com/LTC3350  
LTC3350  
Typical applicaTions  
Application Circuit 7. 4.8V to 12V, 10A Supercapacitor Charger with 6.4A Input Current Limit and 5V, 30W Backup Mode  
R
MN1  
SiS452DN  
SNSI  
0.005Ω  
V
OUT  
V
IN  
4.8V TO 12V  
5V  
30W IN BACKUP  
C2  
1µF  
50µs FALLING  
EDGE FILTER  
C1  
0.1µF  
C
C
OUT1  
OUT2  
C
R
FBO1  
R
PF1  
FBO1  
665k  
100µF  
2.2µF  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
100pF  
IN  
30.1k  
1M  
×6  
×2  
V
PFI  
DD  
R
FBO2  
210k  
R
10pF  
DRV  
PF2  
CC  
10k  
INTV  
CC  
R1  
10k  
R2  
10k  
R3  
1k  
C3  
10µF  
C4  
0.1µF  
D
B
MN4  
Si1062X  
B0540WS  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.1µF  
MN2  
SiS452DN  
CAPGD  
SMBALERT  
SCL  
TGATE  
L1  
1µH  
R
SNSC  
0.003Ω  
SDA  
SDA  
SW  
MN3  
SiS452DN  
C
CAP  
47µF  
BGATE  
VCC2P5  
LTC3350  
R4  
100k  
CAP_SLCT0  
CAP_SLCT1  
ICAP  
VCAP  
CFP  
C5  
1µF  
C
C
CP5  
0.1µF  
GPI  
VC  
F
0.1µF  
CFN  
VCAPP5  
R
R
2.7Ω  
CAP2  
R
R
RT  
CAP4  
CAP3  
CAP2  
CAP1  
T1  
C
T
100k  
2k  
+
R
FBC1  
732k  
ITST  
2.7Ω  
2.7Ω  
CAP1  
CAP2 50F  
C
R5  
R6  
C
+
4.7nF 88.7k 121Ω  
R
FBC2  
R
CAPRTN  
CAP1 50F  
SGND  
PGND  
274k  
CAPRTN  
CAPFB  
3350 TA08  
CAP1-2: NESSCAP ESHSR-0050C0-002R7  
L1: COILCRAFT XAL7030-102ME  
3350fc  
43  
For more information www.linear.com/LTC3350  
LTC3350  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-ꢀ70ꢀ Rev C)  
0.70 0.05  
5.50 0.05  
5.ꢀ5 0.05  
4.ꢀ0 0.05  
3.ꢀ5 0.05  
3.00 REF  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
5.5 REF  
6.ꢀ0 0.05  
7.50 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN ꢀ NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
0.75 0.05  
0.00 – 0.05  
3.00 REF  
5.00 0.ꢀ0  
37  
38  
0.40 0.ꢀ0  
PIN ꢀ  
TOP MARK  
2
(SEE NOTE 6)  
5.ꢀ5 0.ꢀ0  
5.50 REF  
7.00 0.ꢀ0  
3.ꢀ5 0.ꢀ0  
(UH) QFN REF C ꢀꢀ07  
0.200 REF 0.25 0.05  
0.50 BSC  
R = 0.ꢀ25  
TYP  
R = 0.ꢀ0  
TYP  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
3350fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
44  
LTC3350  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
09/14 Modified I  
equations in C  
and C Capacitance section  
CAP  
27  
28  
32  
42  
4
RMS  
OUT  
Changed 5V to 6V in back-up mode under the Power MOSFET Selection section  
Changed V voltage reference DAC setting  
CAP  
Modified Application Circuit  
B
01/15 Remove V  
Common Mode Range from Electrical Characteristics  
CMI  
Remove Conditions on I  
Falling and Rising  
5
PFO  
Change Analog-to-Digital Converter section  
Change range in the General Purpose Input section to 0V to 5V  
Change MN1 to MP1 just below Figure 6  
18  
20  
23  
30  
32  
38  
42  
3
Change M1, M2 to MN1, MN2 in the PCB Layout Considerations section  
Increase page numbers to all entries on the Register Map  
For meas_vcap change µV to mV  
Change name to Application Circuit 6  
C
08/15 Modified Order Information Table for temperature grade identified by label on shipping container  
Modified Input Overvoltage Protection Section  
17  
18  
19  
20  
22  
26  
31  
35  
38  
42  
Add sentence at the end of the first paragraph  
Add three sentences to the end of the Capacitance and ESR Measurements section  
Replace sentence in the Limit Checking and Alarms section  
Modified Figure 3  
Add new supplier to Table 2, Supercapacitor Suppliers  
Add Note 12 in the PCB Considerations Layout section  
Change reference from R /R to R /R on cap_lo_lvl description  
TST  
T
T
TST  
Change reference from R /R to R /R on meas_cap description  
TST  
T
T
TST  
Change value of R  
to 24.3k from 20k. Also add two sentences to the end of the text  
CAPBOT  
3350fc  
45  
For more information www.linear.com/LTC3350  
LTC3350  
Typical applicaTion  
12V PCle Backup Controller  
R
MN1  
SiS438DN  
SNSI  
0.016Ω  
V
OUT  
V
IN  
11V TO 20V  
6V  
25W IN BACKUP  
C2  
1µF  
MN4  
SiS438DN  
C1  
0.1µF  
C
C
OUT2  
OUT1  
C
R
FBO1  
R
PF1  
FBO1  
649k  
47µF  
2.2µF  
V
INFET VOUTM5VOUTSP VOUTSN OUTFET  
OUTFB  
120pF  
IN  
806k  
×2  
×2  
V
PFI  
DD  
R
R
PF2  
DRV  
FBO2  
162k  
CC  
100k  
INTV  
CC  
R1  
10k  
R2  
10k  
R3  
10k  
C3  
4.7µF  
C4  
0.1µF  
D
B
1N4448HWT  
BST  
PFO  
CAPGD  
SMBALERT  
SCL  
PFO  
C
B
0.1µF  
MN2  
BSZ060NE2LS  
CAPGD  
SMBALERT  
SCL  
TGATE  
L1  
3.3µH  
R
SNSC  
0.006Ω  
SDA  
SDA  
SW  
MN3  
BSZ060NE2LS  
C
CAP  
22µF  
BGATE  
VCC2P5  
×4  
LTC3350  
R4  
100k  
CAP_SLCT0  
CAP_SLCT1  
ICAP  
VCAP  
CFP  
R
R
R
R
2.7Ω  
CAP4  
CAP3  
CAP2  
CAP1  
C5  
1µF  
C
C
CP5  
0.1µF  
GPI  
VC  
F
+
0.1µF  
2.7Ω  
2.7Ω  
2.7Ω  
CFN  
VCAPP5  
CAP4 10F  
CAP3 10F  
CAP2 10F  
CAP1 10F  
R
+
+
+
FBC1  
866k  
RT  
R
T1  
100k  
CAP4  
CAP3  
CAP2  
CAP1  
T
R
FBC2  
ITST  
118k  
C
C
10nF  
R5  
R6  
71.5k 121Ω  
R
2.7Ω  
CAPRTN  
GND  
PGND  
CAPRTN  
CAPFB  
3350 TA09  
CAP1-4: NESSCAP ESHSR-0010C0-002R7  
L1: COILCRAFT XAL7030-332ME  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Power Management  
LTC3128  
3A Monolithic Buck-Boost Supercapacitor Charger  
and Balancer with Accurate Input Current Limit  
2% Accurate Average Input Current Limit Programmable to 3A, Active Charge  
Balancing, Charges 1 or 2 Capacitors, V Range: 1.73V to 5.5V, V  
Range:  
IN  
OUT  
1.8V to 5.5V, 20-Lead (4mm × 5mm × 0.75mm) QFN and 24-Lead TSSOP  
Packages  
LTC3226  
LTC3355  
LTC3625  
LTC4110  
LTC4425  
2-Cell Supercapacitor Charger with Backup  
PowerPath Controller  
1x/2x Multimode Charge Pump Supercapacitor Charger, Automatic Cell  
Balancing, PowerPath, 2A LDO Backup Supply, Automatic Main/Backup  
Switchover, 2.5V to 5.5V, 16-Lead 3mm × 3mm QFN Package  
20V, 1A Buck DC/DC with Integrated SCAP Charger V : 3V to 20V, V : 2.7V to 5V, 1A Main Buck Regulator, 5A Boost Backup  
and Backup Regulator  
IN  
OUT  
Regulator Powered from Single Supercapacitor, Overvoltage Protection, 20-  
Lead 4mm × 4mm QFN Package.  
1A High Efficiency 2-Cell Supercapacitor Charger  
with Automatic Cell Balancing  
High Efficiency Step-Up/Step-Down Charging of Two Series Supercapacitors.  
Automatic Cell Balancing. Programmable Charging Current to 500mA (Single  
Inductor), 1A (Dual Inductor). 12-Lead 3mm × 4mm DFN Package  
Battery Backup System Manager  
Complete Backup Battery Manager for Li-Ion/Polymer, Lead Acid, NiMH/  
NiCd Batteries and Supercapacitors. Input Supply Range: 4.5V to 19V,  
Programmable Charge Current Up to 3A, 38-Lead 5mm × 7mm QFN Package.  
Linear SuperCap Charger with Current-Limited Ideal Constant-Current/Constant-Voltage Linear Charger for 2-Cell Series  
Diode and V/I Monitor  
Supercapacitor Stack. V : Li-Ion/Polymer Battery, a USB Port, or a 2.7V to  
IN  
5.5V Current-Limited Supply. 2A Charge Current, Automatic Cell Balancing,  
Shutdown Current <2μA. 12-Pin 3mm × 3mm DFN or 12-Lead MSOP Package  
3350fc  
LT 0815 REV C• PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
46  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3350  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LTC3351

2.5A Supercapacitor Backup Power Manager
ADI

LTC3355

20V 1A Buck DC/DC with Integrated SCAP Charger and Backup Regulator
Linear

LTC3355

2.5A Supercapacitor Backup Power Manager
ADI

LTC3355_15

20V 1A Buck DC/DC with Integrated SCAP Charger and Backup Regulator
Linear

LTC3370

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3370

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3371

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3371

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3372

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3374A

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear