LTC3371 [ADI]

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages;
LTC3371
型号: LTC3371
厂家: ADI    ADI
描述:

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages

文件: 总28页 (文件大小:1625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3376  
20V, 4-Channel Buck DC/DC with  
8x Configurable 1.5A Power Stages  
FEATURES  
DESCRIPTION  
The LTC®3376 is a highly flexible multioutput power  
supply IC. The device includes four synchronous buck  
n
Wide V Range: 3V to 20V  
IN  
n
Wide V  
Range: 0.4V to 0.83 • V  
OUT  
IN  
n
n
converters, configured to share eight 1.5A power stages,  
powered from independent 3V to 20V inputs. The DC/DCs  
are assigned to one of fifteen power configurations via pin  
strappable CFG0 to CFG3 pins. The LTC3376 includes the  
integration of ceramic capacitors into the package for the  
BST pins thereby saving PCB space. The common buck  
switching frequency may be programmed with an external  
resistor, synchronized to an external oscillator, or set to a  
default internal 2MHz clock.  
8× 1.5A Buck Power Stages Configurable as 1 to 4  
Output Channels  
15 Unique Pin Selectable Output Configurations  
(1.5A to 12A per Channel)  
n
n
Internal Boost Capacitors for Reduced PCB Space  
No Load I 27µA 1 Buck Enabled; 42µA All Bucks  
Q
Enabled  
n
n
1% V  
Accuracy on All Channels  
OUT  
Peak Current Mode Control (Burst Mode®  
Operation/Forced Continuous)  
The operating mode for all DC/DCs may be programmed  
via the SYNC/MODE pin for Burst Mode or forced continu-  
ous mode operation. The PGOOD1 to PGOOD4 outputs  
indicate when each enabled DC/DC is within a specified  
percentage of its final output.  
n
n
Precision RUN Inputs, Individual PGOOD Outputs for  
Power Sequencing  
1MHz to 3MHz Frequency (RT Programmable, PLL  
SYNC, or Internal 2MHz Oscillator)  
TEMP Pin Output Indicates Die Temperature  
Output Current Monitors  
n
n
n
Current monitors allow for external monitoring of each  
buck’s load. The EXTV pin allows for the internal cir-  
CC  
Differential Output Sense  
cuitry to run from a 3V to 5.5V rail for improved efficiency.  
APPLICATIONS  
Precision RUN pin thresholds facilitate power-up sequenc-  
ing. The LTC3376 is available in a 64 lead 7mm × 7mm  
BGA (0.8mm ball pitch).  
n
Telecom/Industrial  
n
12V Distributed Power Systems  
All registered trademarks and trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
1.5A Buck Efficiency vs ILOAD, VOUT=5V  
Rꢒꢈꢓ  
ꢇꢈꢉꢊꢋ  
ꢃꢆ ꢁꢌ ꢍ0ꢆ  
ꢀ00  
ꢀ0  
ꢋꢎꢁꢉ  
ꢋꢎꢁꢋ  
ꢑꢚꢌꢌꢛꢓ  
ꢙꢌꢈꢓ  
ꢎꢏꢉꢊꢋ  
0ꢜꢝꢆ ꢁꢌ ꢞꢜꢞꢆ  
ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
L DCR = 12mΩ  
ꢑꢚꢈꢛꢉꢊꢋ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢔꢋꢓ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢔꢋꢓ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀꢀ  
ꢀꢁꢂꢃꢃꢄꢅ  
ꢋꢒꢂꢟ ꢓ ꢠꢃꢉꢡ  
ꢋꢒꢂꢟ ꢍ ꢠꢃꢉꢡ  
ꢋꢒꢂꢟ ꢃ ꢠꢃꢉꢡ  
ꢋꢒꢂꢟ ꢝ ꢠꢃꢉꢡ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢃꢆ ꢁꢌ ꢍ0ꢆ  
ꢂꢂ  
ꢇꢈꢁꢆ  
ꢂꢂꢐꢑ  
ꢠꢃꢆꢡ  
ꢇꢈꢁꢆ  
ꢂꢂ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢃꢆ ꢁꢌ ꢞꢜꢞꢆ  
ꢠꢌꢑꢁꢇꢌꢈꢉꢀꢡ  
ꢖꢗꢁꢆ  
ꢂꢂ  
ꢀꢁ  
ꢎꢣꢈꢂꢊꢙꢌꢛꢖ  
ꢂꢔꢚꢤꢃꢥ0ꢦ  
ꢁꢖꢙꢑ  
Rꢁ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
ꢚꢈꢛ  
ꢃꢃꢄꢅ ꢁꢉ0ꢓꢢ  
Rev 0  
1
Document Feedback  
For more information www.analog.com  
LTC3376  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , V  
................................................. –0.3V to 22V  
CC INA-H  
1
2
3
4
5
6
7
8
+
FB1-4 , RUN1-4, CFG1-3, EXTV , PGOOD1-4,  
CC  
INTV , INTV  
SYNC/MODE .................. –0.3V to 6V  
CC  
CC_P,  
A
B
C
D
E
BSTA SWA  
V
PGNDA PGNDH  
V
SWH BSTH  
BSTG SWG  
CFG0, RT, TEMP, I  
........0.3V to (INTV + 0.3V)  
INA  
INH  
MON1-4  
CC  
INTV – INTV  
................................... –0.3V to 0.3V  
CC  
CC_P  
SWB BSTB INTV  
V
GND INTV  
CC  
CC  
CC_P  
FB1-4 ....................................................... –0.3V to 0.3V  
I
..................................................................5mA  
V
EXTV  
FB1  
RUN1 RUN4 FB4  
TEMP  
V
ING  
PGOOD1-4  
INB  
CC  
Operating Junction Temperature  
+
+
+
PGNDB PGOOD1 I  
PGNDC PGOOD2 I  
FB1  
FB2  
FB4  
FB3  
I
I
PGOOD4 PGNDG  
PGOOD3 PGNDF  
MON1  
MON4  
(Notes 2, 3)............................................ –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Reflow (Package Body) Temperature ... 260ºC  
+
MON2  
MON3  
F
V
CFG0 FB2  
RUN2 RUN3 FB3  
CFG3  
V
INF  
INC  
G
H
SWC BSTC SYNC/MODE CFG2 RT  
CFG1 BSTF SWF  
BSTD  
SWD  
V
IND  
PGNDD PGNDE  
V
INE  
SWE  
BSTE  
BGA PACKAGE  
64-Lead (7.00mm × 7.00mm × 1.34mm)  
T
= 125°C, θ = 35°C/W, 0.8mm Ball Pitch  
JMAX  
JA  
θ
= 23˚C/W, θ  
= 16˚C/W  
JCBOTTOM  
JCTOP  
θ Values Determined per JESD51-12  
ORDER INFORMATION  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTC3376EY#PBF  
LTC3376IY#PBF  
PAD OR BALL FINISH  
DEVICE  
LTC3376  
LTC3376  
FINISH CODE  
RATING  
–40°C to 125°C  
–40°C to 125°C  
SAC305 (RoHS)  
e1  
BGA  
3
• Contact the factory for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures  
• Device temperature grade is indicated by a label on the shipping container.  
LGA and BGA Package and Tray Drawings  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VINA-H = 12V, RT tied to INTVCC, VFB1-4¯ = 0V, unless  
otherwise stated.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
V
Voltage Range  
3
20  
V
CC  
CC  
CC  
I
Input Supply Current, EXTV = 0V  
All Bucks in Shutdown  
9
15  
90  
30  
µA  
µA  
VCC  
CC  
+
1 Buck on, Sleeping, V = 0.41V  
61  
17  
4.5  
FB  
Each Additional Buck, Sleeping  
µA  
1 Buck on (Configured to 1 Power Stage),  
mA  
SYNC/MODE = INTV (Note 3)  
CC  
V
CC  
Input Supply Current, EXTV = 3.3V  
At Least One Buck On  
7
12  
µA  
CC  
Rev 0  
2
For more information www.analog.com  
LTC3376  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VINA-H = 12V, RT tied to INTVCC, VFB1-4¯ = 0V, unless  
otherwise stated.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
Total System Current Bootstrapped  
1 Buck on, Sleeping, V = 0.41V (Note 4)  
27  
32  
42  
µA  
µA  
µA  
FB  
+
2 Bucks on, Sleeping, V = 0.41V (Note 4)  
FB  
All Bucks on (Note 4)  
+
EXTV Input Supply Current, EXTV = 3.3V 1 Buck on, Sleep, V = 0.41V  
56  
17  
4.5  
85  
30  
µA  
µA  
mA  
CC  
CC  
FB  
Each Additional Buck, Sleep  
1 Buck on (Configured to 1 Power Stage),  
SYNC/MODE = INTV (Note 3)  
CC  
l
Undervoltage Threshold on INTV  
INTV Voltage Falling  
2.55  
2.6  
2.65  
V
CC  
CC  
Undervoltage Hysteresis on INTV  
Internal Oscillator Frequency  
250  
mV  
CC  
l
l
f
osc  
RT = INTV , SYNC/MODE = 0V  
1.84  
1.84  
2
2
2.16  
2.16  
MHz  
MHz  
CC  
RT = 402k, SYNC/MODE = 0V  
l
Synchronization Frequency  
1
3
MHz  
External Low Voltage Supply (If Used)  
l
l
EXTV  
Optional External Supply Range  
Undervoltage Threshold on EXTV  
3
5.5  
V
V
CC  
EXTV Voltage Falling  
2.8  
2.85  
75  
2.95  
CC  
CC  
Undervoltage Hysteresis on EXTV  
mV  
CC  
1.5A Buck Regulators  
l
l
V
IN  
Buck Input Voltage Range  
3
20  
V
Undervoltage Threshold on V  
V
Voltage Falling  
IN  
2.5  
2.6  
0.2  
2.7  
V
V
IN  
Hysteresis  
V
INA-H  
Input Supply Current, V  
= 12V  
All Bucks Off  
INA-H  
V
V
, V , V , V  
0.7  
0
1.4  
1.4  
µA  
µA  
INB INC INF ING  
, V , V , V  
INA IND INE INH  
+
Buck On, Sleeping, V = 0.41V  
FB  
V
V
, V , V , V  
INA IND INE INH  
0.7  
0
µA  
µA  
INB INC INF ING  
, V , V , V  
Buck On, SYNC/MODE=INTV  
(Note 5)  
5.2  
2.62  
400  
mA  
A
CC  
Top Switch Current Limit, Duty < 18%  
Feedback Regulation Voltage  
Feedback Leakage Current  
2.3  
396  
–30  
3.0  
404  
30  
+
l
l
V
mV  
nA  
FB  
+
+
I
FB  
V
FB  
= 0.41V  
Minimum Off-Time  
90  
53  
140  
85  
ns  
Minimum On-Time  
ns  
Top Switch Power FET On-Resistance  
Bottom Switch Power FET On-Resistance  
Top Switch Power FET Leakage  
Bottom Switch Power FET Leakage  
SW Pull-Down Resistance in Shutdown  
Soft-Start Time  
170  
90  
mΩ  
mΩ  
µA  
V
V
= 20V, SWA-H = 0V  
= SWA-H = 20V  
0.1  
1
INA-H  
0.003  
µA  
INA-H  
RUN1-4 = 0V per Output Channel  
(Note 6)  
1
1
kΩ  
ms  
l
t
SS  
0.3  
2.5  
Start-Up Delay Time  
Starting Up from All EN’s Low  
When at Least One EN Is Already High  
100  
40  
250  
100  
500  
250  
µs  
µs  
+
+
l
l
PGOOD Lower Threshold  
V
Falling, Percentage of Regulated V  
95  
96.75  
1
98.5  
%
%
%
%
µs  
FB  
FB  
PGOOD Lower Threshold Hysteresis  
PGOOD Upper Threshold  
+
+
V
Rising, Percentage of Regulated V  
104.5  
107.5  
2.5  
110.5  
FB  
FB  
PGOOD Upper Threshold Hysteresis  
PGOOD Filtering Time  
100  
Rev 0  
3
For more information www.analog.com  
LTC3376  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VINA-H = 12V, RT tied to INTVCC, VFB1-4¯ = 0V, unless  
otherwise stated.  
SYMBOL  
Buck Regulators Combined  
Top Switch Current Limit, Duty < 18%  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1 Buck with 2 Power Stages Combined (Note 5)  
1 Buck with 3 Power Stages Combined (Note 5)  
1 Buck with 4 Power Stages Combined (Note 5)  
1 Buck with 5 Power Stages Combined (Note 5)  
1 Buck with 6 Power Stages Combined (Note 5)  
1 Buck with 7 Power Stages Combined (Note 5)  
1 Buck with 8 Power Stages Combined (Note 5)  
5.25  
7.88  
10.5  
13.1  
15.8  
18.4  
21  
A
A
A
A
A
A
A
Temperature Monitor  
VTEMP(ROOM) TEMP Voltage at 25°C  
220  
0.9  
250  
10  
280  
1.1  
mV  
mV/°C  
°C  
∆V  
OT  
V
Slope  
TEMP  
TEMP/°C  
Overtemperature Shutdown (Note 7)  
Overtemperature Hysteresis  
Temperature Rising  
165  
10  
°C  
Current Monitors  
I
I
I
Voltage at 1.5A Load  
Voltage at No Load  
Slope  
R
= 10k, Duty Cycle = 25%  
IMON  
1
0
V
V
MON1-4  
MON1-4  
MON1-4  
SYNC/MODE = INTV  
CC  
R
= 10k  
0.667  
V/A  
IMON  
Interface Logic Pins (CFG0-3, SYNC/MODE, PGOOD1-4)  
I
Output High Leakage Current  
Output Low Voltage  
PGOOD1-4 at 5.5V  
1
µA  
V
OH  
V
V
V
PGOOD1-4, 3mA into Pin  
CFG0-3, SYNC/MODE  
CFG0-3, SYNC/MODE  
0.03  
0.4  
OL  
IH  
IL  
l
l
Input High Threshold  
1.2  
V
Input Low Threshold  
0.4  
V
I
I
Input High, Low Leakage Current  
CFG0-3 Pins at INTV & 0V  
1
1
µA  
µA  
IH, IL  
CC  
SYNC/MODE Pin at 5.5V & 0V  
Interface Logic Pins (RUN1-4)  
RUN Rising Threshold  
l
l
First Regulator Turning On  
One Regulator or More Already in Use  
350  
280  
730  
300  
1200  
320  
mV  
mV  
RUN Falling Threshold  
RUN Falling Threshold  
Last Regulator Turning Off  
690  
200  
mV  
mV  
l
One Regulator or More Kept On  
180  
220  
1
RUN Pin Leakage Current  
RUN1-4 = 5.5V  
µA  
Rev 0  
4
For more information www.analog.com  
LTC3376  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: There will be additional switching current on V  
Note 4: Total System current is defined as total current from V + V  
pins.  
INA-H  
CC  
INA-H  
when all bucks are on (in Sleep), V = V  
= 12V, and EXTV is boot-  
CC  
INA-H  
CC  
strapped to run off of a 3.3V buck.  
Note 2: The LTC3376 is tested under pulsed load conditions such  
Note 5: The current limit features of this part are intended to protect the  
IC from short term or intermittent fault conditions. Continuous operation  
above the specified maximum pin current rating may result in device  
degradation over time.  
that T ~ T . The LTC3376E is guaranteed to meet specifications from  
J
A
0°C to 85°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3376I is guaranteed over the –40°C to 125°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes; operating lifetime is derated for junction temperatures greater  
than 125°C. Note that the maximum ambient temperature consistent  
with these specifications is determined by specific operating conditions  
in conjunction with board layout, the rated package thermal impedance  
Note 6: The Soft-Start Time is the time from the start of switching until  
+
V
FB  
– V reaches 360mV.  
FB  
Note 7: The LTC3376 includes overtemperature protection which protects  
the device during momentary overload conditions. Junction temperature  
exceeds the maximum operating junction temperature when overtemperature  
protection is active. Continuous operation above the specified maximum  
operating junction temperature may impair device reliability.  
and other environmental factors. The junction temperature (T in °C) is  
J
calculated from ambient temperature (T in °C) and power dissipation (P  
A
D
in Watts) according to the formula:  
T = T + (P • θ )  
J
A
D
JA  
where θ (in °C/W) is the package thermal impedance.  
JA  
Rev 0  
5
For more information www.analog.com  
LTC3376  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
INTVCC Undervoltage Threshold  
vs Temperature  
EXTVCC Undervoltage Threshold  
vs Temperature  
VIN Undervoltage Threshold vs  
Temperature  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢂ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃ0ꢀ  
ꢀꢀꢁꢂ ꢃ0ꢄ  
ꢀꢀꢁꢂ ꢃ0ꢄ  
Total System Current vs  
Temperature with One Buck On  
(Sleeping, Bootstrapped)  
VCC Current vs Temperature with  
One Buck On (Sleeping, Not  
Bootstrapped)  
V
CC Current vs Temperature with  
All Bucks in Shutdown  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ0  
ꢀꢁ  
ꢀ ꢁ ꢀ ꢁꢂꢃ  
ꢀꢀ  
ꢀ ꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀ ꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃ0ꢄ  
ꢀꢀꢁꢂ ꢃ0ꢄ  
ꢀꢀꢁꢂ ꢃ0ꢂ  
VIN Current vs Temperature  
(Forced Continuous Mode, One  
Power Stage)  
VCC Current vs Temperature with  
One Buck On (Forced Continuous  
Mode, One Power Stage)  
V
IN Current vs Temperature  
(Sleeping)  
ꢀꢁꢀ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢀꢂ  
ꢀꢁ00  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢀ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀ ꢁ ꢀ ꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢀꢁꢂ ꢃ0ꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃ0ꢄ  
ꢀꢀꢁꢂ ꢃ0ꢄ  
Rev 0  
6
For more information www.analog.com  
LTC3376  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
RT-Programmed Oscillator  
Frequency vs Temperature  
Default Oscillator Frequency vs  
Temperature  
Oscillator Frequency vs RT  
ꢀꢁ0ꢂ  
ꢀꢁ0ꢀ  
ꢀꢁ0ꢂ  
ꢀꢁ00  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ00ꢂ  
ꢀꢁ00ꢂ  
ꢀꢁ000  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ0  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁ00  
0ꢀꢁ0  
0
R
ꢀ ꢁꢂꢃꢄ  
ꢀꢀ  
R
= 402kΩ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢀ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
RT PIN RESISTANCE (kΩ)  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄ0  
RUN Pin Rising Threshold vs  
Temperature  
RUN Pin Threshold vs  
Temperature  
V
TEMP vs Temperature  
ꢀꢁꢂꢃ  
ꢀꢁ00  
0ꢀꢁꢂ  
0ꢀꢁ0  
0ꢀꢁꢂ  
0
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢀ0  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁꢁ ꢂꢃꢄeꢅ Rꢆꢇ  
ꢀꢁꢂꢃ ꢄꢅꢆ  
ꢀꢁ ꢂeꢃꢄꢁ ꢅꢆe ꢅꢁꢇeꢈ  
Rꢀꢁ ꢂꢃꢄ ꢅꢃꢆꢅ  
Rꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ ꢆ  
ꢀꢁeꢂꢃ ꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ0ꢁꢂꢃ  
ꢀ0ꢁꢂ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
Rev 0  
7
For more information www.analog.com  
LTC3376  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Top Switch Current Limit vs  
Top Switch Leakage vs  
VFB+ – VFBvs Temperature  
Temperature  
Temperature  
ꢀ0ꢀꢁ0  
ꢀ0ꢁꢂꢃ  
ꢀ0ꢁꢂꢀ  
ꢀ0ꢁꢂꢃ  
ꢀ00ꢁꢂ  
ꢀ00ꢁ0  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
0ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0ꢀꢁ  
0
ꢀ 0  
ꢀ ꢁꢂ0ꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
Top Switch RDS(ON) vs  
Temperature  
Bottom Switch RDS(ON) vs  
Temperature  
Minimum On-Time vs  
Temperature  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢀ0  
ꢀ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄ0  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev 0  
8
For more information www.analog.com  
LTC3376  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Minimum Off-Time vs  
Temperature  
1.5A Buck Efficiency vs ILOAD  
,
1.5A Buck Efficiency vs ILOAD  
,
VOUT=5V  
VOUT=3.3V  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢀ  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
L DCR = 12mΩ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
L DCR = 14.5mΩ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢁ0 ꢀꢁꢂ  
0
ꢀꢁ  
ꢀ0  
ꢀꢁ ꢀ00 ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
1.5A Buck Efficiency vs ILOAD  
,
1.5A Buck Efficiency vs ILOAD  
,
3A Buck Efficiency vs ILOAD  
,
VOUT=1.8V  
VOUT=1.2V  
VOUT=3.3V  
ꢀ00  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ0  
ꢀ ꢁ ꢂꢃꢂꢄꢅ  
L DCR = 13.2mΩ  
ꢀ ꢁ ꢂꢃꢂꢄꢅ  
L DCR = 6.0mΩ  
ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
L DCR = 15mΩ  
ꢀ0 ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢁꢃ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀꢀ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂ  
ꢃ ꢄꢅꢄꢀ  
ꢃ ꢄꢀ  
ꢃ ꢄꢅꢄꢀ  
ꢃ ꢄꢀ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢁꢃ  
ꢀ ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
Rev 0  
9
For more information www.analog.com  
LTC3376  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
6A Buck Efficiency vs ILOAD  
,
1.5A Buck Efficiency vs Frequency  
(Forced Continuous Mode)  
1.5A Buck Efficiency vs Frequency  
(Forced Continuous Mode)  
VOUT=3.3V  
ꢀ00  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀ0  
ꢀ00  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢀ  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ ꢁ ꢂꢃꢂꢄꢅ  
L DCR = 3.0mΩ  
ꢀ0  
ꢀ 0ꢁꢂꢃ  
ꢀ 0ꢁꢂꢃ  
ꢀ 0ꢁ0ꢂꢃ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ0 ꢀꢁꢂRꢃꢄꢅꢀꢆ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢀ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ ꢀ ꢁꢂꢁꢃ  
ꢀꢀ  
ꢀꢀ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀ 0ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁꢂ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢀꢁꢂ ꢃꢀ0  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
1.5A Buck Regulator Load  
Regulation (Forced Continuous  
Mode)  
1.5A Buck Regulator Line  
Regulation (Forced Continuous  
Mode)  
1.5 Buck Current Limit vs Duty  
Cycle  
ꢀꢁꢀꢂ0  
ꢀꢁꢀ00  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢀ0  
ꢀꢁꢂꢂ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢀ0  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢀꢂ0  
ꢀꢁꢀ0ꢂ  
ꢀꢁꢀ0ꢂ  
ꢀꢁꢀ0ꢂ  
ꢀꢁꢀ0ꢂ  
ꢀꢁꢀ00  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢂ  
ꢀꢁꢂꢃ0  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁe ꢂꢃ ꢄꢅꢆꢅꢄꢁꢄ  
ꢀꢁꢁꢂꢃꢄꢅe  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂ0ꢃꢄ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ0ꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀ0 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0  
ꢀꢁꢂ  
ꢀ0 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ ꢀ0 ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢀ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
Rev 0  
10  
For more information www.analog.com  
LTC3376  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.5A Buck Regulator No Load  
Start-Up Transient  
IMON Voltage vs ILOAD  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ00  
ꢀ0  
ꢀꢁꢂꢃꢄꢅꢆR  
ꢀꢁRRꢂꢃꢄ  
ꢀꢁ0ꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
Rꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
R
= 10kΩ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢂꢅꢁꢅꢆ ꢇꢁꢈe  
ꢀ ꢁꢂꢁꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢀꢁꢂ  
0ꢀꢁ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢂꢊ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
1.5A Buck Regulator, Transient  
Response (Forced Continuous  
Mode)  
1.5A Buck Regulator, Transient  
Response (Burst Mode Operation)  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ00ꢁꢂꢃꢄꢅꢂ  
ꢀ00ꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢁꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢄꢅꢆR  
ꢀꢁRRꢂꢃꢄ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
0ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆR  
ꢀꢁRRꢂꢃꢄ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
0ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢀꢁ  
ꢀꢀꢁꢂ ꢃꢀꢂ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀ0ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ ꢉꢊ0ꢋꢂ ꢌꢍ ꢉꢎ0ꢊꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈ ꢉꢊ0ꢋꢂ ꢌꢍ ꢉꢎ0ꢊꢂ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁ ꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢁꢂꢃ  
ꢀ ꢁꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rev 0  
11  
For more information www.analog.com  
LTC3376  
PIN FUNCTIONS  
BSTA (Pin A1): Boost Node for Power Stage A.  
BSTB (Pin B2): Boost Node for Power Stage B.  
BSTC (Pin G2): Boost Node for Power Stage C.  
BSTD (Pin H1): Boost Node for Power Stage D.  
BSTE (Pin H8): Boost Node for Power Stage E.  
BSTF (Pin G7): Boost Node for Power Stage F.  
BSTG (Pin B7): Boost Node for Power Stage G.  
BSTH (Pin A8): Boost Node for Power Stage H.  
FB3+ (Pin E5): Positive Feedback Pin for Buck Regulator 3.  
Receives feedback by a resistor divider connected across  
the output.  
FB4+ (Pin D5): Positive Feedback Pin for Buck Regulator 4.  
Receives feedback by a resistor divider connected across  
the output.  
FB1(Pin C3): Negative Feedback Pin for Buck Regulator 1.  
Connect directly to the GND side of the feedback resistor  
divider that connects across the output.  
FB2(Pin F3): Negative Feedback Pin for Buck Regulator 2.  
Connect directly to the GND side of the feedback resistor  
divider that connects across the output.  
FB3(Pin F6): Negative Feedback Pin for Buck Regulator 3.  
Connect directly to the GND side of the feedback resistor  
divider that connects across the output.  
FB4(Pin C6): Negative Feedback Pin for Buck Regulator 4.  
Connect directly to the GND side of the feedback resistor  
divider that connects across the output.  
CFG0 (Pin F2): Configuration Input Bit. With CFG1, CFG2  
and CFG3, CFG0 configures the Buck output current power  
stage combinations. CFG0 should be tied to either INTVCC  
or GND. Do not float.  
CFG1 (Pin G6): Configuration Input Bit. With CFG0, CFG2,  
and CFG3, CFG1 configures the Buck output current power  
stage combinations. CFG1 should be tied to either INTVCC  
or GND. Do not float.  
CFG2 (Pin G4): Configuration Input Bit. With CFG0, CFG1,  
and CFG3, CFG2 configures the Buck output current power  
stage combinations. CFG2 should be tied to either INTVCC  
or GND. Do not float.  
GND (Pin B5): LTC3376 Ground Pin. Connect this pin  
to system ground and to the ground plane. Do not float.  
I
(Pin D3): Current Monitor Pin for Buck Regulator 1.  
IMON1 outputs a current of 100µA (typical) at 1.5A load  
cMuOrrNe1nt for each power stage configured. Connect a  
CFG3 (Pin F7): Configuration Input Bit. With CFG0, CFG1  
and CFG2, CFG3 configures the Buck output current power  
stage combinations. CFG3 should be tied to either INTVCC  
or GND. Do not float.  
resistor from I  
to GND. The value of this resistor  
MON1  
should be chosen so that I  
is 1V at full load (1.5A  
per power stage). The IMOMNO1Nv1oltage will decrease by  
0.67V/A at lower load currents. The I  
output current  
MON1  
EXTV (Pin C2): External V Low Voltage Supply. The  
CC  
CC  
will be 0 when the regulator is sleeping in Burst Mode or  
is disabled.  
internal LDO regulator draws current from EXTV instead  
CC  
of from V when EXTV is tied to a voltage higher than  
CC  
CC  
I
(Pin E3): Current Monitor Pin for Buck Regulator 2.  
3V. For output voltages of 3.3V and above this pin can be  
IMON2 outputs a current of 100µA (typical) at 1.5A load  
tied to that V . If this pin is tied to a supply other than a  
cMuOrrNe2nt for each power stage configured. Connect a  
OUT  
buck output, use a 4.7µF local bypass capacitor on this pin.  
resistor from I  
to GND. The value of this resistor  
MON2  
EXTV should be tied to ground if not used. Do not float.  
CC  
should be chosen so that I  
is 1V at full load (1.5A  
per power stage). The IMOMNO2Nv2oltage will decrease by  
FB1+ (Pin D4): Positive Feedback Pin for Buck Regulator 1.  
Receives feedback by a resistor divider connected across  
the output.  
FB2+ (Pin E4): Positive Feedback Pin for Buck Regulator 2.  
Receives feedback by a resistor divider connected across  
the output.  
0.67V/A at lower load currents. The I  
output current  
MON2  
will be 0 when the regulator is sleeping in Burst Mode or  
is disabled.  
Rev 0  
12  
For more information www.analog.com  
LTC3376  
PIN FUNCTIONS  
I
(Pin E6): Current Monitor Pin for Buck Regulator 3.  
PGNDD (Pin H4): Ground Supply for Power Stage D.  
Connect the GND side of the VIND bypass capacitors  
directly to this pin and then to the ground plane.  
IMON3 outputs a current of 100µA (typical) at 1.5A load  
cMuOrrNe3nt for each power stage configured. Connect a  
resistor from I  
to GND. The value of this resistor  
MON3  
PGNDE (Pin H5): Ground Supply for Power Stage E.  
Connect the GND side of the VINE bypass capacitors  
directly to this pin and then to the ground plane.  
should be chosen so that I  
is 1V at full load (1.5A  
per power stage). The IMOMNO3Nv3oltage will decrease by  
0.67V/A at lower load currents. The I  
output current  
MON3  
PGNDF (Pin E8): Ground Supply for Power Stage F.  
Connect the GND side of the VINF bypass capacitors  
directly to this pin and then to the ground plane.  
will be 0 when the regulator is sleeping in Burst Mode or  
is disabled.  
I
(Pin D6): Current Monitor Pin for Buck Regulator 4.  
IMON4 outputs a current of 100µA (typical) at 1.5A load  
PGNDG (Pin D8): Ground Supply for Power Stage G.  
Connect the GND side of the VING bypass capacitors  
directly to this pin and then to the ground plane.  
cMuOrrNe4nt for each power stage configured. Connect a  
resistor from I  
to GND. The value of this resistor  
MON4  
should be chosen so that I  
is 1V at full load (1.5A  
per power stage). The IMOMNO4Nv4oltage will decrease by  
PGNDH (Pin A5): Ground Supply for Power Stage H.  
Connect the GND side of the VINH bypass capacitors  
directly to this pin and then to the ground plane.  
0.67V/A at lower load currents. The I  
output current  
MON4  
will be 0 when the regulator is sleeping in Burst Mode or  
is disabled.  
PGOOD1 (Pin D2): Power Good Pin for Buck Regulator 1  
(Active High). Open-drain output. This pin is driven low  
when Buck 1’s regulated output voltage falls below its  
PGOOD threshold or rises above its overvoltage thresh-  
old. PGOOD1 is also pulled low in the following scenarios:  
if the buck is disabled, if the buck is going through soft-  
INTV (Pin B3): Internal 3V V Regulator Bypass Pin.  
CC  
CC  
The control circuits are powered from this voltage. Do not  
load the INTV pin with external circuitry exceeding 2mA.  
If overloadedCCthe LTC3376 will shut down. INTV cur-  
CC  
rent is supplied from EXTV if V  
> 3V, otherwise  
CC  
EXTVCC  
start, if INTV is below the UVLO threshold, or if the  
CC  
current is drawn from V . Bypass to GND with a single  
CC  
LTC3376 is in OT.  
4.7µF or larger low ESR ceramic capacitor.  
PGOOD2 (Pin E2): Power Good Pin for Buck Regulator 2  
(Active High). Open-drain output. This pin is driven low  
when Buck 2’s regulated output voltage falls below its  
PGOOD threshold or rises above its overvoltage thresh-  
old. PGOOD2 is also pulled low in the following scenarios:  
if the buck is disabled, if the buck is going through soft-  
INTV  
(Pin B6): Internal V Power Stage Supply. The  
CC  
CC_P  
internal power drivers are powered from this voltage. The  
INTV pin is for internal use only. Bypass to GND with  
CC_P  
a single 10µF or larger low ESR ceramic capacitor. In all  
applications, INTV must connect to INTV .  
CC_P  
CC  
start, if INTV is below the UVLO threshold, or if the  
PGNDA (Pin A4): Ground Supply for Power Stage A.  
Connect the GND side of the VINA bypass capacitors  
directly to this pin and then to the ground plane.  
CC  
LTC3376 is in OT.  
PGOOD3 (Pin E7): Power Good Pin for Buck Regulator 3  
(Active High). Open-drain output. This pin is driven low  
when Buck 3’s regulated output voltage falls below its  
PGOOD threshold or rises above its overvoltage thresh-  
old. PGOOD3 is also pulled low in the following scenarios:  
if the buck is disabled, if the buck is going through soft-  
PGNDB (Pin D1): Ground Supply for Power Stage B.  
Connect the GND side of the VINB bypass capacitors  
directly to this pin and then to the ground plane.  
PGNDC (Pin E1): Ground Supply for Power Stage C.  
Connect the GND side of the VINC bypass capacitors  
directly to this pin and then to the ground plane.  
start, if INTV is below the UVLO threshold, or if the  
CC  
LTC3376 is in OT.  
Rev 0  
13  
For more information www.analog.com  
LTC3376  
PIN FUNCTIONS  
PGOOD4 (Pin D7): Power Good Pin for Buck Regulator 4  
(Active High). Open-drain output. This pin is driven low  
when Buck 4’s regulated output voltage falls below its  
PGOOD threshold or rises above its overvoltage thresh-  
old. PGOOD4 is also pulled low in the following scenarios:  
if the buck is disabled, if the buck is going through soft-  
SWF (Pin G8): Switch Node for Power Stage F. External  
inductor connects to this pin.  
SWG (Pin B8): Switch Node for Power Stage G. External  
inductor connects to this pin.  
SWH (Pin A7): Switch Node for Power Stage H. External  
inductor connects to this pin.  
start, if INTV is below the UVLO threshold, or if the  
CC  
LTC3376 is in OT.  
SYNC/MODE (Pin G3): Oscillator Synchronization and  
Mode Select Pin. Driving SYNC/MODE with an external  
clock signal synchronizes all switches to the applied fre-  
quency, and configures the buck converters to operate in  
forced continuous mode. Slope compensation automati-  
cally adapts to the external clock frequency. The absence  
of an external clock signal enables the frequency to be  
programmed by the RT pin. When not synchronizing to  
an external clock this input determines how the LTC3376  
operates at light loads. Connecting this pin to ground  
selects Burst Mode operation. Connecting this pin to  
RT (Pin G5): Timing Resistor Pin for Setting Oscillator  
Frequency. This pin provides two modes of setting the  
switching frequency when not synchronizing to an exter-  
nal clock. Connecting a resistor from RT to GND sets the  
switching frequency based on the resistor value. If RT is  
tied to INTVCC the default internal 2MHz oscillator is used.  
Do not float.  
RUN1 (Pin C4): Enable Input for Buck Regulator 1. Active  
high. Do not float.  
RUN2 (Pin F4): Enable Input for Buck Regulator 2. Active  
high. In configurations where the Enable Input for Buck 2  
is not used, tie RUN2 to GND. Do not float.  
INTV selects forced continuous mode operation. Do  
CC  
not float.  
TEMP (Pin C7): Temperature Indication Pin. TEMP out-  
puts a voltage of 250mV (typical) at 25°C. The TEMP  
voltage changes by 10mV/°C (typical) giving an external  
indication of the LTC3376 internal die temperature.  
RUN3 (Pin F5): Enable Input for Buck Regulator 3. Active  
high. In configurations where the Enable Input for Buck 3  
is not used, tie RUN3 to GND. Do not float.  
RUN4 (Pin C5): Enable Input for Buck Regulator 4. Active  
high. In configurations where the Enable Input for Buck 4  
is not used, tie RUN4 to GND. Do not float.  
V
(Pin B4): Internal Bias Supply. Bypass to GND with a  
CC  
4.7µF or larger ceramic capacitor. V has to be present  
even when the EXTVCC pin is usedCaCnd must come up  
before EXTV .  
CC  
SWA (Pin A2): Switch Node for Power Stage A. External  
inductor connects to this pin.  
V
(Pin A3): Input Supply for Power Stage A. Bypass to  
INA  
PGNDA with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
SWB (Pin B1): Switch Node for Power Stage B. External  
inductor connects to this pin.  
V
(Pin C1): Input Supply for Power Stage B. Bypass to  
INB  
SWC (Pin G1): Switch Node for Power Stage C. External  
inductor connects to this pin.  
PGNDB with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
SWD (Pin H2): Switch Node for Power Stage D. External  
inductor connects to this pin.  
V
(Pin F1): Input Supply for Power Stage C. Bypass to  
INC  
PGNDC with a 1µF ceramic capacitor and 10µF or larger  
SWE (Pin H7): Switch Node for Power Stage E. External  
inductor connects to this pin.  
ceramic capacitor.  
Rev 0  
14  
For more information www.analog.com  
LTC3376  
PIN FUNCTIONS  
VIND (Pin H3): Input Supply for Power Stage D. Bypass to  
PGNDD with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
VING (Pin C8): Input Supply for Power Stage G. Bypass to  
PGNDG with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
V
(Pin H6): Input Supply for Power Stage E. Bypass to  
VINH (Pin A6): Input Supply for Power Stage H. Bypass to  
PGNDH with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
INE  
PGNDE with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
V
(Pin F8): Input Supply for Power Stage F. Bypass to  
INF  
PGNDF with a 1µF ceramic capacitor and 10µF or larger  
ceramic capacitor.  
Rev 0  
15  
For more information www.analog.com  
LTC3376  
BLOCK DIAGRAM  
ꢓꢔꢂꢉ  
ꢊꢊ  
ꢊꢊ  
ꢋꢄꢉ ꢂꢌ ꢍ0ꢉꢎ  
ꢗꢒꢂꢉ  
ꢊꢊꢠꢙ  
ꢋꢄꢉ ꢂꢌ ꢕꢖꢕꢉꢎ  
ꢂꢌ ꢙꢌꢘꢓR ꢁꢂꢃꢐꢓꢁ  
ꢀꢁꢂꢃ  
ꢗꢒꢂꢉ  
ꢊꢊ  
ꢙRꢗꢌRꢗꢂꢗꢨꢓR  
ꢄꢉ  
ꢗꢒꢃ  
ꢄꢉ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢃ  
ꢂꢓꢛꢙ  
ꢂꢓꢛꢙ  
ꢛꢌꢒꢗꢂꢌR  
ꢁꢘꢃ  
ꢙꢐꢒꢇꢃ  
Rꢂ  
Rꢓꢏ  
ꢀꢁꢂꢀ  
ꢊꢢꢡ  
ꢝꢉ  
ꢀꢃꢒꢇꢐꢃꢙ  
ꢝꢉꢢꢌ  
ꢌꢁꢊꢗꢢꢢꢃꢂꢌR  
ꢌꢂ  
ꢁꢦꢒꢊꢧꢛꢌꢇꢓ  
ꢙꢐꢌꢌꢇꢈ  
ꢗꢒꢀ  
ꢛꢌꢇꢓ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢀ  
ꢁꢘꢀ  
ꢙꢐꢒꢇꢀ  
ꢁꢇ  
ꢀꢁꢂꢊ  
ꢙꢐꢌꢌꢇꢄ  
ꢙꢐꢌꢌꢇꢍ  
ꢙꢐꢌꢌꢇꢑ  
ꢗꢒꢊ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR ꢁꢂꢃꢐꢓ  
ꢗꢒꢂꢉ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢊ  
ꢁꢘꢊ  
ꢙꢐꢌꢌꢇ  
ꢊꢊꢠꢙ  
ꢙꢐꢒꢇꢊ  
ꢀꢁꢂꢪ  
ꢀꢁꢂꢇ  
ꢑ0ꢫꢏ  
ꢗꢒꢪ  
ꢗꢒꢇ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢇ  
ꢛꢒꢂꢌꢙꢪ  
ꢁꢘꢇ  
ꢙꢐꢒꢇꢇ  
ꢁꢘꢪ  
ꢢꢌꢐꢗꢊ  
ꢛꢌꢒꢑꢜꢈ  
ꢛꢌꢒ  
ꢗꢒꢂꢉ  
ꢊꢊꢠꢙ  
ꢀꢁꢂꢓ  
ꢁꢇ  
Rꢓꢏ ꢊꢢꢡ ꢛꢌꢇꢓ  
ꢛꢒꢀꢌꢂꢪ  
ꢗꢒꢓ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢓ  
ꢁꢘꢓ  
ꢗꢒꢂꢉ  
ꢊꢊ  
ꢗꢒꢀ  
Rꢝꢒꢑ  
ꢙꢐꢒꢇꢪ  
ꢙꢐꢒꢇꢓ  
ꢀꢝꢊꢡ RꢓꢐꢝꢢꢃꢂꢌR ꢑ  
ꢊꢌꢒꢂRꢌꢢ  
ꢏꢀꢑ  
ꢀꢁꢂꢏ  
Φ ꢣ ꢤ0ꢥ  
ꢏꢀꢑ  
ꢗꢒꢏ  
ꢗꢒꢂꢉ  
ꢗꢒꢊ  
Rꢝꢒꢍ  
ꢊꢊ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢏ  
ꢁꢘꢏ  
ꢀꢝꢊꢡ RꢓꢐꢝꢢꢃꢂꢌR ꢍ  
ꢊꢌꢒꢂRꢌꢢ  
ꢏꢀꢍ  
ꢙꢐꢒꢇꢏ  
Φ ꢣ 0ꢥ  
ꢏꢀꢍ  
ꢀꢁꢂꢐ  
ꢗꢒꢂꢉ  
ꢗꢒꢏ  
Rꢝꢒꢄ  
ꢊꢊ  
ꢗꢒꢐ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢐ  
ꢀꢝꢊꢡ RꢓꢐꢝꢢꢃꢂꢌR ꢄ  
ꢊꢌꢒꢂRꢌꢢ  
ꢏꢀꢄ  
ꢁꢘꢐ  
Φ ꢣ ꢍꢅ0ꢥ  
ꢙꢐꢒꢇꢐ  
ꢏꢀꢄ  
ꢗꢒꢂꢉ  
ꢗꢒꢐ  
Rꢝꢒꢈ  
ꢀꢁꢂꢚ  
ꢊꢊ  
ꢀꢝꢊꢡ RꢓꢐꢝꢢꢃꢂꢌR ꢈ  
ꢊꢌꢒꢂRꢌꢢ  
ꢗꢒꢚ  
ꢏꢀꢈ  
ꢑꢖꢕꢃ ꢙꢌꢘꢓR  
ꢁꢂꢃꢐꢓ ꢚ  
Φ ꢣ ꢑꢩ0ꢥ  
ꢁꢘꢚ  
ꢏꢀꢈ  
ꢙꢐꢒꢇꢚ  
ꢊꢌꢒꢏꢗꢐꢝRꢃꢂꢗꢌꢒ ꢢꢗꢒꢓꢁ  
ꢊꢏꢐ0 ꢊꢏꢐꢑ ꢊꢏꢐꢍ ꢊꢏꢐꢄ  
ꢐꢒꢇ  
ꢄꢄꢅꢆ ꢀꢇ  
Rev 0  
16  
For more information www.analog.com  
LTC3376  
OPERATION  
Buck Switching Regulators  
buck is shut down to a low quiescent current state and the  
SW pin is pulled to PGND through a 1k resistor. If all buck  
regulatorsareoff,mosttoplevelcircuitsareshutdown,and  
the quiescent current of the LTC3376 is 9µA(typ). When a  
buck is enabled there is a 100μs(typ) delay before switch-  
ing commences and the soft start ramp begins. If a buck  
is the first one to be enabled, then this delay is 250µs(typ).  
TheLTC3376isa20Vmonolithic,constantfrequency,four  
channel, 12A configurable, peak current mode step-down  
DC/DC converter. The device includes four synchronous  
buck converters, configured to share eight 1.5A power  
stages. The LTC3376 includes the integration of ceramic  
capacitors into the package for all BST pins. These capaci-  
tors reduce PC board space by eliminating the need for  
external BST capacitors.  
The buck switching regulators are phased in 90° steps to  
reduce noise and input ripple. The phase step determines  
the fixed edge of the switching sequence, which is when  
the top switch turns on. The top switch off (bottom switch  
on) phase is subject to the duty cycle demanded by the  
regulator. Buck 2 is set to 0°. Buck 1 is set to 90°. Buck 4  
is set to 180°. Buck 3 is set to 270°.  
Thebuckswitchingregulatorsareinternallycompensated  
and require external feedback resistors to set the output  
voltage. An internal oscillator, which can be synchronized  
to an external oscillator, turns on the internal top power  
switch at the beginning of each clock cycle. Current in the  
inductorrampsupuntilthetopswitchcurrentcomparator  
tripsandturnsoffthetoppowerswitch. Thepeakinductor  
current at which the top switch turns off is controlled by  
Buck Regulators with Combined Power Stages  
Up to four buck regulators may be combined in a master-  
slave configuration in various combinations by setting the  
CFG0, CFG1, CFG2, and CFG3 pins. These configuration  
an internal V voltage which the error amplifier regulates  
C
by comparing the voltage on the feedback pin with an in-  
ternal 400mV reference. When the load current increases,  
it causes a reduction in the feedback voltage relative to the  
pins should either be tied to ground or tied to INTV in  
CC  
accordance with the desired configuration (Table 1). Any  
combined SW pins must be tied together, as must any of  
referencecausingtheerroramplifiertoraisetheV voltage  
C
the combined V and BST pins. The bucks have a com-  
until the average inductor current matches the new load  
current. When the top power switch turns off, the bottom  
power switch turns on until the next clock cycle begins or,  
if in Burst Mode, until the inductor current falls to zero.  
IN  
monV buteachV pinshouldhaveitsowninputbypass  
IN  
IN  
+
capacitors (see Applications Information). RUN1, FB1 ,  
+
FB1 , I  
, and PGOOD1 are utilized by Buck 1. RUN2,  
MON1  
FB2 , FB2 , I  
+
, and PGOOD2 are utilized by Buck 2.  
MON2  
Each buck converter can operate at an independent V  
voltage and has its own FB , FB , RUN, I  
IN  
RUN3,FB3 ,FB3 ,I  
3. RUN4, FB4 , FB4 , I  
,andPGOOD3areutilizedbyBuck  
MON3  
+
, and PGOOD  
+
MON  
, and PGOOD4 are utilized by  
MON4  
pins to maximize flexibility. The RUN pins have two differ-  
ent enable threshold voltages that depend on the operating  
state of the LTC3376. The first buck regulator to turn on  
will have a RUN pin rising threshold of 730mV(typ). The  
last buck regulator to turn off will have a RUN pin falling  
threshold of 690mV(typ). If any one buck regulator is on,  
all other RUN pins will use the bandgap-based precision  
thresholds off 300mV(typ) rising and 200mV(typ) falling.  
The precision RUN thresholds may be used to provide  
event-based power-up sequencing by connecting the RUN  
pin to the output of another buck through a resistor divider.  
All buck regulators have forward and reverse-current limit-  
ing, short-circuit protection, and soft-start to limit inrush  
current during start-up. If the RUN pin of a buck is low, that  
Buck4.Ifabuckisnotutilizedinaparticularconfiguration,  
+
then the RUN, FB , and FB , I  
, PGOOD pins should  
MON  
be tied to GND. Its V , SW, and BST pins will be used as  
IN  
a slave to another master and must be connected to that  
master’s respective power pins.  
Buck regulators can be combined to provide 3A, 4.5A, 6A,  
7.5A,9A,10.5A,or12Aofoutputloadcurrent.Forexample,  
code 0110 (CFG[3:0]) configures Buck 1 to operate as a  
4.5A regulator through V /SW/BST pairs A, B, and H,  
IN  
while Buck 2 is disabled, Buck 3 operates as a 6A regula-  
tor through V /SW/BST pairs C, D, E, and F, and Buck 4  
IN  
operates as a 1.5A regulator through V /SW/BST pair G.  
IN  
Rev 0  
17  
For more information www.analog.com  
LTC3376  
OPERATION  
Table 1. Master-Slave Program Combinations  
regulator will burst only at light loads. At higher loads it  
will operate in constant frequency PWM mode.  
(Each Letter Corresponds to a VIN/SW/BST/PGND Pair)  
OUTPUT CONFIGURATION  
CFG3 CFG2 CFG1 CFG0  
BUCK 1  
AB  
BUCK 2 BUCK 3 BUCK 4  
Synchronizing the Oscillator to an External Clock  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CD  
EF  
GH  
G
Selectionoftheoperatingfrequencyisatrade-offbetween  
efficiency and component size. High frequency operation  
allows the use of smaller inductor and capacitor values  
and improves transient response. Operation at lower  
frequencies improves efficiency by reducing internal gate  
ABH  
CD  
EF  
ABH  
CDE  
F
G
ABDH  
AB  
C
EF  
G
CDE  
-
FGH  
GH  
G
ABCD  
ABH  
-
-
EF  
chargelossesandallowsmoreextremeV toV  
ratios.  
IN  
OUT  
CDEF  
However, this also requires larger inductance values and/  
or capacitance to maintain low output voltage ripple. The  
LTC3376 has a default operating frequency of 2MHz.  
ABCD  
ABDEH  
ABCDH  
ABCDE  
ABCDEH  
ABCDEF  
ABCDEFH  
ABCDEFGH  
AB  
-
-
F
EFGH  
G
C
-
EF  
-
G
-
FGH  
G
The LTC3376’s internal oscillator can alternatively be  
synchronizedthroughaninternalPLLcircuittoanexternal  
frequency by applying a square wave clock signal to the  
MODE/SYNC pin. During synchronization, the top power  
device turn-on of buck 2 is locked to 110ns after the ris-  
ing edge of the external frequency source. Buck 1 will be  
90° out of phase with Buck 2. Buck 4 will be 180° out of  
phase with Buck 2. Buck 3 will be 270° out of phase with  
Buck 2. When synchronizing to an external clock, the  
buck regulators operate in forced continuous mode. The  
synchronization frequency range is 1MHz to 3MHz.  
-
F
-
-
GH  
G
-
-
-
-
-
CD  
EF  
GH  
Mode Selection  
The buck switching regulators can operate in two different  
modes set by the SYNC/MODE pin: Burst Mode (when  
the SYNC/MODE pin is set low) and forced continuous  
PWM mode (when the SYNC/MODE pin is set high). The  
SYNC/MODE pin sets the same operating mode for all  
buck switching regulators.  
After detecting an external clock on the first rising edge  
of the SYNC pin, the internal PLL starts at the default  
frequency. The internal PLL then requires up to 1ms to  
gradually adjust its operating frequency to match the  
frequency and phase of the SYNC signal.  
Inforcedcontinuousmode,theoscillatorrunscontinuously  
and the buck switch currents are allowed to reverse under  
light load conditions to maintain regulation. This mode  
allows the buck to run at a fixed frequency with minimal  
output ripple, even with zero output load.  
WhentheexternalclockisremovedtheLTC3376willdetect  
the absence of the external clock, and the oscillator gradu-  
ally adjusts its operating frequency back to the default.  
InBurstModeoperation,atlightloadstheoutputcapacitor  
is charged to a voltage slightly higher than its regulation  
point. The regulator then goes into a sleep state, during  
which time the output capacitor provides the load current.  
In sleep most of the regulator’s circuitry is powered down,  
helping conserve input power. When the output capacitor  
dropsbelowitsprogrammedvalue,thecircuitryispowered  
onandanotherburstcyclebegins.Thesleeptimedecreases  
as load current increases. In Burst Mode operation, the  
Power Failure Reporting Via PGOOD Pins  
Power failure conditions are reported back by each buck’s  
associatedPGOODpin. Eachbuckswitchingregulatorhas  
an internal power good (PGOOD_INT) signal. When the  
regulatedoutputvoltageofanenabledswitcherrisesabove  
97.75% of its regulation output voltage the PGOOD_INT  
signal transitions high. If the regulated output voltage  
subsequently falls below 96.75%(typ) of the regulation  
Rev 0  
18  
For more information www.analog.com  
LTC3376  
OPERATION  
output voltage the PGOOD_INT signal is pulled low. If  
a buck is enabled, its PGOOD_INT signal must be high  
for its external PGOOD pin to be high. An enabled buck’s  
internal PGOOD_INT signal must stay low for greater  
than 100μs(typ) before its external PGOOD pin is pulled  
low, indicating to a microprocessor that a power failure  
fault has occurred. This 100μs filter time prevents the pin  
from being pulled low during a load transient. In addition,  
whenever the internal PGOOD_INT signal transitions high  
there will also be a 100μs assertion delay.  
mode but can function in Burst Mode at moderate loads  
withreducedaccuracyifanexternalcapacitorisappliedto  
the I  
pin. This capacitor should be selected such that  
MON  
the RC time constant is about 250µs or larger. The capaci-  
tor value to use on the I  
pin (if desired) is given by:  
MON  
250µs  
C
(2)  
IMON  
R
IMON  
Temperature Monitoring and Overtemperature  
Protection  
The LTC3376 also reports overvoltage conditions at the  
PGOODpins. Ifanenabledbuckregulator’soutputvoltage  
risesabove107.5%(typ)oftheregulationvalue,itsPGOOD  
pinispulledlowafter100μs.Similarly,ifanenabledoutput  
that is overvoltage subsequently falls below 105% (typ)  
of its regulated output voltage, its PGOOD pin transitions  
high again after 100μs.  
To prevent thermal damage to the LTC3376 and its sur-  
rounding components, the LTC3376 incorporates an  
overtemperature (OT) function. When the LTC3376 die  
temperature reaches 165°C (typical) all enabled buck  
switching regulators are shut down and remain in shut-  
down until the die temperature falls to 155°C (typical).  
The die temperature may be read by sampling the analog  
TEMP pin voltage. The temperature, T, indicated by the  
TEMP pin voltage is given by:  
An error condition that pulls the PGOOD pin low is not  
latched. When the error condition goes away, the PGOOD  
pin is released and is pulled high if no other error condi-  
tion exists. PGOOD is also pulled low in the following  
scenarios: if the buck is disabled, if the buck is going  
V
TEMP  
T =  
•1°C  
(3)  
10mV  
through soft-start, if INTV is below the UVLO threshold,  
CC  
where V  
is the voltage on the TEMP pin.  
or if the LTC3376 is in OT (see below).  
TEMP  
The typical voltage at the TEMP pin is 250mV at 25°C.  
readings are valid for die temperatures higher  
Current Monitors  
V
TEMP  
Each buck regulator has a current monitor that supplies a  
than approximately 10°C. A bypass cap is not needed  
on the TEMP pin. If stray capacitance is present on the  
TEMP pin that is greater than 30pF, then a 15k resistor  
must be added in series at the pin to ensure the stability  
of the temperature monitor. If temperature monitoring  
functionality is not needed, the user may shut down the  
current to the I  
pin that is proportional to the average  
MON  
buck load current. The external resistor required from the  
pintogroundisafunctionofhowmanypowerstages  
I
MON  
are configured for a particular buck. If a buck regulator is  
configured to have only one power stage then a 10k resis-  
tor should be connected from I  
to ground. At full load  
temperature monitor by tying TEMP to INTV . This will  
MON  
CC  
(1.5A) the voltage on the I  
pin will be 1V (typical). At  
reduce quiescent current by 5µA (typical). If none of the  
buck switching regulators are enabled, the temperature  
monitor is also shutdown to reduce quiescent current.  
MON  
half load (0.75A) the voltage on the I  
pin will be 0.5V.  
MON  
For combined output stages, the resistor required at the  
pin is given by:  
I
MON  
INTV Regulator  
CC  
10kΩ  
[# of channels]  
R
=
(1)  
IMON  
An internal low dropout (LDO) regulator produces a 3V  
supply from V that powers the INTV pin and internal  
CC  
CC  
The I  
pin voltage represents the average buck load  
bias circuitry. The INTV can supply enough current for  
MON  
CC  
and will take a few 100µs to settle. The current monitor  
is designed to be most accurate in continuous conduction  
the LTC3376’s circuitry and must be bypassed to ground  
with a minimum of 4.7µF ceramic capacitor. The INTV  
CC_P  
Rev 0  
19  
For more information www.analog.com  
LTC3376  
OPERATION  
pin powers all of the MOSFET gate drivers, must have its  
3V or above. If EXTV is connected to a supply other than  
CC  
own1Fbypasscap,andmustbeconnectedontheboard  
a buck output, be sure to bypass it with a local ceramic  
toINTV .Goodbypassingisnecessarytosupplythehigh  
capacitor. IftheEXTV pinisbelow2.8V, theinternalLDO  
CC  
CC  
transient currents required by the power MOSFET drivers.  
will consume current from V . Applications with high  
CC  
input voltage and high switching frequency in which the  
To improve efficiency the internal LDO can also draw cur-  
LDO pulls current from V will increase die temperature  
CC  
rent from the EXTV pin if the EXTV pin is 3V or higher.  
CC  
CC  
CC  
becauseofthehigherpowerdissipationintheLDO.Donot  
V
has to be present even if EXTV is used. Typically  
CC  
loadtheINTV pinwithexternalcircuitryexceeding2mA.  
CC  
the EXTV pin can be tied to an output of one of the  
CC  
LTC3376 bucks, or it can be tied to an external supply of  
APPLICATIONS INFORMATION  
Buck Switching Regulator Output Voltage and  
Feedback Network  
Operating Frequency Selection and Trade-Offs  
Selection of the operating frequency is a trade-off between  
efficiency, component size, transient response, and input  
voltage range. The advantage of high frequency operation  
is that smaller inductor and capacitor values may be used.  
Higher switching frequencies allow for higher control loop  
bandwidth and, therefore, faster transient response. The  
disadvantages of higher switching frequencies are lower  
efficiency, because of increased switching losses, and a  
smaller input voltage range, because of minimum switch  
on-time limitations.  
The output voltage of each buck switching regulator is  
programmed by a resistor divider across the switching  
regulator’s output connecting to its feedback pin and is  
+
given by V  
= V (1 + R2/R1) as shown in Figure 1  
OUT  
FB  
+
where V  
= 400mV. Typical values for R1 range from  
FB  
20k to 200k. 1% or better resistors are recommended  
to maintain output voltage accuracy. The buck regulator  
transient response may improve with an optional phase  
lead capacitor C that helps cancel the pole created by the  
FF  
+
feedback resistors and the input capacitance of the FB  
The operating frequency for all of the LTC3376 buck regu-  
lators can be determined by an external resistor that is  
connected from the RT pin to ground. The operating fre-  
quency is calculated using the following equation:  
pin. Experimentation with capacitor values between 2pF  
and 22pF may improve transient response if the resistor  
+
divider has a large V /V ratio.  
OUT FB  
The LTC3376 includes low offset, high input impedance  
differential sense for applications that require remote  
sensing. Connect FB+ to the center tap of the feedback  
402kΩ  
f
= 2MHz  
(4)  
OSC  
R
T
divider across the output load, and FB to the load ground.  
While the LTC3376 is designed to function with operat-  
ing frequencies between 1MHz and 3MHz, it has internal  
safety clamps that prevent the oscillator from running  
faster than 4MHz (typical) or slower than 500kHz (typi-  
cal). Tying the RT pin to INTV sets the oscillator to the  
default internal operating frequency of 2MHz (typical).  
ꢄꢅ  
Rꢑ  
Rꢒ  
ꢎꢁꢇ  
ꢏꢏ  
ꢀꢁꢂꢃ  
ꢄꢅꢆꢇꢂꢈꢆꢉꢊ  
RꢋꢊꢁꢌꢍꢇꢎR  
ꢏꢀ  
ꢏꢀ  
CC  
ꢎꢓꢇꢆꢎꢉꢍꢌ  
ꢔꢔꢕꢖ ꢏ0ꢒ  
Although the maximum programmable switching fre-  
quency is 3MHz for the LTC3376, the minimum on-time  
of the LTC3376 imposes a minimum operating duty  
cycle. The typical minimum on-time is 53ns. The highest  
Figure 1. Feedback Components  
Rev 0  
20  
For more information www.analog.com  
LTC3376  
APPLICATIONS INFORMATION  
switching frequency (fSW(MAX)) for low duty cycle applica-  
tions can be calculated as follows:  
To avoid overheating of the inductor, choose an inductor  
with an RMS current rating that is greater than the maxi-  
mum expected output load of the application. Overload  
and short-circuit conditions should also be taken into  
consideration.  
V
+ V  
BOTSW  
OUT  
f
=
(5)  
SW(MAX)  
t
V
– V  
+ V  
(
)
IN(MAX)  
ON(MIN)  
TOPSW BOTSW  
In addition, ensure that the saturation current rating (typi-  
where VIN(MAX) is the maximum input voltage, VOUT is  
cally labeled I ) is higher than the maximum expected  
SAT  
the output voltage, V  
switch drops, and t  
and V  
are the internal  
TOPSW  
is theBmOTiSnWimum top switch  
load plus half the inductor ripple:  
on-time. This equatOioNn(MsINh)ows that a slower switching  
1
I
>I  
+ ΔI  
(9)  
frequency is necessary to accommodate a very high V /  
L
SAT LOAD(MAX)  
IN  
2
V
OUT  
ratio.  
where I  
L
is the maximum output load current and  
LOAD(MAX)  
For higher duty cycle applications, the minimum off-time  
also imposes a max switching frequency which can be  
calculated as follows:  
∆I is the inductor ripple current as calculated by:  
V
V
OUT  
V
IN(MAX)  
OUT  
ΔI =  
• 1–  
(10)  
L
V – V  
– V  
TOPSW  
L • f  
IN  
OUT  
SW  
f
=
(6)  
SW(MAX)  
t
V + V  
– V  
TOPSW  
(
)
IN  
OFF(MIN)  
BOTSW  
A more conservative choice would be to choose an induc-  
where t  
is the minimum top switch off-time. This  
tor with an I  
rating higher than the maximum current  
OFF(MIN)  
SAT  
equation shows that a slower switching frequency is also  
necessary to accommodate a very low V /V ratio.  
limit of the LTC3376 which is 3.0A per power stage.  
IN OUT  
For highest efficiency, choose an inductor with the low-  
est series resistance (DCR). The core material should be  
intended for high frequency applications. Table 2 shows  
recommended inductors from several manufacturers.  
Inductor Selection and Maximum Output Current  
Considerations in choosing an inductor are inductance  
value, RMS current rating, saturation current rating, DCR,  
and core loss.  
Input Capacitors  
If the duty cycle of operation is 50% or less, choose the  
inductor based on the following equation:  
The LTC3376 has individual input supply pins for each  
buck power stage. All of these pins must be decoupled  
with low ESR capacitors to their own PGND. These capaci-  
tors should be placed as close to the pins as possible.  
Ceramic dielectric capacitors are a good compromise  
between high dielectric constant and stability versus  
temperature and DC bias. Note that the capacitance of a  
capacitor deteriorates at higher DC bias. It is important  
to consult manufacturer data sheets and obtain the true  
capacitance of a capacitor at the DC bias voltage that it will  
operate at. For this reason, avoid the use of Y5V dielec-  
tric capacitors. The X5R/X7R dielectric capacitors offer  
good overall performance. See Table 3 for recommended  
ceramic capacitor manufacturers.  
V
OUT  
1–  
V
V
IN(MAX)  
OUT  
L = V  
for  
0.5  
(7)  
OUT  
0.2 •I  
• f  
V
IN  
MAX  
SW  
where fSW is the switching frequency, VIN(MAX) is the max-  
imum input voltage that the buck will run at, and I is  
MAX  
1.5A times the number of power stages (the maximum  
rated load current for the LTC3376). For operation at duty  
cycles higher than 50%, use instead the following equa-  
tion to select the inductor:  
V
V
IN(MAX)  
OUT  
L = 1.25 •  
for  
> 0.5  
(8)  
Regardless of how the power stages are configured, each  
f
•I  
V
IN  
MAX  
SW  
input supply voltage pin, V , needs to be decoupled  
INA-H  
Rev 0  
21  
For more information www.analog.com  
LTC3376  
APPLICATIONS INFORMATION  
Table 2. Recommended Inductors  
L
(µH)  
MAX DCR  
(mΩ)  
CURRENT RATING  
(A)  
DIMENSIONS  
(L × W × H)  
PART NUMBER  
VENDOR  
XEL4030-102MEB  
XFL4020-152MEB  
XEL4030-222MEB  
XFL4020-472MEB  
1
9.78  
15.8  
22.1  
57.4  
10.7  
9.1  
7.8  
5
4mm × 4mm × 3.1mm  
4.3mm × 4.3mm × 2.1mm  
4mm × 4mm × 3.1mm  
Coilcraft  
www.coilcraft.com  
1.5  
2.2  
4.7  
4.3mm × 4.3mm × 2.1mm  
744383360068  
74438357010  
74404042015  
74439344022  
0.68  
1
1.5  
2.2  
27  
13.5  
31  
4.5  
7.4  
2.95  
8
3mm × 3mm × 2mm  
4.1mm × 4.1mm × 3.1mm  
4mm × 4mm × 1.8mm  
Wurth Electronics Inc.  
www.we-online.com  
10.5  
6.65mm × 6.65mm × 3.3mm  
PCMB042T-1R0MS  
PCMB053T-1R5MS  
1
1.5  
27  
20  
4.5  
6
4.15mm × 4mm × 1.8mm  
4.7mm × 4.85mm × 2.8mm  
Susumu  
www.susumu-usa.com  
FDSD0420-H-R68M=P3  
FDSD0420D-1R0M=P3  
FDSD0420D-2R2M=P3  
0.68  
1
2.2  
22  
29  
47  
6.5  
5.1  
3.6  
4.2mm × 4.2mm × 2mm  
4.2mm × 4.2mm × 2mm  
4.2mm × 4.2mm × 2mm  
Murata  
www.murata.com  
independently to PGNDA-H with a 1µF capacitor as close  
to the pins as possible and at least a 10µF capacitor.  
Connect each ground of each capacitor to a wide PCB  
trace on the top layer of the PCB that connects directly to  
the PGND pin and then to the GND plane.  
the LTC3376 SW pins to produce the DC output. In this  
role it determines the output ripple. Thus, low imped  
-
ance at the switching frequency is important. The second  
function is to store energy in order to satisfy transient  
loads and to stabilize the LTC3376’s control loop. Ceramic  
capacitors have very low equivalent series resistance  
(ESR) and provide the best ripple performance. For good  
starting values, see the Typical Applications. Use X5R or  
X7R ceramic capacitors. This choice will provide low out-  
put ripple and good transient response.  
Note that larger input capacitance is required when a lower  
switching frequency is used. If the input power source has  
high impedance, or if there is significant inductance due to  
long wires or cables, additional bulk capacitance may be  
necessary. This can be provided with a low performance  
electrolytic capacitor.  
The LTC3376 is internally compensated and has been  
designed to operate at a high bandwidth for fast transient  
A ceramic input capacitor combined with trace or cable  
inductance forms a high quality (underdamped) tank cir-  
cuit. If the LTC3376 circuit is plugged in to a live supply,  
the input voltage can ring to twice its nominal value, pos-  
sibly exceeding the LTC3376’s voltage rating. This situa-  
tion is easily avoided (see Linear Technology Application  
Note 88).  
response capability. The selection of C  
will affect the  
OUT  
bandwidth of the system and the optimal value is given  
by the following equation:  
(# of power stages)  
C
= 100 •  
(11)  
OUT  
f
• V  
OUT  
SW  
where f is the switching frequency.  
SW  
Table 3. Ceramic Capacitor Manufacturers  
This calculated COUT value is the capacitance required  
after voltage and temperature derating. A lower value of  
output capacitor can be used to save space and cost but  
transient performance will suffer and may cause loop  
instability. See the Typical Applications in this data sheet  
for suggested capacitor values.  
VENDOR  
AVX  
URL  
www.avxcorp.com  
www.murata.com  
www.tdk.com  
www.t-yuden.com  
Murata  
TDK  
Taiyo Yuden  
When choosing a capacitor, special attention should be  
given to the data sheet to calculate the effective capaci-  
tance under the relevant operating conditions of voltage  
Rev 0  
Output Capacitor, Output Ripple, and Loop Response  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated at  
22  
For more information www.analog.com  
LTC3376  
APPLICATIONS INFORMATION  
bias and temperature. A physically larger capacitor or one  
with a higher voltage rating may be required.  
input impedance sensitive nodes, such as the feed-  
back nodes, should be kept far away or shielded from  
the switching nodes or poor performance could result.  
PCB Considerations  
+
4. Keep the FB , FB , RT, TEMP, and RUN nodes small  
so that ground traces will shield them from the SW  
and BST nodes.  
When laying out the printed circuit board, the following  
list should be followed to ensure proper operation of the  
LTC3376:  
5. The GND pin should connect directly to the ground  
side of the INTVCC bypass cap and then connect to the  
ground connection of other analog components (RT  
1. The input supply pins (VINA-H) should each have local  
decoupling capacitors with their ground pins connect-  
ing back to the PGND pin (PGNDA-H) of the IC with as  
short and wide a trace as possible before connecting  
resistor, I  
resistor, V and EXTV bypass caps)  
MON  
CC CC  
before connecting down to the GND plane.  
to the GND plane. The V and PGND pins are placed  
IN  
6. The bypass capacitor from INTV to GND should be  
CC  
next to each other on the outer edge of the IC for  
as close to the INTV pin as possible and connected  
CC  
this purpose. Note that large switched currents flow  
with a wide trace.  
in the LTC3376’s V and PGND pins, and in the V  
IN  
IN  
input capacitor. The loop formed by the input capaci-  
tor should be made as tight as possible by placing  
7. The bypass capacitor from INTV  
to GND should  
CC_P  
be as close to the INTV  
pin as possible and con-  
CC_P  
the capacitor adjacent to the V and PGND pins and  
nected with a wide trace. The ground side of this  
capacitor should connect directly to the GND plane.  
IN  
choosing a small case size such as 0402 for the 1µF  
capacitor and 0603 for the 10µF capacitor. Place a  
local, unbroken ground plane under the application  
circuit on the layer closest to the surface layer.  
8. The GND side of the switching regulator output capac-  
itors should connect to the GND plane.  
9. The FB pin should connect directly to the GND side  
2. When connecting BST pins together for ganging, the  
BST trace should be as short as possible.  
of the feedback resistor.  
10. The power stages should have a symmetric layout  
3. The switching power traces connecting SWA-H to  
their respective inductors should be short and wide  
to reduce radiated EMI and parasitic coupling. Due to  
the large voltage swing of the switching nodes, high  
with respect to V , PGND, BST, and SW traces.  
IN  
11. See Evaluation Kit Design Files for recommended  
layouts.  
Rev 0  
23  
For more information www.analog.com  
LTC3376  
TYPICAL APPLICATIONS  
Four Rail (1.8V/4.5A, 2.5V/3A, 3.3V/3A, 5V/1.5A) System with Bootstrapped EXTVCC Drive  
3V TO 20V  
4.7µF  
V
CC  
3V TO 13V  
V
V
V
INA  
INB  
INH  
15µF  
×3  
1µF  
×3  
BSTA  
BSTB  
BSTH  
SWA  
SWB  
SWH  
EXTV  
EXTV  
CC  
CC  
4.7µF  
1µH  
698k  
1.8V  
4.5A  
INTV  
CC  
INTV  
INTV  
CC  
(3V)  
4.7µF  
+
CC_P  
FB1  
2x68µF  
10µF  
200k  
LTC3376  
FB1  
PGNDA  
PGNDB  
PGNDH  
RUN1  
RUN2  
RUN3  
RUN4  
V
INC  
IND  
3.3V TO 18V  
1µF  
×2  
15µF  
×2  
V
BSTC  
BSTD  
SWC  
SWD  
PGOOD1  
PGOOD2  
PGOOD3  
PGOOD4  
2.2µH  
2.5V  
3A  
1.05MΩ  
200k  
+
FB2  
68µF  
I
I
I
I
MON1  
MON2  
MON3  
MON4  
FB2  
PGNDC  
PGNDD  
V
V
4.3V TO 20V  
3.32k  
4.99k  
4.99k  
10k  
INE  
1µF  
×2  
15µF  
×2  
INF  
BSTE  
BSTF  
SWE  
SWF  
2.2µH  
EXTV  
CC  
3.3V  
TEMP  
3A  
1.15MΩ  
158k  
SYNC/MODE  
RT  
+
FB3  
47µF  
536k  
(1.5MHz)  
FB3  
PGNDE  
PGNDF  
CFG0  
CFG1  
CFG2  
CFG3  
INTV  
CC  
V
6.5V TO 20V  
ING  
1µF  
6.8µH  
15µF  
5V  
CONFIGURATION 0001  
BSTG  
SWG  
1.5A  
1.15MΩ  
+
FB4  
33µF  
100k  
FB4  
PGNDG  
GND  
3376 TA03  
Rev 0  
24  
For more information www.analog.com  
LTC3376  
TYPICAL APPLICATIONS  
Four Rail (3.3V/6A, 5V/1.5A, 1V/3A, 1.8V/1.5A) System with Bootstrapped EXTVCC Drive  
4.7V TO 18V  
V
V
V
V
INA  
INB  
IND  
INH  
1µF  
×4  
10µF  
×4  
3V TO 20V  
4.7µF  
V
CC  
BSTA  
BSTB  
BSTD  
BSTH  
SWA  
SWB  
SWD  
SWH  
EXTV  
EXTV  
CC  
CC  
1µH  
4.7µF  
EXTV  
CC  
3.3V, 6A  
1.15MΩ  
158k  
INTV  
CC  
Note: 6A includes  
input currents of  
Bucks 3 and 4.  
+
INTV  
INTV  
CC  
(3V)  
4.7µF  
FB1  
100µF  
CC_P  
10µF  
FB1  
LTC3376  
PGNDA  
PGNDB  
PGNDD  
PGNDH  
RUN1  
RUN2  
RUN3  
RUN4  
7.2V TO 20V  
V
INC  
1µF  
10µF  
PGOOD1  
PGOOD2  
PGOOD3  
PGOOD4  
BSTC  
SWC  
4.7µH  
5V  
1.5A  
1.15MΩ  
+
FB2  
22µF  
100k  
I
I
I
I
MON1  
MON2  
MON3  
MON4  
FB2  
PGNDC  
V
INE  
1µF  
×2  
10µF  
×2  
V
INF  
2.49k  
10k  
4.99k  
10k  
BSTE  
BSTF  
SWE  
SWF  
680nH  
1V  
3A  
294k  
196k  
TEMP  
+
FB3  
100µF  
SYNC/MODE  
RT  
INTV  
INTV  
2MHz  
CC  
CC  
FB3  
PGNDE  
PGNDF  
V
ING  
CFG0  
CFG1  
CFG2  
CFG3  
1µF  
10µF  
CONFIGURATION 0011  
BSTG  
SWG  
1.5µH  
1.8V  
1.5A  
698k  
200k  
+
FB4  
33µF  
FB4  
PGNDG  
GND  
3376 TA04  
Rev 0  
25  
For more information www.analog.com  
LTC3376  
TYPICAL APPLICATIONS  
Two Rail (3.3V/10.5A, 5V/1.5A) System  
4.7V TO 18V  
V
V
V
INA  
INB  
INC  
IND  
1µF  
×7  
10µF  
×7  
3V TO 20V  
V
CC  
V
4.7µF  
V
INE  
V
INF  
V
INH  
BSTA  
BSTB  
BSTC  
BSTD  
BSTE  
BSTF  
BSTH  
EXTV  
CC  
INTV  
CC  
INTV  
INTV  
(3V)  
4.7µF  
CC  
CC_P  
10µF  
LTC3376  
SWA  
SWB  
SWC  
SWD  
SWE  
SWF  
SWH  
RUN1  
RUN1  
RUN2  
RUN3  
680nH  
3.3V  
10.5A  
RUN4  
1.15MΩ  
158k  
+
FB1  
120µF  
PGOOD1  
PGOOD2  
PGOOD3  
FB1  
PGNDA  
PGNDB  
PGNDC  
PGNDD  
PGNDE  
PGNDF  
PGNDH  
PGOOD4  
I
MON1  
I
I
MON2  
MON3  
1.43k  
7.2V TO 20V  
V
I
ING  
MON4  
1µF  
4.7µH  
10µF  
10k  
BSTG  
SWG  
5V  
1.5A  
TEMP  
1.15MΩ  
931k  
22µF  
66.5k  
SYNC/MODE  
RT  
+
FB4  
RUN1  
INTV  
INTV  
CC  
CC  
100k  
FB4  
CFG0  
CFG1  
CFG2  
CFG3  
PGNDG  
CONFIGURATION 1101  
+
FB2  
FB2  
FB3  
FB3  
+
GND  
3376 TA05  
Rev 0  
26  
For more information www.analog.com  
LTC3376  
PACKAGE DESCRIPTION  
ꢷ ꢷ ꢧ ꢧ ꢧ  
ꢕ ꢇ ꢥ 0  
ꢕ ꢇ 0 0  
ꢆ ꢇ ꢕ 0  
0 ꢇ ꢑ 0  
0 ꢇ ꢑ 0  
ꢆ ꢇ ꢕ 0  
ꢕ ꢇ 0 0  
ꢕ ꢇ ꢥ 0  
0 ꢇ 0 0 0  
ꢶ ꢶ ꢶ  
× ꢕ  
Rev 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.analog.com  
LTC3376  
TYPICAL APPLICATION  
Four Rail (5V/3.3V/2.5V/1.8V, 3A) System with Bootstrapped EXTVCC Drive  
3V TO 20V  
4.7µF  
V
CC  
V
V
7.2V TO 20V  
INA  
1µF  
×2  
10µF  
×2  
INB  
BSTA  
BSTB  
2.2µH  
EXTV  
5V  
3A  
CC  
SWA  
SWB  
INTV  
INTV  
CC  
(3V)  
4.7µF  
1.15MΩ  
100k  
CC_P  
+
FB1  
22µF  
10µF  
LTC3376  
FB1  
4.7V TO 18V  
V
V
INC  
1µF  
×2  
10µF  
×2  
RUN1  
RUN2  
RUN3  
RUN4  
IND  
BSTC  
BSTD  
2.2µH  
SWC  
SWD  
3.3V, 3A  
1.15MΩ  
Note: 3A includes  
input current of Buck 4.  
+
FB2  
PGOOD1  
PGOOD2  
PGOOD3  
PGOOD4  
33µF  
158k  
FB2  
V
3.6V TO 13.6V  
INE  
1µF  
×2  
10µF  
×2  
V
INF  
I
I
I
I
MON1  
MON2  
MON3  
MON4  
BSTE  
BSTF  
1.5µH  
2.5V  
SWE  
SWF  
3A  
4.99k  
4.99k  
4.99k  
4.99k  
1.05MΩ  
+
FB3  
47µF  
200k  
FB3  
TEMP  
V
V
ING  
INH  
SYNC/MODE  
RT  
1µF  
×2  
10µF  
×2  
402k  
BSTG  
BSTH  
680nH  
698k  
1.8V  
3A  
SWG  
SWH  
CFG0  
CFG1  
CFG2  
CFG3  
+
FB4  
68µF  
CONFIGURATION 0000  
200k  
FB4  
GND PGNDA-H  
8
3376 TA02  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC3370/  
LTC3371  
4-Channel 8A Configurable 1A Four Synchronous Buck Regulators with 8× 1A Power Stages. Can Connect Up to Four Power Stages in  
Buck DC/DCs  
Parallel to Make a High Current Output (4A Max) with a Single Inductor. 8 Configurations Possible, Precision  
PGOOD Indication. 800mV FB Regulation. LTC3371 Has a Watchdog Timer; Buck 1 Accuracy 1%, others  
2.5%; LTC3370: 32-Lead 5mm × 5mm QFN. LTC3371: 38-Lead 5mm × 7mm QFN and TSSOP.  
LTC3374/  
LTC3375  
8-Channel Parallelable 1A Buck Eight 1A Synchronous Buck Regulators. Can Connect Up to Four Power Stages in Parallel to Make a  
DC/DCs  
High Current Output (4A Max) with a Single Inductor. 15 Configurations Possible. 800mV FB Regulation.  
2
All Bucks 2.5% Accuracy. LTC3375 Has I C Programming with a Watchdog Timer and Pushbutton;  
LTC3374: 38-Lead 5mm × 7mm QFN and TSSOP, LTC3375: 48-Lead 7mm × 7mm QFN.  
LTC3374A  
High Accuracy 8-Channel  
Parallelable 1A Buck DC/DCs  
Eight 1A Synchronous Buck Regulators. Can Connect Up to Four Power Stages in Parallel to Make a  
High Current Output (4A Max) with a Single Inductor; 15 Configurations Possible. 800mV FB Regulation.  
Buck 1 Accuracy 1%, Others 2%; Overvoltage Monitor Included in PGOOD.  
Rev 0  
06/19  
www.analog.com  
ANALOG DEVICES, INC. 2019  
28  

相关型号:

LTC3372

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3374A

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374EFEPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374EUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374HFEPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374HUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374IFEFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374IUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3375

8-Channel Programmable, Parallelable 1A Buck DC/DCs
Linear

LTC3376

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI