LTC3374IUHFPBF [Linear]

8-Channel Parallelable 1A Buck DC/DCs;
LTC3374IUHFPBF
型号: LTC3374IUHFPBF
厂家: Linear    Linear
描述:

8-Channel Parallelable 1A Buck DC/DCs

文件: 总24页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3374  
8-Channel Parallelable  
1A Buck DC/DCs  
FEATURES  
DESCRIPTION  
The LTC®3374 is a high efficiency multioutput power sup-  
ply IC. The DC/DCs consist of eight synchronous buck  
converters (1A each) all powered from independent 2.25V  
to 5.5V input supplies.  
n
8-Channel Independent Step-Down DC/DCs  
n
Master-Slave Configurable for Up to 4A per Output  
Rail with a Single Inductor  
n
Independent V Supplies for Each DC/DC  
IN  
(2.25V to 5.5V)  
The DC/DCs may be used independently or in parallel to  
achievehighercurrentsofupto4Aperoutputwithashared  
inductor. The common buck switching frequency may be  
programmed with an external resistor, synchronized to an  
external oscillator, or set to a default internal 2MHz clock.  
The operating mode for all DC/DCs may be programmed  
via the MODE pin.  
n
n
All DC/DCs Have 0.8V – V Output Range  
IN  
Precision Enable Pin Thresholds for Autonomous  
Sequencing  
n
1MHz to 3MHz Programmable/Synchronizable  
Oscillator Frequency (2MHz Default)  
Die Temperature Monitor Output  
Thermally Enhanced 38-Lead QFN (5mm × 7mm)  
and TSSOP Packages  
n
n
To reduce input noise the buck converters are phased in  
90° steps. Precision enable pin thresholds provide reli-  
able power-up sequencing. The LTC3374 is available in a  
compact 38-lead 5mm × 7mm QFN package as well as a  
38-lead TSSOP package.  
APPLICATIONS  
n
General Purpose Multichannel Power Supplies  
Industrial/Automotive/Communications  
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
TYPICAL APPLICATION  
8-Channel 1A Multioutput Buck Regulator  
V
IN1  
BUCK1  
0.8V TO V  
IN1  
UP TO 1A  
V
CC  
2.7V TO 5.5V  
Buck Efficiency vs ILOAD  
100  
90  
80  
70  
60  
50  
MASTER  
LTC3374  
V
IN2  
SLAVE  
0.8V TO V  
UP TO 1A  
IN2  
BUCK2  
EN1  
EN2  
EN3  
EN4  
EN5  
EN6  
EN7  
EN8  
MASTER  
MASTER  
SINGLE BUCK  
40  
DUAL BUCK  
TRIPLE BUCK  
30  
V
IN7  
SLAVE  
QUAD BUCK  
0.8V TO V  
UP TO 1A  
IN7  
BUCK7  
20  
FORCED CONTINUOUS MODE  
V
OSC  
= 3.3V, V  
= 1.8V  
IN  
OUT  
10  
0
f
= 1MHz, L = 3.3µH  
PGOOD_ALL  
TEMP  
0
1000  
2000  
3000  
4000  
MODE  
LOAD CURRENT (mA)  
V
SLAVE  
IN8  
BUCK8  
0.8V TO V  
UP TO 1A  
IN8  
3374 TA01b  
SYNC  
RT  
3374 TA01a  
3374f  
1
For more information www.linear.com/LTC3374  
LTC3374  
TABLE OF CONTENTS  
Features..................................................... 1  
Applications ................................................ 1  
Typical Application ........................................ 1  
Description.................................................. 1  
Absolute Maximum Ratings.............................. 3  
Pin Configuration .......................................... 3  
Order Information.......................................... 3  
Electrical Characteristics................................. 4  
Typical Performance Characteristics ................... 6  
Pin Functions..............................................11  
Block Diagram.............................................13  
Operation...................................................14  
Buck Switching Regulators..................................... 14  
Buck Regulators with Combined Power Stages...... 14  
Power Failure Reporting Via PGOOD_ALL Pin........ 15  
Temperature Monitoring and Overtemperature  
Applications Information ................................17  
Buck Switching Regulator Output Voltage  
and Feedback Network............................................ 17  
Buck Regulators ..................................................... 17  
Combined Buck Regulators..................................... 17  
Input and Output Decoupling Capacitor Selection... 17  
PCB Considerations................................................ 17  
Package Description .....................................22  
Typical Application .......................................24  
Related Parts..............................................24  
Protection............................................................... 15  
Programming the Operating Frequency.................. 15  
3374f  
2
For more information www.linear.com/LTC3374  
LTC3374  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Operating Junction Temperature Range  
V
, FB1-8, EN1-8, V , PGOOD_ALL,  
IN1-8  
CC  
(Notes 2, 3)............................................ –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
SYNC, RT, MODE ......................................... –0.3V to 6V  
TEMP .................. –0.3V to Lesser of (V + 0.3V) or 6V  
PGOOD_ALL  
CC  
I
...............................................................5mA  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
V
CC  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
TEMP  
EN2  
EN1  
FB1  
MODE  
EN7  
3
38 37 36 35 34 33 32  
4
EN8  
FB1  
1
2
3
4
5
6
7
8
9
31 FB8  
5
FB8  
V
V
30  
29  
28  
27  
26  
V
IN8  
IN1  
IN1  
SW1  
SW8  
SW7  
6
V
SW1  
SW2  
IN8  
SW2  
7
SW8  
SW7  
V
V
IN7  
IN2  
8
V
IN2  
FB2  
FB3  
FB7  
39  
GND  
9
V
FB2  
FB3  
IN7  
25 FB6  
24  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
FB7  
FB6  
39  
GND  
V
V
IN6  
IN3  
V
IN3  
SW3  
23 SW6  
22 SW5  
V
SW3  
IN6  
SW4 10  
11  
SW6  
SW5  
SW4  
V
21  
20  
V
IN5  
IN4  
V
IN4  
FB4 12  
FB5  
V
FB4  
EN4  
IN5  
13 14 15 16 17 18 19  
FB5  
EN5  
EN6  
RT  
EN3  
PGOOD_ALL  
SYNC  
UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
= 150°C, θ = 34°C/W  
FE PACKAGE  
T
JMAX  
JA  
38-LEAD PLASTIC TSSOP  
EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB  
T
= 150°C, θ = 25°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3374EUHF#PBF  
LTC3374IUHF #PBF  
LTC3374HUHF #PBF  
LTC3374EFE #PBF  
LTC3374IFEF #PBF  
LTC3374HFE #PBF  
TAPE AND REEL  
PART MARKING*  
3374  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3374EUHF#TRPBF  
LTC3374IUHF#TRPBF  
LTC3374HUHF#TRPBF  
LTC3374EFE#TRPBF  
LTC3374IFEF#TRPBF  
LTC3374HFE#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead Plastic TSSOP  
3374  
3374  
LTC3374EFE  
LTC3374IFE  
LTC3374HFE  
38-Lead Plastic TSSOP  
38-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3374f  
3
For more information www.linear.com/LTC3374  
LTC3374  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VIN1-8 = 3.3V, unless otherwise specified.  
SYMBOL  
PARAMETER  
Voltage Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
V
2.7  
5.5  
V
VCC  
CC  
l
l
Undervoltage Threshold on V  
V
V
Voltage Falling  
Voltage Rising  
2.35  
2.45  
2.45  
2.55  
2.55  
2.65  
V
V
VCC_UVLO  
CC  
CC  
CC  
I
I
V
V
Input Supply Current  
Input Supply Current  
All Switching Regulators in Shutdown  
At Least 1 Buck Active  
8
18  
µA  
VCC_ALLOFF  
CC  
VCC  
CC  
SYNC = 0V, R = 400k, V  
= 0.85V  
45  
200  
75  
275  
µA  
µA  
T
FB_BUCK  
SYNC = 2MHz  
f
Internal Oscillator Frequency  
Synchronization Frequency  
V
V
= V , SYNC = 0V  
1.8  
1.75  
1.8  
2
2
2
2.2  
2.25  
2.2  
MHZ  
MHz  
MHz  
OSC  
RT  
RT  
RT  
CC  
l
l
= V , SYNC = 0V  
CC  
R
= 400k, SYNC = 0V  
f
t
, t > 40ns  
LOW HIGH  
1
3
MHz  
SYNC  
l
l
V
SYNC  
SYNC Level High  
SYNC Level Low  
1.2  
V
V
0.4  
l
V
RT  
RT Servo Voltage  
R
= 400k  
780  
800  
820  
mV  
RT  
Temperature Monitor  
TEMP Voltage at 25°C  
Slope  
V
150  
6.75  
165  
10  
mV  
mV/°C  
°C  
TEMP(ROOM)  
V
V  
/°C  
TEMP  
TEMP  
OT  
Overtemperature Shutdown  
Overtemperature Hysteresis  
Temperature Rising  
OT Hyst  
1A Buck Regulators  
°C  
l
V
V
V
Buck Input Voltage Range  
Buck Output Voltage Range  
Undervoltage Threshold on V  
2.25  
5.5  
V
V
BUCK  
V
FB  
V
IN  
OUT  
l
l
V
IN  
V
IN  
Voltage Falling  
Voltage Rising  
1.95  
2.05  
2.05  
2.15  
2.15  
2.25  
V
V
IN_UVLO  
IN  
I
Burst Mode® Operation  
V
= 0.85V (Note 4)  
18  
400  
0
50  
550  
1
µA  
µA  
µA  
µA  
VIN_BUCK  
FB_BUCK  
Forced Continuous Mode Operation  
Shutdown Input Current  
I
= 0µA, V  
= 0V  
SW_BUCK  
FB_BUCK  
All Switching Regulators in Shutdown  
At Least One Other Buck Active  
Shutdown Input Current  
1
2
I
PMOS Current Limit  
(Note 5)  
2.0  
780  
–50  
100  
2.3  
2.7  
820  
50  
A
mV  
nA  
FWD  
l
l
V
Feedback Regulation Voltage  
Feedback Leakage Current  
Maximum Duty Cycle  
PMOS On-Resistance  
NMOS On-Resistance  
PMOS Leakage Current  
NMOS Leakage Current  
Soft-Start Time  
800  
FB  
I
V
V
= 0.85V  
= 0V  
FB  
FB_BUCK  
FB_BUCK  
SW_BUCK  
SW_BUCK  
DMAX  
%
R
R
I
I
= 100mA  
= 100mA  
265  
280  
mΩ  
mΩ  
µA  
PMOS  
NMOS  
LEAKP  
LEAKN  
SS  
I
I
t
EN_BUCK = 0  
EN_BUCK = 0  
–2  
–2  
2
2
µA  
1
92.5  
1
ms  
%
V
V
Falling PGOOD Threshold Voltage  
PGOOD Hysteresis  
PGOOD(FALL)  
%
PGOOD(HYS)  
Buck Regulators Combined  
I
I
I
PMOS Current Limit  
PMOS Current Limit  
PMOS Current Limit  
2 Buck Converters Combined (Note 5)  
3 Buck Converters Combined (Note 5)  
4 Buck Converters Combined (Note 5)  
4.6  
6.9  
9.2  
A
A
A
FWD2  
FWD3  
FWD4  
3374f  
4
For more information www.linear.com/LTC3374  
LTC3374  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VCC = VIN1-8 = 3.3V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Interface Logic Pins (PBGOOD_ALL, MODE)  
I
Output High Leakage Current  
Output Low Voltage  
PGOOD_ALL 5.5V at Pin  
PGOOD_ALL 3mA into Pin  
MODE  
–1  
1
µA  
V
OH  
V
V
V
0.1  
0.4  
OL  
IH  
IL  
l
l
Input High Threshold  
Input Low Threshold  
1.2  
V
MODE  
0.4  
V
Interface Logic Pins (EN1, EN2, EN3, EN4, EN5, EN6, EN7, EN8)  
l
l
V
V
V
Enable Rising Threshold  
Enable Falling Hysteresis  
Enable Rising Threshold  
Enable Pin Leakage Current  
All Regulators Disabled  
400  
730  
60  
1200  
mV  
mV  
mV  
µA  
HI_ALLOFF  
EN_HYS  
HI  
At Least One Regulator Enabled  
380  
–1  
400  
420  
1
I
EN  
EN = V = V = 5.5V  
CC IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LTC3374 includes overtemperature protection which protects  
the device during momentary overload conditions. Junction temperatures  
will exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
may impair device reliability.  
Note 2: The LTC3374 is tested under pulsed load conditions such that  
T ≈ T . The LTC3374E is guaranteed to meet specifications from  
Note 4: Static current, switches not switching. Actual current may be  
higher due to gate charge losses at the switching frequency.  
Note 5: The current limit features of this part are intended to protect the  
IC from short term or intermittent fault conditions. Continuous operation  
above the maximum specified pin current rating may result in device  
degradation over time.  
J
A
0°C to 85°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3374I is guaranteed over the –40°C to 125°C operating junction  
temperature range and the LTC3374H is guaranteed over the –40°C to  
150°C operating junction temperature range. High junction temperatures  
degrade operating lifetimes; operating lifetime is derated for junction  
temperatures greater than 125°C. Note that the maximum ambient  
temperature consistent with these specifications is determined by  
specific operating conditions in conjunction with board layout, the rated  
package thermal impedance and other environmental factors. The junction  
temperature (T in °C) is calculated from ambient temperature (T in °C)  
J
A
and power dissipation (P in Watts) according to the formula:  
D
T = T + (P θ )  
JA  
J
A
D
where θ (in °C/W) is the package thermal impedance.  
JA  
3374f  
5
For more information www.linear.com/LTC3374  
LTC3374  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC Undervoltage Threshold  
vs Temperature  
Buck VIN Undervoltage Threshold  
vs Temperature  
VCC Supply Current  
vs Temperature  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
60  
55  
50  
ALL REGULATORS  
IN SHUTDOWN  
45  
40  
35  
V
RISING  
V
RISING  
CC  
IN  
30  
25  
20  
15  
10  
5
V
FALLING  
V
FALLING  
CC  
IN  
V
V
= 5.5V  
= 2.7V  
V
= 3.3V  
CC  
CC  
CC  
0
50 75  
–50 –25  
0
25  
100 125 150  
50 75  
50 75  
25  
TEMPERATURE (°C)  
–50 –25  
0
25  
100 125 150  
–50 –25  
0
100 125 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3374 G01  
3374 G02  
3374 G03  
VCC Supply Current  
vs Temperature  
VCC Supply Current  
vs Temperature  
RT Programmed Oscillator  
Frequency vs Temperature  
125  
100  
75  
50  
25  
0
400  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
AT LEAST ONE BUCK ENABLED  
SYNC = 0V  
FB = 850mV  
AT LEAST ONE BUCK ENABLED  
360 SYNC = 2MHz  
R
= 402k  
RT  
320  
280  
240  
200  
160  
120  
80  
V
V
= 5.5V  
= 3.3V  
CC  
CC  
V
V
= 5.5V  
= 2.7V  
CC  
CC  
V
= 3.3V  
CC  
V
= 2.7V  
CC  
V
CC  
V
CC  
V
CC  
= 5.5V  
= 3.3V  
= 2.7V  
40  
0
50 75  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3374 G05  
–50 –25  
0
25  
100 125 150  
–25  
50 75  
TEMPERATURE (°C)  
–50  
0
25  
100 125  
150  
TEMPERATURE (°C)  
3374 G04  
3374 G06  
Default Oscillator Frequency  
vs Temperature  
Oscillator Frequency vs VCC  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
V
= V  
CC  
RT  
V
= V  
CC  
RT  
R
= 402k  
RT  
V
CC  
V
CC  
V
CC  
= 5.5V  
= 3.3V  
= 2.7V  
50 75  
TEMPERATURE (°C)  
4.3 4.7  
(V)  
–50 –25  
0
25  
100 125 150  
2.7 3.1 3.5 3.9  
5.1 5.5  
V
CC  
3374 G07  
3374 G08  
3374f  
6
For more information www.linear.com/LTC3374  
LTC3374  
TYPICAL PERFORMANCE CHARACTERISTICS  
VTEMP vs Temperature  
Enable Threshold vs Temperature  
Oscillator Frequency vs RT  
1400  
1200  
1000  
800  
600  
400  
200  
0
900  
850  
800  
750  
700  
650  
600  
550  
500  
450  
400  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V  
ALL REGULATORS DISABLED  
CC  
V
= 3.3V  
CC  
EN RISING  
EN FALLING  
ACTUAL V  
TEMP  
IDEAL V  
20  
TEMP  
–200  
0
40  
60  
80 100 120 140  
125  
100  
450 500  
–50  
50  
250 300 350 400  
550 600 650 700 750 800  
–25  
0
25  
75  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
R
RT  
(kΩ)  
3374 G10  
3374 G11  
3374 G09  
Enable Pin Precision Threshold  
vs Temperature  
Buck VIN Supply Current  
vs Temperature  
Buck VIN Supply Current  
vs Temperature  
420  
415  
410  
405  
400  
395  
390  
385  
380  
50  
40  
30  
20  
10  
0
550  
500  
450  
Burst Mode OPERATION  
FB = 850mV  
FORCED CONTINUOUS MODE  
FB = 0V  
V
IN  
= 5.5V  
400  
350  
V
V
= 3.3V  
IN  
= 2.25V  
IN  
EN RISING  
300  
250  
200  
V
IN  
= 5.5V  
EN FALLING  
V
IN  
= 2.25V  
150  
100  
50  
V
IN  
= 3.3V  
0
50 75  
TEMPERATURE (°C)  
–50 –25  
0
25  
100 125 150  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3374 G14  
3374 G12  
3374 G13  
PMOS Current Limit  
vs Temperature  
VOUT vs Temperature  
1.88  
1.86  
1.84  
1.82  
1.80  
1.78  
1.76  
1.74  
1.72  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
FORCED CONTINUOUS MODE  
LOAD = 0mA  
V
IN  
= 3.3V  
V
IN  
= 5.5V  
V
= 2.25V  
IN  
V
IN  
= 3.3V  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3374 G16  
3374 G15  
3374f  
7
For more information www.linear.com/LTC3374  
LTC3374  
TYPICAL PERFORMANCE CHARACTERISTICS  
1A Buck Efficiency vs ILOAD  
PMOS RDS(ON) vs Temperature  
NMOS RDS(ON) vs Temperature  
100  
90  
600  
550  
500  
450  
400  
350  
300  
250  
200  
600  
550  
500  
450  
400  
350  
300  
250  
200  
Burst Mode OPERATION  
80  
70  
FORCED  
60  
50  
CONTINUOUS  
V
IN  
= 2.25V  
V
IN  
= 2.25V  
MODE  
V
IN  
= 3.3V  
V
IN  
= 3.3V  
40  
30  
20  
10  
0
V
OSC  
L = 2.2µH  
= 1.8V  
OUT  
f
= 2MHz  
V
IN  
= 5.5V  
V
IN  
= 5.5V  
V
IN  
V
IN  
V
IN  
= 2.25V  
= 3.3V  
= 5.5V  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3374 G17  
1
10  
100  
1000  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3374 G18  
LOAD CURRENT (mA)  
3374 G19  
1A Buck Efficiency vs ILOAD  
2A Buck Efficiency vs ILOAD  
2A Buck Efficiency vs ILOAD  
100  
90  
100  
90  
100  
90  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
80  
80  
80  
70  
70  
70  
FORCED  
FORCED  
FORCED  
60  
50  
CONTINUOUS  
60  
50  
60  
50  
CONTINUOUS  
CONTINUOUS  
MODE  
MODE  
MODE  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
OSC  
L = 2.2µH  
V
V
V
= 1.8V  
V
= 2.5V  
V
OSC  
L = 2.2µH  
V
V
V
= 2.5V  
OUT  
OUT  
OUT  
OSC  
f
= 2MHz  
f
= 2MHz  
f
= 2MHz  
L = 2.2µH  
= 2.25V  
= 3.3V  
= 5.5V  
V
V
V
= 2.7V  
= 3.3V  
= 5.5V  
= 2.7V  
= 3.3V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3374 G21  
3374 G20  
3374 G22  
3A Buck Efficiency vs ILOAD  
3A Buck Efficiency vs ILOAD  
100  
100  
90  
90  
80  
70  
80  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
70  
FORCED  
60  
50  
60  
50  
FORCED  
CONTINUOUS  
MODE  
CONTINUOUS  
MODE  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
f
= 2.5V  
V
f
= 1.8V  
OUT  
OSC  
OUT  
OSC  
= 2MHz  
= 2MHz  
L = 2.2µH  
L = 2.2µH  
V
V
V
= 2.7V  
= 3.3V  
= 5.5V  
V
V
V
= 2.25V  
= 3.3V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3374 G24  
3374 G23  
3374f  
8
For more information www.linear.com/LTC3374  
LTC3374  
TYPICAL PERFORMANCE CHARACTERISTICS  
1A Buck Efficiency vs Frequency  
(Forced Continuous Mode)  
4A Buck Efficiency vs ILOAD  
4A Buck Efficiency vs ILOAD  
100  
90  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.25V  
V
V
= 3.3V  
IN  
IN  
80  
80  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
= 5.5V  
70  
70  
IN  
60  
50  
60  
50  
FORCED  
CONTINUOUS  
MODE  
FORCED  
CONTINUOUS  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
MODE  
V
= 1.8V  
V
= 2.5V  
OUT  
OSC  
OUT  
OSC  
f
= 2MHz  
f
= 2MHz  
L = 2.2µH  
L = 2.2µH  
V
I
OSC  
= 1.8V  
= 100mA  
= 2MHz  
OUT  
L
V
V
V
= 2.25V  
= 3.3V  
= 5.5V  
V
V
V
= 2.7V  
= 3.3V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
f
L = 3.3µH  
2.2 2.4 2.6 2.8  
FREQUENCY (MHz)  
1
10  
100  
1000  
1
10  
100  
1000  
1
1.2 1.4 1.6  
3
1.8  
2
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3374 G25  
3374 G26  
3374 G27  
1A Buck Efficiency vs Frequency  
(Forced Continuous Mode)  
1A Buck Efficiency vs ILOAD  
1A Buck Regulator Load Regulation  
(Forced Continuous Mode)  
(Across Operating Frequency)  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.820  
1.816  
1.812  
1.808  
1.804  
1.800  
1.796  
1.792  
1.788  
1.784  
1.780  
I
= 100mA  
f
= 2MHz  
L
OSC  
L = 2.2µH  
I
= 500mA  
= 20mA  
L
80  
Burst Mode  
OPERATION  
FORCED  
I
V
V
V
= 5.5V  
70  
L
IN  
CONTINUOUS  
MODE  
60  
50  
= 3.3V  
IN  
V
V
= 1.8V  
= 3.3V  
= 1MHz  
OUT  
IN  
40  
30  
20  
10  
0
= 2.25V  
IN  
f
OSC  
L = 3.3µH  
V
V
f
= 1.8V  
f
= 2MHz  
OUT  
IN  
OSC  
OSC  
= 3.3V  
L = 2.2µH  
f = 3MHz  
OSC  
DROPOUT  
= 2MHz  
L = 3.3µH  
L = 1µH  
1
10  
100  
1000  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
1
10  
100  
1000  
I
(mA)  
FREQUENCY (MHz)  
LOAD CURRENT (mA)  
L
3374 G29  
3374 G30  
3374 G28  
4A Buck Regulator Load Regulation  
(Forced Continuous Mode)  
1A Buck Regulator Line Regulation  
(Forced Continuous Mode)  
1.820  
1.820  
f
= 2MHz  
f
= 2MHz  
OSC  
OSC  
L = 2.2µH  
1.816 L = 2.2µH  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.812  
V
V
= 5.5V  
= 3.3V  
1.808  
1.804  
1.800  
1.796  
1.792  
1.788  
1.784  
1.780  
IN  
IN  
I
= 100mA  
L
I
= 500mA  
L
V
= 2.25V  
IN  
DROPOUT  
1
10  
100  
1000  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
(V)  
I
(mA)  
V
IN  
L
3374 G31  
3374 G32  
3374f  
9
For more information www.linear.com/LTC3374  
LTC3374  
TYPICAL PERFORMANCE CHARACTERISTICS  
4A Buck Regulator No-Load  
Start-Up Transient (Forced  
Continuous Mode)  
1A Buck Regulator No-Load  
Start-Up Transient (Burst Mode  
Operation)  
1A Buck Regulator, Transient  
Response (Burst Mode Operation)  
V
OUT  
V
V
OUT  
OUT  
100mV/DIV  
500mV/DIV  
500mV/DIV  
AC-COUPLED  
INDUCTOR  
CURRENT  
200mA/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
INDUCTOR  
CURRENT  
500mA/DIV  
0mA  
EN 2V/DIV  
EN 2V/DIV  
3374 G35  
3374 G34  
3374 G33  
50µs/DIV  
V
IN  
= 3.3V  
200µs/DIV  
V
IN  
= 3.3V  
200µs/DIV  
LOAD STEP = 100mA TO 700mA  
V
V
= 3.3V  
IN  
OUT  
= 1.8V  
1A Buck Regulator, Transient  
Response (Forced Continuous  
Mode)  
4A Buck Regulator, Transient  
Response (Forced Continuous  
Mode)  
4A Buck Regulator, Transient  
Response (Burst Mode Operation)  
V
OUT  
100mV/DIV  
V
V
OUT  
OUT  
AC-COUPLED  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
INDUCTOR  
CURRENT  
200mA/DIV  
INDUCTOR  
CURRENT  
1A/DIV  
INDUCTOR  
CURRENT  
1A/DIV  
0mA  
0mA  
0mA  
3374 G36  
3374 G37  
3374 G38  
50µs/DIV  
50µs/DIV  
50µs/DIV  
LOAD STEP = 100mA TO 700mA  
LOAD STEP = 400mA TO 2.8A  
LOAD STEP = 400mA TO 2.8A  
V
IN  
V
OUT  
= 3.3V  
V
V
= 3.3V  
V
V
= 3.3V  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.8V  
= 1.8V  
3374f  
10  
For more information www.linear.com/LTC3374  
LTC3374  
PIN FUNCTIONS (QFN/TSSOP)  
FB1(Pin1/Pin4):BuckRegulator1FeedbackPin.Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
FB4 (Pin 12/Pin 15): Buck Regulator 4 Feedback Pin.  
Receives feedback by a resistor divider connected across  
theoutput. ConnectingFB4toV combinesbuckregula-  
IN4  
V
(Pin 2/Pin 5): Buck Regulator 1 Input Supply. Bypass  
IN1  
tor 4 with buck regulator 3 for higher current. Up to four  
to GND with a 10µF or larger ceramic capacitor.  
converters may be combined in this way.  
SW1(Pin3/Pin6):BuckRegulator1SwitchNode.External  
inductor connects to this pin.  
EN4 (Pin 13/Pin 16): Buck Regulator 4 Enable Input.  
Active high.  
SW2(Pin4/Pin7):BuckRegulator2SwitchNode.External  
inductor connects to this pin.  
EN3 (Pin 14/Pin 17): Buck Regulator 3 Enable Input.  
Active high.  
V
(Pin 5/Pin 8): Buck Regulator 2 Input Supply. Bypass  
IN2  
PGOOD_ALL (Pin 15/Pin 18): PGOOD Status Pin. Open-  
drain output. When the regulated output voltage of any  
enabled switching regulator is more than 7.5% below its  
programmed level, this pin is driven LOW. When all buck  
regulators are disabled PGOOD_ALL is driven LOW.  
to GND with a 10µF or larger ceramic capacitor. May be  
drivenbyanindependentsupplyormustbeshortedtoV  
IN1  
when buck regulator 2 is combined with buck regulator 1  
for higher current.  
FB2(Pin6/Pin9):BuckRegulator2FeedbackPin.Receives  
SYNC(Pin16/Pin19):OscillatorSynchronizationPin.Driv-  
ing SYNC with an external clock signal will synchronize all  
switcherstotheappliedfrequency.Theslopecompensation  
is automatically adapted to the external clock frequency.  
The absence of an external clock signal will enable the  
frequency programmed by the RT pin. SYNC should be  
held at ground if not used. Do not float.  
feedbackbyaresistordividerconnectedacrosstheoutput.  
Connecting FB2 to V combines buck regulator 2 with  
IN2  
buck regulator 1 for higher current. Up to four converters  
may be combined in this way.  
FB3 (Pin 7/Pin 10): Buck Regulator 3 Feedback Pin.  
Receives feedback by a resistor divider connected across  
theoutput. ConnectingFB3toV combinesbuckregula-  
IN3  
RT (Pin 17/Pin 20): Oscillator Frequency Pin. This pin  
provides two modes of setting the switching frequency.  
ConnectingaresistorfromRT togroundwillsettheswitch-  
ing frequency based on the resistor value. If RT is tied to  
tor 3 with buck regulator 2 for higher current. Up to four  
converters may be combined in this way.  
V
(Pin8/Pin11):BuckRegulator3InputSupply.Bypass  
IN3  
to GND with a 10µF or larger ceramic capacitor. May be  
V
the internal 2MHz oscillator will be used. Do not float.  
CC  
drivenbyanindependentsupplyormustbeshortedtoV  
IN2  
EN6 (Pin 18/Pin 21): Buck Regulator 6 Enable Input.  
Active high.  
when buck regulator 3 is combined with buck regulator 2  
for higher current.  
EN5 (Pin 19/Pin 22): Buck Regulator 5 Enable Input.  
Active high.  
SW3 (Pin 9/Pin 12): Buck Regulator 3 Switch Node.  
External inductor connects to this pin.  
FB5 (Pin 20/Pin 23): Buck Regulator 5 Feedback Pin.  
SW4 (Pin 10/Pin 13): Buck Regulator 4 Switch Node.  
External inductor connects to this pin.  
Receives feedback by a resistor divider connected across  
theoutput. ConnectingFB5toV combinesbuckregula-  
IN5  
V
(Pin 11/Pin 14): Buck Regulator 4 Input Supply.  
tor 5 with buck regulator 4 for higher current. Up to four  
IN4  
Bypass to GND with a 10µF or larger ceramic capacitor.  
converters may be combined in this way.  
May be driven by an independent supply or must be  
shorted to V when buck regulator 4 is combined with  
IN3  
buck regulator 3 for higher current.  
3374f  
11  
For more information www.linear.com/LTC3374  
LTC3374  
PIN FUNCTIONS (QFN/TSSOP)  
V
(Pin 21/Pin 24): Buck Regulator 5 Input Supply.  
V
(Pin 30/Pin 33): Buck Regulator 8 Input Supply.  
IN5  
IN8  
Bypass to GND with a 10µF or larger ceramic capacitor.  
Bypass to GND with a 10µF or larger ceramic capacitor.  
May be driven by an independent supply or must be  
May be driven by an independent supply or must be  
shorted to V when buck regulator 5 is combined with  
shorted to V when buck regulator 8 is combined with  
buck regulator 7 for higher current.  
IN4  
IN7  
buck regulator 4 for higher current.  
SW5 (Pin 22/Pin 25): Buck Regulator 5 Switch Node.  
FB8 (Pin 31/Pin 34): Buck Regulator 8 Feedback Pin.  
External inductor connects to this pin.  
Receives feedback by a resistor divider connected across  
theoutput. ConnectingFB8toV combinesbuckregula-  
IN8  
SW6 (Pin 23/Pin 26): Buck Regulator 6 Switch Node.  
External inductor connects to this pin.  
tor 8 with buck regulator 7 for higher current. Up to four  
converters may be combined in this way.  
V
(Pin 24/Pin 27): Buck Regulator 6 Input Supply.  
IN6  
EN8 (Pin 32/Pin 35): Buck Regulator 8 Enable Input.  
Active high.  
Bypass to GND with a 10µF or larger ceramic capacitor.  
May be driven by an independent supply or must be  
shorted to V when buck regulator 6 is combined with  
EN7 (Pin 33/Pin 36): Buck Regulator 7 Enable Input.  
Active high.  
IN5  
buck regulator 5 for higher current.  
FB6 (Pin 25/Pin 28): Buck Regulator 6 Feedback Pin.  
MODE (Pin 34/Pin 37): Logic Input. MODE enables Burst  
Mode functionality for all the buck switching regulators  
when the pin is set low. When the pin is set high, all the  
buck switching regulators will operate in forced continu-  
ous mode.  
Receives feedback by a resistor divider connected across  
theoutput. ConnectingFB6toV combinesbuckregula-  
IN6  
tor 6 with buck regulator 5 for higher current. Up to four  
converters may be combined in this way.  
FB7 (Pin 26/Pin 29): Buck Regulator 7 Feedback Pin.  
V
(Pin 35/Pin 38): Internal Bias Supply. Bypass to GND  
CC  
Receives feedback by a resistor divider connected across  
with a 10µF or larger ceramic capacitor.  
theoutput. ConnectingFB7toV combinesbuckregula-  
IN7  
TEMP (Pin 36/Pin 1): Temperature Indication Pin. TEMP  
outputs a voltage of 150mV (typical) at room tempera-  
ture.TheTEMPvoltagewillchangeby6.75mV/°C(typical)  
giving an external indication of the LTC3374 internal die  
temperature.  
tor 7 with buck regulator 6 for higher current. Up to four  
converters may be combined in this way.  
V
(Pin 27/Pin 30): Buck Regulator 7 Input Supply.  
IN7  
Bypass to GND with a 10µF or larger ceramic capacitor.  
May be driven by an independent supply or must be  
EN2 (Pin 37/Pin 2): Buck Regulator 2 Enable Input.  
Active high.  
shorted to V when buck regulator 7 is combined with  
IN6  
buck regulator 6 for higher current.  
EN1 (Pin 38/Pin 3): Buck Regulator 1 Enable Input.  
Active high.  
SW7 (Pin 28/Pin 31): Buck Regulator 7 Switch Node.  
External inductor connects to this pin.  
GND (Exposed Pad Pin 39/Exposed Pad Pin 39): Ground.  
The exposed pad must be connected to a continuous  
ground plane on the printed circuit board directly under  
the LTC3374 for electrical contact and rated thermal  
performance.  
SW8 (Pin 29/Pin 32): Buck Regulator 8 Switch Node.  
External inductor connects to this pin.  
3374f  
12  
For more information www.linear.com/LTC3374  
LTC3374  
BLOCK DIAGRAM (Pin numbers reflect QFN package)  
TOP LOGIC  
V
35  
PGOOD_ALL  
15  
CC  
SYNC 16  
RT 17  
REF, CLK  
8 PGOOD  
BANDGAP,  
OSCILLATOR,  
UV, OT  
TEMP 36  
TEMP MONITOR  
34 MODE  
V
2
3
1
30  
V
IN8  
IN1  
SW1  
FB1  
29 SW8  
31 FB8  
32 EN8  
BUCK REGULATOR 1  
1A  
BUCK REGULATOR 8  
1A  
EN1 38  
MASTER/SLAVE LINES  
MASTER/SLAVE LINES  
V
5
4
6
27  
V
IN7  
IN2  
SW2  
FB2  
28 SW7  
26 FB7  
33 EN7  
BUCK REGULATOR 2  
1A  
BUCK REGULATOR 7  
1A  
EN2 37  
MASTER/SLAVE LINES  
MASTER/SLAVE LINES  
V
8
9
7
24  
V
IN6  
IN3  
SW3  
FB3  
23 SW6  
25 FB6  
18 EN6  
BUCK REGULATOR 3  
1A  
BUCK REGULATOR 6  
1A  
EN3 14  
MASTER/SLAVE LINES  
MASTER/SLAVE LINES  
V
IN4  
11  
21  
V
IN5  
SW4 10  
FB4 12  
EN4 13  
22 SW5  
20 FB5  
19 EN5  
BUCK REGULATOR 4  
1A  
BUCK REGULATOR 5  
1A  
MASTER/SLAVE LINES  
GND (EXPOSED PAD)  
39  
3374 BD  
3374f  
13  
For more information www.linear.com/LTC3374  
LTC3374  
OPERATION  
Buck Switching Regulators  
The buck switching regulators are phased in 90° steps to  
reduce noise and input ripple. The phase step determines  
the fixed edge of the switching sequence, which is when  
the PMOS turns on. The PMOS off (NMOS on) phase  
is subject to the duty cycle demanded by the regulator.  
Bucks 1 and 2 are set to 0°, bucks 3 and 4 are set to 90°,  
bucks 5 and 6 are set to 180°, and bucks 7 and 8 are set  
to 270°. In shutdown all SW nodes are high impedance.  
The LTC3374 contains eight monolithic 1A synchronous  
buck switching regulators. All of the switching regula-  
tors are internally compensated and need only external  
feedback resistors to set the output voltage. The switch-  
ing regulators offer two operating modes: Burst Mode  
operation (when the MODE pin is set low) for higher  
efficiencyatlightloadsandforcedcontinuousPWM mode  
(when the MODE pin is set high) for lower noise at light  
loads. The MODE pin collectively sets the operating mode  
for all enabled buck switching regulators. In Burst Mode  
operation at light loads, the output capacitor is charged  
to a voltage slightly higher than its regulation point. The  
regulator then goes into sleep mode, during which time  
the output capacitor provides the load current. In sleep  
most of the regulator’s circuitry is powered down, helping  
conserve input power. When the output capacitor droops  
below its programmed value, the circuitry is powered on  
and another burst cycle begins. The sleep time decreases  
as load current increases. In Burst Mode operation, the  
regulator will burst at light loads whereas at higher loads  
itwilloperateatconstantfrequencyPWM modeoperation.  
In forced continuous mode, the oscillator runs continu-  
ously and the buck switch currents are allowed to reverse  
under very light load conditions to maintain regulation.  
This mode allows the buck to run at a fixed frequency with  
minimal output ripple.  
The buck regulator enable pins may be tied to V  
volt-  
OUT  
ages, through a resistor divider, to program power-up  
sequencing.  
Buck Regulators with Combined Power Stages  
Up to four adjacent buck regulators may be combined  
in a master-slave configuration by connecting their SW  
pins together, connecting their V pins together, and  
IN  
connecting the higher numbered bucks’ FB pin(s) to the  
input supply. The lowest numbered buck is always the  
master. In Figure 1, buck regulator 1 is the master. The  
feedback network connected to the FB1 pin programs  
the output voltage to 1.2V. The FB2 pin is tied to V  
,
IN1-2  
which configures buck regulator 2 as the slave. The SW1  
and SW2 pins must be tied together, as must the V  
IN1  
and V pins. The slave buck control circuitry draws no  
IN2  
current. The enable of the master buck (EN1) controls the  
V
IN  
L1  
V
OUT  
1.2V  
2A  
V
SW1  
IN1  
Each buck switching regulator has its own V , SW, FB  
IN  
C
OUT  
BUCK REGULATOR 1  
(MASTER)  
and EN pins to maximize flexibility. The enable pins have  
two different enable threshold voltages that depend on  
the operating state of the LTC3374. With all regulators  
disabled,theenablepinthresholdissetto730mV(typical).  
Once any regulator is enabled, the enable pin thresholds  
of the remaining regulators are set to a bandgap-based  
400mV and the EN pins are each monitored by a precision  
comparator. This precision EN threshold may be used to  
provide event-based sequencing via feedback from other  
previously enabled regulators. All buck regulators have  
forward and reverse-current limiting, soft-start to limit  
inrushcurrentduringstart-up,andshort-circuitprotection.  
400k  
800k  
EN1  
FB1  
V
IN  
SW2  
V
IN2  
BUCK REGULATOR 2  
(SLAVE)  
V
IN  
EN2  
FB2  
3374 F01  
Figure 1. Buck Regulators Configured as Master-Slave  
3374f  
14  
For more information www.linear.com/LTC3374  
LTC3374  
OPERATION  
operation of the combined bucks; the enable of the slave  
regulator (EN2) must be tied to ground.  
Thetemperaturemaybereadbackbytheuserbysampling  
theTEMPpinanalogvoltage.Thetemperature,T,indicated  
by the TEMP pin voltage is given by:  
Any combination of 2, 3, or 4 adjacent buck regulators  
may be combined to provide either 2A, 3A, or 4A of aver-  
age output load current. For example, buck regulator 1  
and buck regulator 2 may run independently, while buck  
regulators 3 and 4 may be combined to provide 2A, while  
buck regulators 5 through 8 may be combined to provide  
4A. Buck regulator 1 is never a slave, and buck regulator  
8 is never a master. 15 unique output power stage con-  
figurationsarepossibletomaximizeapplicationflexibility.  
VTEMP + 19mV  
T =  
1°C  
(1)  
6.75mV  
Iftemperaturemonitoringfunctionalityisnotdesired,then  
the user may shut down the temperature monitor in order  
tolowerquiescentcurrent(15µAtypical)bytyingTEMPto  
V . In this case all enabled buck switching regulators are  
CC  
still shut down when the die temperature reaches 165°C  
(typical) and remain in shutdown until the die tempera-  
ture falls to 155°C (typical). If none of the buck switching  
regulators are enabled, then the temperature monitor is  
also shut down to further reduce quiescent current.  
Power Failure Reporting Via PGOOD_ALL Pin  
Power failure conditions are reported back via the  
PGOOD_ALL pin. All buck switching regulators have an  
internalpowergood(PGOOD)signal.Whentheregulated  
output voltage of an enabled switcher rises above 93.5%  
ofitsprogrammedvalue,thePGOODsignalwilltransition  
high. When the regulated output voltage falls below  
92.5% of its programmed value, the PGOOD signal is  
pulled low. If any internal PGOOD signal stays low for  
greater than 100µs, then the PGOOD_ALL pin is pulled  
low, indicating to a microprocessor that a power failure  
fault has occurred. The 100µs filter time prevents the pin  
from being pulled low due to a transient.  
Programming the Operating Frequency  
Selectionoftheoperatingfrequencyisatrade-offbetween  
efficiency and component size. High frequency operation  
allows the use of smaller inductor and capacitor values.  
Operation at lower frequencies improves efficiency by  
reducing internal gate charge losses but requires larger  
inductance values and/or capacitance to maintain low  
output voltage ripple.  
The operating frequency for all of the LTC3374 regulators  
is determined by an external resistor that is connected  
between the RT pin and ground. The operating frequency  
can be calculated by using the following equation:  
An error condition that pulls the PGOOD_ALL pin low  
is not latched. When the error condition goes away, the  
PGOOD_ALL pin is released and is pulled high if no other  
error condition exists. If no buck switching regulators are  
enabled, then PGOOD_ALL will be pulled low.  
81011 Hz  
fOSC  
=
(2)  
RT  
Temperature Monitoring and Overtemperature  
Protection  
While the LTC3374 is designed to function with operat-  
ing frequencies between 1MHz and 3MHz, it has safety  
clamps that will prevent the oscillator from running faster  
than4MHz(typical)orslowerthan250kHz(typical). Tying  
To prevent thermal damage to the LTC3374 and its sur-  
rounding components, the LTC3374 incorporates an  
overtemperature (OT) function. When the LTC3374 die  
temperature reaches 165°C (typical) all enabled buck  
switchingregulatorsareshutdownandremaininshutdown  
until the die temperature falls to 155°C (typical).  
the RT pin to V sets the oscillator to the default internal  
CC  
operating frequency of 2MHz (typical).  
3374f  
15  
For more information www.linear.com/LTC3374  
LTC3374  
OPERATION  
The LTC3374’s internal oscillator can be synchronized  
through an internal PLL circuit, to an external frequency  
by applying a square wave clock signal to the SYNC pin.  
During synchronization, the top MOSFET/turn-on of buck  
switching regulators 1 and 2 are locked to the rising edge  
of the external frequency source. All other buck switching  
regulators are locked to the appropriate phase of the ex-  
ternal frequency source (see Buck Switching Regulators).  
The synchronization frequency range is 1MHz to 3MHz.  
requires a certain number of periods to gradually settle  
until the frequency at SW matches the frequency and  
phase of SYNC.  
When the external clock is removed the LTC3374 needs  
approximately 5µs to detect the absence of the external  
clock. During this time, the PLL will continue to provide  
clock cycles before it recognizes the lack of a SYNC input.  
Once the external clock removal has been identified, the  
oscillator will gradually adjust its operating frequency to  
match the desired frequency programmed at the RT pin.  
SYNC should be connected to ground if not used.  
After detecting an external clock on the first rising edge of  
the SYNC pin, the PLL starts up at the current frequency  
being programmed by the RT pin. The internal PLL then  
3374f  
16  
For more information www.linear.com/LTC3374  
LTC3374  
APPLICATIONS INFORMATION  
Buck Switching Regulator Output Voltage  
and Feedback Network  
Theinputsupplyneedstobedecoupledwitha2Fcapaci-  
tor while the output needs to be decoupled with a 47µF  
capacitor for a 2A combined buck regulator. Likewise for  
3Aand4Aconfigurationstheinputandoutputcapacitance  
must be scaled up to account for the increased load. Refer  
to the Capacitor Selection section for details on selecting  
a proper capacitor.  
The output voltage of the buck switching regulators is  
programmed by a resistor divider connected from the  
switching regulator’s output to its feedback pin and is  
given by V  
= V (1 + R2/R1) as shown in Figure 2.  
OUT  
FB  
Typical values for R1 range from 40k to 1M. The buck  
regulator transient response may improve with optional  
capacitor C that helps cancel the pole created by the  
In many cases, any extra unused buck converters may be  
used to increase the efficiency of the active regulators.  
In general the efficiency will improve for any regulators  
running close to their rated load currents. If there are  
unused regulators, the user should look at their specific  
applications and current requirements to decide whether  
to add extra stages.  
FF  
feedback resistors and the input capacitance of the FB  
pin. Experimentation with capacitor values between 2pF  
and 22pF may improve transient response.  
V
OUT  
+
BUCK  
SWITCHING  
REGULATOR  
C
FF  
C
R2  
OUT  
Input and Output Decoupling Capacitor Selection  
FB  
The LTC3374 has individual input supply pins for each  
(OPTIONAL)  
R1  
buck switching regulator and a separate V pin that  
CC  
supplies power to all top level control and logic. Each of  
these pins must be decoupled with low ESR capacitors  
to GND. These capacitors must be placed as close to  
the pins as possible. Ceramic dielectric capacitors are a  
good compromise between high dielectric constant and  
stability versus temperature and DC bias. Note that the  
capacitance of a capacitor deteriorates at higher DC bias.  
It is important to consult manufacturer data sheets and  
obtain the true capacitance of a capacitor at the DC bias  
voltage it will be operated at. For this reason, avoid the  
use of Y5V dielectric capacitors. The X5R/X7R dielectric  
capacitors offer good overall performance.  
3374 F02  
Figure 2. Feedback Components  
Buck Regulators  
All eight buck regulators are designed to be used with  
inductors ranging from 1µH to 3.3µH depending on the  
lowest switching frequency that the buck regulator must  
operate at. To operate at 1MHz a 3.3µH inductor should  
be used, while to operate at 3MHz a 1µH inductor may be  
used. Table 1 shows some recommended inductors for  
the buck regulators.  
The input supply voltage Pins 2/5, 5/8, 8/11, 11/14, 21/24,  
24/27, 27/30, 30/33, and 35/38 (QFN/TSSOP packages)  
all need to be decoupled with at least 10µF capacitors.  
The input supply needs to be decoupled with a 10µF  
capacitor while the output needs to be decoupled with a  
22µF capacitor. Refer to the Capacitor Selection section  
for details on selecting a proper capacitor.  
PCB Considerations  
Combined Buck Regulators  
When laying out the printed circuit board, the following  
list should be followed to ensure proper operation of the  
LTC3374:  
A single 2A buck regulator is available by combining two  
adjacent 1A buck regulators together. Likewise a 3A or 4A  
buck regulator is available by combining any three or four  
adjacent buck regulators respectively. Tables 2, 3, and 4  
show recommended inductors for these configurations.  
1. Theexposedpadofthepackage(Pin39)shouldconnect  
directlytoalargegroundplanetominimizethermaland  
electrical impedance.  
3374f  
17  
For more information www.linear.com/LTC3374  
LTC3374  
APPLICATIONS INFORMATION  
Table 1. Recommended Inductors for 1A Buck Regulators  
PART NUMBER  
L (µH)  
1.0  
1
MAX I (A)  
MAX DCR (mΩ)  
MANUFACTURER  
Vishay  
SIZE IN mm (L × W × H)  
3 × 3.6 × 1.2  
DC  
IHLP1212ABER1R0M-11  
1239AS-H-1R0N  
3
38  
65  
2.5  
3.5  
2.6  
3
Toko  
2.5 × 2.0 × 1.2  
4 × 4 × 2.1  
XFL4020-222ME  
2.2  
2.2  
2.2  
3.3  
3.3  
23.5  
84  
CoilCraft  
Toko  
1277AS-H-2R2N  
3.2 × 2.5 × 1.2  
3 × 3.6 × 1.2  
IHLP1212BZER2R2M-11  
XFL4020-332ME  
46  
Vishay  
2.8  
2.7  
38.3  
61  
CoilCraft  
Vishay  
4 × 4 × 2.1  
IHLP1212BZER3R3M-11  
3 × 3.6 × 1.2  
Table 2. Recommended Inductors for 2A Buck Regulators  
PART NUMBER  
L (µH)  
1.0  
1
MAX I (A)  
MAX DCR (mΩ)  
MANUFACTURER  
CoilCraft  
SIZE IN mm (L × W × H)  
4 × 4 × 2.1  
DC  
XFL4020-102ME  
74437324010  
5.1  
9
11.9  
27  
Wurth Elektronik  
CoilCraft  
4.45 × 4.06 × 1.8  
4 × 4 × 2.1  
XAL4020-222ME  
FDV0530-2R2M  
IHLP2020BZER2R2M-11  
XAL4030-332ME  
FDV0530-3R3M  
2.2  
2.2  
2.2  
3.3  
3.3  
5.6  
5.3  
5
38.7  
15.5  
37.7  
28.6  
34.1  
Toko  
6.2 × 5.8 × 3  
Vishay  
5.49 × 5.18 × 2  
4 × 4 × 3.1  
5.5  
4.1  
CoilCraft  
Toko  
6.2 × 5.8 × 3  
Table 3. Recommended Inductors for 3A Buck Regulators  
PART NUMBER  
L (µH)  
1.0  
1
MAX I (A)  
MAX DCR (mΩ)  
MANUFACTURER  
CoilCraft  
Toko  
SIZE IN mm (L × W × H)  
4 × 4 × 2.1  
DC  
XAL4020-102ME  
FDV0530-1R0M  
XAL5030-222ME  
IHLP2525CZER2R2M-01  
74437346022  
8.7  
8.4  
9.2  
8
14.6  
11.2  
14.5  
20  
6.2 × 5.8 × 3  
2.2  
2.2  
2.2  
3.3  
3.3  
CoilCraft  
Vishay  
5.28 × 5.48 × 3.1  
6.86 × 6.47 × 3  
7.3 × 6.6 × 2.8  
5.28 × 5.48 × 3.1  
7.1 × 6.5 × 3  
6.5  
8.7  
7.3  
20  
Wurth Elektonik  
CoilCraft  
TDK  
XAL5030-332ME  
SPM6530T-3R3M  
23.3  
27  
Table 4. Recommended Inductors for 4A Buck Regulators  
PART NUMBER  
L (µH)  
1.2  
1
MAX I (A)  
MAX DCR (mΩ)  
MANUFACTURER  
CoilCraft  
TDK  
SIZE IN mm (L × W × H)  
5.28 × 5.48 × 3.1  
7.1 × 6.5 × 3  
DC  
XAL5030-122ME  
SPM6530T-1R0M120  
XAL5030-222ME  
SPM6530T-2R2M  
IHLP2525EZER2R2M-01  
XAL6030-332ME  
FDVE1040-3R3M  
12.5  
14.1  
9.2  
8.4  
13.6  
8
9.4  
7.81  
14.5  
19  
2.2  
2.2  
2.2  
3.3  
3.3  
CoilCraft  
TDK  
5.28 × 5.48 × 3.1  
7.1 × 6.5 × 3  
20.9  
20.81  
10.1  
Vishay  
6.86 × 6.47 × 5  
6.36 × 6.56 × 3.1  
11.2 × 10 × 4  
CoilCraft  
Toko  
9.8  
3374f  
18  
For more information www.linear.com/LTC3374  
LTC3374  
APPLICATIONS INFORMATION  
2. All the input supply pins should each have a decoupling  
capacitor.  
and parasitic coupling. Due to the large voltage swing  
of the switching nodes, high input impedance sensitive  
nodes, such as the feedback nodes, should be kept far  
away or shielded from the switching nodes or poor  
performance could result.  
3. Theconnectionstotheswitchingregulatorinputsupply  
pins and their respective decoupling capacitors should  
be kept as short as possible. The GND side of these  
capacitors should connect directly to the ground plane  
of the part. These capacitors provide the AC current  
to the internal power MOSFETs and their drivers. It is  
importanttominimizeinductancefromthesecapacitors  
5. The GND side of the switching regulator output capaci-  
torsshouldconnectdirectlytothethermalgroundplane  
of the part. Minimize the trace length from the output  
capacitor to the inductor(s)/pin(s).  
to the V pins of the LTC3374.  
IN  
6. Inacombinedbuckregulatorapplicationthetracelength  
of switch nodes to the inductor must be kept equal to  
ensure proper operation.  
4. TheswitchingpowertracesconnectingSW1,SW2,SW3,  
SW4, SW5, SW6, SW7, and SW8 to their respective  
inductors should be minimized to reduce radiated EMI  
3.3V TO 5.5V  
3.0V TO 5.5V  
2.5V TO 5.5V  
2.25V TO 5.5V  
V
V
IN8  
2.25V TO 5.5V  
2.25V TO 5.5V  
2.25V TO 5.5V  
2.25V TO 5.5V  
IN1  
2.2µH  
1.02M  
324k  
2.2µH  
2.2µH  
2.2µH  
2.2µH  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
1.8V  
1A  
3.3V  
1A  
SW1  
FB1  
SW8  
FB8  
22µF  
22µF  
22µF  
22µF  
22µF  
22µF  
22µF  
22µF  
806k  
649k  
V
V
IN7  
IN2  
2.2µH  
1.5V  
1A  
3.0V  
1A  
SW2  
FB2  
SW7  
FB7  
1.0M  
365k  
715k  
806k  
LTC3374  
V
V
IN6  
IN3  
2.2µH  
1.2V  
1A  
2.5V  
1A  
SW3  
FB3  
SW6  
FB6  
1.02M  
475k  
232k  
464k  
V
V
IN5  
IN4  
2.2µH  
1.0V  
1A  
2.0V  
1A  
SW4  
FB4  
SW5  
FB5  
1.0M  
665k  
255k  
1.02M  
EN1  
EN2  
EN3  
EN4  
EN5  
EN6  
EN7  
EN8  
SYNC  
MODE  
RT  
V
2.7V TO 5.5V  
CC  
10µF  
MICROPROCESSOR  
CONTROL  
PGOOD_ALL  
TEMP  
MICROPROCESSOR  
CONTROL  
402k  
EXPOSED PAD  
3374 F03  
Figure 3. Detailed Front Page Application  
3374f  
19  
For more information www.linear.com/LTC3374  
LTC3374  
APPLICATIONS INFORMATION  
V
IN  
5.5V TO 36V  
C
IN  
22µF  
V
INTV  
CC  
IN  
100k  
2.2µF  
D1  
PGOOD  
INTV  
CC  
PGND  
TG  
PLLIN/MODE  
MTOP  
I
LIM  
0.1µF  
LTC2955TS8-1  
LTC3891  
L1  
R
SENSE  
7mΩ  
V
IN  
EN  
RUN  
BOOST  
8µH  
5V  
6A  
MICROPROCESSOR  
KILL  
INT  
PB  
SW  
FREQ  
CONTROL  
C
470pF  
MBOT  
OUT  
BG  
34.8k  
330µF  
ITH  
TMR GND ON  
+
SENSE  
0.1µF  
1nF  
SENSE  
TRACK/SS  
SGND  
100k  
EXTV  
CC  
V
FB  
1M  
MTOP, MBOT: Si7850DP  
SGND  
19.1k  
L1 COILCRAFT SER1360-802KL  
C
: SANYO 10TPE330M  
OUT  
D1: DFLS1100  
V
IN1  
V
IN8  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
2.2µH  
2.2µH  
2.2µH  
2.2µH  
2.2µH  
1.2V  
1A  
1.2V  
1A  
SW1  
FB1  
SW8  
FB8  
22µF  
22µF  
324k  
649k  
324k  
649k  
V
V
IN7  
IN2  
2.2µH  
2.5V  
1A  
2.5V  
1A  
SW2  
FB2  
SW7  
FB7  
22µF  
22µF  
22µF  
22µF  
22µF  
22µF  
665k  
309k  
665k  
309k  
LTC3374  
V
V
IN6  
IN3  
2.2µH  
1.8V  
1A  
1.8V  
1A  
SW3  
FB3  
SW6  
FB6  
590k  
475k  
590k  
475k  
V
V
IN5  
IN4  
2.2µH  
1.6V  
1A  
1.6V  
1A  
SW4  
FB4  
SW5  
FB5  
511k  
511k  
511k  
511k  
MICROPROCESSOR  
CONTROL  
MODE  
SYNC  
V
CC  
10µF  
EN1  
EN2  
EN3  
EN4  
EN5  
EN6  
EN7  
EN8  
RT  
PGOOD_ALL  
TEMP  
MICROPROCESSOR  
CONTROL  
402k  
EXPOSED PAD  
3374 F04  
Figure 4. Buck Regulators with Sequenced Start-Up Driven from a High Voltage Upstream Buck Converter  
3374f  
20  
For more information www.linear.com/LTC3374  
LTC3374  
APPLICATIONS INFORMATION  
2.7V TO 5.5V  
V
IN1  
V
IN6  
10µF  
2.5V  
4A  
10µF  
2.2µH  
665k  
SW1  
SW2  
SW3  
SW4  
2.2µH  
SW8  
SW7  
SW6  
1.2V  
3A  
100µF  
68µF  
324k  
649k  
FB1  
FB6  
309k  
V
V
IN7  
IN2  
10µF  
10µF  
FB2  
FB7  
LTC3374  
V
IN3  
V
IN8  
10µF  
10µF  
10µF  
10µF  
FB3  
FB8  
V
IN4  
V
IN5  
2.2µH  
1.6V  
1A  
SW5  
22µF  
10µF  
511k  
511k  
FB4  
FB5  
EN2  
EN3  
EN4  
EN7  
EN8  
V
CC  
PGOOD_ALL  
TEMP  
MICROPROCESSOR  
CONTROL  
EN1  
EN5  
MICROPROCESSOR  
CONTROL  
EN6  
SYNC  
MODE  
RT  
402k  
EXPOSED PAD  
3374 F05  
Figure 5. Combined Buck Regulators with Common Input Supply  
3374f  
21  
For more information www.linear.com/LTC3374  
LTC3374  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701 Rev C)  
0.70 ± 0.05  
5.50 ± 0.05  
5.15 0.05  
4.10 ± 0.05  
3.15 0.05  
3.00 REF  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
5.5 REF  
6.10 ± 0.05  
7.50 ± 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
0.75 ± 0.05  
3.00 REF  
5.00 ± 0.10  
37 38  
0.00 – 0.05  
0.40 ±0.10  
PIN 1  
TOP MARK  
1
2
(SEE NOTE 6)  
5.15 0.10  
5.50 REF  
7.00 ± 0.10  
3.15 0.10  
(UH) QFN REF C 1107  
0.200 REF 0.25 ± 0.05  
R = 0.125  
TYP  
R = 0.10  
TYP  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
3374f  
22  
For more information www.linear.com/LTC3374  
LTC3374  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
38-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1772 Rev C)  
Exposed Pad Variation AA  
4.75 REF  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
REF  
38  
20  
6.60 0.10  
4.50 REF  
2.74 REF  
SEE NOTE 4  
6.40  
2.74  
REF (.252)  
(.108)  
0.315 0.05  
BSC  
1.05 0.10  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
19  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.50  
(.0196)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.17 – 0.27  
FE38 (AA) TSSOP REV C 0910  
(.0067 – .0106)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3374f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC3374  
TYPICAL APPLICATION  
Combined Bucks with 3MHz Switch Frequency and Sequenced Power Up  
2.25V TO 5.5V  
3.3V TO 5.5V  
V
V
IN8  
IN1  
10µF  
10µF  
FB8  
10µF  
10µF  
V
FB2  
V
IN2  
IN7  
1µH  
3.3V  
2A  
V
SW7  
SW8  
IN3  
FB3  
10µF  
1µH  
47µF  
1.02M  
324k  
SW1  
SW2  
SW3  
FB7  
2V  
3A  
68µF  
649k  
LTC3374  
FB1  
V
2.5V TO 5.5V  
IN6  
432k  
FB6  
10µF  
10µF  
2.25V TO 5.5V  
V
V
IN5  
IN4  
10µF  
1µH  
1µH  
1.2V  
1A  
2.5V  
2A  
SW4  
FB4  
SW5  
SW6  
22µF  
47µF  
324k  
649k  
1.02M  
475k  
FB5  
RT  
V
2.7V TO 5.5V  
CC  
10µF  
PGOOD_ALL  
267k  
MICROPROCESSOR  
CONTROL  
TEMP  
SYNC  
MODE  
EN1  
EN2  
EN3  
EN6  
EN8  
EN4  
EN5  
EN7  
EXPOSED PAD  
3374 TA02  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
2
2
LTC3589  
8-Output Regulator with Sequencing and I C  
Triple I C Adjustable High Efficiency Step-Down DC/DC Converters: 1.6A, 1A, 1A.  
High Efficiency 1.2A Buck-Boost DC/DC Converter, Triple 250mA LDO Regulators.  
Pushbutton On/Off Control with System Reset, Flexible Pin-Strap Sequencing  
2
Operation. I C and Independent Enable Control Pins, Dynamic Voltage Scaling and  
Slew Rate Control. Selectable 2.25MHz or 1.12MHz Switching Frequency, 8µA  
Standby Current, 40-Pin 6mm × 6mm × 0.75mm QFN.  
LTC3675  
7-Channel Configurable High Power PMIC  
Four Monolithic Synchronous Buck DC/DCs (1A/1A/500mA/500mA). Buck DC/DCs  
Can Be Paralleled to Deliver Up to 2× Current with a Single Inductor. Independent  
2
1A Boost and 1A Buck-Boost DC/DCs, Dual String I C Controlled 40V LED Driver.  
2
I C Programmable Output Voltage, Operating Mode, and Switch Node Slew Rate  
2
for All DC/DCs. I C Read Back of DC/DC, LED Driver, Fault Status, Pushbutton  
On/Off/Reset, Always-On 25mA LDO. Low Quiescent Current: 16µA (All DC/DCs  
Off), 4mm × 7mm × 0.75mm 44-Lead QFN Package.  
LTC3375  
8-Channel Programmable Configurable 1A DC/DC  
8 × 1A Synchronous Buck Regulators. Can Connect Up to Four Power Stages in  
Parallel to Make a Single Inductor, High Current Output (4A Maximum), 15 Output  
Configurations Possible, 7mm × 7mm QFN-48 Package  
3374f  
LT 0513 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3374  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

LTC3375

8-Channel Programmable, Parallelable 1A Buck DC/DCs
Linear

LTC3376

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3388-1

Piezoelectric Energy Harvesting Power Supply with 14V Minimum VIN
Linear

LTC3388-1_15

20V High Efficiency Nanopower Step-Down Regulator
Linear

LTC3388-3

Piezoelectric Energy Harvesting Power Supply with 14V Minimum VIN
Linear

LTC3388-3_15

20V High Efficiency Nanopower Step-Down Regulator
Linear

LTC3388EDD-1#PBF

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LTC3388EDD-1#TRPBF

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LTC3388EDD-3#PBF

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LTC3388EDD-3#TRPBF

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C
Linear

LTC3388EMSE-1#PBF

暂无描述
Linear

LTC3388EMSE-1#TRPBF

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C
Linear