LTC3355_15 [Linear]

20V 1A Buck DC/DC with Integrated SCAP Charger and Backup Regulator;
LTC3355_15
型号: LTC3355_15
厂家: Linear    Linear
描述:

20V 1A Buck DC/DC with Integrated SCAP Charger and Backup Regulator

文件: 总20页 (文件大小:490K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3355  
20V 1A Buck DC/DC with  
Integrated SCAP Charger  
and Backup Regulator  
FEATURES  
DESCRIPTION  
The LTC®3355 is a complete input power interrupt ride-  
throughDC/DCsystem.Thepartchargesasupercapacitor  
n
V Voltage Range: 3V to 20V  
OUT  
1A Current Mode Buck Main Regulator  
5A Boost Backup Regulator Powered from Single  
Supercapacitor  
IN  
n
V
Voltage Range: 2.7V to 5V  
n
n
whiledeliveringloadcurrenttoV ,andusesenergyfrom  
OUT  
the supercapacitor to provide continuous V  
backup  
OUT  
power when V power is lost. The LTC3355 contains a  
IN  
n
n
Boost Regulator Operates Down to 0.5V for  
Maximum Utilization of Supercapacitor Energy  
Programmable Supercapacitor Charge Current to  
1A with Overvoltage Protection  
nonsynchronousconstantfrequencycurrentmodemono-  
lithic 1A buck switching regulator to provide a 2.7V to 5V  
regulatedoutputvoltagefromaninputsupplyofupto20V.  
A 1A programmable CC/CV linear charger charges the  
n
n
n
n
n
n
n
Charger Supports Single Cell CC/CV Battery Charging  
supercapacitor from V . When the V supply drops  
OUT  
IN  
Programmable V Current Limit  
IN  
below the PFI threshold, the devices’s constant frequency  
Programmable Boost Current Limit  
nonsynchronous current mode 5A boost switching  
V Power Fail Indicator  
IN  
CAP  
OUT  
regulator delivers power from the supercapacitor to V  
.
OUT  
V
V
Power Good Indicator  
Power On Reset Output  
A thermal regulation loop maximizes charge current while  
limiting the die temperature to 110°C. The IC has boost,  
Compact 20-Lead 4mm × 4mm QFN Package  
chargerandV programmablecurrentlimits.TheLTC3355  
IN  
is available in a 20-lead 4mm × 4mm QFN surface mount  
APPLICATIONS  
package.  
n
Ride-Through “Dying Gasp” Supplies  
Power Meters/Industrial Alarms/Solid State Drives  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
TYPICAL APPLICATION  
Supercapacitor Charger and Ride-Through Power Supply  
Backup Operation  
6.8µH  
0.091Ω  
10µF  
V
IN  
SW1  
V
IN  
12V  
14  
12  
10  
5
6
4
7
CAPACITOR = 3F  
= 0.125A  
10µF  
1µF  
I
VOUT  
V
INM5  
V
PFO  
BUCK  
1A  
OUT  
4V  
V
OUT  
FB  
V
INS  
15  
2
47µF 1A (MAX)  
4.7pF  
402k  
100k  
2.49M  
200k  
V
IN  
8
6
4
2
0
PFI  
1
LTC3355  
BOOST  
V
CAP  
10 PFOB  
13 RSTB  
14  
16  
17  
11  
19  
V
OUT  
3.3µH  
SW2  
2.4V  
V
CAP  
SCAP  
9
8
3
CPGOOD  
1F TO 50F  
665k  
332k  
EN_CHG  
MODE  
CFB  
0
5
10  
TIME (SECONDS)  
15  
20  
V
CBST  
INTV  
I
I
CC  
CHG  
BSTPK  
154k  
3355 TA01b  
18  
12  
20  
220pF  
1µF  
60.4k  
200k  
3355 TA01a  
3355fb  
1
For more information www.linear.com/LTC3355  
LTC3355  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , V , V  
........................................................22V  
IN INS INM5  
V
V
V
V
V
.................................................................. 0.1V  
IN  
SW1  
SW2  
OUT  
INS  
.......................................................... –0.4V to 22V  
............................................................ –0.4V to 6V  
, INTV , PFOB, RSTB,  
20 19 18 17 16  
PFI  
FB  
V
V
1
2
3
4
5
15  
14  
13  
12  
11  
OUT  
CAP  
CC  
CPGOOD, V ............................................. –0.3V to 6V  
CAP  
21  
GND  
MODE  
RSTB  
PFI, EN_CHG, MODE, FB.............................. –0.3V to 6V  
V
I
INS  
CHG  
CFB ............................................–0.3V to INTV + 0.3V  
CC  
V
IN  
CFB  
I
, I  
, I  
................................................1mA  
CPGOOD PFOB RSTB  
6
7
8
9 10  
Operating Junction Temperature Range  
(Notes 2, 3)............................................ –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
UF PACKAGE  
20-LEAD (4mm × 4mm) PLASTIC QFN  
T
JMAX  
= 125°C, θ = 47°C/W  
JA  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3355EUF#PBF  
LTC3355IUF#PBF  
TAPE AND REEL  
PART MARKING  
3355  
PACKAGE DESCRIPTION  
20-Lead (4mm × 4mm) Plastic QFN  
20-Lead (4mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
LTC3355EUF#TRPBF  
LTC3355IUF#TRPBF  
3355  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3355fb  
2
For more information www.linear.com/LTC3355  
LTC3355  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted. (Note 2)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Operating Voltage Range  
3
20  
V
IN  
IN  
l
l
I
V
V
Quiescent Current  
OUT  
Charger Off, Not Switching, V = 3.3V, No  
OUT  
Load, In Regulation, Supercapacitor Charged  
60  
110  
120  
265  
215  
420  
µA  
µA  
Q
IN  
Quiescent Current  
l
l
V
FB Reference Voltage  
FB Line Regulation  
FB Input Bias Current  
0.775  
0.825  
V
%/V  
nA  
V
FB  
V
= 2.7V to 5V  
0.1  
OUT  
I
FB  
–20  
2.7  
5.4  
1.8  
20  
5
V
V
OUT  
V
OUT  
V
OUT  
Voltage Range  
VOUT  
Overvoltage Limit  
Buck or Boost Enabled  
Boost Enabled  
5.65  
2
5.95  
2.2  
V
Undervoltage Lockout Threshold  
V
V
V
V
V -V  
V
> 7V  
IN  
4.65  
V
INM5  
INTVCC  
VCAP  
IN INM5  
INTV Internal Voltage Power Supply  
2
0
5
5
V
CC  
V
V
Voltage Range  
V
CAP  
CAP  
I
Current Accuracy  
V
= 2V, V  
= 3.3V, I = 1A  
VCAP  
–10  
10  
%
VCAP  
CAP  
OUT  
EN_CHG = High  
EN_CHG = High  
EN_CHG = High  
V
Programmable Current Range  
Reference Voltage  
0.1  
0.78  
60.4  
–20  
1
A
V
CAP  
CHG  
CHG  
V
I
I
0.82  
604  
20  
ICHG  
R
Set Resistor Range  
kΩ  
nA  
V
ICHG  
I
CFB Input Bias Current  
CFB Reference Voltage  
CFB Hysteresis  
CFB  
V
EN_CHG = High  
EN_CHG = High  
0.78  
0.8  
30  
0.82  
CFB  
mV  
CFB Overvoltage Hysteretic Comparator CFB Rising  
Switch Point CFB Falling  
V
CFB  
V
+0.035  
CFB  
V
V
I
V
Input Current Limit  
V
-V to Disable Charger  
INS IN  
37  
42  
43  
50  
mV  
mV  
ICL  
IN  
V
-V to Disable Buck  
INS IN  
V
V
Common Mode Range  
3.0  
20  
V
MHz  
kHz  
V
INS(CMI)  
INS  
f
Switching Frequency  
Foldback Frequency (Buck Only)  
PFI Falling Threshold  
PFI Hysteresis  
FB ≥ 0.5V  
FB ≤ 0.3V  
0.75  
1
1.25  
SW  
100  
0.8  
17  
l
V
0.775  
–20  
0.825  
20  
PFI  
mV  
nA  
I
PFI  
PFI Leakage Current  
1A Buck Regulator  
I
SW1 Peak Current  
PWM Mode (Note 5)  
Burst Mode® (Note 5)  
1.3  
1.65  
0.5  
2
A
A
SW1  
t
Soft-Start Time  
1000  
µs  
%
SS  
DC Max  
Maximum Duty Cycle  
PMOS On-Resistance  
PMOS Leakage Current  
FB = 0V  
100  
–2  
R
0.5  
1
2
Ω
PMOS  
LEAKP  
I
Buck Disabled  
µA  
3355fb  
3
For more information www.linear.com/LTC3355  
LTC3355  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted. (Note 2)  
SYMBOL PARAMETER  
5A Boost Regulator  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
I
V
Quiescent Current  
V = 3.3V, No Load, In Regulation, No  
OUT  
80  
160  
280  
5.5  
µA  
VOUT  
OUT  
Switching, Burst Mode  
I
SW2 Peak Current  
R
R
= 200k, PWM Mode  
= 200k, Burst Mode  
4.5  
5
1.5  
A
A
SW2  
IBSTPK  
IBSTPK  
R
NMOS On-Resistance  
70  
mΩ  
µA  
%
NMOS  
I
NMOS Leakage Current  
Boost Disabled  
–5  
88  
5
98  
5
LEAKN  
DC Max  
Boost Maximum Duty Cycle  
Boost Input Supply Voltage Range  
Boost Minimum Input Supply  
Boost Error Amplifier Voltage Gain  
Boost Error Amplifier Transconductance  
92  
V
0.75  
0.5  
V
SBOOST  
V
= 4V  
V
OUT(MAX)  
A
(Note 5)  
850  
27  
V/V  
μS  
V
V
g
m
V
I
I
Reference Voltage  
Set Resistor Range  
0.775  
200  
0.825  
1000  
IBSTPK  
BSTPK  
BSTPK  
R
kΩ  
IBSTPK  
Logic (MODE, EN_CHG, CPGOOD, RSTB, PFOB)  
V
V
Input Low Logic Voltage  
Input High Logic Voltage  
Input Low/High Current  
Output Logic Low Voltage  
Logic High Leakage Current  
CPGOOD Rising Threshold  
CPGOOD Hysteresis  
MODE, EN_CHG  
0.4  
V
V
IL  
MODE, EN_CHG  
1.2  
-1  
IH  
I , I  
IL IH  
MODE, EN_CHG  
1
50  
1
µA  
mV  
µA  
%
V
PFOB, CPGOOD, RSTB; Sink 100µA  
PFOB, CPGOOD, RSTB; 5V  
OL  
OH  
I
V
as a % of Final Target  
90  
90  
92.5  
2.5  
95  
CAP  
V  
CAP  
as a % of Final Value  
%
RSTB Falling Threshold  
RSTB Hysteresis  
V
OUT  
as a % of Final Target  
92.5  
2.5  
95  
%
V  
OUT  
as a % of Final Value  
%
RSTB Delay  
250  
ms  
Note 3: The LTC3355 has a thermal regulation loop that limits the  
maximum junction temperature to 110°C by limiting the charger current.  
Note 4: The current limit features of this part are intended to protect the  
IC from short-term or intermittent fault conditions. Continuous operation  
above the maximum specified pin current may result in device degradation  
or failure.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3355 is tested under pulsed load conditions such that  
T ≈ T . The LTC3355E is guaranteed to meet specifications from  
J
A
0°C to 85°C junction temperature. Specifications over the –40°C to  
125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3355I is guaranteed over the –40°C to 125°C operating junction  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
impedance and other environmental factors. The junction temperature  
Note 5: Guaranteed by design and/or correlation to static test.  
Note 6: The LTC3355 has a thermal shutdown that will shut down the part  
when the die temperature reaches 155°C.  
(T , in °C) is calculated from the ambient temperature (T , in °C) and  
J
A
power dissipation (P , in Watts) according to the formula:  
D
T = T + (P • θ )  
JA  
J
A
D
where θ = 47°C/W for the UF package.  
JA  
3355fb  
4
For more information www.linear.com/LTC3355  
LTC3355  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C unless otherwise noted  
Buck Efficiency  
Boost Efficiency  
Maximum Buck Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0
V
= 4V  
V
= 2.4V  
OUT  
CAP  
MODE = HIGH  
MODE = HIGH  
V
V
V
= 18V  
V
V
V
= 3.3V  
V
= 4V  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
= 12V  
= 6V  
= 4V  
= 5V  
L = 6.8µH  
INPUT CURRENT SET RESISTOR = 0Ω  
14 16  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
4
6
8
10 12  
(V)  
18 20  
V
LOAD CURRENT (A)  
LOAD CURRENT (A)  
IN  
3355 G01  
3355 G02  
3355 G03  
Oscillator Frequency  
vs Temperature  
Maximum Boost Load Current  
Buck Switch Voltage Drop  
1200  
1.2  
1.0  
700  
600  
V
= 4V  
OUT  
1150  
1100  
500  
0.8  
0.6  
0.4  
0.2  
0
1050  
1000  
950  
400  
300  
200  
100  
900  
850  
800  
0
2.25 2.75 3.25  
(V)  
–25  
0
50  
75 100 125  
0.75 1.25 1.75  
3.75  
–50  
25  
100 200  
400  
500 600 700 800 9001000  
0
300  
V
SWITCH CURRENT (mA)  
TEMPERATURE (°C)  
CAP  
3355 G04  
3355 G06  
3355 G05  
Buck Frequency  
vs Feedback Voltage  
Typical Minimum Buck Input  
Voltage (VOUT = 3.3V)  
Typical Minimum Buck Input  
Voltage (VOUT = 5V)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
6.3  
6.1  
5.9  
5.7  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
V
= 3.3V  
V
= 5V  
OUT  
OUT  
L = 6.8µH  
INPUT CURRENT SET RESISTOR = 0.05Ω  
L = 6.8µH  
INPUT CURRENT SET RESISTOR = 0.05Ω  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
1
10  
100  
1000  
1
10  
100  
1000  
FB (V)  
V
LOAD CURRENT (mA)  
V
OUT  
LOAD CURRENT (mA)  
OUT  
3355 G08  
3355 G09  
3355 G07  
3355fb  
5
For more information www.linear.com/LTC3355  
LTC3355  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C unless otherwise noted  
Boost Switch Current Limit vs  
Temperature  
Buck Switch Current Limit vs  
Temperature  
VOUT vs VINS-VIN  
5.2  
1.8  
1.7  
1.6  
1.5  
1.4  
4.0  
V
= 12V  
IN  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.1  
5.0  
V
= 3.3V  
OUT  
V
= 5V  
OUT  
V
= 4V  
OUT  
4.9  
4.8  
4.7  
4.6  
4.5  
V
= 3.3V  
OUT  
V
= 4V  
OUT  
V
= 5V  
OUT  
V
V
VOUT  
= 7V  
IN  
0.5  
0
= 3.3V  
OUT  
I
= 200mA  
4.4  
44 45  
40 41 42 43  
46 47 48 49 50  
–25  
0
50  
75 100 125  
–50  
25  
–50 –25  
0
25  
50  
75 100 125  
V
-V (mV)  
INS IN  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3355 G12  
3355 G10  
3355 G11  
Charge Current  
vs Junction Temperature  
Charge Current vs VINS-VIN  
Charge Current vs VOUT-VCAP  
1200  
1000  
300  
250  
200  
150  
1200  
1000  
800  
600  
400  
200  
0
V
V
= 7V  
= 3.3V  
V
V
= 7V  
IN  
OUT  
IN  
OUT  
= 3.3V  
800  
600  
R
= 60.4k  
ICHG  
400  
200  
0
100  
50  
0
R
ICHG  
= 604k  
500 600  
(mV)  
50  
TEMPERATURE (°C)  
100 125  
30 32 34 36 38 40 42 44 46 48 50  
-V (mV)  
0
100 200 300 400  
-V  
700 800  
–50 –25  
0
25  
75  
V
V
OUT CAP  
INS IN  
3355 G13  
3355 G14  
3355 G15  
Boost Load Regulation  
Buck Load Regulation  
Buck Line Regulation  
4.050  
4.045  
4.040  
4.035  
4.030  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
4.050  
4.045  
4.040  
4.035  
4.030  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
4.050  
4.045  
4.040  
4.035  
PWM MODE  
I
= 50mA  
OUT  
I
= 500mA  
OUT  
4.030  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
PWM MODE  
PWM MODE  
V
V
V
= 18V  
= 12V  
= 6V  
IN  
IN  
IN  
V
CAP  
V
CAP  
V
CAP  
= 3.6V  
= 2.4V  
= 1.5V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20  
(V)  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
V
LOAD CURRENT (A)  
IN  
3355 G18  
3355 G16  
3355 G17  
3355fb  
6
For more information www.linear.com/LTC3355  
LTC3355  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C unless otherwise noted  
Logic Input Threshold vs  
Temperature (EN_CHG, MODE)  
PFI Threshold vs Temperature  
Boost Line Regulation  
4.050  
4.045  
4.040  
4.035  
4.030  
4.025  
4.020  
4.015  
4.010  
4.005  
4.000  
1000  
810  
805  
800  
795  
PWM MODE  
950  
900  
50mA  
850  
800  
750  
700  
650  
500mA  
790  
600  
0.75 1.25 1.75 2.25 2.75 3.25 3.75  
(V)  
–50 –25  
0
25  
50  
75 100 125  
–25  
0
50  
75 100 125  
–50  
25  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
CAP  
3355 G19  
3355 G21  
3355 G20  
Buck Load Step Burst Mode  
Operation  
Buck Load Step PWM  
Boost Load Step PWM  
V
V
V
OUT  
OUT  
OUT  
100mV/DIV  
100mV/DIV  
100mV/DIV  
AC-COUPLED  
AC-COUPLED  
AC-COUPLED  
LOAD  
CURRENT  
500mA/DIV  
LOAD  
CURRENT  
500mA/DIV  
LOAD  
CURRENT  
500mA/DIV  
3355 G22  
3355 G23  
3355 G24  
50µs/DIV  
50µs/DIV  
50µs/DIV  
LOAD STEP = 100mA to 600mA  
LOAD STEP = 100mA to 600mA  
LOAD STEP = 100mA to 600mA  
V
V
= 12V  
= 4V  
V
V
= 12V  
= 4V  
V
V
= 2.4V  
= 4V  
IN  
OUT  
IN  
OUT  
CAP  
OUT  
Boost Load Step Burst Mode  
Operation  
Boost Error Amplifier Voltage  
Gain vs Temperature  
Boost Error Amplifier  
Transconductance vs Temperature  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
750  
700  
650  
600  
V
OUT  
100mV/DIV  
AC-COUPLED  
LOAD  
STEP  
500mA/DIV  
3355 G25  
50µs/DIV  
LOAD STEP = 100mA to 600mA  
V
V
= 2.4V  
= 4V  
CAP  
OUT  
550  
–50  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3355 G27  
3355 G30  
3355fb  
7
For more information www.linear.com/LTC3355  
LTC3355  
PIN FUNCTIONS  
PFI (Pin 1): Input to the Power-Fail Comparator. The input  
voltage below which the PFOB pin indicates a power-fail  
condition can be programmed by connecting this pin to  
CFB (Pin 11): This pin is used to program the V  
age via an external resistor divider. The reference voltage  
is 0.8V.  
volt-  
CAP  
an external resistor divider between V and ground.  
IN  
I
(Pin 12): This pin programs the V  
charge current  
CHG  
CAP  
FB (Pin 2): Sets the V  
voltage for both the buck and  
by connecting a resistor to ground.  
RSTB (Pin 13): Open-drain reset output is high imped-  
ance when the V voltage is higher than 92.5% of the  
OUT  
boostvoltagecontrolloopsviaanexternalresistordivider.  
The reference voltage is 0.8V.  
OUT  
MODE (Pin 3): This pin sets the buck and boost switch-  
ing modes. A low is PWM mode, a high is Burst Mode  
operation.  
programmed regulation voltage.  
V
(Pin 14): This pin is the constant current, constant  
CAP  
voltage linear charger output and connects to the super-  
V
(Pin 4): Input Current Limit Sense Voltage Pin. Con-  
capacitor.  
INS  
nect a sense resistor from V to V . Must be locally  
INS  
IN  
V
(Pin15):TheOutputVoltageSupply.Thebuckpowers  
OUT  
bypassed with a low ESR ceramic capacitor. Connect to  
V if input current limit is not needed.  
this supply from V when the input voltage is present and  
IN  
IN  
the boost powers this supply from V  
voltage has dropped out.  
when the input  
CAP  
V (Pin 5): Input Power Pin Supplies Current to the In-  
IN  
ternal Regulator and Buck Power Switch. Must be locally  
SW2 (Pin 16, 17): Boost Output of the Internal Power  
Switch. Connect these pins to the rectifier diode and  
inductor. Minimize trace area at these pins to reduce EMI.  
bypassed with a low ESR ceramic capacitor.  
V
(Pin 6): This pin is used to filter an internal supply  
INM5  
regulator which generates a voltage of V – 4.65V. Con-  
IN  
to V .  
INTV (Pin18):Thispinisusedtofilteraninternalsupply.  
CC  
nect a 1µF ceramic capacitor from V  
INM5  
IN  
Connect a 1µF ceramic capacitor from this pin to ground.  
SW1 (Pin 7): Buck Output of the Internal Power Switch.  
Connect this pin to the catch diode and inductor. Minimize  
trace area at this pin to reduce EMI.  
INTV is 2.5V during start-up until V  
exceeds 2.5V  
CC  
OUT  
then INTV follows V  
.
CC  
OUT  
V
CBST  
(Pin 19): This pin is the output of the boost internal  
EN_CHG (Pin 8): A high on this pin enables the superca-  
pacitor charger.  
error amplifier. The voltage on this pin controls the peak  
switch current for the boost regulator. Connect an RC  
series network from this pin to ground to compensate  
the boost control loop.  
CPGOOD (Pin 9): Open-drain output is high impedance  
when the V  
voltage is higher than 92.5% of the pro-  
CAP  
grammed voltage.  
I
(Pin 20): This pin programs the boost peak current  
BSTPK  
limit by connecting a resistor to ground.  
PFOB (Pin 10): Open Drain of the Power-Fail Comparator.  
Pulled low and enables the boost converter when the PFI  
inputhasdeterminedthattheinputsupplyhasdroppedout.  
GND(ExposedPadPin21):Ground.Theexposedpadmust  
be connected to a continuous ground plane on the second  
layer of the printed circuit board by several vias directly  
under the part to achieve optimum thermal conduction.  
3355fb  
8
For more information www.linear.com/LTC3355  
LTC3355  
SIMPLIFIED BLOCK DIAGRAM  
V
OUT  
R1  
R2  
C
OUT  
C
VINM5  
15  
6
2
3
5
V
V
INM5  
FB  
MODE  
V
IN  
OUT  
L1  
V
V
IN  
IN  
ENB  
START-UP  
INTV  
CC  
CAP REG  
OVP  
+
CLK  
OVP  
EN  
LOGIC  
1A  
UVLO  
0.8V  
SW1  
7
VC  
0.8V  
+
D1  
D2  
SS  
C
VIN  
R7  
R8  
FB  
PFI  
1
R
SENSE  
BUCK  
+
PFOB  
I
V
IN  
LIM  
V
10  
LOGIC  
MAIN  
INPUT  
SUPPLY  
V
INS  
+
4
CLK UVLO  
C
IN  
ENB  
0.8V  
OVP  
ENB  
MODE  
FB  
SW2  
SW2  
EN  
CPGOOD  
RSTB  
16  
17  
+
9
LOGIC  
BILIM  
0.74V  
+
5A  
0.8V  
+
CC/CV CHARGER  
CLK  
D
13  
+
FB  
0.8V  
CFB  
V
REF  
V TO I  
0.8V  
V
0.74V  
BOOST  
EN  
I
I
250ms  
DELAY  
OUT  
REF  
I
L2  
INTV  
CC  
EN_CHG  
V
I
CAP  
CHG  
CBST  
BSTPK  
R6  
18  
11  
8
14  
12  
19  
20  
R3  
C1  
R5  
R
C
R4  
SCAP  
C
C
3355 F01  
Figure 1. LTC3355 Block Diagram  
3355fb  
9
For more information www.linear.com/LTC3355  
LTC3355  
OPERATION  
The LTC3355 is a 1A buck regulator with a built-in  
will be reduced. If the charge current has been reduced to  
zero and the input current continues to increase the buck  
regulator current drive capability will be reduced. The  
maximum sense voltage is 50mV. The input current limit  
includes the LTC3355 quiescent current for high accuracy  
over a wide current range.  
backup boost converter to allow temporary backup, or  
ride-through, of V  
during a sudden loss of V power.  
IN  
OUT  
The device contains all functions necessary to provide  
seamless charging of a supercapacitor (or other storage  
element),monitoringofV ,V andV ,andautomatic  
IN OUT  
CAP  
switch-over to backup power. When the buck is disabled  
Boost Switching Regulator  
an internal circuit blocks reverse current between V  
OUT  
and V .  
IN  
When V is not available, a monolithic 1MHz constant  
IN  
frequencypeakcurrentmodeboostregulatorwithinternal  
slope compensation is enabled and the buck regulator  
is disabled via the PFI pin. The boost regulator uses the  
Start-Up  
When the part first starts up the only voltage available  
is V since V and V are at zero volts. An internal  
voltage stored at V as an input supply and regulates  
IN  
OUT  
CAP  
CAP  
2.5V regulator powers INTV from V during start-up.  
the V  
voltage. An error amplifier compares the divided  
OUT  
CC  
IN  
INTV powers all of the low voltage circuits. The buck  
output voltage at FB with a reference voltage of 0.8V and  
adjusts the peak inductor current accordingly. The I  
CC  
regulator is enabled and will drive V  
positive through  
OUT  
BSTPK  
an inductor until the feedback voltage at FB equals 0.8V.  
When V exceeds 2.5V INTV will exactly track V  
OUT  
pin sets the peak boost current over a range of 1A to 5A  
allowing for lower current backup applications. The boost  
switching regulator is compensated by adding a series RC  
OUT  
CC  
and the current for the internal low voltage circuits will  
now be supplied from V  
instead of V . A 1µF external  
networkfromtheV  
pintoground.Theboostregulator  
OUT  
IN  
CBST  
ceramic capacitor is required for INTV to filter internal  
can operate over an input voltage range (V ) of 0.5V  
CC  
CAP  
switching noise.  
to 5V. The boost regulator uses the same feedback pin  
and error amplifier as the buck and regulates to the same  
Buck Switching Regulator  
V
voltage. The MODE pin is used to control the boost  
OUT  
switching regulator mode. The boost is in PWM mode  
when the MODE pin is low and in Burst Mode operation  
when the MODE pin is high. In PWM mode as the load  
current is decreased, the switch turns on for a shorter  
period each cycle. If the load current is further decreased,  
the boost converter will skip cycles to maintain output  
voltage regulation.  
The LTC3355 uses a 1MHz constant frequency peak cur-  
rent mode nonsynchronous monolithic buck regulator  
with internal slope compensation to control the voltage at  
V
when V is available. An error amplifier compares  
OUT  
IN  
the divided output voltage at FB with a reference voltage  
of 0.8V and adjusts the peak inductor current accordingly.  
Burst Mode operation can also be selected to optimize ef-  
ficiency at low load currents via the MODE pin. The buck  
is in PWM mode when the MODE pin is low and in Burst  
Mode operation when the MODE pin is high. The buck  
is internally compensated and can operate over an input  
voltage range of 3V to 20V. An internal soft-start ramp  
limits inrush current during start-up. Frequency foldback  
protection helps to prevent inductor current runaway  
during start-up or short-circuit conditions.  
Charger  
The supercapacitor is charged by an internal 1A constant  
current/constant voltage linear charger that supplies  
current from V  
to V . The charger will be enabled  
OUT  
CAP  
when V is above a programmable voltage via the PFI  
IN  
pin, when the EN_CHG pin is high and when V  
is in  
OUT  
pin de-  
regulation. The value of the resistor on the I  
CHG  
termines the charger current. An internal amplifier servos  
the I voltage to 0.8V to create the reference current  
Input Current Limit  
CHG  
for the charge. The V  
voltage is divided down by an  
CAP  
The (optional) input current limit is programmed via an  
external resistor divider that is connected to the CFB pin.  
A hysteretic comparator compares the CFB voltage to a  
3355fb  
external sense resistor connected between V and V .  
INS  
IN  
As the input current limit is reached the charge current  
10  
For more information www.linear.com/LTC3355  
LTC3355  
OPERATION  
V
Status Monitor  
0.8V reference voltage and turns the charger off when  
CAP  
these voltages are the same. The V  
voltage represents  
CAP  
The CPGOOD pin is a 5V open-drain output. An internal  
comparator determines when V has reached 92.5% of  
the fully charged supercapacitor voltage available to sup-  
CAP  
ply the boost regulator when V has dropped out. When  
IN  
the programmed regulation voltage which then switches  
CFB decays to 30mV below the CFB reference voltage the  
charger will be turned on. The LTC3355 includes a soft-  
start circuit to minimize the inrush current at the start of  
charge. When the charger is enabled, the charge current  
rampsfromzerotofull-scaleoveraperiodofapproximately  
1ms. This has the effect of minimizing the transient load  
theCPGOODpinhigh.CPGOODisnormallyconnectedtoa  
low voltage supply (V ) via an external pull-up resistor.  
OUT  
Thermal Regulation  
As the die temperature increases due to internal power  
dissipation, a thermal regulator will limit the die tem-  
perature to 110°C by reducing the charger current. The  
thermal regulation protects the LTC3355 from excessive  
temperature and allows the user to push the limits of the  
power handling capability of a given circuit board without  
the risk of damaging the LTC3355. Another feature is that  
the charge current can be set according to typical, rather  
thanworst-caseambienttemperaturesforagivenapplica-  
tion with the assurance that the charger will automatically  
reduce the charge current in worst-case conditions.  
current on V  
.
OUT  
The V  
output also has an overvoltage protection cir-  
CAP  
cuit which monitors the CFB voltage. If the CFB voltage  
increases above the CFB reference voltage by 35mV a  
hysteretic comparator switches in an 8k resistor from  
V
to ground. This will bleed any excess charge from  
CAP  
the supercapacitor. When the CFB voltage decays to the  
CFB reference voltage the comparator will remove the  
8k bleed resistor. Excess charge can come from leakage  
currents associated with the boost rectifier diode.  
Thermal Shutdown  
V Status Monitor  
IN  
The LTC3355 includes a thermal shutdown circuit in ad-  
dition to the thermal regulator. If for any reason, the die  
temperature exceeds 155°C, the entire part shuts down.  
Thepartwillresumenormaloperationoncethetemperature  
drops about 15°C, to approximately 140°C.  
The PFI input always monitors the V voltage and de-  
IN  
termines when V is in dropout. V is divided down  
IN  
IN  
by an external resistor divider and this voltage is then  
compared to a reference voltage of 0.8V. If the PFI volt-  
age is below the reference voltage the buck regulator and  
the charger will be disabled and the boost regulator will  
be enabled. The PFOB pin is a 5V open-drain output. This  
pin is driven internally by the PFI comparator. When the  
V
Overvoltage, Undervoltage Lockout  
OUT  
The LTC3355 includes an overvoltage protection circuit  
to ensure that V does not exceed 5.65V (nominal).  
OUT  
PFI comparator determines that V has dropped out the  
IN  
An internal resistor divider from V  
amplifier that will regulate V  
is connected to an  
OUT  
PFOB output switches low. PFOB is normally connected  
to a low voltage supply, via an external pull-up resistor.  
The pull-up resistor for this output can be connected to  
as the overvoltage limit  
OUT  
is reached. The LTC3355 includes undervoltage lockout  
which disables the boost when V is < 2V typical.  
OUT  
V
if another supply is not available.  
OUT  
V
Status Monitor  
OUT  
The RSTB pin is a 5V open-drain output. An internal  
comparator determines when V has reached 92.5% of  
OUT  
the programmed regulation voltage which then switches  
the RSTB pin high. RSTB is normally connected to a low  
voltage supply (V ) via an external pull-up resistor.  
OUT  
3355fb  
11  
For more information www.linear.com/LTC3355  
LTC3355  
APPLICATIONS INFORMATION  
FB Resistor Network  
I
Set Resistor  
BSTPK  
The V  
voltage is programmed with a resistor divider  
The boost peak current limit is set by connecting a re-  
OUT  
between the V  
pin and the FB pin. Choose the resistor  
sistor from I  
to ground. Choose the resistor value  
OUT  
BSTPK  
according to:  
values according to:  
1E6  
R6  
V
0.8V  
OUT  
Boost Peak Current Limit (Amps)=  
R1=R2  
–1  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain boost peak cur-  
rent accuracy.  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain output voltage  
accuracy.  
PFI Resistor Network  
CFB Resistor Network  
The V dropout voltage is programmed with a resistor  
IN  
The V  
voltage is programmed with a resistor divider  
CAP  
divider between the V pin and PFI pin. Choose the resis-  
IN  
between the V pin and the CFB pin. Choose the resistor  
CAP  
tor values according to:  
values according to:  
V
0.8V  
V
0.8V  
IN  
R3=R4 CAP 1  
R7=R8  
–1  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain the PFI threshold  
voltage accuracy.  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain the capacitor float  
voltage accuracy.  
The V voltage must be greater than the buck dropout  
IN  
I
Set Resistor  
CHG  
voltage (100% duty cycle) when the PFI level is reached  
to ensure that V  
stays in regulation.  
The charge current at V  
fromI  
is set by connecting a resistor  
OUT  
CAP  
toground.Choosetheresistorvalueaccordingto:  
CHG  
Input Voltage Range  
60400  
R5  
Charger Current (Amps)=  
The minimum input voltage is determined by the dropout  
of the buck regulator. The dropout is dependent on the  
maximum load current and the buck internal switch resis-  
tance. The minimum input voltage due to buck dropout is:  
Reference designators refer to the Block Diagram. 1%  
resistors are recommended to maintain charge current  
accuracy.  
V
= V  
+ (I  
• 1Ω)  
IN(MIN)  
OUT  
SW(PEAK)  
3355fb  
12  
For more information www.linear.com/LTC3355  
LTC3355  
APPLICATIONS INFORMATION  
Buck Inductor L1 Selection and  
Maximum Output Current  
When the switch is off, the potential across the inductor  
is the output voltage plus the catch diode drop. This gives  
the peak-to-peak ripple current in the inductor:  
A good starting point for the inductor value is:  
VOUT + VD  
1.8  
fSW  
ΔI = 1DC •  
(
)
L
L = V + V •  
(
)
L•fSW  
D
OUT  
where f is the switching frequency of the buck, DC is  
SW  
where f is the switching frequency in MHz, V  
is the  
OUT  
SW  
the duty cycle and L is the value of the inductor.  
buck output voltage, V is the catch diode drop (~0.5V)  
D
To maintain output regulation, the inductor peak current  
must be less than the buck switch current limit. The  
maximum output current is:  
and L is the inductor value in µH.  
The inductor’s RMS current rating must be greater than  
the maximum load current and its saturation current  
should be 30% higher. To keep the efficiency high, the  
series resistance (DCR) should be less than 0.1Ω, and  
the core material should be intended for high frequency  
applications. Table 1 lists several inductor vendors.  
ΔIL  
2
IOUT(MAX) =ILIM  
Choosing an inductor value so that the ripple current is  
smallwillallowamaximumoutputcurrentneartheswitch  
current limit.  
For robust operation and fault conditions (start-up or  
short-circuit)andhighinputvoltage(>15V),thesaturation  
current should be chosen high enough to ensure that the  
inductor peak current does not exceed 2.2A.  
Table 1. Inductor Vendors  
VENDOR  
Murata  
TDK  
URL  
PART SERIES  
LQH5BPB  
LTF5022T  
FDS50xx  
TYPE  
www.murata.com  
www.tdk.com  
www.toko.com  
www.coilcraft.com  
www.sumida.com  
www.vishay.com  
Shielded  
Shielded  
Shielded  
The current in the inductor is a triangle wave with an av-  
erage value equal to the load current. The peak inductor  
and switch current is:  
Toko  
Coilcraft  
Sumida  
Viashay  
XAL40xx, LPS40xx Shielded  
DCRH5D, CDRH6D Shielded  
ΔIL  
2
ISW(PEAK) =IL(PEAK) =IOUT(MAX)  
whereI  
+
IHLP2020  
Shielded  
isthepeakinductorcurrent,I  
isthe  
One approach to choosing the inductor is to start with  
the simple rule above, look at the available inductors, and  
choose one to meet cost or space goals. Then use the  
equations to check that the buck will be able to deliver the  
required output current. These equations assume that the  
inductor current is continuous. Discontinuous operation  
L(PEAK)  
OUT(MAX)  
maximumoutputloadcurrentandI istheinductorripple  
L
current. The LTC3355 limits the switch current in order to  
protect the part. Therefore, the maximum output current  
that the buck will deliver depends on the switch current  
limit, the inductor value, the input and output voltages.  
occurs when I  
is less than I /2.  
OUT  
L
3355fb  
13  
For more information www.linear.com/LTC3355  
LTC3355  
APPLICATIONS INFORMATION  
Buck Input Capacitor  
operating conditions (applied voltage and temperature).  
A physically larger capacitor, or one with a higher voltage  
rating, may be required. High performance tantalum or  
electrolyticcapacitorscanbeusedfortheoutputcapacitor.  
Bypass V and V with a ceramic capacitor of X7R or  
IN  
INS  
X5Rtype.A1Fto2Fceramiccapacitorisadequatefor  
bypassing. Note that a larger V bypass capacitor may  
INS  
be required if the input power supply source impedance  
is high or there is significant inductance due to long wires  
or cables. This can be provided with a lower performance  
electrolyticcapacitorinparallelwiththeceramiccapacitor.  
Low ESR is important, so choose one that is intended for  
use in switching regulators. The ESR should be specified  
by the supplier, and should be 0.05Ω or less. Table 2 lists  
several capacitor vendors.  
Buck regulators draw current from the input supply in  
pulseswithveryfastriseandfalltimes.Theinputcapacitors  
Table 2. Capacitor Vendors  
VENDOR  
URL  
www.panasonic.com Ceramic, Polymer, EEF Series,  
Tantalum POSCAP  
PART SERIES  
COMMANDS  
are required to reduce the resulting voltage ripple at V  
INS  
Panasonic  
and V and to force this very high frequency switching  
IN  
into a tight local loop, minimizing EMI. The capacitors  
must be placed close to the LTC3355 pins.  
Kemet  
Murata  
AVX  
www.kemet.com  
www.murata.com  
www.avxcorp.com  
Ceramic, Tantalum T494, T495  
Ceramic  
Ceramic, Tantalum TPS Series  
Output Capacitor and Output Ripple  
Taiyo Yuden www.taiyo-yuden.com Ceramic  
The output capacitor has two essential functions. Along  
with the inductor, it filters the square wave generated by  
the buck regulator to produce the DC output. In this role  
it determines the output ripple, and low impedance at the  
switchingfrequencyisimportant.Thesecondfunctionisto  
storeenergyinordertosatisfytransientloadsandstabilize  
the buck regulator control loop. Ceramic capacitors have  
very low equivalent series resistance (ESR) and provide  
the best ripple performance. A good starting value is:  
Buck Catch Diode Selection  
The catch diode (D1 in the Block Diagram) conducts cur-  
rent only during the switch-off time. The average forward  
current in normal operation can be calculated from:  
I
= I (1 – DC)  
OUT  
D(AVG)  
where DC is the duty cycle. The only reason to consider  
a diode with a larger current rating than necessary for  
nominal operation is for the case of shorted or overloaded  
output conditions. For the worst case of shorted output  
the diode average current will then increase to a value that  
depends on the switch current limit.  
100  
COUT = fSW  
V
OUT  
where f is in MHz and C  
is the recommended output  
SW  
OUT  
capacitance in µF. Use X5R or X7R types. This choice will  
If operating at high temperatures select a Schottky diode  
with low reverse leakage current.  
provide low output ripple and good transient response.  
When choosing a capacitor look carefully through the  
data sheet to find out what the actual capacitance is under  
3355fb  
14  
For more information www.linear.com/LTC3355  
LTC3355  
APPLICATIONS INFORMATION  
Audible Noise  
Table 3. Schottky Diode Vendors  
V AT 1A V AT 2A  
I AT 5V  
F
F
R
Ceramic capacitors are small, robust and have very low  
ESR. However, ceramic capacitors can sometimes cause  
problems when used with switching regulators. Both the  
buck and boost can run in Burst Mode operation and the  
switchingfrequencywilldependontheloadcurrentwhich  
at very light loads can excite the ceramic capacitors at  
audio frequencies, generating audible noise. Since the  
buck and boost operate at lower current limits in Burst  
Mode operation, the noise is typically very quiet. Use a  
high performance tantalum or electrolytic at the output if  
the noise level is unacceptable.  
PART NUMBER  
Diodes Inc.  
B130  
V (V)  
I
(A) (mV)  
AVE  
(mV)  
85°C (µA)  
R
30  
30  
1
460  
20  
B230  
2
430  
100  
Rohm  
RSX201VA-30  
Vishay  
30  
60  
1
360  
600  
VS-20MQ060  
2.1  
Boost Inductor L2 Selection and  
Maximum Output Current  
Buck Soft-Start  
The boost inductor L2 should be 3.3µH to ensure fast  
transfer of power from the buck to the boost after a V  
power outage. Refer to Table 1 for inductor vendors.  
IN  
When the buck is enabled soft-start is engaged. Soft-start  
reduces the inrush current by taking more time to reach  
the final output voltage. This is achieved by limiting the  
buck output current over a 1ms period.  
Boost Frequency Compensation  
TheLTC3355boostswitchingregulatorusescurrentmode  
Boost Rectifier Diode  
control to regulate V . This simplifies loop compensa-  
OUT  
tionandceramicoutputcapacitorscanbeused. Theboost  
regulator does not require the ESR of the output capaci-  
tor for stability. Frequency compensation is provided by  
A Schottky rectifier diode (D2 in the Block Diagram) is  
recommended for the boost rectifier diode. The diode  
should have low forward drop at the peak operating  
current, low reverse current and fast reverse recovery  
times. The current rating should take into account power  
dissipation as well as output current requirements. The  
diode current rating should be equal to or greater than the  
average forward current which is normally equal to the  
output current. The reverse breakdown voltage should be  
the components connected to the V  
pin. Generally a  
CBST  
capacitor (C ) and resistor (R ) in series to ground are  
C
C
used as shown in the Block Diagram.  
Loop compensation determines the stability and transient  
performance. Optimizing the design of the compensation  
network depends on the application and type of output  
capacitor. A practical approach is to start with one of the  
circuits in this data sheet that is similar to your applica-  
tion and tune the compensation network to optimize the  
performance. Stability should then be checked across all  
greaterthantheV  
voltageplusthepeakringingvoltage  
OUT  
that is generated at the SW2 pin. Generally higher reverse  
breakdown diodes will have lower reverse currents. Refer  
to Table 3 for Schottky diode vendors.  
3355fb  
15  
For more information www.linear.com/LTC3355  
LTC3355  
APPLICATIONS INFORMATION  
operatingconditions, includingloadcurrent, inputvoltage  
and temperature. Figure 2 shows an equivalent circuit for  
the boost regulator control loop. The error amplifier is a  
transconductanceamplifierwithafiniteoutputimpedance.  
Thepowersectionconsistingofamodulator,powerswitch  
and inductor, is modeled as a transconductance amplifier  
generating an output current proportional to the voltage  
Low Ripple Burst Mode Operation  
To enhance efficiency at light loads the buck and boost  
regulatorcanruninlowrippleBurstModeoperationwhich  
keeps the output capacitor charged to the proper voltage  
while minimizing the input quiescent current. Setting the  
MODE pin high sets both the buck and boost into Burst  
Modeoperation.DuringBurstModeoperation,theenabled  
regulator delivers single cycle bursts of current to the out-  
put capacitor followed by sleep periods where the power  
is delivered to the load by the output capacitor. Since the  
power to the output is delivered with single, low current  
pulses, the output ripple is kept below 15mV for typical  
applications. As the load current falls towards a no-load  
condition, the percentage of time in sleep mode increases  
and the average input current is greatly reduced resulting  
in high efficiency even at very light loads. At higher load  
currents the regulators will seamlessly transition into  
PWM mode.  
at the V  
pin. Note that the output capacitor integrates  
CBST  
this current, and that the capacitor on the V  
pin (C )  
CBST  
C
integrates the error amplifier output current, resulting in  
two poles in the loop. In most cases a zero is required  
and comes from either the ESR of the output capacitor or  
from a resistor R in series with C . This simple model  
C
C
works well as long as the inductor value is not too high  
and the loop crossover frequency is much lower than the  
switching frequency. A phase lead capacitor across the  
feedback divider may improve the transient response. A  
small capacitor from V  
to ground may have to be  
CBST  
added if phase lead is used.  
BOOST LOOP  
SW2  
CURRENT MODE POWER STAGE  
= 4mhos  
OUTPUT  
g
m
C
R1  
R2  
ESR  
PL  
C
OUT  
+
FB  
C
OUT  
g
= 27μS  
GND  
m
CERAMIC  
POLYMER,  
TANTALUM  
OR  
0.8V  
32M  
ELECTROLYTIC  
V
CBST  
R
C
C
F
C
C
3355 F02  
Figure 2. Model for Boost Loop Response  
3355fb  
16  
For more information www.linear.com/LTC3355  
LTC3355  
APPLICATIONS INFORMATION  
PCB Layout  
High Temperature Considerations  
For proper operation and minimum EMI, care must be  
taken during printed circuit board layout. Large switched  
The PCB must provide heat sinking to keep the LTC3355  
cool. The exposed pad on the bottom of the package  
may be soldered to a copper area which should be tied  
to large copper layers below with thermal vias; these  
layers will spread the heat dissipated by the LTC3355.  
Place additional vias to reduce thermal resistance  
further. With these steps, the thermal resistance from  
the die (or junction) to ambient can be reduced to  
currents flow in the V , SW1, SW2 and paddle ground  
IN  
pins, the buck catch diode, boost rectifier diode and the  
input capacitor. The loop formed by these components  
should be as small as possible. These components, along  
with the inductors and output capacitor, should be placed  
on the same side of the circuit board, and their connec-  
tions should be made on that layer. All connections to  
GND should be made at a common star ground point or  
directly to a local, unbroken ground plane below these  
components. SW1 and SW2 nodes should be laid out  
θ
= 47°C/W or less. With 100 LFPM airflow, this resis-  
JA  
tance can fall by another 25%.  
The LTC3355 has two thermal circuits. The first thermal  
circuitisoperationalwhenthebuckandchargerareenabled.  
If the die temperature exceeds 110°C the charge current  
will be reduced. When the LTC3355 is in boost mode the  
highcurrentthermalshutdownwillturntheboostoffwhen  
the die temperature reaches 155°C. The high temperature  
shutdown is active in all modes of operation.  
carefully to avoid interference. Keep the FB, PFI, I  
BSTPK CBST  
,
CHG  
I
, V  
and CFB nodes small so that the ground  
traces will shield them from the switching nodes. To  
keep thermal resistance low, extend the ground plane as  
much as possible and add thermal vias under and near the  
paddle. Keep in mind that the thermal design must keep  
the junctions of the LTC3355 below the specified absolute  
maximum temperature.  
TYPICAL APPLICATIONS  
Tantalum Capacitor Charger and Ride-Through Backup Supply  
L1  
R
S
6.8µH  
1Ω  
V
V
IN  
SW1  
V
IN  
5
6
4
7
C
12V  
C
C
VIN  
10µF  
CAP  
IN  
D1  
1µF  
10µF  
INM5  
V
PFO  
BUCK  
V
OUT  
OUT  
FB  
V
INS  
5V  
15  
2
R1  
523k  
47µF 10mA  
R7  
2.49M  
PFI  
1
R2  
R8  
200k  
D2  
100k  
LTC3355  
BOOST  
V
CAP  
10 PFOB  
13 RSTB  
14  
16  
17  
11  
19  
L2 3.3µH  
SW2  
5V  
+
1000µF  
6.3V  
TANT  
9
8
3
CPGOOD  
R3  
1.05M  
EN_CHG  
MODE  
CFB  
R4  
200k  
V
CBST  
INTV  
I
I
R
CC  
CHG  
BSTPK  
C
154k  
18  
12  
20  
C
C
220pF  
C1  
1µF  
R5  
604k  
R6  
1M  
3355 TA02  
3355fb  
17  
For more information www.linear.com/LTC3355  
LTC3355  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UF Package  
20-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-ꢀ7ꢀ0 Rev A)  
0.70 0.05  
4.50 0.05  
3.ꢀ0 0.05  
2.45 0.05  
2.00 REF  
2.45 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
PIN ꢀ NOTCH  
R = 0.20 TYP  
OR 0.35 × 45°  
CHAMFER  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
R = 0.05  
TYP  
R = 0.ꢀꢀ5  
0.75 0.05  
TYP  
4.00 0.ꢀ0  
ꢀ9 20  
0.40 0.ꢀ0  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
2
2.45 0.0  
2.00 REF  
4.00 0.ꢀ0  
2.45 0.0  
(UF20) QFN 0ꢀ-07 REV A  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING IS PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220  
VARIATION (WGGD-ꢀ)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3355fb  
18  
For more information www.linear.com/LTC3355  
LTC3355  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
08/14 Modified V  
Overvoltage, Undervoltage Lockout section  
11  
12  
12  
12  
3 and 4  
4
OUT  
Modified Input Voltage Range equation  
Modified I  
Modified I  
Set Resistor section  
CHG  
Set Resistor section  
BSTPK  
B
4/15  
Updated conditions for I  
, I  
and I  
SW1 SW2 VOUT  
Updated units for Boost Error Amplifier Transconductance  
Updated units for Boost Error Amplifier Transconductance vs Temperature Graph  
Update TSTB (Pin 13), CPGOOD (Pin 9), PFOB (Pin 10)  
Updated Block Diagram  
7
8
9
Updated CFB Resistor Network and PFI Resistor Network  
Updated Table 2: Capacitor Vendors  
12  
14  
16  
Updated Boost Error Amplifier Transconductance unit in Figure 2  
3355fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
19  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC3355  
TYPICAL APPLICATION  
NiMH Trickle Charger and Ride-Through Backup Supply  
L1  
R *  
S
4.7µH  
0.27Ω  
V
V
IN  
SW1  
V
IN  
5
6
4
7
C
5V  
C
C
*
VIN  
CAP  
IN  
D1  
1µF  
10µF  
10µF  
INM5  
V
PFO  
BUCK  
V
OUT  
OUT  
FB  
V
INS  
3.3V  
15  
2
R1  
316k  
47µF 50mA (MAX)  
R7  
931k  
PFI  
1
R2  
R8  
200k  
D2  
100k  
LTC3355  
200Ω  
V
CAP  
14  
10 PFOB  
13 RSTB  
L2 3.3µH  
MICROPROCESSOR  
24 HOURS  
SW2  
16  
17  
11  
19  
1.4V  
+
9
8
3
CPGOOD  
BOOST  
R3  
NiMH  
499k  
2000mAhr  
EN_CHG  
MODE  
CFB  
R4  
499k  
V
CBST  
INTV  
I
I
R
CC  
CHG  
BSTPK  
C
*OPTIONAL  
154k  
C
18  
12  
20  
C
220pF  
3355 TA03  
C1  
1µF  
R5  
604k  
R6  
909k  
RELATED PARTS  
PART  
NUMBER  
DESCRIPTION  
COMMENTS  
LTC3225/  
LTC3225-1  
150mA Supercapacitor Charger  
Low Noise, Constant Frequency Charging of Two Series Supercapacitors. Automatic  
Cell Balancing Prevents Capacitor Overvoltage During Charging. Programmable Charge  
Current (Up to 150mA). 2mm × 3mm DFN Package  
LTC3226  
LT3485  
2-Cell Supercapacitor Charger with Backup  
PowerPath™ Controller  
1×/2× Multimode Charge Pump Supercapacitor Charger Ideal Diode Main PowerPath™  
Controller, Internal 2A LDO Back-Up Supply, 16-Lead (3mm × 3mm) QFN Package  
Photoflash Capacitor Chargers with Output  
Voltage Monitor and Integrated IGBT Drive  
Integrated IGBT Driver; Voltage Output Monitor; Uses Small Transformers: 5.8mm  
× 5.8mm × 3mm. Operates from Two AA Batteries, Single Cell Li-Ion or Any Supply  
from 1.8V Up to 10V. No Output Voltage Divider Needed; No External Schottky Diode  
Required. Charges Any Size Photoflash Capacitor; 10-Lead (3mm × 3mm) DFN Package  
LTC3625/  
LTC3625-1  
1A High Efficiency 2-Cell Supercapacitor  
Charger with Automatic Cell Balancing  
High Efficiency Step-Up/Step-Down Charging of Two Series Supercapacitors. Automatic  
Cell Balancing Prevents Capacitor Overvoltage During Charging. Programmable  
Charging Current Up to 500mA (Single Inductor), 1A (Dual Inductor). V = 2.7V to  
IN  
5.5V, Low No-Load Quiescent Current: 23µA. 12-lead 3mm × 4mm DFN Package  
LT®3750  
LT3751  
Capacitor Charger Controller  
Charges Any Size Capacitor; Easily Adjustable Output Voltage. Drives High Current  
NMOS FETs; Primary-Side Sense—No Output Voltage Divider Necessary. Wide Input  
Range: 3V to 24V; Drives Gate to V – 2V. 10-Lead MS Package  
CC  
High Voltage Capacitor Charger Controller with Charges Any Size Capacitor; Low Noise Output in Voltage Regulation Mode. Stable  
Regulation  
Operation Under a No-Load Condition; Integrated 2A MOSFET Gate Driver with  
Rail-to-Rail Operation for V ≤ 8V. Wide Input V Voltage Range  
CC  
CC  
(5V to 24V). 20-Pin QFN 4mm × 5mm and 20-Lead TSSOP Packages  
LTC4425  
Supercapacitor Charger with Current Limited  
Ideal Diode  
Constant-Current/Constant-Voltage Linear Charger for 2-cell Series Supercapacitor  
Stack. V : Li-Ion/Polymer Battery, a USB Port, or a 2.7V to 5.5V Current-Limited  
IN  
Supply. 2A Charge Current, Auto Cell Balancing, 20µA Quiescent Current, Shutdown  
Current <2µA. Low Profile 12-Pin 3mm × 3mm DFN or a 12-Lead MSOP Package  
3355fb  
LT 0415 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2014  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3355  

相关型号:

LTC3370

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3370

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3371

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3371

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3372

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3374A

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374EFEPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374EUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374HFEPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374HUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear