LTC3370 [Linear]

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs;
LTC3370
型号: LTC3370
厂家: Linear    Linear
描述:

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs

文件: 总44页 (文件大小:5626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3372  
60V Low I Buck Controller  
Q
Plus 4-Channel 8A Configurable Buck DC/DCs  
FEATURES  
DESCRIPTION  
n
HV Buck Controller: V = 4.5V to 60V, V  
= 5V/3.3V  
OUT  
TheLTC®3372isahighlyflexiblemultioutputpowersupply  
IC. The device includes a high-performance, high voltage  
(HV)step-downDC/DCswitchingregulatorcontrollerthat  
drives an all N-channel synchronous power FET stage  
from a 4.5V to 60V input.  
IN  
n
LV Buck Regulators: V  
OUT1-4  
= 2.25V to 5.5V,  
INA-H  
V
≥ 0.8V  
n
8×1A LV Buck Integrated Power Stages, Configurable  
as 2, 3 or 4 Output Channels  
n
n
8 Unique Output Configurations (1A to 4A Per Channel)  
The LTC3372 also includes four low voltage (LV) synchro-  
nous buck regulators that can be programmed by the  
C1-C3 pins to share eight 1A integrated power stages in  
one of eight possible configurations. Each power stage is  
poweredfromindependentinputswhichmaybeconnected  
Low Total No-Load Input Supply Current (I )  
Q
n
15µA HV Controller Only (5V  
)
OUT  
n
n
n
23μA HV Controller Only (3.3V  
)
OUT  
33μA HV Controller (3.3V ) Plus One LV Regulator  
9μA Per Additional LV Regulator Channel  
OUT  
to the HV buck’s V  
or to other 2.25V to 5.5V supplies.  
OUT  
n
n
n
n
n
1MHz to 3MHz Operation (HV Runs at 1/6 Frequency)  
Programmable or Synchronizable to External Clock  
Programmable Watchdog and Power-On Reset Delay  
IC Die Temperature Monitor Output  
The CT pin programs timing parameters of the watchdog  
timer and LV outputs’ Power-On Reset (RST). Precision  
enable thresholds facilitate reliable power-up sequencing.  
Thermally Enhanced 48-Pin 7mm × 7mm QFN Package  
The LTC3372 is available in a 48-pin 7mm × 7mm  
QFN package.  
APPLICATIONS  
All registered trademarks and trademarks are the property of their respective owners.  
n
Automotive and Industrial Always-On Systems  
General Purpose Multi-Channel Power Supplies  
n
LV Efficiency vs Output Current  
TYPICAL APPLICATION  
ꢀꢁꢁ  
ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢃꢄꢀ ꢅAꢆ  
ꢇ.ꢈꢀ ꢅꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀ.ꢁꢂꢃ  
Rꢀꢁ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢀꢀ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂꢃ ꢀꢁꢂꢃ  
ꢀꢁꢂꢃRꢄ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢀꢁꢂꢃꢁ  
ꢀ.ꢀꢁꢂ  
5mΩ  
ꢀꢁꢁꢂꢃ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀAꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢅꢆ  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢀA ꢁꢂꢃꢄ  
ꢀA ꢁꢂꢃꢄ  
ꢀA ꢁꢂꢃꢄ  
ꢀA ꢁꢂꢃꢄ  
ꢀ.ꢀꢁꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁAꢂꢃ  
ꢀ ꢁ.ꢂꢃ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢄꢅꢆꢃꢀ  
ꢀ.ꢀꢀꢀꢁ  
ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢁꢂꢃ  
ꢇꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀA  
ꢀA  
Low Voltage Buck Regulator Configurations  
C3 C2 C1 BUCK1 BUCK2 BUCK3 BUCK4  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2A  
3A  
3A  
4A  
3A  
4A  
4A  
4A  
2A  
1A  
1A  
1A  
2A  
2A  
2A  
1A  
1A  
2A  
1A  
2A  
2A  
3A  
2A  
3A  
2A  
3A  
4A  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢂ  
ꢀA  
ꢀA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢁꢂ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁ ꢀꢁ ꢀꢁ  
A
A
A
A
RR  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
RR  
R
Rev. A  
1
Document Feedback  
For more information www.analog.com  
LTC3372  
TABLE OF CONTENTS  
Features............................................................................................................................ 1  
Applications ....................................................................................................................... 1  
Typical Application ............................................................................................................... 1  
Description......................................................................................................................... 1  
Absolute Maximum Ratings..................................................................................................... 3  
Order Information................................................................................................................. 4  
Electrical Characteristics........................................................................................................ 4  
Typical Performance Characteristics .......................................................................................... 8  
Pin Functions.....................................................................................................................14  
Block Diagram....................................................................................................................17  
Operation..........................................................................................................................18  
Low Voltage Regulators........................................................................................................................................ 20  
Applications Information .......................................................................................................23  
High Voltage Buck Controller................................................................................................................................ 23  
Low Voltage Buck Regulators............................................................................................................................... 33  
Printed Circuit Board PCB Layout Considerations................................................................................................. 35  
Typical Applications.............................................................................................................37  
Package Description ............................................................................................................42  
Revision History .................................................................................................................43  
Typical Application ..............................................................................................................44  
Related Parts.....................................................................................................................44  
Rev. A  
2
For more information www.analog.com  
LTC3372  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Input Supply (V ) Voltage......................... –0.3V to 65V  
TG, BG ............................................................. (Note 11)  
IN  
Topside Driver (BOOST) Voltage.................–0.3V to 71V  
Switch (SW) Voltage..................................... –5V to 65V  
(BOOST-SW) Voltage................................... –0.3V to 6V  
RUN Voltage............................................... –0.3V to 65V  
ITH, V  
, CT,  
OUTPRG  
TEMP Voltages........................0.3V to (INTV + 0.3V)  
CC  
I
, I  
................................................................5mA  
RST WDO  
Operating Junction Temperature Range  
+
TRACK/SS, V /EXTV , SENSE , SENSE , PGOOD,  
(Notes 2, 3)............................................ –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
OUT  
CC  
RT, PLL/MODE, FB1-4, EN1-4, C1-3, WDI,  
WDO, RST, V Voltages.......................... –0.3V to 6V  
INA-H  
PIN CONFIGURATION  
ꢀꢁꢂ ꢃꢄꢅꢆ  
RST  
ꢀꢅꢚꢂ  
ꢅꢊꢝ  
ꢢꢦ ꢤꢉ  
ꢢꢞ ꢄꢊꢀꢃ  
ꢢꢇ ꢅꢊꢇ  
ꢢꢢ ꢘꢤꢇ  
ꢎꢎ  
ꢘꢤꢝ  
ꢢꢥ ꢃ  
ꢄꢊA  
ꢄꢊꢧ  
ꢖꢆA  
ꢖꢆꢤ  
ꢢꢝ ꢖꢆꢧ  
ꢢꢟ ꢖꢆꢉ  
ꢇꢈ  
ꢉꢊꢋ  
ꢥꢈ ꢃ  
ꢥꢏ ꢃ  
ꢄꢊꢤ  
ꢄꢊꢎ  
ꢄꢊꢉ  
ꢄꢊꢘ  
ꢖꢆꢎ ꢝꢟ  
ꢖꢆꢋ ꢝꢝ  
ꢥꢓ ꢖꢆꢘ  
ꢥꢦ ꢖꢆꢅ  
ꢝꢥ  
ꢥꢞ ꢃ  
ꢄꢊꢋ  
ꢄꢊꢅ  
ꢌꢍ ꢂAꢎꢍAꢉꢅ  
ꢇꢏꢐꢑꢅAꢋ ꢒꢓꢔꢔ × ꢓꢔꢔꢕ ꢂꢑAꢖꢀꢄꢎ ꢗꢘꢊ  
ꢜ ꢝꢞꢟꢠꢎꢡ θ ꢜ ꢢꢇꢠꢎꢣꢆ  
ꢙA  
ꢙꢚAꢛ  
ꢅꢛꢂꢁꢖꢅꢋ ꢂAꢋ ꢒꢂꢄꢊ ꢇꢈꢕ ꢄꢖ ꢉꢊꢋꢡ ꢚꢌꢖꢀ ꢤꢅ ꢖꢁꢑꢋꢅRꢅꢋ ꢀꢁ ꢂꢎꢤ  
Rev. A  
3
For more information www.analog.com  
LTC3372  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3372EUK#PBF  
LTC3372IUK#PBF  
LTC3372HUK#PBF  
TAPE AND REEL  
PART MARKING*  
LTC3372UK  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3372EUK#TRPBF  
LTC3372IUK#TRPBF  
LTC3372HUK#TRPBF  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
48-Lead (7mm × 7mm) Plastic QFN  
LTC3372UK  
–40°C to 125°C  
LTC3372UK  
–40°C to 150°C  
Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = 12V, VRUN = 5V, VOUT = VINA-H = 3.3V unless  
otherwise noted.  
SYMBOL  
PARAMETER  
Pin Operating Voltage Range  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
V
4.5  
60  
V
IN  
IN  
I (Forced  
No-Load V Pin DC Current  
PLL/MODE =INTV or INTV /2  
V
OUTPRG  
=
7
µA  
µA  
Q
IN  
CC  
CC  
Continuous/ No-Load V /EXTV Pin + SENSE Pin  
Run = V  
INTV  
1450  
OUT  
DC Current  
CC  
IN  
CC  
Pulse-  
Skipping  
Mode)  
EN1-4 = GND  
(5V V  
)
OUT  
No-Load V Pin DC Current  
V
=
1300  
130  
µA  
µA  
IN  
OUTPRG  
No-Load V /EXTV Pin + SENSE Pin  
GND  
OUT  
DC Current  
CC  
(3.3V V  
)
OUT  
l
l
I (Burst  
No-Load V Pin DC Current  
PLL/MODE = GND  
(Burst Mode)  
V
OUTPRG  
=
)
4
10  
µA  
Q
IN  
Mode)  
No-Load V /EXTV Pin DC Current  
INTV  
OUT  
CC  
CC  
HV Controller On Only  
(5V V  
20  
52  
46  
74  
+39  
+12  
µA  
µA  
µA  
µA  
µA  
µA  
OUT  
HV Controller and One LV Regulator On  
V
= 12V, V  
= V  
(LV  
OUT  
IN  
INA-H  
Additional I , per LV Regulator On  
+26  
+7  
Q
Regulators Powered from HV  
Additional I , Watchdog On (Float CT Pin)  
Q
Regulator’s Output), No Load on  
V
Additional I , TEMP On (Float TEMP Pin)  
+15  
0.5  
Q
or V  
.
OUT  
OUT1-4  
l
l
No-Load SENSE Pin DC Current  
2
No-Load V Pin DC Current  
V
=
IN  
OUTPRG  
CT = TEMP = INTV (Watchdog  
and TEMP Monitor Off, Unless  
Otherwise Specified)  
CC  
HV Controller On Only  
GND  
22  
23  
+1  
+2  
42  
33  
+4.2  
µA  
µA  
µA  
µA  
HV Controller and LV Regulator On  
(3.3V V  
)
OUT  
Additional I , Watchdog On (Float CT Pin)  
Q
Additional I , TEMP On (Float TEMP Pin)  
Q
No-Load V /EXTV Pin DC Current  
OUT  
CC  
l
l
l
HV Controller On Only  
4
29  
8.5  
39  
+33  
+8  
µA  
µA  
µA  
µA  
µA  
HV Controller and One LV Regulator On  
Additional I , per LV Regulator On  
+23  
+6  
Q
Additional I , Watchdog On (Float CT Pin)  
Q
Additional I , TEMP On (Float TEMP Pin)  
+13  
Q
I
Total No-Load Input Supply Current  
HV Controller On Only  
PLL/MODE = GND  
V
=
)
Q
OUTPRG  
(Note 4)  
(Burst  
INTV  
15  
31  
35  
45  
+20  
+6  
µA  
µA  
µA  
µA  
µA  
CC  
HV Controller and One LV Regulator On  
V
= 12V, V  
= V  
(LV  
(5V V  
OUT  
IN  
INA-H  
OUT  
Mode)  
Additional I , per LV Regulator On  
Regulators Powered from HV  
+14  
+4  
Q
Additional I , Watchdog On (Float CT Pin) Regulator’s Output), No Load on  
Q
Additional I , TEMP On (Float TEMP Pin)  
V
or V  
OUT1-4  
+8  
Q
OUT  
Total No-Load Input Supply Current  
HV Controller On Only  
V
=
OUTPRG  
GND  
23  
33  
+9  
+3  
+7  
46  
46  
+12  
+7  
µA  
µA  
µA  
µA  
µA  
CT = TEMP = INTV (Watchdog  
and TEMP Monitor Off, unless  
otherwise specified)  
CC  
HV Controller and One LV Regulator On  
(3.3V V  
)
OUT  
Additional I , per LV Regulator On  
Q
Additional I , Watchdog On (Float CT Pin)  
Q
Additional I , TEMP On (Float TEMP Pin)  
Q
I
V
Pin Current in Shutdown  
IN  
RUN = EN1-4 = GND  
3.5  
8
μA  
SD  
Rev. A  
4
For more information www.analog.com  
LTC3372  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = 12V, VRUN = 5V, VOUT = VINA-H = 3.3V unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
High Voltage Buck Controller  
V
V
Regulated Output Voltage  
(Note 5) I = 0.7V to 2V  
OUT  
TH  
l
l
V
V
= INTV  
V = 6V to 60V  
4.875  
3.217  
5.000 5.125  
3.300 3.383  
V
V
OUTPRG  
OUTPRG  
CC, IN  
IN  
= GND, V = 4.5V to 60V  
RUN Pin Controller Enable Threshold  
RUN Pin Voltage Rising  
Hysteresis  
1.17  
1.22  
50  
1.27  
V
mV  
RUN  
I
RUN Pin Pull-Up Current  
RUN = 0V  
0.5  
2
μA  
mS  
μA  
μA  
mV  
%
RUN  
g
Error Amplifier Transconductance  
Soft-Start Charge Current  
(Note 5) ITH = 1.2V, Sink/Source 5μA  
TRACK/SS = 0V  
m
I
I
7
10  
14  
1
TRACK/SS  
+
+
SENSE Pin Current  
SENSE  
l
V
Maximum Current Sense Threshold  
Maximum Duty Cycle In Dropout  
SENSE = 3.3V  
68  
75  
98  
82  
SENSE(MAX)  
D
R
RT  
= 400k  
97.5  
MAX(HV)  
TG  
Top Gate Pull-Up On-Resistance  
Top Gate Pull-Down On-Resistance  
2.3  
1.5  
Ω
Ω
BG  
Bottom Gate Pull-Up On-Resistance  
Bottom Gate Pull-Down On-Resistance  
2.4  
1.1  
Ω
Ω
t
t
t
Delay Time, Top Gate Off to Bottom Gate On (Note 6)  
Delay Time, Bottom Gate Off to Top Gate On (Note 6)  
40  
18  
60  
0.2  
ns  
ns  
ns  
D(TG/BG)  
D(BG/TG)  
ON(MIN)  
Minimum On-Time (Top Gate)  
(Note 7)  
PGOOD  
PGOOD Pin Voltage When Low  
PGOOD Pin Leakage Current When High  
I
= 2mA  
0.4  
1
V
μA  
PGOOD  
PGOOD = 5V  
UV  
V
V
/EXTV Pin Undervoltage Threshold  
Falling, Relative to Regulated V  
Hysteresis  
–5  
+5  
–7.5  
2.5  
–10  
%
%
OUT  
OUT  
CC  
OUT  
OUT  
OUT  
OV  
/EXTV Pin Overvoltage Threshold  
Rising, Relative to Regulated V  
Hysteresis  
+7.5  
2.5  
+10  
%
%
CC  
SENSE Pin Overvoltage Threshold  
Rising, Relative to Regulated V  
Hysteresis  
+15  
2.5  
%
%
t
PGOOD Delay for Reporting OV/UV Fault  
PGOOD High to Low  
40  
μs  
PGOOD  
INTV  
No Load Internal V Regulated Voltage  
6V < V < 60V  
INTVCC  
V
V
= 3.3V  
= 5V  
4.9  
5.1  
–1  
5.3  
–2  
V
CC  
CC  
IN  
OUT  
OUT  
INTV Voltage Load Regulation  
I
= 0mA to 50mA  
%
CC  
5
–2.5  
V
Ω
No Load Internal V Voltage  
CC  
Source Resistance  
I
= 0mA to 50mA  
INTVCC  
V
V
Threshold for INTV Switchover from  
OUT  
V Rising  
OUT  
4.5  
3.6  
4.7  
4.9  
V
V
OUT  
IN  
CC  
to V  
Hysteresis  
0.25  
l
l
Undervoltage Lockout (UVLO) Threshold on INTV Voltage Rising  
INTV  
4.0  
3.8  
4.25  
4.0  
V
V
CC  
INTV Voltage Falling  
CC  
CC  
Internal Bias Start Up Time  
Oscillator and Phase-Locked Loop  
V
OUT  
= 0V  
1.2  
ms  
f
Frequency of Internal Oscillator  
(LV Regulators’ Switching Frequency)  
V
V
= INTV  
= INTV  
1.9  
1.75  
1.85  
2
2
2
2.1  
2.25  
2.15  
MHz  
MHz  
MHz  
OSC  
RT  
RT  
RT  
CC  
CC  
l
l
R
= 400k  
f
f
HV Controller Switching Frequency  
Synchronization Frequency Range  
1/6•f  
kHz  
SW  
OSC  
l
t , t > 60ns  
LOW HIGH  
1
3
MHz  
PLL/MODE  
l
l
V
PLL/MODE Level High  
PLL/MODE Level Low  
For Synchronization  
For Synchronization  
1.3  
V
V
PLL/MODE  
0.25  
825  
l
V
RT Servo Voltage  
R
RT  
= 400k  
770  
800  
mV  
RT  
Rev. A  
5
For more information www.analog.com  
LTC3372  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = 12V, VRUN = 5V, VOUT = VINA-H = 3.3V unless  
otherwise noted.  
SYMBOL  
Temperature Monitor  
TEMP Voltage at 25°C  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V
200  
220  
7
240  
mV  
mV/°C  
°C  
TEMP(ROOM)  
∆V  
OT  
/°C  
TEMP  
V
Slope  
TEMP  
Overtemperature Shutdown  
Overtemperature Hysteresis  
170  
10  
OT Hyst  
°C  
Low Voltage (LV) Buck Regulators  
l
l
V
V
Input Operating Voltage  
2.25  
0.8  
5.5  
V
V
INA-H  
Regulated Output Voltage Set Point  
Undervoltage Lockout Threshold on V  
V
INA-H  
OUT1-4  
l
l
UVLO  
V
V
Falling  
Rising  
1.95  
2.05  
2.05  
2.15  
2.15  
2.25  
V
V
INA-H  
INA-H  
INA-H  
I
I
Quiescent Current into V  
Pins, Per  
Burst Mode, FB1-4 = 0.82V  
Forced Continuous Mode, FB1-4 = 0V  
25  
35  
µA  
µA  
Q(VINA-H)  
INA-H  
Enabled LV Regulator (Note 8)  
400  
550  
Shutdown Current into V  
Pins  
INA-H  
0
1
µA  
mV  
mV  
SD(VINA-H)  
l
l
V
V
Regulated Feedback Voltage for Regulator 1  
792  
780  
800  
800  
808  
820  
FB1  
Regulated Feedback Voltage for Regulators  
2-4  
FB2-4  
I
Feedback Leakage Current  
Maximum Duty Cycle  
PMOS On-Resistance  
NMOS On-Resistance  
PMOS Leakage Current  
NMOS Leakage Current  
Soft-Start Time  
FB1-4 = 0.85V  
FB1-4 = 0V  
–50  
100  
50  
nA  
%
FB1-4  
l
D
R
R
MAX  
PMOS  
NMOS  
LEAKP  
LEAKN  
SS  
I
SW  
I
SW  
= 100mA, 1A – Per Power Stage  
= –100mA, 1A – Per Power Stage  
290  
180  
mΩ  
mΩ  
µA  
I
I
t
EN1-4 = GND  
EN1-4 = GND  
(Note 10)  
–1  
–1  
1
1
µA  
0.25  
–4  
1.5  
3
ms  
l
l
l
UV  
Rising Undervoltage RST Threshold  
Regulator 1  
% Relative to Regulated V  
Hysteresis  
–2  
1
–1  
%
%
FB  
FB  
FB  
Rising RST Undervoltage Threshold  
Regulators 2-4  
% Relative to Regulated V  
Hysteresis  
–7  
+5  
–5  
1
–3  
+10  
2.2  
%
%
OV  
RST Overvoltage Threshold of Regulators  
1-4  
% Relative to Regulated V  
Hysteresis  
+7.5  
–3  
%
%
I
PMOS Current Limit  
1 Buck with 1 Power Stage (Note 9)  
1 Buck with 2 Power Stages (Note 9)  
1 Buck with 3 Power Stages (Note 9)  
1 Buck with 4 Power Stages (Note 9)  
1.4  
1.8  
3.6  
5.4  
7.2  
A
A
A
A
LIM  
Interface Logic Pins (RST, WDO, WDI, CT, C1, C2, C3)  
I
Output High Leakage Current  
Output Low Voltage  
RST, WDO 5.5V at Pin  
RST, WDO 3mA at Pin  
1
µA  
V
OH  
V
V
0.1  
0.4  
OL  
IH  
l
l
l
l
WDI Input High Threshold  
CT, C1, C2, C3 Input High Threshold  
WDI, C1, C2, C3 Input Low Threshold  
WDI Pulse Width  
1.2  
V
INTV – 0.4  
V
CC  
V
0.4  
V
IL  
t
80  
ns  
WDI(WIDTH)  
Rev. A  
6
For more information www.analog.com  
LTC3372  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = 12V, VRUN = 5V, VOUT = VINA-H = 3.3V unless  
otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
Interface Logic Pins (EN1, EN2, EN3, EN4)  
l
l
l
V
Enable Rising Threshold  
Enable Rising Threshold  
Enable Falling Threshold  
Enable Pin Leakage Current  
All LV Regulators Disabled  
400  
380  
290  
730  
400  
315  
1200  
420  
340  
1
mV  
mV  
mV  
µA  
EN  
At Least One LV Regulator Enabled  
I
EN = 3.3V  
EN  
CT Timing Parameters; C = 10nF  
T
t
t
t
t
t
Time from WDO Low Until Next WDO Low  
Time from Last WDI Until Next WDO Low  
WDO Low Time Absent a Transition at WDI  
RST Assertion Delay  
C = 10nF  
9.7  
1.22  
160  
160  
38  
12.9  
1.62  
202  
16.1  
2.03  
280  
280  
63  
s
s
WDIO  
WDI  
T
C = 10nF  
T
C = 10nF  
T
ms  
ms  
ms  
WDO  
RST  
C = 10nF  
T
202  
Watchdog Lower Boundary  
C = 10nF  
T
50.6  
WDL  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The I (Total Input Supply Quiescent Current) is the total average  
current drawn from the input power supply by a typical application in Burst  
Q
Mode with no load currents (from either the HV Controller V  
or the LV  
OUT  
Regulators’ V  
).  
OUT1-4  
Note 2: The LTC3372 is tested under pulsed load conditions such that  
Note 5: The HV Controller’s output regulation is tested in a feedback loop  
that servos the ITH pin to a specified voltage and measures the resulted  
T ≈ T . The LTC3372E is guaranteed to meet specifications from 0°C  
J
A
to 85°C operating junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3372I is guaranteed over the –40°C to 125°C operating junction  
temperature range. The LTC3372H is guaranteed over the –40°C to 150°C  
operating junction temperature range. High junction temperatures degrade  
operating lifetimes; operating lifetime is derated for junction temperatures  
greater than 125°C. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
voltage at V /EXTV pin.  
Note 6: Delays are measured using 50% levels, with TG and BG driving  
minimum capacitive load.  
Note 7: The minimum on-time conditions is specified for an inductor  
peak-to-peak ripple current ≥40% of I  
Considerations in the Applications Information section).  
OUT CC  
(see Minimum On-Time  
MAX  
Note 8: The I (Quiescent Current into V Pins) are measured  
Q(VINA-H)  
INA-H  
with power switches not switching. Dynamic supply current when  
switching may be higher due to the gate charge being delivered.  
Note 9: The current limit features are intended to protect the IC from short  
term or intermittent fault conditions. Continuous operation above the  
maximum specified pin current rating may result in device degradation  
over time.  
Note 10: The soft-start is the time from the first top switch turn on,  
after an enable rising, until the feedback has reached 90% of its nominal  
regulation voltage.  
Note 11: Do not apply a voltage or current source to these pins. They  
must be connected to the gates of the external power MOSFETs, otherwise  
permanent damage may occur.  
impedance and other environmental factors. The junction temperature (T  
J
in °C) is calculated from the ambient temperature (T in °C) and power  
A
dissipation (P in Watts) according to the formula:  
D
T = T + (P • θ )  
JA  
J
A
D
where θ (in °C/W) is the package thermal impedance.  
JA  
Note 3: This IC includes overtemperature protection which protects the  
device during momentary overload conditions. Junction temperatures  
will exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
may impair device reliability.  
Rev. A  
7
For more information www.analog.com  
LTC3372  
TYPICAL PERFORMANCE CHARACTERISTICS  
(HV Controller) TA = 25°C, unless otherwise noted.  
Efficiency and Power Loss  
vs Output Current  
Efficiency and Power Loss  
vs Output Current  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀ ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ.ꢀꢁ ꢀ.ꢁ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
Burst Mode Quiescent Current  
vs VIN  
Burst Mode Quiescent Current  
vs Temperature  
Efficiency vs VIN  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢁ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢃꢁ  
ꢀꢁ ꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢁꢁꢂꢃꢄ  
ꢀꢁAꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁA  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Output Voltage vs Temperature  
Forced Continuous Mode  
Shutdown Current vs VIN  
Shutdown Current vs Temperature  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁAꢂ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢂꢃA  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ ꢀꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev. A  
8
For more information www.analog.com  
LTC3372  
TYPICAL PERFORMANCE CHARACTERISTICS  
(HV Controller) TA = 25°C, unless otherwise noted.  
Output Voltage Line Regulation  
Forced Continuous Mode  
Maximum Current Sense  
Threshold vs Duty Cycle  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢁꢂꢁ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢁꢀ  
ꢀ.ꢁꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢁꢂꢃ ꢄꢃꢄꢅꢆ ꢇꢈꢉ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Maximum Current Sense Voltage  
vs ITH Voltage  
INTVCC Voltage vs Gate Charge  
Current VOUT = 3.3V  
SENSEPin Input Bias Current  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ ꢊꢋꢌꢄ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇe  
ꢈꢉꢊRAꢋꢌꢈꢍ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ  
ꢀ.ꢀ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀAꢁꢂ ꢃꢄARꢀꢂ ꢃꢅRRꢂꢆꢁ ꢇꢈAꢉ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ ꢀꢁAꢄꢅ ꢆꢀꢇ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
INTVCC Voltage vs Gate Charge  
Current VOUT = 5V  
INTVCC Line Regulation in  
Dropout  
Current Limit in Foldback  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀAꢁꢂ ꢃꢄARꢀꢂ ꢃꢅRRꢂꢆꢁ ꢇ ꢈꢉꢊA  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ  
ꢀꢁ RꢂꢃꢄꢅAꢀꢂꢆ ꢇꢁAꢃꢂ RAꢀꢈꢁ ꢉꢊꢋ  
ꢀ.ꢁꢂ ꢀ.ꢁꢂ ꢀ.ꢁꢁ ꢀ.ꢁꢀ ꢀ.ꢀꢁ ꢀ.ꢁꢀ ꢀ.ꢁꢁ ꢀ.ꢁꢂ ꢀ.ꢁꢂ  
ꢀAꢁꢂ ꢃꢄARꢀꢂ ꢃꢅRRꢂꢆꢁ ꢇꢈAꢉ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev. A  
9
For more information www.analog.com  
LTC3372  
TYPICAL PERFORMANCE CHARACTERISTICS  
(HV Controller) TA = 25°C, unless otherwise noted.  
TRACK/SS Pull-Up Current  
vs Temperature  
Shutdown (RUN) Threshold  
vs Temperature  
Undervoltage Lockout Threshold  
vs Temperature  
ꢀꢁ.ꢂ  
ꢀꢀ.ꢁ  
ꢀꢀ.ꢁ  
ꢀꢁ.ꢂ  
ꢀꢁ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢂꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀ.ꢀꢁꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
Rꢀꢁꢀꢂꢃ  
Rꢀꢁꢀꢂꢃ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀ.ꢁ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Load Step Forced Continuous  
Mode  
Load Step Burst Mode Operation  
Load Step Pulse-Skipping Mode  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀAꢁꢂꢃꢄ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀAꢁꢂꢃꢄ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢂ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢆA  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢆA  
ꢀꢁAꢂ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢆA  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
Inductor Current at Light Load  
Soft Start-Up  
ꢀꢁRꢂꢃꢄ  
ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ  
ꢊAꢋꢄꢇꢌ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁRꢂꢃ  
ꢄAꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢊAꢋꢌꢇꢍ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃꢂꢀ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢂꢃA  
ꢀꢁAꢂ  
Rev. A  
10  
For more information www.analog.com  
LTC3372  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LV Buck Regulator) TA = 25°C, unless otherwise noted.  
2A Buck Efficiency and Power  
Loss vs Output Current  
2A Buck Efficiency  
2A Buck Efficiency  
vs VIN Burst Mode  
vs VIN Forced Continuous Mode  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁA  
ꢀꢁꢂ  
ꢀꢁAꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ ꢁꢂꢂꢃA  
ꢀꢁAꢂ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀ ꢁꢂꢃA  
ꢀꢁAꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀ ꢁꢂA  
ꢀ ꢁꢂꢃA  
ꢀ ꢁꢂꢂꢃA  
ꢀ ꢁA  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁꢂA  
ꢀꢁAꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀ.ꢀꢀꢀꢁ  
ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢀꢁꢂ ꢃꢂꢁ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
2A Buck Efficiency  
vs VOUT Forced Continuous Mode  
2A Buck Efficiency  
Efficiency vs Output Current  
Burst Mode Operation  
vs VOUT Burst Mode Operation  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁA  
ꢀꢁAꢂ  
ꢀ ꢁꢂꢂꢃA  
ꢀꢁAꢂ  
ꢀ ꢁꢂꢃA  
ꢀꢁAꢂ  
ꢀ ꢁꢂA  
ꢀ ꢁꢂꢃA  
ꢀ ꢁꢂꢃA  
ꢀ ꢁA  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀꢁAꢂ  
ꢀA ꢁꢂꢃꢄ  
ꢀA ꢁꢂꢃꢄ  
ꢀA ꢁꢂꢃꢄ  
ꢀA ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁꢂA  
ꢀꢁAꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ.ꢀꢀꢀꢁ  
ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢀ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢀ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀAꢆꢇ ꢈꢄꢉ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀAꢆꢇ ꢈꢄꢉ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
ꢀꢀꢁꢂ ꢃꢂꢄ  
2A Buck Efficiency vs Output Current  
Across Switching Frequency  
2A Buck Regulator Feedback  
Voltage vs Temperature  
1A Buck Load Regulation Across  
VIN Forced Continuous Mode  
ꢀ.ꢁꢂꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢀꢂ  
ꢀ.ꢁꢂꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁRꢂꢃ ꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢁꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀ.ꢀꢀꢀꢁ  
ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢀꢁꢂ ꢃꢀꢀ  
ꢀꢀꢁꢂ ꢃꢀꢂ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
Rev. A  
11  
For more information www.analog.com  
LTC3372  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LV Buck Regulator) TA = 25°C, unless otherwise noted.  
2A Buck Regulated Feedback  
Voltage vs VINA-H  
1A Buck PMOS Current Limit  
vs Temperature  
4A Buck Output Voltage  
vs Output Current  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢂ  
ꢀꢁꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃꢄ ꢂꢁꢅꢆꢇꢅꢈꢁꢈꢉ ꢊꢁꢄꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀ ꢁ.ꢁꢂꢃ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃA  
ꢀ ꢁA  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁꢂ  
ꢀꢁAꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁAꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢀ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢁꢂꢃꢄ ꢅꢆAꢈꢉ ꢊꢅꢋ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
1A Buck NMOS and PMOS RDS(ON)  
vs Temperature Across VIN  
RT Programmed Oscillator  
Frequency vs Temperature  
Oscillator Frequency vs RT  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀ.ꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁ  
R
ꢀꢁAꢂꢃ  
= 402kΩ  
ꢀ ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ ꢀꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢁ  
(kΩ)  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
R
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
ꢀꢀꢁꢂ ꢃꢀꢁ  
ꢀꢀꢁꢂ ꢃꢀꢄ  
Default Oscillator Frequency  
vs Temperature  
VTEMP vs Temperature  
Enable Threshold vs Temperature  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢀ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢂꢂ  
ꢀꢁꢂꢂ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀꢁꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁAꢂꢃ  
ꢀꢁ  
Rꢀꢁꢀꢂꢃ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀꢁꢂꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢂ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
Rev. A  
12  
For more information www.analog.com  
LTC3372  
TYPICAL PERFORMANCE CHARACTERISTICS  
(LV Buck Regulator) TA = 25°C, unless otherwise noted.  
Precise Enable Threshold  
vs Temperature  
VINA-H UVLO Threshold  
vs Temperature  
2A Buck Load Step Burst Mode  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢁ  
ꢀ.ꢁꢂ  
ꢀ.ꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁAꢂ  
Rꢀꢁꢀꢂꢃ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂ  
Rꢀꢁꢀꢂꢃ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢃ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀAꢁꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢁ.ꢆA  
ꢀꢁAꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢀꢁꢂ ꢃꢄꢀ  
ꢀꢀꢁꢂ ꢃꢄꢄ  
2A Buck Load Step Forced  
Continuous Mode  
2A Buck Start-Up  
ꢀꢁAꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂAꢃꢄꢅꢆ  
ꢀꢀꢁꢂ ꢃꢄꢅ  
ꢀꢀꢁꢂ ꢃꢄꢁ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁ.ꢂꢃ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢁ.ꢆA  
ꢀꢁAꢂ  
Rev. A  
13  
For more information www.analog.com  
LTC3372  
PIN FUNCTIONS  
RST (Pin 1): LV Regulator Reset Logic Output. This pin is  
pulled low when the feedback pin (FB1-4) voltage of any  
enabled LV regulator is outside of its power good window.  
The window is –2% to +7.5% (typical) for regulator 1,  
and –5% to +7.5% (typical) for regulators 2-4, around  
the regulated 0.8V level. This pin is pulled low when all  
LV regulators are disabled. Assertion (the pin goes high)  
FB2 (Pin 13): LV Buck Regulator 2 Feedback Pin. Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
In configurations where LV Regulator 2 is not used, FB2  
should be tied to ground.  
EN2 (Pin 14): LV Buck Regulator 2 Enable Input. Active  
high. In configurations where LV Regulator 2 is not used,  
tie EN2 to ground. Do not float.  
delay is scaled by the C capacitor.  
T
C1 (Pin 15): LV Regulator Configuration Control Input Bit.  
With C2 and C3, C1 configures the buck output current  
power stage combinations. C1 should either be tied to  
TEMP (Pin 2): Temperature Indication Pin. TEMP outputs  
a voltage of 220mV (typical) at 25°C. The TEMP voltage  
will increase by 7mV/°C (typical) at higher temperatures  
giving an external indication of the IC’s internal die tem-  
perature. The temperature monitor can be shut down by  
tying the TEMP pin to INTV to reduce quiescent current.  
If all LV regulators are disabled, the temperature monitor  
shuts down and the TEMP pin becomes high impedance.  
INTV or ground. Do not float.  
CC  
C2 (Pin 16): LV Regulator Configuration Control Input Bit.  
With C1 and C3, C2 configures the buck output current  
power stage combinations. C2 should either be tied to  
CC  
INTV or ground. Do not float.  
CC  
C3 (Pin 17): LV Regulator Configuration Control Input Bit.  
With C1 and C2, C3 configures the buck output control  
power stage combinations. C3 should either be tied to  
EN1 (Pin 3): LV Buck Regulator 1 Enable Input. Active  
high. Do not float.  
FB1 (Pin 4): LV Buck Regulator 1 Feedback Pin. Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
INTV or ground. Do not float.  
CC  
RT (Pin 18): Oscillator Frequency Pin. This pin provides  
twomodesofsettingtheswitchingfrequency.Connectinga  
resistorfromRTtogroundwillsettheswitchingfrequency  
V
(Pin 5): LV Power Stage A Input Supply. Bypass to  
INA  
GND with a 10µF or larger ceramic capacitor.  
SWA (Pin 6): LV Power Stage A Switch Node. External  
inductor connects to this pin.  
based on the resistor value. If RT is tied to INTV the  
CC  
internal 2MHz oscillator will be used. Do not float.  
SWB (Pin 7): LV Power Stage B Switch Node. External  
PLL/MODE (Pin 19): Oscillator Synchronization Input and  
Mode Select Pin. Driving this pin with an external clock  
signal synchronizes the internal oscillator to the applied  
clock.TheLVbuckssynchronizetotheoscillatorfrequency  
and HV buck synchronizes to 1/6th frequency when in  
forced continuous mode. When no external clock is ap-  
plied the oscillator frequency is programmed by the RT  
pin. Whennotsynchronizingtoanexternalclockthisinput  
determines how the controller and regulators operate at  
lightload.FloatingorgroundingthispinselectsBurstMode  
inductor connects to this pin.  
V
(Pin 8): LV Power Stage B Input Supply. Bypass to  
INB  
GND with a 10µF or larger ceramic capacitor.  
V
(Pin 9): LV Power Stage C Input Supply. Bypass to  
INC  
GND with a 10µF or larger ceramic capacitor.  
SWC (Pin 10): LV Power Stage C Switch Node. External  
inductor connects to this pin.  
SWD (Pin 11): LV Power Stage D Switch Node. External  
inductor connects to this pin.  
operation, and tying this pin to INTV forces continuous  
CC  
inductor current mode operation for all the converters and  
the controller. Tying this pin to a voltage greater than 1.2V  
V
(Pin 12): LV Power Stage D Input Supply. Bypass to  
IND  
and less than INTV –1.3V selects pulse-skipping mode  
GND with a 10µF or larger ceramic capacitor.  
CC  
operation for the controller, but Burst Mode operation for  
the low voltage converters. This pin has a 100k internal  
resistor to ground.  
Rev. A  
14  
For more information www.analog.com  
LTC3372  
PIN FUNCTIONS  
WDI (Pin 20): Watchdog Timer Input. The WDI pin must  
be toggled either low to high or high to low every 1.62  
seconds. Failure to toggle WDI results in the WDO pin  
being pulled low for 202ms. All times correspond to a  
10nF capacitor on the CT pin.  
V
(Pin 32): LV Power Stage H Input Supply. Bypass to  
INH  
GND with a 10μF or larger ceramic capacitor.  
FB4 (Pin 33): LV Buck Regulator 4 Feedback Pin. Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
EN4 (Pin 34): LV Buck Regulator 4 Enable Input. Active  
high. Do not float.  
WDO (Pin 21): Watchdog Timer. Open-drain output. WDO  
ispulledlowfor202msduringawatchdogtimeoutperiod.  
The WDO pin pulls low if the WDI input does not transition  
in less than 1.62 seconds since its last transition or 12.9  
seconds after a watchdog timeout period. An UVLO event  
resets the watchdog timer and WDO asserts itself low for  
the202mswatchdogtimeoutperiod.Alltimescorrespond  
to a 10nF capacitor on the CT pin.  
INTV (Pin 35): Internal V Pin. Output of an internal  
CC  
CC  
linearlow-dropout(LDO)regulatorpoweredfromV .The  
IN  
HV buck gate drive and control circuits are powered from  
this voltage source when V  
is < 4.7V. When V  
>
OUT  
OUT  
4.7V the bias connects to Vout and the LDO is shutdown.  
Must be de-coupled to GND pin with a minimum of 4.7μF  
low ESR (ceramic) capacitor.  
CT (Pin 22): Timing Capacitor Pin. A capacitor connected  
BG (Pin 36): HV Controller High Current Gate Drive for  
to GND sets a time constant which is scaled for use by  
Bottom(Synchronous)N-channelMOSFET.Voltageswing  
the WDI, WDO, and RST pins. Tying the CT pin to INTV  
CC  
at this pin is from ground to INTV .  
disables the watchdog timer to reduce quiescent current.  
CC  
TG (Pin 37): HV Controller High Current Gate Drive for Top  
EN3 (Pin 23): LV Buck Regulator 3 Enable Input. Active  
high. In configurations where LV Regulator 3 is not used,  
tie EN3 to ground. Do not float.  
N-channel MOSFET. This is the output of floating driver  
with a voltage swing equal to INTV superimposed on  
CC  
the switch node voltage SW.  
FB3 (Pin 24): LV Buck Regulator 3 Feedback Pin. Receives  
feedbackbyaresistordividerconnectedacrosstheoutput.  
In configurations where LV Regulator 3 is not used, FB3  
should be tied to ground.  
SW (Pin 38): HV Controller Switch Node Connection to  
Inductor.  
BOOST(Pin39):HVControllerBootstrappedSupplytothe  
Topside Floating Driver. A capacitor should be connected  
between the BOOST and SW pin and a Schottky diode  
V
(Pin 25): LV Power Stage E Input Supply. Bypass to  
INE  
GND with a 10μF or larger ceramic capacitor.  
should be connected between the BOOST and INTV  
CC  
SWE (Pin 26): LV Power Stage E Switch Node. External  
inductor connects to this pin.  
pins. Voltage swing at the BOOST pin is from INTV to  
CC  
(V + INTV ).  
IN  
CC  
SWF (Pin 27): LV Power Stage F Switch Node. External  
inductor connects to this pin.  
RUN (Pin 40): HV Controller Enable Input. Forcing this  
pin above 1.2V turns on the HV controller. This pin has a  
0.5µA internal pull-up current from ground to around 4V,  
and can be forced up to 65V (absolute maximum).  
V
(Pin 28): LV Power Stage F Input Supply. Bypass to  
INF  
GND with a 10μF or larger ceramic capacitor.  
V
(Pin 29): LV Power Stage G Input Supply. Bypass to  
V
(Pin 41): HV Input Supply Pin. A bypass capacitor  
IN  
ING  
GND with a 10μF or larger ceramic capacitor.  
should be tied between this pin and the GND pin.  
SWG (Pin 30): LV Power Stage G Switch Node. External  
TRACK/SS (Pin 42): HV Controller External Tracking and  
inductor connects to this pin.  
Soft-StartInput.Whenthispinisabove1.2V,thecontroller  
regulates the output voltage V  
to the programed 5V or  
OUT  
SWH (Pin 31): LV Power Stage H Switch Node. External  
inductor connects to this pin.  
3.3V level. When this pin is below 1.2V, the output voltage  
Rev. A  
15  
For more information www.analog.com  
LTC3372  
PIN FUNCTIONS  
+
is regulated proportionally lower. An internal 10μA pull-  
up current source is connected to this pin. A capacitor to  
ground at this pin sets the ramp time to the final regulated  
output voltage. Alternatively, a resistor divider on another  
voltagesupplyconnectedtothispinallowsthecontroller’s  
output to track another supply during start-up.  
SENSE (Pin 45): HV Controller Positive (+) Input to  
Differential Current Comparator. The ITH pin voltage and  
+
controlled offsets between the SENSE and SENSE pins  
set the current trip threshold. The current comparator  
can be used for either inductor DCR sensing or traditional  
current sensing resistor (R  
) sensing.  
SENSE  
V
/EXTV (Pin 43): HV Controller Output Voltage  
ITH (Pin 46): HV Controller Error Amplifier Output and  
Compensation Point. The current comparator threshold  
increases with this control voltage.  
OUT  
CC  
Sensing and External V Power Input. Connect this pin  
CC  
to the HV controller’s regulated output voltage. The HV  
controller V  
internal resistor divider selected by the V  
pin is also provides an external V connection and sup-  
plies internal bias voltages from V  
performance and reduce power loss.  
is regulated to either 3.3V or 5V by an  
OUT  
V
(Pin 47): HV ControllerOutput Voltage Program-  
OUTPRG  
pin. This  
PROG  
ming Pin. When this pin is tied to INTV , the output volt-  
CC  
CC  
OUT  
age is regulated to 5V. When tied to ground, the output  
voltage is regulated to 3.3V.  
to improve low I  
Q
PGOOD (Pin 48): HV Controller Power Good Open-Drain  
LogicOutput. Thispinispulledlowwhenthevoltageatthe  
SENSE (Pin 44): HV Controller Negative (–) Input to  
Differential Current Comparator. This SENSE pin also  
V
/EXTV pin is outside of the 7.5% window around  
OUT  
CC  
functions as the output voltage sense pin for a secondary  
15% overvoltage protection in addition to the 7.5% over-  
the regulated level, or voltage at SENSE pin is more than  
15% above the regulated level of V  
.
OUT  
voltage protection at the V /EXTV pin. In the situation  
OUT  
CC  
GND (Exposed Pad Pin 49): Ground. The exposed pad  
must be soldered to a continuous printed circuit board  
ground plane directly under the IC package for rated ther-  
mal performance. The exposed pad is a shared ground for  
signal grounds, driver ground and power stage grounds  
of all HV and LV buck regulators.  
that SENSE pin is separated from V /EXTV pin to  
OUT  
CC  
achievepoint-of-load(POL)regulation, SENSE canbegin  
drawinga>500µAcurrentwhenSENSE is200mVgreater  
than V  
(V  
= 5V) or INTV (V  
= 3.3V). When  
CC  
OUT  
OUT  
CC  
OUT  
voltage on SENSE pin is close to INTV , SENSE can  
begin drawing >500µA current. Do not connect a filtering  
resistor in series with SENSE pin unless SENSE stays  
close to ground in the application.  
Rev. A  
16  
For more information www.analog.com  
LTC3372  
BLOCK DIAGRAM  
ꢇꢋꢁꢓ  
ꢂꢂ  
ꢇꢋ  
ꢌꢅꢅꢊꢁ  
ꢐ.ꢚꢤꢓ  
ꢅꢓ  
ꢍꢓ  
ꢒꢆꢅꢅꢄ  
ꢄRꢅꢒ  
ꢅꢍꢁ  
ꢄꢉꢁ  
ꢁꢆ  
ꢕꢌ  
ꢏꢁꢂꢛꢛꢝꢚꢥ ꢂꢏꢎꢖꢠ ꢗꢐꢖꢠ ꢘ  
ꢅꢊꢂ  
ꢇꢋ  
ꢌꢅꢁ  
ꢐ.ꢐꢐꢓ  
ꢁꢅꢒ ꢅꢋ  
ꢊꢀ  
R
ꢅꢍꢁ  
ꢊꢀꢇꢁꢂꢃ  
ꢏꢅꢆꢇꢂ  
ꢇꢋꢁꢓ  
ꢂꢂ  
ꢅꢍꢁ  
ꢊꢃꢄꢋ  
ꢈꢅꢄꢉ  
ꢌꢆ  
ꢞ.ꢟꢧA  
ꢅꢓ  
Rꢍꢋ  
ꢞ.ꢔꢚꢟꢓ  
ꢊꢏꢉꢉꢒ  
ꢇꢂꢈꢒ  
ꢇRꢉꢓ  
ꢚꢡꢓ  
ꢚ.ꢝꢓ  
ꢞ.ꢠꢟꢓ  
ꢊꢉꢋꢊꢉ  
ꢐꢟꢦ Aꢌꢅꢓꢉ  
RꢉꢆꢍꢏAꢁꢇꢅꢋ  
ꢊꢏꢅꢒꢉ ꢂꢅꢈꢒ  
ꢊꢉꢋꢊꢉ  
ꢖꢉꢜꢁꢓ  
ꢅꢍꢁ  
ꢕꢌ  
ꢂꢂ  
ꢖꢉꢜꢁꢓ  
ꢂꢂ  
ꢅꢍꢁ  
ꢐ.ꢚꢓ  
ꢉA  
ꢇꢋ  
ꢁRAꢂꢎꢖꢊꢊ  
ꢛ.ꢛꢓꢖꢟꢓ  
ꢒRꢅꢆRAꢈ  
ꢅꢍꢁꢒRꢆ  
ꢇꢁꢃ  
ꢆAꢁꢉ  
ꢟ.ꢐꢓ  
ꢏꢄꢅ  
ꢉꢋ  
ꢂꢅꢋꢁRꢅꢏ  
ꢉꢋ  
ꢊꢃꢄꢋ  
Rꢊꢁ  
ꢚꢗꢓ  
R
ꢂꢚ  
ꢕꢅꢏꢄꢌAꢂꢎ  
ꢐꢞꢧA  
ꢁRAꢂꢎꢖꢊꢊ  
ꢕꢌ  
ꢔ.ꢝꢓ  
ꢊꢃꢄꢋ  
ꢊꢊ  
ꢇꢋꢁꢓ  
ꢂꢂ  
ꢃꢇꢆꢃ ꢓꢅAꢆꢉ ꢂꢅꢋꢁRꢅꢏꢏꢉR  
Rꢁ  
ꢂꢏꢎ ꢗꢘ  
ꢍꢓ  
ꢅꢊꢂ  
ꢅꢊꢂꢇꢏꢏAꢁꢅR  
ꢍꢓꢏꢅ  
ꢒꢏꢏꢖꢈꢅꢄꢉ  
Rꢉꢕ  
ꢈꢅꢄꢉ  
ꢌAꢋꢄꢆAꢒ  
ꢅꢁ  
ꢂꢁ  
ꢂꢁ  
ꢁꢉꢈꢒ  
ꢁꢉꢈꢒ  
ꢈꢅꢋꢇꢁꢅR  
ꢅꢊꢂꢇꢏꢏAꢁꢅR  
ꢀꢄꢇ  
ꢀꢄꢅ  
ꢊꢄ  
ꢀAꢁꢂꢃꢄꢅꢆ ꢁꢇꢈꢉR  
ꢊꢁAꢁꢉ ꢈAꢂꢃꢇꢋꢉ  
ꢂꢁ  
ꢂꢏꢅꢂꢎ  
ꢏꢅꢀ ꢓꢅAꢆꢉ RꢉꢆꢍꢏAꢁꢅRꢊ  
RST  
ꢇꢋA  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ A  
ꢔ ꢒꢆꢅꢅꢄ  
ꢊꢀA  
ꢄꢉꢏAꢑ  
ꢇꢋꢌ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢌ  
ꢊꢄ  
Rꢉꢕ  
ꢂꢏꢎ ꢈꢅꢄꢉ  
ꢊꢀꢌ  
ꢇꢋꢂ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢂ  
ꢇꢋꢌ  
ꢊꢀꢂ  
ꢉꢋꢐ  
ꢕꢌꢐ  
ꢌꢍꢂꢎ RꢉꢆꢍꢏAꢁꢅR ꢐ  
ꢂꢅꢋꢁRꢅꢏ  
ꢇꢋꢄ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢄ  
ꢊꢀꢄ  
ꢇꢋꢄ  
ꢇꢋꢉ  
ꢉꢋꢚ  
ꢕꢌꢚ  
ꢌꢍꢂꢎ RꢉꢆꢍꢏAꢁꢅR ꢚ  
ꢂꢅꢋꢁRꢅꢏ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢉ  
ꢊꢀꢉ  
ꢇꢋꢉ  
ꢇꢋꢕ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢕ  
ꢉꢋꢛ  
ꢕꢌꢛ  
ꢊꢀꢕ  
ꢌꢍꢂꢎ RꢉꢆꢍꢏAꢁꢅR ꢛ  
ꢂꢅꢋꢁRꢅꢏ  
ꢇꢋꢆ  
ꢇꢋꢆ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢆ  
ꢊꢀꢆ  
ꢉꢋꢔ  
ꢕꢌꢔ  
ꢌꢍꢂꢎ RꢉꢆꢍꢏAꢁꢅR ꢔ  
ꢂꢅꢋꢁRꢅꢏ  
ꢇꢋꢃ  
ꢐA ꢒꢅꢀꢉR  
ꢊꢁAꢆꢉ ꢃ  
ꢂꢅꢋꢕꢇꢆꢍRAꢁꢇꢅꢋ ꢏꢇꢋꢉꢊ  
ꢂꢐ ꢂꢚ ꢂꢛ  
ꢊꢀꢃ  
ꢆꢋꢄ  
ꢗꢉꢜꢒꢅꢊꢉꢄ ꢒAꢄꢙ  
ꢛꢛꢝꢚꢐ ꢌꢄ  
Rev. A  
17  
For more information www.analog.com  
LTC3372  
OPERATION  
The LTC3372 is a single IC that combines a high voltage  
(HV) buck (step-down) DC/DC switching regulator con-  
troller and a total of four configurable low voltage (LV)  
buck regulators.  
to V , the loop may enter dropout and attempt to turn  
OUT  
on the top MOSFET continuously. The dropout detector  
detects this and forces the top MOSFET off for a short  
time every tenth cycle to allow C to recharge, resulting  
B
in an effective duty cycle of 98%.  
Main Control Loop of HV Buck Controller  
Shutdown and Start-Up (RUN, TRACK/SS Pins)  
TheHVcontrollerusesaconstantfrequency,currentmode  
buck (step-down) architecture. During normal operation,  
the external top MOSFET is turned on when the clock sets  
the RS latch, and is turned off when the main current  
comparator, ICMP, resets the RS latch. The peak inductor  
current at which ICMP trips and resets the latch is con-  
trolled by the voltage on the ITH pin, which is the output  
of the error amplifier, EA. The error amplifier compares  
an internal 1.2V reference voltage to the feedback voltage  
generated by an internal resistor divider connected to the  
Ittypicallytakes1.2msfortheinternalbiascircuits(includ-  
ing INTV ) to be ready after the first time either the RUN  
CC  
pin or any of the EN1-4 pins rises above 730mV. During  
the 1ms internal bias circuit startup time, neither the HV  
or LV regulators are enabled. The HV controller is enabled  
when the RUN pin is pulled above 1.2V and the internal  
bias is enabled. Pulling RUN pin below 1.16V disables  
the HV controller.  
The RUN pin has an internal 0.5μA current that pulls up  
the pin to enable the HV controller. Alternatively, the RUN  
pin may be externally pulled up or driven by logic. The  
RUN pin can tolerate up to 65V (absolute maximum), so  
V
/EXTV pin. The divider can be selected to program  
OUT  
CC  
an output of either 3.3V to 5V. When the load current  
increases, it causes a slight decrease in V relative to  
FB  
the reference, which causes the EA to increase the ITH  
voltage until the average inductor current matches the  
new load current.  
it can be conveniently tied to V in an always-on applica-  
IN  
tion in which the controller is enabled continuously and  
never shut down.  
After the top MOSFET is turned off each cycle, the bottom  
MOSFET is turned on until either the beginning of the next  
clock cycle, or the inductor current starts to reverse, as  
indicated by the reverse current comparator IREV (at light  
load in pulse-skipping mode or Burst Mode).  
The RUN pin can also be used as an undervoltage lockout  
(UVLO) by connecting it to the midpoint of an external re-  
sistordividernetworkofV (seeApplicationsInformation  
IN  
section).  
The start-up of the controller’s output voltage V  
is  
OUT  
INTV Power  
controlled by the voltage on the TRACK/SS pin. When the  
voltage on the TRACK/SS pin is less than the 1.2V internal  
CC  
Power for the top and bottom MOSFET drivers and some  
reference,theHVcontrollerregulatestheV voltagetothe  
FB  
otherinternalcircuitryisderivedfromtheINTV pin.When  
CC  
TRACK/SS pin voltage instead of the 1.2V reference. This  
allowstheTRACK/SSpintobeusedtoprogramasoft-start  
by connecting an external capacitor from the TRACK/SS  
pin to GND. An internal 10μA pull-up current charges this  
capacitorcreatingavoltagerampontheTRACK/SSpin.As  
the TRACK/SS voltage rises linearly from 0V to 1.2V and  
the V /EXTV pin is tied to a voltage less than 4.7V,  
OUT  
CC  
the V LDO (low dropout linear regulator) supplies 5.1V  
IN  
from V to INTV . If V /EXTV is taken above 4.7V,  
IN  
CC  
OUT  
CC  
the V LDO is turned off and an internal PMOS switch  
IN  
connectsV /EXTV toINTV . UsingtheV /EXTV  
OUT  
CC  
CC  
OUT  
CC  
pin allows the INTV power to be derived from the high  
CC  
beyond, the output voltage V  
rises smoothly from zero  
OUT  
efficiency HV buck regulator output.  
to its final value. Alternatively the TRACK/SS pin can be  
used to cause the start-up of V to track that of another  
ThetopMOSFETdriverisbiasedfromthefloatingbootstrap  
OUT  
capacitor, C , which normally recharges during each cycle  
supply. Typically, this requires connecting to the TRACK/  
SS pin an external resistor divider from the other supply  
to ground (see the Applications Information section).  
B
throughanexternaldiode,D ,whenthetopMOSFETturns  
B
off. If the input voltage, V , decreases to a voltage close  
IN  
Rev. A  
18  
For more information www.analog.com  
LTC3372  
OPERATION  
Output Overvoltage Protection  
The LTC3372’s PLL/MODE pin selects the light load  
operation modes for both the HV controller and LV  
buck regulators. To select Burst Mode operation, tie the  
PLL/MODE pin to SGND. To select forced continuous  
Overvoltage comparators guard against transient over-  
shoots as well as other more serious conditions that may  
overvoltage the output.  
mode operation, tie the PLL/MODE pin to INTV . When  
CC  
When the V /EXTV pin voltage rises by more than  
PLL/MODE pin is connected to an external clock, both HV  
controller and the LV buck regulators are synchronized to  
the external clock in forced continuous mode operation.  
To select pulse-skipping mode for the HV controller, tie the  
PLL/MODE pin to a DC voltage greater than 1.2V but less  
OUT  
CC  
7.5%aboveitsregulationsetpoint,thetoppowerMOSFET  
gate(TG)isturnedoffandthebottompowerMOSFETgate  
(BG)isturnedonuntiltheovervoltageconditioniscleared.  
The SENSE pin functions as the output voltage sense pin  
than INTV – 3.3V. The LV buck regulators will operate  
CC  
for a secondary +15% overvoltage protection in addition  
in Burst Mode operation.  
to the +7.5% overvoltage protection at V /EXTV pin.  
OUT  
CC  
When voltage at this pin is over 15% higher than the  
regulated output voltage set point, the HV controller will  
turn TG off and BG on. This provides an additional layer of  
protectionwhenpoint-of-load(POL)regulationisdesired.  
When the controller is enabled for Burst Mode operation, the  
minimum peak current in the inductor is set to approximately  
25% of the maximum sense voltage even though the voltage  
on the ITH pin indicates a lower value. If the average inductor  
current is higher than the load current, the error amplifier,  
EA, will decrease the voltage on the ITH pin. When the ITH  
voltage drops below 0.425V, the internal sleep signal goes  
high (enabling sleep mode) and both external MOSFETs are  
turned off. The ITH pin is then disconnected from the output  
of the EA and parked at 0.450V.  
Power Good Indicator (PGOOD) Pin  
The PGOOD pin is connected to the open drain of an  
internal N-channel MOSFET. The MOSFET turns on and  
pulls the PGOOD pin low when the V /EXTV voltage  
OUT  
CC  
is outside of the 7.5% window around the regulated  
level. The PGOOD pin is also pulled low when the RUN  
In sleep, much of the internal circuitry is turned off, re-  
ducing the quiescent currents that the controllers draws.  
The load current is supplied by the output capacitor. As  
the output voltage decreases, the EA’s output begins to  
rise. When the output voltage drops enough, the ITH pin  
is reconnected to the output of the EA, the sleep signal  
goes low, and the controller resumes normal operation  
by turning on the top external MOSFET on the next cycle  
of the internal oscillator.  
pin is low (shut down). When the V /EXTV voltage is  
OUT  
CC  
within the 7.5% window, the MOSFET is turned off and  
the pin is allowed to be pulled up by an external resistor  
to a source no greater than 6V.  
Foldback Current Limit  
When the output voltage falls to less than 70% of its nominal  
level, foldback current limiting is activated. Foldback progres-  
sively lowers the peak current limit as the output drops in a  
sustainedovercurrentorshort-circuitcondition.Foldbackcur-  
rent limiting is disabled during the soft-start interval (as long  
When the controller is enabled for Burst Mode operation,  
the inductor current is not allowed to reverse. The reverse  
current comparator, I , turns off the bottom external  
REV  
as the V voltage is keeping up with the TRACK/SS voltage).  
FB  
MOSFET just before the inductor current reaches zero,  
preventing it from reversing and going negative. Thus, the  
controller operates in discontinuous operation.  
Light Load Current Operation  
The HV buck controller can be enabled to enter one of  
the three modes at light load current: (a) high efficiency  
Burst Mode, (b) forced continuous conduction mode, or  
(c) pulse-skipping mode operations at light load currents.  
In forced continuous operation, the inductor current is  
allowed to reverse at light loads or under large transient  
conditions. The peak inductor current is determined by  
the voltage on the ITH pin, just as in normal operation.  
In this mode, the efficiency at light loads is lower than in  
Rev. A  
19  
For more information www.analog.com  
LTC3372  
OPERATION  
Burst Mode operation. However, continuous operation  
has the advantage of lower output voltage ripple and less  
interference to other circuitry. In forced continuous mode,  
the output ripple is independent of load current. Clock-  
ing the LTC3372 from an external source enables forced  
continuous mode (see the Programming the Operating  
Frequency section.)  
be used to provide event based sequencing via feedback  
from other previously enabled regulators.  
It typically takes 1ms for the internal bias circuits (in-  
cluding INTV ) to be ready after the first time RUN or  
CC  
any EN pin rises above 0.73V. All regulators are disabled  
during internal circuit start-up time. When a LV regulator  
is enabled there is an additional 150μs delay before the  
soft start ramp begins. All LV regulators have soft start  
and forward and reverse current limiting to control inrush  
currentduringstart-upandtoprovideshort-circuitprotec-  
tion in normal operation.  
When the PLL/MODE pin is connected for pulse-skipping  
mode, the HV controller operates in PWM pulse-skipping  
mode at light loads. In this mode, constant frequency  
operation is maintained down to approximately 1% of  
designed maximum output current. At very light loads,  
the current comparator, ICMP, may remain tripped for  
several cycles and force the external top MOSFET to stay  
off for the same number of cycles (i.e., skipping pulses).  
The inductor current is not allowed to reverse (discon-  
tinuous operation). This mode, like forced continuous  
operation, exhibits low output ripple as well as low noise  
and reduced RF interference as compared to Burst Mode  
operation. It provides higher low current efficiency than  
forced continuous mode, but not nearly as high as Burst  
Mode operation.  
The LV buck switching regulators are phased in 90° steps  
toreducenoiseandinputripple.Thephasestepdetermines  
the fixed edge of the switching sequence, which is when  
the PMOS turns on. The PMOS off (NMOS on) phase is  
subject to the duty cycle demanded by the regulator. Buck  
1 is set to 0°, Buck 2 is set to 90°, Buck 3 is set to 270°,  
and Buck 4 is set to 180°. In shutdown all SW nodes are  
high impedance. The buck regulator enable pins may be  
tiedtoV  
voltagesthrougharesistordivider,toprogram  
OUT  
power-up sequencing.  
LV Buck Regulators with Combined Power Stages  
LOW VOLTAGE REGULATORS  
Up to four adjacent LV buck regulators may be combined  
inamaster-slaveconfigurationbysettingtheconfiguration  
via the C1, C2, and C3 pins. These pins should either be  
Low Voltage Buck Switching Regulator  
The LTC3372 contains eight low voltage (LV) monolithic  
1Asynchronousbuckswitchingpowerstages.Eachpower  
stage contains an integrated PMOS top-side switch and  
a NMOS bottom-side switch. The eight power stages are  
controlled by up to four constant frequency peak current  
mode controllers. All of the switching regulators are  
internally compensated and need only external feedback  
resistors to set their output voltages.  
tiedtogroundorpinstrappedtoINTV inaccordancewith  
CC  
the desired configuration code (Table 1). Any combined  
SW pins must be tied together, as must any of the com-  
bined V pins. EN1 and FB1 are utilized by Buck 1, EN2  
IN  
and FB2 by Buck 2, EN3 and FB3 by Buck 3, and EN4 and  
FB4 by Buck 4. If any buck is not used or is not available  
in the desired configuration, then the associated FB and  
EN pins must be tied to ground.  
Each LV buck switching regulator can operate with an  
independent input voltage and has its own FB and EN  
pins to maximize flexibility. The enable pins have two  
different enable thresholds that depend on the operating  
state of the other LV regulators. When all of the LV regu-  
lators are disabled, the EN pin threshold is 0.73V . Once  
any LV regulator is enabled, the EN pin thresholds of the  
remaining LV regulators are set to a precision internal-  
reference-based 400mV. This precision EN threshold may  
Any available combination of 2, 3, or 4 adjacent buck  
regulators serves to provide up to either 2A, 3A, or 4A  
of average output load current. For example, code 110  
(C3C2C1) configures Buck 1 to operate as a 4A regulator  
through V  
/SWA-H pairs A, B, C, and D, while Buck  
INA-H  
2 is disabled, Buck 3 operates as a 1A regulator through  
/SWA-H pair E, and Buck 4 operates as a 3A regula-  
V
INA-H  
tor through V  
/SWA-H pairs F, G, and H.  
INA-H  
Rev. A  
20  
For more information www.analog.com  
LTC3372  
OPERATION  
Table 1. Master Slave Program Combinations (Each Letter  
Corresponds to a Low Voltage Power Stage)  
Thetemperaturemaybereadbackbytheuserbysampling  
theTEMPpinanalogvoltage.Thetemperature,T,indicated  
by the TEMP pin voltage is given by:  
PROGRAM  
CODE  
V
45mV  
C3C2C1  
BUCK 1  
AB  
BUCK 2  
BUCK 3  
BUCK 4  
GH  
TEMP  
T =  
• 1°C  
000  
CD  
EF  
7mV  
001  
ABC  
D
D
EF  
GH  
To reduce quiescent current (I ), if all the LV buck regula-  
Q
010  
ABC  
E
FGH  
FG  
tors are shut down, the temperature monitor also shuts  
down and the TEMP pin becomes high impedance. The  
temperature monitor can be disabled by tying the TEMP  
011  
ABCH  
ABC  
D
E
Not Used  
EF  
100  
DE  
FGH  
GH  
101  
ABCD  
ABCD  
ABCD  
Not Used  
Not Used  
Not Used  
pin to INTV to save I .  
CC  
Q
110  
E
FGH  
EFGH  
111  
Not Used  
Programming the Operating Frequency  
Selectionoftheoperatingfrequencyisatrade-offbetween  
efficiency and component size. High frequency operation  
allows the use of smaller inductor and capacitor values.  
Operation at lower frequencies improves efficiency by  
reducing internal gate charge losses but requires larger  
inductance values and/or capacitance to maintain low  
output voltage ripple.  
Power Failure Reporting via RST Pin  
Power failure conditions of all LV buck regulators are  
reported by the single RST pin. Each LV regulator has an  
internal power good signal. If LV Buck 1 output voltage  
fallsbelow98%, oranyoftheBuck2-4outputsfallsbelow  
95%, of its programmed value, or if any LV regulator’s  
output rises above 107.5% of its programmed value, its  
internal power good signal is pulled low. If any internal  
power good signal stays low for greater than 100μs, then  
the RST pin is pulled low. The RST low signal indicates to  
a microprocessor that a power failure fault has occurred.  
The 100μs filter time prevents a false fault indication low  
due to a output/load transient.  
The frequency of the internal oscillator (system clock)  
is determined by an external resistor that is connected  
between the RT pin and ground. The operating frequency  
can be calculated using the following equation:  
11  
8 • 10 ΩHz  
f
=
OSC  
R
T
The internal power good comparators have hysteresis, so  
the regulated output voltage of an enabled regulator has  
to move back into the power good window by more than  
the hysteresis for its power good signal to transition high.  
Once all enabled LV regulator outputs are power good for  
The oscillator is designed to function with operating fre-  
quencies between 1MHz and 3MHz, it has safety clamps  
that prevent the oscillator from running faster than 4MHz  
(typical) or slower than 250kHz (typical). Tying the RT pin  
202ms (typical, C = 10nF), the RST output goes high  
T
to INTV sets the oscillator to the default internal operat-  
CC  
impedance (pulled high by external resistor/current). If  
ing frequency of 2MHz (typical).  
all LV buck regulators are disabled, RST pulls low.  
The internal oscillator can be synchronized through an  
internal PLL circuit to an external frequency by applying  
a square wave clock signal to the PLL/MODE pin. During  
synchronization,thetopMOSFETturn-onofLVbuckregu-  
lator 1 is phase-locked to the rising edge of the external  
frequency source. All other LV regulators are locked to  
the appropriate phase of the external frequency source.  
Temperature Monitoring and Overtemperature  
Protection  
To prevent thermal damage to the IC and its surrounding  
components, the LV regulators have an overtemperature  
(OT)function.WhentheLTC3372dietemperaturereaches  
170°C (typical) all LV buck switching regulators are shut  
down and remain in shutdown until the die temperature  
falls to 160°C (typical).  
Rev. A  
21  
For more information www.analog.com  
LTC3372  
OPERATION  
The synchronization frequency range is 1MHz to 3MHz.  
A synchronization signal on the PLL/MODE pin will force  
all low voltage (LV) active buck switching regulators to  
operate in forced continuous mode PWM.  
Choosing the C Capacitor  
T
The watchdog timeout period is adjustable and can be  
optimized for software execution. The watchdog timeout  
period is adjusted by connecting a capacitor between CT  
and ground. Given a specified watchdog timeout period,  
the capacitor is determined by:  
The LV regulators switch directly off the internal oscillator  
in 90-degree phase increments. The LTC3372 HV control-  
ler switches at one-sixth (1/6) of the internal oscillator  
frequency with a range of between 166kHz to 500kHz.  
C = t  
• 49.39 [nF/s]  
T
WDO  
For example, using a standard capacitor value of 10nF  
givesa202mswatchdogtimeoutperiod.Further,theother  
watchdog timing periods scale with t  
Windowed Watchdog Timer  
. The watchdog  
WDO  
A standard watchdog function is used to ensure that the  
system is in a valid state by continuously monitoring the  
microprocessor’sactivity.Themicroprocessormusttoggle  
the logic state of the WDI pin periodically in order to clear  
the watchdog timer. The WDI pin reset is read only on a  
WDI falling edge, such that a single reset signal may be  
asserted by pulsing the WDI pin for a time greater than  
the minimum pulse width. If timeout occurs, a WDO low  
is asserted for the reset timeout period, issuing a system  
reset. Once the reset timeout completes, WDO is released  
to go high and the watchdog timer starts again.  
lower boundary time (t  
WDO  
previous WDI pulse scales as eight times that of t  
) scales as precisely 1/4 of  
WDL  
t
, the watchdog upper boundary time following the  
, and  
WDO  
the watchdog upper boundary time following a watchdog  
timeout scales as 64 times that of t . Finally the RST  
assertion delay will scale to the same time as t  
WDO  
.
WDO  
These timing periods are illustrated inFigure 1. Each WDO  
low period is equal to the time period t -t (202ms for a  
2 1  
10nF C capacitor, typical). If a WDI falling edge occurs  
T
before the watchdog lower boundary, indicated by t -t  
3 2  
(50.6ms for a 10nF C capacitor, typical), then another  
T
During power-up, the watchdog timer initiates in the  
timeout state with WDO asserted low. As soon as the  
reset timer times out, WDO goes high and the watchdog  
timer is started.  
watchdog timeout period occurs. If a WDI falling edge  
occurs after the watchdog lower boundary (t ), then the  
4
watchdog counter resets, beginning with another watch-  
dog lower boundary period. In the case where a WDI low  
transition is not detected by the specified time another  
watchdogtimeoutperiodisinitiated. Thistimeisindicated  
A windowed watchdog function is implemented by add-  
ing a lower boundary condition to the standard watchdog  
function. If the WDI input receives a falling edge prior to  
the watchdog lower boundary, the part considers this a  
watchdog failure, and asserts WDO low (releasing again  
aftertheresettimeoutperiodasdescribedabove).Thiswill  
again be followed by another lower boundary time period.  
by t -t (1.62s for a 10nF C capacitor, typical). If a WDI  
5 4  
T
low transition is not detected within the specified time fol-  
lowingawatchdogtimeoutperiod,thenanotherwatchdog  
timeout period is initiated. This time is indicated by t -t  
7 6  
(12.9s for a 10nF C capacitor, typical).  
T
The watchdog timer shuts down when RUN and EN1-4  
are off (all HV and LV regulators are shut down). Tying the  
CT pin to INTV disables the watchdog timer regardless  
CC  
ꢀꢁꢂ  
ꢀꢁꢃ  
of the RUN and EN1-4 pins (HV and LV regulators either  
on or off).  
ꢇꢇꢋꢆ ꢌꢍꢅ  
Figure 1. WDO Timing Parameters  
Rev. A  
22  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
HIGH VOLTAGE BUCK CONTROLLER  
programmed current limit unpredictable. If inductor DCR  
sensing is used (Figure 3b), resistor R1 should be placed  
closetotheswitchingnode,topreventnoisefromcoupling  
into sensitive small-signal nodes.  
The Typical Application on the first page is a basic applica-  
tioncircuit.TheHVcontrollerinductorcurrentsensingcan  
be configured to use either DCR (inductor resistance) or a  
low value sense resistor. The choice between the two cur-  
rentsensingschemesislargelyadesigntrade-offbetween  
cost, power consumption and accuracy. DCR sensing  
has become popular because it saves expensive current  
sensing resistors and is more power efficient, especially  
in high current applications. However, current sensing  
resistors provide the most accurate current limits for the  
controller. Other external component selection is driven  
by the load requirement, and begins with the selection of  
ꢃꢁ ꢄꢅꢆꢄꢅ ꢇꢈꢉꢃꢅRꢊ  
ꢆꢅꢋꢃ ꢃꢁ ꢃꢌꢅ ꢀꢁꢆꢃRꢁꢉꢉꢅR  
ꢁꢂꢃ  
ꢎꢎꢏꢐ ꢇꢑꢐ  
ꢈꢆꢍꢂꢀꢃꢁR ꢁR R  
ꢄꢅꢆꢄꢅ  
Figure 2. Sense Lines Placement with Inductor or Sense Resistor  
ꢁꢂ  
R
(if R  
is used) and inductor value. Next, the  
ꢁꢂ  
SENSE  
SENSE  
ꢁꢂꢅꢀ  
ꢆꢆ  
power MOSFETs. Finally, input and output capacitors are  
selected.  
ꢇꢈꢈꢃꢅ  
ꢅꢉ  
R
ꢃꢄꢂꢃꢄ  
+
ꢃꢊ  
ꢈꢓꢅ  
Current Sense Pins (SENSE and SENSE )  
ꢌꢅꢆꢐꢐꢑꢒ  
+
ꢇꢉ  
The SENSE and SENSE pins are the inputs to the cur-  
rent comparators. The common mode voltage range on  
these pins is 0V to 6V (abs max), allowing margin for  
tolerances and transients for the HV regulator’s regulated  
5V or 3.3V output.  
Rꢘꢗ  
ꢃꢄꢂꢃꢄ  
ꢋꢌAꢆꢄ ꢆAꢋAꢆꢁꢅꢈR ꢂꢄAR  
ꢃꢄꢂꢃꢄ ꢋꢁꢂꢃ  
ꢆꢘꢗ  
ꢃꢄꢂꢃꢄ  
ꢉꢂꢏ  
ꢐꢐꢑꢒ ꢔꢕꢐꢖ  
+
ꢗRꢘ Aꢂꢏ ꢆꢘ ARꢄ ꢈꢋꢅꢁꢈꢂAꢌ  
The SENSE pin is high impedance over the full common  
mode range, drawing at most 1μA. This high impedance  
allows the current comparators to be used in inductor  
DCR sensing.  
(3a) Using a Resistor to Sense Current  
ꢁꢂꢃꢀ  
ꢁꢂ  
ꢁꢂ  
ꢄꢄ  
Connect the SENSE pin directly to the sense point at the  
ꢁꢂꢏꢐꢄꢃꢆR  
ꢏꢄR  
ꢅꢆꢆꢇꢃ  
ꢃꢈ  
V
side of the inductor (in DCR sensing) or the current  
OUT  
senseresistor(R  
), withoutaddinganyresistorinse-  
SENSE  
ꢇꢉ  
ꢆꢐꢃ  
ries.TheimpedanceoftheSENSE pinchangesdepending  
ꢌꢃꢄꢓꢓꢔꢕ  
ꢅꢈ  
on its voltage. When SENSE is less than INTV – 0.5V,  
CC  
a small current of less than 1μA flows out of the pin. As  
Rꢎ  
ꢄꢎꢊ Rꢕ  
ꢇꢍꢂꢇꢍ  
SENSE approachesINTV ,thecurrenttransitionshigher  
CC  
to close to 1mA.  
ꢇꢍꢂꢇꢍ  
ꢈꢂꢏ  
Filter components mutual to the sense lines should be  
placed close to the IC, and the sense lines should run  
close together to a Kelvin connection underneath the  
current sense element (shown in Figure 2). Sensing cur-  
rent elsewhere can effectively add parasitic inductance  
and capacitance to the current sense element, degrading  
the information at the sense terminals and making the  
Rꢕ  
Rꢎ ꢑ Rꢕ  
ꢏꢄR  
ꢚꢚ  
ꢙRꢎ Rꢕꢛ ꢜ ꢄꢎ ꢝ  
ꢊꢋꢌAꢄꢍ ꢄꢎ ꢂꢍAR  
ꢇꢍꢂꢇꢍ ꢋꢁꢂꢇ  
R
ꢝ ꢏꢄR  
ꢇꢍꢂꢇꢍꢙꢍꢞꢛ  
ꢓꢓꢔꢕ ꢖꢗꢓꢘ  
(3b) Using the Inductor DCR to Sense Current  
Figure 3. Current Sensing Methods  
Rev. A  
23  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
Resistor Current Sensing  
If the external (R1||R2) • C1 time constant is chosen to be  
exactly equal to the L/DCR time constant, the voltage drop  
across the external capacitor is equal to the drop across  
theinductorDCRmultipliedbyR2/(R1+R2).R2scalesthe  
voltage across the sense terminals for applications where  
the DCR is greater than the target sense resistor value.  
To properly dimension the external filter components, the  
DCR of the inductor must be known. It can be measured  
using a good RLC meter, but the DCR tolerance is not  
always the same and varies with temperature; consult  
the manufacturers’ data sheets for detailed information.  
A typical sensing circuit using a discrete resistor is shown  
in Figure 3a. R  
output current.  
is chosen based on the required  
SENSE  
This LTC3372’s current comparator has a fixed maximum  
current limit threshold of 75mV (typical). The current  
comparator threshold voltage sets the peak of the induc-  
tor current, yielding a maximum average output current,  
I
, equal to the peak value less half the peak-to-peak  
MAX  
ripple current, ∆I . To calculate the sense resistor value,  
L
use the equation:  
Using the inductor ripple current value from the Inductor  
ValueCalculationsection,thetargetsenseresistorvalueis:  
V
SENSE(MAX)  
R
=
SENSE  
ΔI  
L
V
I
+
SENSE(MAX)  
MAX  
R
=
2
SENSE(EQUIV)  
ΔI  
L
I
+
MAX  
2
To ensure that the application will deliver full load current  
over the full operating temperature range, choose the  
minimum value (68mV) for the Maximum Current Sense  
To ensure that the application will deliver full load current  
over the full operating temperature range, choose the  
minimum value (68mV) for the Maximum Current Sense  
Threshold (V  
table.  
) in the Electrical Characteristics  
SENSE(MAX)  
Threshold (V  
table.  
) in the Electrical Characteristics  
SENSE(MAX)  
When using the controller in very low dropout conditions,  
the maximum output current level will be reduced due  
to the internal compensation required to meet stability  
criterion for buck regulators operating at greater than  
50% duty factor. The maximum current sense threshold  
vs duty cycle curve is provided in the Typical Performance  
Characteristics section to estimate this reduction in peak  
inductorcurrentdependingupontheoperatingdutyfactor.  
Next, determine the DCR of the inductor. When provided,  
use the manufacturer’s maximum value, usually given at  
20°C. Increase this value to account for the temperature  
coefficient of copper resistance, which is approximately  
0.4%/°C. A conservative value for T  
is 100°C.  
L(MAX)  
To scale the maximum inductor DCR to the desired sense  
resistor value, use the divider ratio (R ):  
D
Inductor DCR Current Sensing  
R
SENSE(EQUIV)  
R =  
Forapplicationsrequiringthehighestpossibleefficiencyat  
highloadcurrents, theLTC3372’sHVcontrolleriscapable  
of sensing the voltage drop across the inductor DCR, as  
showninFigure3b.TheDCRoftheinductorrepresentsthe  
small amount of DC resistance of the copper wire, which  
can be less than 1mΩ for today’s low value, high current  
inductors. In a high current application requiring such  
an inductor, power loss through a sense resistor would  
cost several points of efficiency compared to inductor  
DCR sensing.  
D
DCR  
at T  
L(MAX)  
MAX  
C1isusuallyselectedtobeintherangeof0.1μFto0.47μF.  
ThisforcesR1||R2toaround2k,reducingerrorthatmight  
+
have been caused by the SENSE pin’s 1μA current.  
The equivalent resistance R1 || R2 is scaled to the room  
temperature inductance and maximum DCR:  
L
R1||R2 =  
(DCR at 20°C) • C1  
Rev. A  
24  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
The sense resistor values are:  
The inductor value also has secondary effects. The tran-  
sition to Burst Mode operation begins when the average  
inductor current required results in a peak current below  
R1||R2 R1• R  
D
R1=  
; R2 =  
R
1R  
D
D
25% of the current limit determined by R  
. Lower  
SENSE  
inductor values (higher ∆I ) will cause this to occur at  
L
The maximum power loss in R1 is related to duty cycle,  
and will occur in continuous mode at the maximum input  
voltage:  
lower load currents, which can cause a dip in efficiency in  
the upper range of low current operation. In Burst Mode  
operation, lower inductance values will cause the burst  
frequency to decrease.  
(V  
V  
) • V  
IN(MAX)  
OUT OUT  
P
R1=  
LOSS  
R1  
Inductor Core Selection  
Ensure that R1 has a power rating higher than this value.  
If high efficiency is necessary at light loads, consider this  
power loss when deciding whether to use DCR sensing or  
sense resistors. Light load power loss can be modestly  
higher with a DCR network than with a sense resistor, due  
totheextraswitchinglossesincurredthroughR1.However,  
DCR sensing eliminates a sense resistor, reduces conduc-  
tion losses and provides higher efficiency at heavy loads.  
Peak efficiency is about the same with either method.  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
affordthecorelossfoundinlowcostpowderedironcores,  
forcingtheuseofmoreexpensiveferriteormolypermalloy  
cores. Actual core loss is independent of core size for a  
fixedinductorvalue,butitisverydependentoninductance  
value selected. As inductance increases, core losses go  
down. Unfortunately, increased inductance requires more  
turns of wire and therefore copper losses will increase.  
Inductor Value Calculation  
Ferrite designs have very low core loss and are preferred  
for high switching frequencies, so design goals can con-  
centrate on copper loss and preventing saturation. Ferrite  
core material saturates hard, which means that induc-  
tance collapses abruptly when the peak design current is  
exceeded. This results in an abrupt increase in inductor  
ripple current and consequent output voltage ripple. Do  
not allow the core to saturate!  
The operating frequency and inductor selection are inter-  
related in that higher operating frequencies allow the use  
of smaller inductor and capacitor values. So why would  
anyone ever choose to operate at lower frequencies with  
larger components? The answer is efficiency. A higher  
frequency generally results in lower efficiency because of  
MOSFET switching and gate charge losses. In addition to  
this basic trade-off, the effect of inductor value on ripple  
currentandlowcurrentoperationmustalsobeconsidered.  
Power MOSFET and Schottky Diode (Optional)  
Selection  
Theinductorvaluehasadirecteffectonripplecurrent.The  
Two external power MOSFETs must be selected for the  
HV controller: one N-channel MOSFET for the top (main)  
switch, and one N-channel MOSFET for the bottom (syn-  
chronous) switch.  
inductor ripple current, ∆I , decreases with higher induc-  
L
tance or higher frequency and increases with higher V :  
IN  
1
V
OUT  
ΔI =  
V
1−  
L
OUT  
(f)(L)  
V
IN  
Thepeak-to-peakdrivelevelsaresetbytheINTV voltage.  
CC  
This voltage is typically 5.1V during start-up (see V  
Pin  
OUT  
Accepting larger values of ∆I allows the use of low in-  
Connection).Consequently,logic-levelthresholdMOSFETs  
L
ductances, but results in higher output voltage ripple and  
must be used in most applications. Pay close attention to  
greater core losses. A reasonable starting point for setting  
the BV  
specification for the MOSFETs as well.  
DSS  
ripple current is ∆I = 0.3(I  
). The maximum ∆I occurs  
L
L
MAX  
Selection criteria for the power MOSFETs include the on-  
at the maximum input voltage.  
resistance, R , Miller capacitance, C , input  
DS(ON) MILLER  
Rev. A  
25  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
voltage and maximum output current. Miller capacitance,  
MILLER  
a short-circuit when the synchronous switch is on close  
to 100% of the period.  
C
, can be approximated from the gate charge curve  
usually provided on the MOSFET manufacturers’ data  
sheet. C is equal to the increase in gate charge  
The term (1+ δ) is generally given for a MOSFET in the  
MILLER  
form of a normalized R  
vs Temperature curve, but  
DS(ON)  
along the horizontal axis while the curve is approximately  
δ = 0.005/°C can be used as an approximation for low  
voltage MOSFETs.  
flat divided by the specified change in V . This result is  
DS  
then multiplied by the ratio of the application applied V  
DS  
A Schottky diode can be placed in parallel with the bot-  
tom MOSFET to conduct during the dead-time between  
the conduction of the two power MOSFETs. This prevents  
the body diode of the bottom MOSFET from turning on,  
storing charge during the dead-time and requiring a re-  
verse recovery period that could cost as much as 3% in  
to the gate charge curve specified V . When the IC is  
DS  
operating in continuous mode the duty cycles for the top  
and bottom MOSFETs are given by:  
V
OUT  
Main Switch Duty Cycle =  
V
IN  
efficiency at high V . A 1A to 3A Schottky is generally a  
V V  
IN  
IN  
OUT  
Synchronous Switch Duty Cycle =  
good compromise for both regions of operation due to  
the relatively small average current. Larger diodes result  
in additional transition losses due to their larger junction  
capacitance.  
V
IN  
The MOSFET power dissipations at maximum output  
current are given by:  
Another consideration is the losses due to the gate charge  
of the MOSFETs. Each cycle, the bottom FET gate driver  
V
2
OUT  
P
=
(I  
) (1+ δ)R  
+
DS(ON)  
MAIN  
MAX  
V
IN  
drawsapulseofcurrentfromtheINTV pinwhenturning  
CC  
I
2
MAX  
on the bottom FET gate. Another pulse of current is drawn  
by the boost capacitor as the bottom FET turns on. This  
energy is used by the floating high side driver to turn on  
(V )  
(R )(C  
) •  
MILLER  
IN  
DR  
2
1
1
+
(f)  
thetopMOSFET.TheINTV decouplingcapacitorsmooths  
CC  
V
V  
V
THMIN  
THMIN  
INTVCC  
the current flowing through the LDO. The resulting DC  
V V  
current can be estimated as:  
2
IN  
OUT  
P
=
(I ) (1+ δ)R  
MAX  
DS(ON)  
SYNC  
V
IN  
I
GQ  
= f(Q + Q )  
GT GB  
The LDO losses will then become:  
= (V – V ) • I  
where δ is the temperature dependency of R  
DR  
and  
DS(ON)  
R
(approximately 2Ω) is the effective driver resistance  
P
LDO  
IN  
INTVCC  
GQ  
at the MOSFET’s Miller threshold voltage. V  
is the  
THMIN  
To avoid the LDO losses, program V  
for 5V with the  
CC  
with an internal  
OUT  
typical MOSFET minimum threshold voltage.  
VOUTPRG pin. With this setting, the INTV LDO is shut  
2
BothMOSFETshaveI RlosseswhilethetopsideN-channel  
equation includes an additional term for transition losses,  
down and the INTV pin is tied to V  
CC  
OUT  
switch. This will provide significant power loss reductions  
which are highest at high input voltages. For V < 20V  
IN  
for high input voltages.  
the high current efficiency generally improves with larger  
ThelossesinthegatedriverarealsoaffectedbytheMOSFET  
gatecharge.Aconservativeestimateofthetheselossesis:  
MOSFETs, while for V > 20V the transition losses rapidly  
IN  
increasetothepointthattheuseofahigherR  
device  
DS(ON)  
withlowerC  
actuallyprovideshigherefficiency.The  
P
= I • V  
GQ INTVCC  
MILLER  
GATE_DRIVE  
synchronous MOSFET losses are greatest at high input  
voltage when the top switch duty factor is low or during  
Rev. A  
26  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
C and C  
Selection  
Setting Output Voltage (HV Controller)  
IN  
OUT  
The selection of C is usually based off the worst-case  
The HV controller output voltage is set by the V  
IN  
OUTPRG  
RMSinputcurrent.Thehighest(V )(I )productneeds  
pin through an internal resistor voltage divider. When  
OUT OUT  
to be used in the formula to determine the maximum RMS  
capacitor current requirement.  
the V pin is tied to INTV , the output voltage is  
OUTPRG  
CC  
regulated to 5V. When tied to ground, the output voltage  
is regulated to 3.3V.  
Incontinuousmode,thesourcecurrentofthetopMOSFET  
is a square wave of duty cycle (V )/(V ). To prevent  
OUT  
IN  
RUN Pin  
large voltage transients, a low ESR capacitor sized for the  
The HV controller is enabled using the RUN pin. It has a  
rising threshold of 1.2V with 50mV of hysteresis. Pulling  
the RUN pin below 1.15V shuts down the main control  
loop.Pullingitbelow0.7Vdisablesthecontrollerandmost  
maximumRMScurrentmustbeused.ThemaximumRMS  
capacitor current is given by:  
I
1/2  
MAX  
C Required I  
(V  
)(V V  
)
[
]
IN  
IN  
RMS  
OUT  
OUT  
internal circuits, including the INTV LDOs.  
CC  
V
IN  
Releasing the RUN pin allows a 0.5μA internal current to  
pull up the pin to enable the controller. The RUN pin may  
be externally pulled up to up to 60V (65V Abs Max).  
This formula has a maximum at V = 2V , where I  
IN  
OUT  
RMS  
= I /2. This simple worst-case condition is commonly  
OUT  
used for design because even significant deviations do  
not offer much relief. Note that capacitor manufacturers’  
ripple current ratings are often based on only 2000 hours  
of life. This makes it advisable to further derate the capaci-  
tor, or to choose a capacitor rated at a higher temperature  
than size or height requirements in the design. Due to the  
high operating frequency, ceramic capacitors can also be  
The RUN pin can be implemented as a UVLO by connect-  
ing it to the output of an external resistor divider network  
off V , as shown in Figure 4.  
IN  
TherisingandfallingUVLOthresholdsarecalculatedusing  
the RUN pin thresholds:  
R
R
used for C . Always consult the manufacturer if there is  
B
A
IN  
V
= 1.2V 1+  
UVLO(RISING)  
any question.  
A small (0.1µF to 1µF) bypass capacitor between the  
R
B
A
V
= 1.15V 1+  
UVLO(FALLING)  
chip V pin and ground, placed close to the IC, is also  
IN  
R
suggested. A small (<10Ω) resistor placed between C  
IN  
(C1) and the V pin provides further isolation.  
IN  
The resistor values should be carefully chosen such that  
the absolute maximum ratings of the RUN pin do not get  
violated over the entire V voltage range.  
The selection of C  
is driven by the effective series  
OUT  
resistance (ESR). Typically, once the ESR requirement  
is satisfied, the capacitance is adequate for filtering. The  
IN  
ꢉꢇ  
output ripple (V ) is approximated by:  
OUT  
R
R
ꢂꢃꢃꢄꢅ  
Rꢆꢇ  
1
ΔV  
≈ ΔI ESR +  
L
OUT  
8 • f • C  
A
OUT  
ꢃꢃꢄꢅ ꢋꢌꢍ  
where f is the operating frequency, C  
is the output  
OUT  
capacitance and ∆I is the ripple current in the inductor.  
Figure 4. Using the RUN Pin as a UVLO  
L
The output ripple is highest at maximum input voltage  
since ∆I increases with input voltage.  
L
Rev. A  
27  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
Tracking and Soft-Start (TRACK/SS Pin)  
ꢂꢃꢃꢄꢅ  
ꢁRAꢂꢆꢇꢈꢈ  
The start-up of V  
is controlled by the voltage on the  
OUT  
ꢈꢈ  
TRACK/SS pin. When the voltage on the TRACK/SS pin  
is less than the internal 1.2V reference, it regulates the  
ꢈꢉꢊꢋ  
ꢃꢃꢄꢅ ꢌꢍꢎ  
internal V voltage to the voltage on the TRACK/SS pin  
FB  
Figure 5. Using the TRACK/SS Pin to Program Soft-Start  
insteadof1.2V.TheTRACK/SSpincanbeusedtoprogram  
an external soft-start function or to allow V  
another supply during start-up.  
to track  
OUT  
ꢅꢆꢂAꢇꢀꢃRꢈ  
Soft-start is enabled by simply connecting a capacitor  
from the TRACK/SS pin to ground, as shown in Figure 5.  
An internal 10μA current source charges the capacitor,  
providing a linear ramping voltage at the TRACK/SS pin.  
ꢉꢊꢀꢆꢇꢋAꢄꢃꢈ  
The HV controller will regulate the V (and hence V  
)
FB  
OUT  
according to the voltage on the TRACK/SS pin, allowing  
V
/EXTV torisesmoothlyfrom0Vtoitsfinalregulated  
OUT  
CC  
value. The total soft-start time will be approximately:  
ꢎꢎꢏꢐ ꢑꢒꢓꢔ  
ꢀꢁꢂꢃ  
1.2V  
t
= C  
SS  
SS  
(6a) Coincident Tracking  
10µA  
Alternatively,theTRACK/SSpincanbeusedtotrackanother  
supplyduringstart-up,asshownqualitativelyinFigures6a  
and 6b. To do this, a resistor divider should be connected  
ꢌꢍꢂAꢎꢀꢃRꢏ  
ꢐꢑꢀꢍꢎꢒAꢋꢃꢏ  
from the master supply (V ) to the TRACK/SS pin of the  
X
slave supply (V /EXTV ) as shown in Figure 7. During  
OUT  
CC  
start-up V /EXTV will track V according to the ratio  
OUT  
CC  
X
set by the resistor divider:  
V
1.2V  
R
+R  
TRACKB  
X
TRACKA  
ꢄꢄꢅꢆ ꢇꢈꢉꢊ  
=
ꢀꢁꢂꢃ  
V
V
R
TRACKA  
OUT  
OUT(REG)  
(6b) Ratiometric Tracking  
V
is the programmed output regulation voltage.  
OUT(REG)  
Figure 6. Two Different Modes of Output Voltage Tracking  
If the V  
If the V  
pin it tied to INTV pin, V  
= 5V.  
OUTPRG  
OUTPRG  
CC  
OUT(REG)  
pin is tied to ground, V  
= 3.3V.  
OUT(REG)  
ꢉꢊꢋꢁꢆ  
ꢉꢊꢋꢁꢆ  
ꢇꢈꢁ  
ꢂꢂ  
ꢂꢂ  
INTV Regulation  
CC  
ꢇꢈꢁ  
INTV powers the gate drivers and much of the internal  
CC  
ꢂꢃꢃꢄꢅ  
circuitry. Power to the INTV pin is supplied either from  
CC  
theV pinthroughaninternallowdropoutlinearregulator  
IN  
R
R
ꢁRAꢂꢍꢑ  
(LDO), or from the V /EXTV pin through an internal  
OUT  
CC  
ꢁRAꢂꢍꢉꢎꢎ  
switch, depending on the voltage at V /EXTV . The V  
ꢃꢃꢄꢅ ꢏꢐꢄ  
OUT  
CC  
IN  
ꢁRAꢂꢍA  
LDO regulates INTV to 5.1V. The INTV can supply a  
CC  
CC  
peak current of at least 50mA and must be bypassed to  
ground with a minimum of 4.7μF ceramic capacitor. Good  
Figure 7. Using the TRACK/SS Pin for Tracking  
Rev. A  
28  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
bypassing is needed to supply the high transient currents  
required by the MOSFET gate drivers and to prevent in-  
teraction between the channels.  
Topside MOSFET Driver Supply (C , D )  
B
B
An external bootstrap capacitor, C , connected to the  
B
BOOST pin supplies the gate drive voltage for the topside  
The INTV load current (I  
) is dominated by the  
MOSFET. Capacitor C in the Block Diagram is charged  
CC  
INTVCC  
B
gate charge current and may be supplied by either the  
V LDO or the V /EXTV pin. The gate charge current  
though external diode D from INTV when the SW pin  
B CC  
is low. When the topside MOSFET is to be turned on, the  
IN  
OUT  
CC  
is dependent on operating frequency and NMOS size as  
discussed in the Efficiency Considerations section.  
driver places the C voltage across the gate-source of  
B
the MOSFET. This enhances the top MOSFET switch and  
turns it on. The switch node voltage, SW, rises to V and  
IN  
When the V /EXTV regulation is set to 3.3V, the V  
OUT  
CC  
IN  
the BOOST pin follows. With the topside MOSFET on, the  
LDO is always enabled as the voltage on the V /EXTV  
OUT  
CC  
boost voltage is above the input supply: V  
= V +  
BOOST  
B
IN  
pinisneverabovethe4.7Vthreshold.Powerdissipationfor  
the IC in this case is highest and is equal to V • I  
V
. The value of the boost capacitor, C , needs to be  
INTVCC  
.
IN INTVCC  
100 times that of the total input capacitance of the top-  
High input voltage applications in which large power  
MOSFETs are being driven at high frequencies may cause  
the maximum junction temperature rating for the IC to be  
side MOSFET(s). The reverse breakdown of the external  
Schottky diode must be greater than V  
.
IN(MAX)  
exceeded. For example, a 30mA INTV current from a  
Fault Conditions: Current Limit and Current Foldback  
CC  
48V input supply will result in a junction temperature (T )  
J
The HV controller includes current foldback to help limit  
load current when the output is shorted to ground. If the  
output voltage falls below 70% of its nominal output level,  
then the maximum sense voltage is progressively lowered  
from 100% to 45% of its maximum selected value. Under  
short-circuit conditions with very low duty cycles, cycle  
skippingwillbegininordertolimittheshort-circuitcurrent.  
In this situation the bottom MOSFET will be dissipating  
most of the power. The short-circuit ripple current is de-  
increase (rise) of:  
∆T = (30mA)(48V)(34°C/W for QFN) = 48°C  
J
The power dissipation due to I  
from V should be  
IN  
INTVCC  
checked at the maximum V of the application operating  
IN  
in forced continuous mode.  
When the V  
regulation is set to 5V and V  
rises  
OUT  
OUT  
through an  
above 4.7V, INTV is connected to V  
CC  
OUT  
internal switch. Significant efficiency and thermal gains  
terminedbytheminimumon-time, t  
(seeElectrical  
ON(MIN)  
can be realized by powering INTV from the output, since  
Characteristics), the input voltage and inductor value:  
CC  
the input supply current resulting from INTV current is  
CC  
V
IN  
scaled by a factor of (V /V )/(efficiency). In this case,  
OUT IN  
ΔI  
= t  
L(SC) ON(MIN)  
L
power dissipation in the LTC3372 due to the INTV cur-  
CC  
rent is V  
• I  
, and the junction temperature (T )  
INTVCC INTVCC J  
increase (rise) of:  
The resulting average short-circuit current is:  
1
∆T = (30mA)(5V)(34°C/W for QFN) = 5°C  
I
= 45% •I  
− ΔI  
J
LIM(MAX)  
SC  
L(SC)  
2
The LTC3372 junction temperature (T ) can be estimated  
J
fromambienttemperature(T )andtotalpowerdissipation  
A
Fault Conditions: Overvoltage Protection (Crowbar)  
(P ) using the equations given in Note 2 of the Electrical  
D
The overvoltage crowbar is designed to blow a system  
input fuse when the output voltage of the regulator rises  
muchhigherthannominallevels.Thecrowbarcauseshuge  
currents to flow, that blow the fuse to protect against a  
shorted top MOSFET if the short occurs while the control-  
ler is operating.  
Characteristics. To prevent the maximum junction tem-  
peraturefrombeingexceeded,allpowerdissipationsfrom  
the HV controller’s INTV current and the LV buck power  
CC  
stages must be considered.  
Rev. A  
29  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
Both the V  
and SENSE pins are monitored for over-  
produce the most improvement. Percent efficiency can  
OUT  
voltage conditions. An overvoltage condition is detected  
when either pin is 7.5% above the nominal output volt-  
age. When this condition is sensed, the top MOSFET is  
turned off and the bottom MOSFET is turned on until the  
overvoltage condition is cleared. The bottom MOSFET  
remains on continuously for as long as the overvoltage  
be expressed as:  
%Efficiency = 100% – (L1 + L2 + L3 + ...)  
where L1, L2, etc. are the individual losses as a percent-  
age of input power.  
Although all dissipative elements in the circuit produce  
losses, four main sources usually account for most of  
condition persists; if V  
returns to a safe level, normal  
operation automatically resumes.  
OUT  
the losses in HV regulator: 1) IC V current, 2) INTV  
IN  
CC  
2
regulator current, 3) I R losses, 4) topside MOSFET  
AshortedtopMOSFETwillresultinahighcurrentcondition  
which will open the system fuse. The switching regulator  
will regulate properly with a leaky top MOSFET by altering  
the duty cycle to accommodate the leakage.  
transition losses.  
1. The V current is the DC supply current given in the  
IN  
Electrical Characteristics table, which excludes MOS-  
FET driver and control currents. V current typically  
IN  
Minimum On-Time Considerations  
results in a small (<0.1%) loss.  
The minimum on-time, t  
, is the smallest time dura-  
ON(MIN)  
2. INTV current is the sum of the MOSFET driver and  
CC  
tion that the HV controller is capable of turning on the top  
MOSFET. It is determined by internal timing delays and the  
gate charge required to turn on the top MOSFET. Low duty  
cycle applications may approach this minimum on-time  
limit and care should be taken to ensure that:  
control currents. The MOSFET driver current results  
from switching the gate capacitance of the power  
MOSFETs. Each time a MOSFET gate is switched  
from low to high to low again, a packet of charge, dQ,  
moves from INTV to ground. The resulting dQ/dt is  
CC  
V
a current out of INTV that is typically much larger  
CC  
OUT  
t
<
ON(MIN)  
than the control circuit current. In continuous mode,  
V (f)  
IN  
I
= f(Q + Q ), where Q and Q are the gate  
GATECHG  
T B T B  
charges of the topside and bottom side MOSFETs.  
InapplicationswhenV /EXTV issetto5V,INTV  
CC  
If the duty cycle falls below what can be accommodated  
by the minimum on-time, the controller will begin to skip  
cycles. The output voltage will continue to be regulated,  
but the ripple voltage and current will increase.  
OUT  
CC  
is supplied through V /EXTV . This scales the V  
OUT  
CC  
IN  
current required for the driver and control circuits by  
a factor of (Duty Cycle)/(Efficiency). For example, in a  
The minimum on-time of top FET is typically 60ns. How-  
ever, as the peak sense voltage decreases the minimum  
on-time gradually increases. This is of particular concern  
in forced continuous applications with low ripple current  
at light loads. If the duty cycle drops below the minimum  
on-timelimitinthissituation, asignificantamountofcycle  
skipping can occur with correspondingly larger current  
and voltage ripple.  
20V to5V application, 10mA of INTV current results  
CC  
in approximately 2.5mA of V current. This reduces  
IN  
the midcurrent loss from 10% or more (if the driver  
was powered directly from V ) to only a few percent.  
IN  
2
3. I RlossesarepredictedfromtheDCresistancesofthe  
fuse (if used), MOSFET, inductor, current sense resis-  
tor and input and output capacitor ESR. In continuous  
mode the average output current flows through L and  
Efficiency Considerations  
R , but is chopped between the topside MOSFET  
SENSE  
The percent efficiency of a switching regulator is equal to  
the output power divided by the input power times 100%.  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
and the synchronous MOSFET. If the two MOSFETs  
have approximately the same R , then the re-  
DS(ON)  
sistance of one MOSFET can simply be summed with  
the resistances of L, R  
and ESR to obtain I2R  
SENSE  
Rev. A  
30  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
losses. For example, if each R  
= 30mΩ, R =  
ringing, which would indicate a stability problem. OPTI-  
LOOP compensation allows the transient response to be  
optimized over a wide range of output capacitance and  
ESR values. The availability of the ITH pin not only allows  
optimization of control loop behavior, but it also provides  
a DC coupled and AC filtered closed-loop response test  
point. The DC step, rise time and settling at this test  
point truly reflects the closed-loop response. Assuming  
a predominantly second order system, phase margin and/  
or damping factor can be estimated using the percentage  
of overshoot seen at this pin. The bandwidth can also be  
estimated by examining the rise time at the pin. The ITH  
external components in Typical Applications will provide  
an adequate starting point for most applications.  
DS(ON)  
L
50mΩ,R  
=10mΩandR =40mΩ(sumofboth  
SENSE  
ESR  
input and output capacitance losses), then the total  
resistance is 130mΩ. This results in losses ranging  
from 3% to 13% as the output current increases from  
1A to 5A for a 5V output, or a 4% to 20% loss for a  
3.3V output. Efficiency varies as the inverse square  
of V  
for the same external components and output  
OUT  
power level. The combined effects of increasingly  
lower output voltages and higher currents required  
by high performance digital systems is not doubling  
but quadrupling the importance of loss terms in the  
switching regulator system!  
4. TransitionlossesapplyonlytothetopsideMOSFET(s),  
and become significant only when operating at high  
input voltages (typically 15V or greater). Transition  
losses can be estimated from:  
The ITH series RC-CC filter sets the dominant pole-zero  
loop compensation. The values can be modified slightly  
to optimize transient response once the final PC layout is  
done and the particular output capacitor type and value  
have been determined. The output capacitors need to be  
selected because the various types and values determine  
the loop gain and phase. An output current pulse of 20%  
to 80% of full-load current having a rise time of 1μs to  
10μs will produce output voltage and ITH pin waveforms  
that will give a sense of the overall loop stability without  
breaking the feedback loop.  
Transition Loss = (1.7) • V • 2 • I  
• C  
• f  
RSS  
IN  
O(MAX)  
Other hidden losses such as copper trace and internal  
battery resistances can account for an additional 5%  
to 10% efficiency degradation in portable systems. It  
is very important to include these system level losses  
during the design phase. The internal battery and fuse  
resistancelossescanbeminimizedbymakingsurethat  
C has adequate charge storage and very low ESR at  
IN  
Placing a power MOSFET directly across the output ca-  
pacitor and driving the gate with an appropriate signal  
generator is a practical way to produce a realistic load step  
condition. The initial output voltage step resulting from  
the step change in output current may not be within the  
bandwidth of the feedback loop, so this signal cannot be  
used to determine phase margin. This is why it is better  
to look at the ITH pin signal which is in the feedback loop  
andisthefilteredandcompensatedcontrolloopresponse.  
the switching frequency. A 25W supply will typically  
require a minimum of 20μF to 40μF of capacitance  
having a maximum of 20mΩ to 50mΩ of ESR. Other  
lossesincludingbodydiodeconductionlossesduring  
dead-time and inductor core losses generally account  
for less than 2% total additional loss.  
Checking Transient Response  
The regulator loop response can be checked by looking at  
the load current transient response. Switching regulators  
take several cycles to respond to a step in DC (resistive)  
The gain of the loop will be increased by increasing RC  
and the bandwidth of the loop will be increased by de-  
creasing CC. If RC is increased by the same factor that  
CC is decreased, the zero frequency will be kept the same,  
thereby keeping the phase shift the same in the most  
critical frequency range of the feedback loop. The output  
voltage settling behavior is related to the stability of the  
closed-loopsystemandwilldemonstratetheactualoverall  
supply performance.  
load current. When a load step occurs, V  
shifts by an  
OUT  
amount equal to ∆I  
(ESR), where ESR is the effective  
LOAD  
series resistance of C . ∆I  
also begins to charge or  
OUT  
LOAD  
discharge C  
generating the feedback error signal that  
OUT  
forces the regulator to adapt to the current change and  
return V to its steady-state value. During this recovery  
OUT  
time V  
can be monitored for excessive overshoot or  
OUT  
Rev. A  
31  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION High Voltage Buck Controller  
A second, more severe transient is caused by switching  
in loads with large (>1μF) supply bypass capacitors. The  
discharged bypass capacitors are effectively put in paral-  
Rounding down to the next standard value yields a sense  
resistor value of 5mΩ.  
Fora3.3V/10A333kHzconverteroperatingwithanominal  
12V input and a 60V surge rating, a reasonable MOSFET  
selection is:  
lel with C , causing a rapid drop in V /EXTV . No  
OUT  
OUT  
CC  
regulator can alter its delivery of current quickly enough  
to prevent this sudden step change in output voltage if  
the load switch resistance is low and it is driven quickly. If  
Top: RJK0651DPB  
the ratio of C  
to C  
is greater than 1:50, the switch  
LOAD  
OUT  
R
= 0.018Ω, Q = 15nC,  
G
DS(ON)  
MILLER  
rise time should be controlled so that the load rise time is  
limited to approximately 25 • C . Thus a 10μF capaci-  
C
= 148pF, V  
= 1.2V, V  
= 60V  
THMIN  
DSS  
LOAD  
tor would require a 250μs rise time, limiting the charging  
current to about 200mA.  
Bottom: RJK0652DPB  
= 0.009Ω, Q = 29nC, V = 60V  
DSS  
R
DS(ON)  
G
Design Example  
Atthenominalinputvoltageof12VwithT(estimated)=50°C,  
the losses become:  
As a design example, assume V = 12V (nominal),  
IN  
V
MAX  
= 60V (max) for transient voltages, V  
= 3.3V,  
3.3V  
12V  
2
IN  
OUT  
P
=
(10A)  
1 + (0.005)(50°C – 25°C)  
[
](0.018Ω)  
MAIN  
I
= 10A, V  
= 75mV and f = 333kHz. The  
SENSE(MAX)  
inductance value is chosen first based on a 30% ripple  
current assumption. The highest value of ripple current  
10A  
2
2
+(12V)  
(2Ω)(148pF) •  
occurs at the maximum input voltage. Tie the R pin to  
T
1
1
INTV (for better frequency accuracy over temperature,  
CC  
(333kHz)  
+
5.1V 1.2V 1.2V  
use an external R = 400k to ground), generating 333kHz  
T
operation for LTC3372’s HV controller (1/6 of f  
at  
= 557mW + 77mW  
= 643mW  
OSC  
2MHz). The maximum ripple current is:  
ꢃꢄꢅ  
12V 3.3V  
ꢃꢄꢅ  
2
Δ=  
−  
P
=
(10A) •  
SYNC  
ꢆꢇꢈꢆꢁꢈ  
ꢀꢊꢆꢋAꢌꢈ  
12V  
1+(0.005)(50°C 25°C) (0.009Ω)  
[
]
A 2.2μH inductor will produce 43% ripple current which  
is sufficiently close. The peak inductor current will be the  
maximum DC value plus one half the ripple current, or  
12.1A. Increasing the ripple current will also help ensure  
that the minimum on-time of 60ns is not violated. The  
= 734mW  
Other losses include the gate drive and INTV LDO  
CC  
losses. These can be estimated from the gate charge and  
switching frequency:  
minimum on-time occurs at maximum V :  
IN  
I
GQ  
= 333kHz (15nC + 29nC)  
= 14.7mA  
ꢌ.ꢌꢇ  
ꢃꢋꢆ ꢍꢎꢇꢃꢌꢌꢌꢏꢐꢑꢆ  
ꢁꢈꢉ  
ꢅꢂꢃꢄAꢊꢆ  
=
=
= ꢒꢍꢓꢔꢕ  
ꢁꢂꢃꢄꢅꢂꢆ  
P
= (12V – 5.1V) 14.7mA  
= 101mW  
LDO  
The equivalent R  
using the minimum value for the maximum current sense  
threshold (68mV):  
resistor value can be calculated by  
SENSE  
P
P
= 5.1V • 14.7mA  
GATE_DRIVE  
GATE_DRIVE  
= 75mW  
ꢃꢄꢅꢆ  
R
ꢉ.ꢃꢅΩ  
ꢀꢁꢂꢀꢁ  
ꢇꢈ.ꢇA  
Rev. A  
32  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION Low Voltage Buck Regulators  
With the input voltage at a sustained 60V and full load on  
the output, the estimated power losses in the main FET  
will be 2.0W and the LDO losses inside the chip will be  
0.8W. Airflow will likely be required. A lower switching  
regulatortransientresponsemayimprovewithanoptional  
capacitor, C , that helps cancel the pole created by the  
FF  
feedback resistors and the input capacitance of the FB pin.  
Experimentation with capacitor values between 2.2pF and  
22pF may improve transient response.  
frequency will reduce these losses and setting V  
5V will avoid the LDO losses.  
to  
OUT  
Input and Output Decoupling Capacitor Selection  
A short-circuit to ground will result in a folded back cur-  
rent of:  
TheLTC3372buckregulatorshaveindividualinputsupply  
pins for each buck power stage. Each of these pins must  
be decoupled with low ESR capacitors to GND. These ca-  
pacitors must be placed as close to the pins as possible.  
Ceramic dielectric capacitors are a good compromise  
between high dielectric constant and stability versus  
temperature and DC bias. Note that the capacitance of a  
capacitor deteriorates at higher DC bias. It is important  
to consult manufacturer data sheets and obtain the true  
capacitance of a capacitor at the DC bias voltage that it  
will be operated at. For this reason, avoid the use of Y5V  
dielectric capacitors. The X5R/X7R dielectric capacitors  
offer good overall performance.  
0.45(75mV) 1 60ns(22V)  
I
=
= 6.6A  
SC  
0.005Ω  
2
2.2µH  
with a maximum value of R  
and = (0.005/°C)(25°C)  
DS(ON)  
= 0.125. The resulting power dissipated in the bottom  
MOSFET is:  
= ꢅꢆ.ꢆAꢇ ꢅꢉ.ꢉꢈꢊꢇꢅꢋ.ꢋꢋꢌΩꢇ  
= ꢍꢍꢉꢎꢏ  
ꢁꢂꢃꢄ  
whichislessthanunderfull-loadconditions.C ischosen  
IN  
for an RMS current rating of at least 5A at temperature  
Each low voltage input power supply voltage V  
Pins  
IN,A-H  
assuming only this channel is on. C  
is chosen with an  
OUT  
5, 8, 9, 12, 25, 28, 29 and 32 all need to be de-coupled  
withatleast1Fcapacitors.Ifpowerstagesarecombined  
the supplies should be shorted with as short of a trace  
as possible. Additionally, all LV buck regulator outputs  
should be bypassed with a capacitor to ground of at least  
22µF for 1A, 47µF for 2A, 68µF for 3A and 100µF for 4A  
configurations.  
ESR of 0.01Ω for low output ripple. The output ripple in  
continuousmodewillbehighestatthemaximuminputvolt-  
age.TheoutputvoltagerippleduetoESRisapproximately:  
V
= R (∆I ) = 0.1Ω(4.3A) = 43mV  
ESR L P-P  
ORIPPLE  
LOW VOLTAGE BUCK REGULATORS  
Output Voltage and Feedback Network  
Combined Buck Power Stages  
The LTC3372 has eight powerstages thatcanhandle aver-  
age load currents of 1A each. These power stages may be  
combined in any one of eight possible combinations, via  
the C1, C2, and C3 pins (see Table 1). Table 3, Table 4, and  
Table 5 show recommended inductors for the combined  
power stage configurations.  
The output voltage of each LV buck switching regulators  
is programmed by a resistor divider connected from the  
switching regulator’s output to its feedback pin and is  
given by V  
= V (1 + R2/R1) as shown in Figure 8.  
OUT  
FB  
Typical values for R1 range from 40k to 1M. The buck  
ꢐꢎꢑꢊꢂ  
ꢅꢅ  
Fora2Acombinedbuckregulator, the inputsupplyshould  
bede-coupledwitha2Fcapacitorwhiletheoutputshould  
be de-coupled with a 47μF capacitor. Similarly, for 3A and  
4A configurations the input and output capacitance must  
be scaled up to account for the increased load.  
ꢏꢄꢊ  
ꢁꢂ ꢄꢅꢆ  
ꢏꢄꢊ  
ꢒꢒ  
ꢇꢈꢉꢊꢅꢋꢉꢌꢍ  
RꢎꢍꢄꢁAꢊꢏR  
Rꢖ  
Rꢓ  
ꢔꢔꢕꢖ ꢒꢗꢘ  
ꢒꢃn  
ꢏꢙꢊꢉꢏꢌAꢁ  
Figure 8. Feedback Components  
Rev. A  
33  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION Low Voltage Buck Regulators  
Table 2. Recommended Inductors for 1A Buck Regulators  
f
PART NUMBER  
XFL4020-472ME  
74408943047  
L (µH)  
4.7  
MAX I (A)  
MAX DCR (mΩ)  
SIZE IN mm (L × W × H) MANUFACTURER  
OSC  
DC  
2.7  
2.2  
3.7  
2.2  
3
57.4  
52  
4 × 4 × 2.1  
4.8 × 4.8 × 3.8  
4 × 4 × 2.1  
CoilCraft  
1MHz  
4.7  
Wurth Elektronik  
CoilCraft  
XFL4020-222ME  
2.2  
23.5  
84  
2MHz DFE252012P-2R2M  
IHLP1212BZER2R2M-11  
2.2  
2.5 × 2.0 × 1.2  
3 × 3.65 × 2.0  
3 × 3 × 2  
Toko  
2.2  
46  
Vishay  
74438336015  
3MHz  
1.5  
3.7  
2.7  
39  
Wurth Elektronik  
Toko  
DFE252012F-1R5M  
1.5  
58  
2.5 × 2 ×1.2  
Table 3. Recommended Inductors for 2A Buck Regulators  
f
PART NUMBER  
XEL4020-222ME  
74438356022  
L (µH)  
2.2  
2.2  
1
MAX I (A)  
MAX DCR (mΩ)  
SIZE IN mm (L × W × H) MANUFACTURER  
OSC  
DC  
5.5  
4.7  
5.4  
4.5  
5.6  
4.5  
5.4  
38.7  
35  
4 × 4 × 2.1  
4.1 × 4.1 × 2.1  
4 × 4 × 2.1  
CoilCraft  
1MHz  
Wurth Elektronik  
CoilCraft  
XFL4020-102ME  
11.9  
24  
2MHz IHLP1212BZER1R0M-11  
SPM4020T-1R0M-LR  
1
3 × 3.65 × 2.0  
4.1 × 4.4 × 2  
3 × 3 × 2  
Vishay  
1
28.1  
27  
TDK  
744383360068  
3MHz  
0.68  
0.68  
Wurth Elektronik  
Vishay  
IHLP1212AEERR68M-11  
22  
3 × 3.65 × 1.5  
Table 4. Recommended Inductors for 3A Buck Regulators  
f
PART NUMBER  
L (µH)  
1.5  
MAX I (A)  
MAX DCR (mΩ)  
SIZE IN mm (L × W × H) MANUFACTURER  
OSC  
DC  
XEL4020-152ME  
IHLP2020CZER1R5M11  
XEL4020-821ME  
7.4  
7
23.6  
18.5  
13  
4 × 4 × 2.1  
5.18 × 5.49 × 3  
4 × 4 × 2  
CoilCraft  
Vishay  
1MHz  
1.5  
0.82  
0.75  
0.68  
0.47  
0.47  
10.2  
9.7  
8.2  
6.8  
6.7  
CoilCraft  
Toko  
2MHz FDV0530-H-R75M  
744383560068  
7.6  
9
6.2 × 5.8 × 3  
4.1 × 4.1 × 2.1  
4.2 × 4.2 × 2  
3 × 3.65 × 1.5  
Wurth Elektronik  
Toko  
FDSD0420D-R47M  
3MHz  
18  
IHLP1212AEERR47M-11  
15  
Vishay  
Table 5. Recommended Inductors for 4A Buck Regulators  
f
PART NUMBER  
XEL4020-102ME  
744316100  
L (µH)  
1
MAX I (A)  
MAX DCR (mΩ)  
SIZE IN mm (L × W × H) MANUFACTURER  
OSC  
DC  
9
14.6  
5.225  
8.8  
4 × 4 × 2.1  
5.3 × 5.5 × 4.0  
4 × 4 × 2.1  
CoilCraft  
1MHz  
1
11.5  
11.3  
11.1  
8.7  
9
Wurth Elektronik  
CoilCraft  
XEL4020-561ME  
0.56  
0.56  
0.47  
0.33  
0.33  
2MHz FDV0530-H-R56M  
SPM4020T-R47M-LR  
6.3  
6.2 × 5.8 × 3  
4.1 × 4.4 × 2  
4 × 4 × 1.4  
Toko  
11.8  
12  
TDK  
XEL4014-331ME  
3MHz  
CoilCraft  
744383560033  
9.6  
7.2  
4.1 × 4.1 × 2.1  
Wurth Elektronik  
Rev. A  
34  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION  
Efficiency can be increased by combining more power  
stages than are required to meet output current require-  
ments. Conduction loss will decrease by adding power  
stages. The overall efficiency will improve provided the  
switching loss of the added power stage does not exceed  
the reduction in conduction loss. For example, a buck  
running at 900mA load may have a higher efficiency when  
two power stages are combined to make a 2A buck. In this  
example, the 900mA load is closer to the peak efficiency  
power of the 2A buck this it is for a 1A buck. In addition  
toefficiencyconcerns,combiningadditionalpowerstages  
provides increased margin and transient capability. It is  
therefore a good idea to explore combining any unused  
power stages with active bucks in any given application.  
Otherwise, any unused buck regulator should have it’s  
possible to the IC. Ensure accurate current sensing  
with Kelvin connections at the current sense resistor.  
Don’t connect the current sensing leads backwards!  
The output voltage may still be maintained but the  
current mode control will not be realized.  
4. Place the INTV decoupling capacitor close to the  
CC  
IC, between the INTV pin and power ground plane.  
CC  
This capacitor carries the MOSFET drivers’ current  
peaks. A ceramic capacitor placed immediately next  
totheINTV pincanhelpimprovenoiseperformance  
CC  
substantially.  
5. Kelvin connect the return of the ITH network to an iso-  
lated shape (ground copper “island”) tied to the GND  
pad of the IC (refer to the ground copper “island(s)”  
discussed in the Ground Planes section).  
FB and EN pins tied to ground. The V pin may be tied to  
IN  
ground and the SW pin can float.  
6. Keep the SW, TG, and BOOST nodes away from sensi-  
+
tive control signals (I , SENSE , SENSE , RT, etc.).  
TH  
PRINTED CIRCUIT BOARD PCB LAYOUT  
CONSIDERATIONS  
These nodes have very large and fast moving signals  
and therefore should be kept on the output side of the  
HV regulator and occupy minimum PCB trace area.  
PCB Layout Considerations for HV Regulator  
Debugging HV Buck Controller on PCB  
1. The path formed by the top N-channel MOSFET, the  
bottom N-channel MOSFET, and the C  
capacitor  
1. Probeandsynchronizetheoscilloscopetotheswitch-  
ing nodes (SW, SWA-H pins). It is helpful to use an  
oscilloscope current probe to monitor the currents in  
the inductors.  
INTVCC  
should have short leads and (PCB) trace lengths. The  
output capacitor (–) terminals should be connected  
as close as possible to the (–) terminals of the input  
capacitor by placing the capacitor and kept away from  
the loop described above.  
2. Checkforproperperformanceovertheoperatingvolt-  
age and current range expected in the application. The  
frequency of operation should be maintained over the  
inputvoltagerangedowntoneardropoutanduntilthe  
peak of inductor current drops below the low current  
operation threshold—typically 25% of the maximum  
designed current level in Burst Mode operation.  
For proper operation of the gate drivers, the BG and  
TG traces should maintain low impedance. The length  
of the BG and TG traces should be 1.0” or less and  
the number of via should be kept minimum.  
2. Kelvin connect the V /EXTV pin directly to the (+)  
OUT  
CC  
terminal of C , or where the regulation needs to be.  
In pulse-skipping mode, the frequency should main-  
tain at even lower peak inductor current compared to  
Burst Mode until a pulse is skipped to maintain the  
regulation. The frequency in forced continuous mode  
should not change with load current.  
OUT  
The connection should not be along the high current  
input feeds from the input capacitor(s).  
+
3. Route the SENSE and SENSE signals together with  
minimum PCB trace spacing. The filter capacitor  
+
between SENSE and SENSE should be as close as  
Rev. A  
35  
For more information www.analog.com  
LTC3372  
APPLICATIONS INFORMATION  
The duty cycle percentage should be maintained  
from cycle to cycle in a well-designed, low noise PCB  
implementation.  
PCB Layout Considerations for LV Regulators  
1. Each of the V input supply pins should have a  
INA-H  
decoupling capacitor. The connections of the decou-  
pling capacitors to their respective V pins should  
3. Variation in the duty cycle at a subharmonic rate  
can suggest noise pickup at the current or voltage  
sensing inputs or inadequate loop compensation.  
Overcompensation of the loop can be used to tame a  
poor PCB layout if regulator bandwidth optimization  
is not required.  
INA-H  
be kept as short as possible. The GND side of these  
capacitorsshouldconnectdirectlytothegroundplane  
of the part. These capacitors provide the AC current  
to the internal power MOSFETs and their drivers. It is  
important to minimize inductance from these capaci-  
tors to the V pins of the V  
pins.  
IN  
INA-H  
4. Reduce V from its nominal level to verify operation  
IN  
of the regulator in dropout. Check the operation of the  
2. The switching power traces connecting SWA-H to the  
inductorsshouldbeminimizedtoreduceradiatedEMI  
and parasitic coupling. Due to the fast voltage swing  
of the switching nodes, high input impedance sensi-  
tive nodes, such as the feedback nodes, should be  
shielded or kept far away from the switching nodes.  
undervoltage lockout circuit by further lowering V  
while monitoring the outputs to verify operation.  
IN  
5. Investigate if any problems exist only at higher output  
currents or only at higher input voltages. If problems  
coincide with high input voltages and low output cur-  
rents,lookforcapacitivecouplingbetweentheBOOST,  
SW,TG,andpossiblyBGconnectionsandthesensitive  
voltage and current pins.  
3. The return (GND side) of the switching regulators’  
outputcapacitorsshouldbeconnectedtotheexposed  
pad (Pin 49, GND) of the IC through a ground plane.  
Minimize the trace length from the output capacitors  
to the inductor(s)/pin(s).  
If problems are encountered with high current output  
loading at lower input voltages, look for inductive  
coupling between C , bottom MOSFET, and the top  
4. In a multiple power stage buck regulator application,  
the trace length of switch nodes to the inductor must  
be kept equal to ensure proper operation.  
IN  
MOSFETcomponentstothesensitivecurrentandvolt-  
age sensing traces. In addition, investigate common  
groundpathvoltagepickupbetweenthesecomponents  
and the exposed ground pad of the IC.  
5. Kelvin connect the returns for RT, CT and the feedback  
dividerstoanisolatedshape(groundcopperisland”)  
tied to the GND pad of the IC.  
6. The capacitor placed across the current sensing pins  
needs to be placed immediately adjacent to the pins  
of the IC. This capacitor helps to minimize the effects  
of differential noise injection due to high frequency  
capacitive coupling.  
Other PCB Layout Considerations  
CareshouldbetakentominimizecapacitanceontheTEMP  
pin. If the TEMP voltage must drive more than ~30pF,  
then the pin should be isolated with a resistor placed  
close to the pin of a value between 10k and 100k. Keep  
in mind that any load on the isolation resistor will create  
a proportional error.  
7. If problems are encountered with high current output  
loading at lower input voltages, look for inductive  
coupling between C , Schottky and the top MOSFET  
IN  
componentstothesensitivecurrentandvoltagesens-  
ing traces. In addition, investigate common ground  
path voltage pickup between these components and  
the exposed ground pad of the IC.  
Rev. A  
36  
For more information www.analog.com  
LTC3372  
TYPICAL APPLICATIONS  
4.5V to 60V Input 3.3V/3A Output HV Buck Converter Plus Quad 1V/1.2V/1.8V/2.5V LV Regulators  
ꢁꢂ  
ꢃꢄꢀ ꢅAꢆ  
ꢇ.ꢈꢀ ꢅꢁꢂ  
ꢄꢅꢆꢇ  
ꢈꢉ  
ꢁꢂꢃ  
ꢃ.ꢃꢄꢅ  
ꢆꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
Rꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢃ.ꢃꢄꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢁꢂꢃꢄRꢅ  
ꢄꢄ  
R
ꢀꢁ  
SENSE  
ꢀ.ꢁꢂꢃ  
5mΩ  
ꢀ.ꢁꢂꢃ  
ꢄ.ꢄꢀ  
ꢄAꢅ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢁꢂꢃꢄ  
ꢅꢆꢇꢈ  
ꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
10Ω  
ꢄꢅꢆꢇꢈ  
ꢉꢊ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢀꢁꢂꢃ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢄꢅꢆꢃꢀ  
ꢁꢂꢃ  
ꢇꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂA  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢁꢂꢃ  
ꢀꢁ  
ꢂꢃꢄ  
ꢂꢃꢃꢄꢅ  
ꢅ.ꢆꢀ  
ꢅA  
ꢁꢂꢃꢄ  
ꢄꢀ  
ꢅA  
ꢁꢂꢃꢄ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢂꢃꢄ  
ꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅ.ꢄꢀ  
ꢅ.ꢆꢀ  
ꢇA  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄA  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ Rꢅꢆꢇꢈꢉꢊꢋꢃꢌ  
ꢀꢁꢂꢃꢄ ꢅꢁꢀꢆꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢀꢁꢂꢃ ꢄAꢀꢅꢆꢅꢆꢇꢈꢈꢈꢉꢊ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄ ꢅꢆꢇꢈꢇꢉꢊꢋ  
ꢁꢂꢃ  
ꢁꢂꢃ  
Rꢀ  
ꢀꢁ  
ꢄ ꢅRꢆꢇꢃꢈRꢉꢃAꢃꢃꢊꢋAꢇꢊꢌ  
ꢀꢁꢁꢂ  
ꢅ ꢃꢆꢇꢈꢉꢄꢆꢊꢋꢈꢈꢌAꢃꢍꢈꢇꢆ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅ ꢆRꢇꢈꢄꢉRꢊꢋAꢌꢊꢍꢎꢉꢋꢏ  
A
A
A
RR  
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂ ꢀꢃꢄꢅꢁꢁꢆꢆ  
ꢀꢁꢂꢃ  
A
RR  
R
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ ꢃAꢄꢂ  
HV Controller Efficiency and  
Power Loss vs Output Current  
HV Controller Forced Continuous  
Mode Load Step  
ꢀꢁꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁAꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢀꢁꢂ ꢃAꢄꢂꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀ ꢁ.ꢁꢂ  
ꢀ.ꢁ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢆA  
ꢀꢁAꢂ  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁꢂ ꢃAꢄꢂꢅ  
Rev. A  
37  
For more information www.analog.com  
LTC3372  
TYPICAL APPLICATIONS  
6V to 60V Input 5V/10A Output HV Buck Converter Plus Quad 1.2V/3A, 1.8V/1A, 2.5V/1A, and 3.3V/3A LV Regulators  
ꢁꢂ  
ꢃꢄꢀ ꢅAꢆ  
ꢃꢀ ꢅꢁꢂ  
ꢄꢅꢆꢇ  
ꢈꢉ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢃ.ꢃꢄꢅ  
ꢆꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
Rꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢄꢄ  
ꢀꢁꢂꢃ  
R
ꢀꢁ  
SENSE  
ꢀꢁꢂꢃ  
ꢁꢂꢃꢄRꢅ  
ꢄꢄ  
3mΩ  
ꢀ.ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ.ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢄꢀ  
ꢀ.ꢁꢁꢂ  
ꢀꢁꢂ  
ꢃ.ꢄꢅꢁ  
ꢀꢁꢂꢃ  
ꢅꢆAꢇ  
ꢀꢁꢂ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
10Ω  
ꢀꢁꢂ  
ꢅꢆꢇꢈ  
ꢅꢅꢆꢇꢈ  
ꢀꢁ  
ꢀ.ꢀꢁꢂꢃ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢄꢅꢆꢃꢀ  
ꢁꢂꢃ  
ꢇꢇ  
ꢁꢂA  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢃꢄꢅꢆ  
ꢂꢃꢃꢄꢅ  
ꢂ.ꢃꢄꢅꢆ  
ꢅ.ꢅꢀ  
ꢅA  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢃ  
ꢀꢁꢂ  
ꢀꢁꢃ  
ꢀꢁꢄ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢄ.ꢅꢀ  
ꢆA  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢁ.ꢁꢂꢃ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢅ.ꢆꢀ  
ꢇA  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅ.ꢆꢀ  
ꢅA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢁꢀꢆꢇꢈꢉꢊꢋꢌꢅꢍ  
ꢀꢁꢂꢆꢀꢇꢈꢉꢊꢋꢌꢉꢅꢍ  
ꢀꢁꢂꢃꢄAꢀꢅꢆꢅꢆꢇꢅꢈꢉꢊꢋ  
ꢀꢁꢂꢃ  
ꢄ ꢅꢆꢇꢈꢇꢉꢊꢋ  
ꢁꢂꢃ  
ꢁꢂꢃ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢄ ꢅRꢆꢇꢃꢈRꢉꢃAꢃꢃꢊꢋAꢇꢊꢌ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢅ ꢆꢃꢇꢈꢉꢉꢊꢋAꢇ  
ꢄꢄ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢅ ꢆRꢇꢈꢄꢉRꢊꢋAꢌꢊꢍꢎꢉꢋꢏ  
A
A
A
RR  
ꢀꢀꢁꢂ ꢃAꢄꢀꢅ  
ꢀꢁꢂꢃ  
A
RR  
R
ꢀꢁꢂ ꢀꢃꢄꢅꢁꢁꢆꢆ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
HV Controller Efficiency and  
Power Loss vs Output Current  
HV Controller Forced Continuous  
Mode Load Step  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀꢁꢂ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁAꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢀꢁꢂ ꢃAꢄꢀꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ.ꢀꢁ ꢀ.ꢁ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁAꢂ  
ꢀ.ꢁ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢆꢁA  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ  
ꢀꢁꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢀꢁꢂ ꢃAꢄꢀꢅ  
Rev. A  
38  
For more information www.analog.com  
LTC3372  
TYPICAL APPLICATIONS  
4.5V to 60V Input 3.3V/10A Output HV Buck Converter Plus Quad 1V/4A, 1.2V/1A, 1.8V/1A and 2.5V/2A LV Regulators  
ꢁꢂ  
ꢃꢄꢀ ꢅAꢆ  
ꢇ.ꢈꢀ ꢅꢁꢂ  
ꢄꢅꢆꢇ  
ꢈꢉ  
ꢁꢂꢃ  
ꢃ.ꢃꢄꢅ  
ꢆꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
Rꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂ  
ꢀ.ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢁꢂꢃꢄRꢅ  
ꢄꢄ  
ꢀꢁꢂꢃ  
R
ꢀꢁ  
SENSE  
3mΩ  
ꢀ.ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢄ.ꢄꢀ  
ꢀꢁꢂ  
ꢃꢄꢁ  
ꢀꢁꢂꢃ  
ꢅꢆAꢇ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
10Ω  
ꢄꢅꢆꢇꢈ  
ꢉꢊ  
ꢅꢆꢇꢈ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀ.ꢀꢁꢂꢃ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢄꢅꢆꢃꢀ  
ꢁꢂꢃ  
ꢇꢇ  
ꢁꢂꢃ  
ꢁꢂA  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢂꢃꢃꢄꢅ  
ꢂ.ꢃꢄꢅ  
ꢁꢂꢃꢄ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁꢂꢃꢄ  
ꢄꢀ  
ꢅA  
ꢅ.ꢆꢀ  
ꢅA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅ  
ꢅ.ꢆꢀ  
ꢅA  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢅ.ꢄꢀ  
ꢅA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢀꢁꢂ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢉꢊꢈꢋꢌꢆꢍ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢅꢆꢇꢈꢉꢊꢇꢈꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄAꢀꢅꢆꢅꢆꢇꢅꢆꢈꢉꢊ  
ꢀꢁꢁꢂꢃꢄꢅꢆ  
Rꢀ  
ꢀꢁ  
ꢄ ꢅꢆꢇꢈꢇꢉꢊꢋ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢁꢂ  
ꢄ ꢅRꢆꢇꢃꢈRꢉꢃAꢃꢃꢊꢋAꢇꢊꢌ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢅ ꢃꢆꢇꢈꢉꢄꢆꢊꢋꢈꢈꢌAꢃꢍꢈꢇꢆ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
A
A
A
RR  
ꢅ ꢆRꢇꢈꢄꢉRꢊꢋAꢌꢊꢍꢎꢉꢋꢏ  
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂ  
A
RR  
R
ꢀꢁꢂ ꢀꢃꢄꢅꢁꢁꢆꢆ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
ꢄꢄ  
HV Controller Efficiency and  
Power Loss vs Output Current  
HV Controller Forced Continuous  
Mode Load Step  
ꢀꢁꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁAꢂ  
ꢀAꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀ ꢁ.ꢁꢂ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ.ꢁ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢆꢁA  
ꢀꢁAꢂ  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
Rev. A  
39  
For more information www.analog.com  
LTC3372  
TYPICAL APPLICATIONS  
4.5V (3V Minimum After Start-Up) to 50V Input HV SEPIC Converter Feeding Dual 3.3V/4A LV Regulators  
ꢁꢂ  
ꢃ.ꢄꢀ ꢅꢁꢂ  
ꢄꢆꢀ ꢅAꢇ  
ꢄꢅꢆꢇ  
ꢈꢉ  
ꢁꢂꢃ  
ꢁꢂ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢈꢉꢀ ꢅꢁꢂ  
ꢄꢅꢆꢇ  
ꢀꢁꢂꢃ  
ꢄꢄ  
AꢊꢋꢌR ꢍꢋARꢏꢐꢑ  
ꢁꢂ  
ꢂꢃꢄꢅ  
ꢀꢁꢂ  
Rꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂ  
ꢁꢂꢃ  
ꢄꢀ  
ꢀꢁꢂꢂꢃ  
ꢄꢄ  
ꢀꢁ  
ꢁꢂꢃꢄ  
ꢅꢆꢇꢈꢉ  
ꢊꢋ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢁꢂꢃꢄ  
ꢄꢄ  
ꢁꢂꢃꢄRꢅ  
ꢄꢄꢅꢆꢇ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
100Ω  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
ꢀꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
R
ꢀꢁꢂꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
100Ω  
2mΩ  
ꢀ.ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢄꢅꢆꢃꢀ  
ꢁꢂꢃ  
ꢇꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂA  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢁꢂꢃ ꢂꢃꢃꢄꢅ  
ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢂ.ꢃꢃꢄꢅ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢂ.ꢃꢃꢄꢅ  
ꢅ.ꢅꢀ  
ꢄA  
ꢁꢂꢃꢄ  
ꢅ.ꢅꢀ  
ꢆA  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ ꢃꢄꢅꢆRꢇꢇꢈꢄꢉ  
ꢀꢁꢂꢃꢄ ꢀꢁꢂꢅꢆ ꢇꢈꢈꢉꢊꢊꢈꢋꢃꢅꢋ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄ ꢅꢆꢇꢈꢇꢉꢊꢋ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄ ꢅRꢆꢇꢃꢈRꢉꢊꢋꢊꢌꢍꢎAꢊꢃꢏ  
ꢀꢁꢁꢂꢃꢄꢅꢆ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅ ꢃꢆꢇꢈꢉꢊꢋꢌꢍꢍꢉRꢍꢍꢎꢏ  
ꢅ ꢆRꢇꢈꢄꢉRꢊꢋꢌꢄꢄꢍꢇꢉꢋꢎꢏ  
ꢀꢁꢂ ꢃRꢄꢅꢆꢇRꢈꢉꢊꢉꢋꢌꢍAꢉꢆꢎ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ ꢀꢄꢅꢆꢇꢇꢈꢈ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
HV Controller Efficiency and  
Power Loss vs Output Current  
HV Controller VIN Step Response  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢂꢂ  
ꢀꢁAꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ.ꢂA  
ꢀꢁꢂ  
ꢀ.ꢁ  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ  
ꢀ.ꢀꢁ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
Rev. A  
40  
For more information www.analog.com  
LTC3372  
TYPICAL APPLICATIONS  
6V to 60V Input 5V/20A Output HV Buck Converter Plus Triple 3.3V/4A, 1.8V/1A and 1.2V/3A LV Regulators  
ꢁꢂ  
ꢃꢄꢀ ꢅAꢆ  
ꢇꢀ ꢅꢁꢂ  
ꢄꢅꢆꢇ  
ꢈꢉ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢃꢄꢄꢅꢆ  
ꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
Rꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢃꢄꢁ  
ꢀꢁ  
ꢄꢄ  
ꢁꢂꢃꢄRꢅ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢄꢀ  
ꢅꢆAꢇ  
ꢁꢂꢃꢄ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢄꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃ  
ꢅꢅꢆꢇꢈ  
ꢉꢊ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢀꢁꢂꢃ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢄꢅꢆꢃꢀ  
ꢁꢂꢃ  
ꢇꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂA  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅꢆ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢁꢂꢃ  
ꢀꢁ  
ꢂ.ꢃꢄꢅꢆ  
ꢂꢃꢃꢄꢅ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅ.ꢆꢀ  
ꢇA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁꢂꢃꢄ  
ꢅ.ꢅꢀ  
ꢆA  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀꢂ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢅ.ꢆꢀ  
ꢅA  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋꢈꢊꢌꢆꢍ  
ꢀꢁꢂꢅꢆꢇꢈꢇꢉꢇꢊꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄAꢀꢅꢆꢅꢆꢇꢅꢆꢈꢉꢊ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
ꢄ ꢅꢀꢆꢃꢇꢃꢈꢃꢉꢀꢊꢃꢋꢌ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢁꢂ  
ꢄ ꢅRꢆꢇꢃꢈRꢉꢊꢋꢊꢌꢍꢎAꢊꢃꢏ  
ꢀꢁꢂꢃ  
ꢅ ꢆꢃꢇꢈꢉꢉꢊꢋAꢇ  
ꢄꢄ  
A
A
A
RR  
ꢅ ꢆRꢇꢈꢄꢉRꢊꢋꢌꢄꢄꢍꢇꢉꢋꢎꢏ  
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
A
RR  
R
ꢀꢁꢂ ꢀꢃꢄꢅꢁꢁꢆꢆ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
HV Controller Efficiency and  
Power Loss vs Output Current  
HV Controller Forced Continuous  
Mode Load Step  
ꢀꢁꢁ  
ꢀꢁ  
ꢀꢁꢁꢁꢁ  
ꢀꢁRꢂꢃ ꢄꢅꢅꢆꢇꢆꢄꢈꢇꢉ  
ꢀꢁꢂ ꢃꢄꢅꢅ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢁꢁ  
ꢀꢁꢁ  
ꢀꢁ  
Aꢀꢁꢀꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢂ  
ꢀꢁRꢂꢃ ꢄꢅꢂꢂ  
ꢀꢁAꢂ  
ꢀꢁAꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢃꢆꢇꢀꢀꢇꢈꢉ  
ꢀꢁꢁꢂꢃꢂꢀꢄꢃꢅ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂ ꢃꢀꢀꢄꢁꢄꢃꢅꢁꢆ  
ꢀ.ꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇAꢈ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁAꢂ  
ꢀ.ꢁ  
ꢀ ꢁꢂꢂꢃA ꢄꢅ ꢁꢂA  
ꢀ.ꢀꢀꢀꢁ ꢀ.ꢀꢀꢁ ꢀ.ꢀꢁ  
ꢀꢁ ꢀꢁ  
ꢀꢀꢁꢂ ꢃAꢄꢅꢆ  
Rev. A  
41  
For more information www.analog.com  
LTC3372  
PACKAGE DESCRIPTION  
UK Package  
48-Lead Plastic QFN (7mm × 7mm)  
(Reference LTC DWG # 05-08-ꢀ704 Rev C)  
0.70 0.05  
5.ꢀ5 0.05  
5.50 REF  
6.ꢀ0 0.05 7.50 0.05  
(4 SIDES)  
5.ꢀ5 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
7.00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
47 48  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 6)  
2
PIN ꢀ  
CHAMFER  
C = 0.35  
5.ꢀ5 0.ꢀ0  
5.50 REF  
(4-SIDES)  
5.ꢀ5 0.ꢀ0  
(UK48) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WKKD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
Rev. A  
42  
For more information www.analog.com  
LTC3372  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
03/19 Updated conditions in the Electrical Characteristics tables  
4, 6  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
43  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC3372  
TYPICAL APPLICATION  
ꢁꢂ  
ꢃꢄꢀ ꢅAꢆ  
ꢇꢀ ꢅꢁꢂ  
ꢄꢅꢆꢇ  
ꢈꢉ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢃꢄꢄꢅꢆ  
ꢇꢈ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢁꢂ  
Rꢀꢁ  
ꢀꢁ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢃꢄꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢄꢄ  
ꢁꢂꢃꢄRꢅ  
ꢀ.ꢁꢁꢂ  
ꢀ.ꢁꢂꢃ  
ꢀ.ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁ  
ꢄꢀ  
ꢅꢆAꢇ  
ꢀꢁꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢀ.ꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢄꢄꢅꢆꢇ  
ꢅꢅꢆꢇꢈ  
ꢉꢊ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ.ꢀꢁꢂꢃ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢁꢂꢃ  
ꢁꢂA  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢄꢅꢆꢃꢀ  
ꢁꢂꢃ  
ꢇꢇ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢂ.ꢃꢄꢅꢆ  
ꢁꢂꢃ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢅ.ꢆꢀ  
ꢇA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢁꢂꢃꢄ  
ꢅ.ꢅꢀ  
ꢆA  
ꢁꢂꢃꢄ  
ꢂꢃꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢄꢅ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢂ.ꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢅ.ꢆꢀ  
ꢅA  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢈꢉꢊꢋꢈꢊꢌꢆꢍ  
ꢀꢁꢂꢅꢆꢇꢈꢇꢉꢇꢊꢋꢅꢌ  
ꢀꢁꢂꢃ ꢄAꢀꢅꢆꢅꢆꢇꢅꢆꢈꢉꢊ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢄ ꢅꢀꢆꢃꢇꢃꢈꢃꢉꢀꢊꢃꢋꢌ  
ꢀꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃꢄꢅꢆ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢄ ꢅRꢆꢇꢃꢈRꢉꢊꢋꢊꢌꢍꢎAꢊꢃꢏ  
ꢅ ꢆꢃꢇꢈꢉꢉꢊꢋAꢇ  
ꢀꢁꢂ  
Rꢀꢁꢂ  
A
A
A
RR  
ꢀꢁꢁꢂ  
ꢅ ꢆRꢇꢈꢄꢉRꢊꢋꢌꢄꢄꢍꢇꢉꢋꢎꢏ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
A
RR  
R
ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂ ꢀꢃꢄꢅꢁꢁꢆꢆ  
ꢄꢄ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
ꢀꢀꢁꢂ ꢃAꢄꢁ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Phase-Lockable Frequency 75kHz to 750kHz, 4V ≤ V ≤ 60V, 0.8V ≤ V  
LTC3891/LTC3890/  
60V, Low I , Single/Dual  
≤ 24V, I =50μA  
Q
Q
IN  
OUT  
LTC3890-1/LTC3890-2/ Synchronous Step-Down DC/  
LTC3891: Single Channel; LTC3890/LTC3890-1/LTC3890-2/LTC3890-3  
LTC3890-3  
DC Controller  
LTC3371/LTC3370  
4-Channel Configurable DC/DC 4 Synchronous Buck Regulators with 8 × 1A Power Stages. Can Connect Up to Four Power  
with 8 × 1A Power Stages  
Stages in Parallel, 8 Output Configurations Possible.  
LTC3370: Precision PGOODALL Indication, 32-Lead (5mm × 5mm × 0.75mm) QFN Package.  
LTC3371: Precision RST Monitoring with Windowed Watchdog Timer (CT Programmable),  
38-Lead (5mm × 7mm × 0.75mm) QFN and TSSOP Packages  
LTC3892/LTC3892-1/  
LTC3892-2  
60V, Low I , Dual, 2-Phase  
Phase-Lockable Frequency 75kHz to 850kHz, 4.5V ≤ V ≤ 60V, 0.8V ≤ V  
Q
≤ 99% V ,  
OUT IN  
Q
IN  
Synchronous Step-Down DC/  
DC Controller  
I = 29μA, Adjustable 5V to 10V Gate Drive, No External Bootstrap Diode  
2
LTC3589  
LTC3675  
LTC3676  
8-Output Regulator with  
Triple I C Adjustable High Efficiency Step-Down DC/DC Converters: 1.6A, 1A, 1A. High  
Efficiency 1.2A Buck-Boost DC/DC Converter, Triple 250mA LDO Regulators, 40-Lead  
(6mm × 6mm × 0.75mm) QFN.  
2
Sequencing and I C  
7-Channel Configurable High  
Power PMIC  
Quad Synchronous Buck Regulators (1A, 1A, 500mA, 500mA). Buck DC/DCs Can be Paralleled  
to Deliver Up to 2× Current with a Single Inductor. 1A Boost, 1A Buck- Boost, 40V LED Driver.  
44-Lead (4mm × 7mm × 0.75mm) QFN Package.  
8-Channel Power Management Quad Synchronous Buck Regulators (2.5A, 2.5A, 1.5A, 1.5A). Quad LDO Regulators (300mA,  
Solution for Application  
Processor  
300mA, 300mA, 25mA). 40-Lead (6mm × 6mm × 0.75mm) QFN Package.  
LTC3375/LTC3374/  
LTC3374A  
8-Channel Programmable  
Configurable 1A DC/DC  
8 × 1A Synchronous Buck Regulators. Can Connect Up to Four Power Stages in Parallel with  
a Single Inductor, 15 Output Configurations Possible, 48-Lead (7mm × 7mm × 0.75mm) QFN  
Package (LTC3375) 38-Lead (5mm × 7mm × 0.75mm) QFN and TSSOP Packages (LTC3374A)  
Rev. A  
D16975-0-3/19(A)  
www.analog.com  
ANALOG DEVICES, INC. 2018-2019  
44  

相关型号:

LTC3371

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3371

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3372

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374

20V, 4-Channel Buck DC/DC with 8x Configurable 1.5A Power Stages
ADI

LTC3374A

60V Low IQ Buck Controller Plus 4-Channel 8A Configurable Buck DC/DCs
Linear

LTC3374EFEPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374EUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374HFEPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374HUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374IFEFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear

LTC3374IUHFPBF

8-Channel Parallelable 1A Buck DC/DCs
Linear