LTC2328-16 [Linear]

16-Bit, 1Msps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 93.5dB SNR;
LTC2328-16
型号: LTC2328-16
厂家: Linear    Linear
描述:

16-Bit, 1Msps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 93.5dB SNR

文件: 总26页 (文件大小:992K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2328-16  
16-Bit, 1Msps, 1ꢀ0.24  
True Bipolar, Pseudo-Differential  
Input ADC with 9305dB SNR  
FeaTures  
DescripTion  
The LTC®2328-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC with pseudo-  
differential inputs. Operating from a single 5V supply, the  
LTC2328-16hasa 10.24Vtruebipolarinputrange,making  
n
1Msps Throughput Rate  
n
1ꢀ.5LS ꢁI5 ꢂMaꢃx  
n
Guaranteed 16-Sit Io Missing Codes  
Pseudo-Differential ꢁnputs  
n
n
True Sipolar ꢁnput Ranges 6ꢀꢄ.ꢅV 1ꢆꢀꢄ2ꢅV 1ꢄꢀ.ꢅ  
it ideal for high voltage applications which require a wide  
dynamic range. The LTC2328-16 achieves 1.5LSꢀ INL  
maximum, no missing codes at 16 bits with 93.5dꢀ SNR.  
n
n
n
n
n
n
n
n
n
n
n
n
93ꢀ.dS LIR ꢂTypx at f = ꢄkHz  
ꢁI  
ꢁI  
–111dS THD ꢂTypx at f = ꢄkHz  
Guaranteed Operation to 125°C  
The LTC2328-16 has an onboard single-shot capable  
reference buffer and low drift (20ppm/°C max) 2.048V  
temperature compensated reference. The LTC2328-16  
also has a high speed SPI-compatible serial interface that  
supports 1.8V, 2.5V, 3.3V and 5V logic while also featur-  
ing a daisy-chain mode. The fast 1Msps throughput with  
no cycle latency makes the LTC2328-16 ideally suited  
for a wide variety of high speed applications. An internal  
oscillator sets the conversion time, easing external timing  
considerations. The LTC2328-16 dissipates only 50mW  
and automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided to reduce the power  
consumption of the LTC2328-16 to 300μW for further  
power savings during inactive periods.  
Single 5V Supply  
Low Drift (20ppm/°C Max) 2.048V Internal Reference  
Onboard Single-Shot Capable Reference ꢀuffer  
No Pipeline Delay, No Cycle Latency  
1.8V to 5V I/O Voltages  
SPI-Compatible Serial I/O with Daisy-Chain Mode  
Internal Conversion Clock  
Power Dissipation 50mW (Typ)  
16-Lead MSOP Package  
applicaTions  
n
Programmable Logic Controllers  
n
Industrial Process Control  
n
High Speed Data Acquisition  
n
Portable or Compact Instrumentation  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 7705765, 7961132.  
n
ATE  
Typical applicaTion  
3ꢄk Point FFT fL = 1MspsV  
fꢁI = ꢄkHz  
0
5V  
1.8V TO 5V  
SNR = 93.5dB  
–20  
–40  
THD = –111dB  
SINAD = 93.4dB  
SFDR = –115dB  
10µF  
2.2µF  
0.1µF  
+10.24V  
–60  
+
V
V
OV  
DD  
DDLBYP DD  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
–10.24V  
–80  
+
LT®1468  
IN  
–100  
–120  
–140  
–160  
–180  
LTC2328-16  
IN  
SAMPLE CLOCK  
REFBUF  
REFIN  
GND  
232816 TA01a  
100nF  
47µF  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
232816 TA01b  
232816fb  
1
For more information www.linear.com/LTC2328-16  
LTC2328-16  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
ꢂIotes 1V ꢄx  
Supply Voltage (V )..................................................6V  
DD  
TOP VIEW  
Supply Voltage (OV )................................................6V  
DD  
V
1
2
16 GND  
DDLBYP  
Supply ꢀypass Voltage (V  
Analog Input Voltage  
) ...........................3.2V  
DDLꢀYP  
V
15 OV  
DD  
DD  
GND 3  
14 SDO  
13 SCK  
+
IN  
IN  
4
5
+
12 RDL/SDI  
11 BUSY  
10 CHAIN  
IN , IN ..............................................–16.5V to 16.5V  
REFꢀUF...................................................................6V  
REFIN ..................................................................2.8V  
Digital Input Voltage  
GND 6  
REFBUF 7  
REFIN 8  
9
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
T
JMAX  
= 150°C, θ = 110°C/W  
JA  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
Digital Output Voltage  
(Note 3)........................... (GND –0.3V) to (OV + 0.3V)  
DD  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2328C................................................ 0°C to 70°C  
LTC2328I .............................................–40°C to 85°C  
LTC2328H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
http://wwwꢀlinearcom/product/5TCꢄ3ꢄ8-16#orderinfo  
orDer inForMaTion  
5EAD FREE FꢁIꢁLH  
TAPE AID REE5  
PART MARKꢁIG*  
PACKAGE DELCRꢁPTꢁOI  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RAIGE  
0°C to 70°C  
LTC2328CMS-16#PꢀF  
LTC2328IMS-16#PꢀF  
LTC2328HMS-16#PꢀF  
LTC2328CMS-16#TRPꢀF 232816  
LTC2328IMS-16#TRPꢀF 232816  
LTC2328HMS-16#TRPꢀF 232816  
–40°C to 85°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPꢀF suffix.  
232816fb  
2
For more information www.linear.com/LTC2328-16  
LTC2328-16  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5  
PARAMETER  
COIDꢁTꢁOIL  
MꢁI  
TYP  
MAX  
UIꢁTL  
V
+
+
l
l
l
l
V
IN  
V
IN  
V
IN  
Absolute Input Range (IN )  
(Note 5)  
–2.5 V  
– 0.5  
2.5 V  
+ 0.5  
REFꢀUF  
REFꢀUF  
+
Absolute Input Range (IN )  
(Note 5)  
–0.5  
0.5  
V
+
– V  
Input Differential Voltage Range  
Analog Input Current  
V
= V – V  
–2.5 V  
2.5 V  
REFꢀUF  
V
IN  
IN  
IN  
IN  
REFꢀUF  
I
–7.8  
4.8  
mA  
pF  
IN  
C
Analog Input Capacitance  
Analog Input Resistance  
5
IN  
R
2.083  
66  
kΩ  
dꢀ  
IN  
CMRR  
Input Common Mode Rejection Ratio  
f
= 500kHz  
IN  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5  
PARAMETER  
COIDꢁTꢁOIL  
MꢁI  
16  
TYP  
MAX  
UIꢁTL  
ꢀits  
l
l
Resolution  
No Missing Codes  
16  
ꢀits  
Transition Noise  
0.5  
0.25  
0.1  
0
LSꢀ  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
(Note 6)  
(Note 7)  
–1.5  
–1  
1.5  
1
LSꢀ  
DNL  
ꢀZE  
LSꢀ  
LSꢀ  
–10  
10  
0.01  
LSꢀ/°C  
LSꢀ  
l
l
FSE  
V
= 4.096V (REFꢀUF Overdriven)  
–35  
–45  
–35  
45  
REFꢀUF  
(Notes 7, 9)  
REFIN = 2.048V (Note 7)  
LSꢀ  
ꢀipolar Full-Scale Error Drift  
0.5  
ppm/°C  
The l denotes the specifications which apply over the full operating temperature rangeV  
DynaMic accuracy  
otherwise specifications are at TA = ꢄ.°C and AꢁI = –1dSFLꢀ ꢂIotes 2V 8x  
LYMSO5 PARAMETER COIDꢁTꢁOIL  
6.25V Range, f = 2kHz, REFIN = 1.25V  
MꢁI  
87.1  
90.2  
90.5  
87.5  
91  
TYP  
90.4  
93.4  
94.2  
90.5  
93.5  
94.5  
–108  
–111  
–106  
110  
113  
108  
7
MAX  
UIꢁTL  
dꢀ  
l
l
l
l
l
l
l
l
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio  
IN  
10.24V Range, f = 2kHz, REFIN = 2.048V  
dꢀ  
IN  
12.5V Range, f = 2kHz, REFꢀUF = 5V  
dꢀ  
IN  
SNR  
Signal-to-Noise Ratio  
6.25V Range, f = 2kHz, REFIN = 1.25V  
dꢀ  
IN  
10.24V Range, f = 2kHz, REFIN = 2.048V  
dꢀ  
IN  
12.5V Range, f = 2kHz, REFꢀUF = 5V  
92  
dꢀ  
IN  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
6.25V Range, f = 2kHz, REFIN = 1.25V  
–98  
–98  
–96  
dꢀ  
IN  
10.24V Range, f = 2kHz, REFIN = 2.048V  
dꢀ  
IN  
12.5V Range, f = 2kHz, REFꢀUF = 5V  
dꢀ  
IN  
SFDR  
6.25V Range, f = 2kHz, REFIN = 1.25V  
98  
98  
96  
dꢀ  
IN  
10.24V Range, f = 2kHz, REFIN = 2.048V  
dꢀ  
IN  
12.5V Range, f = 2kHz, REFꢀUF = 5V  
dꢀ  
IN  
–3dꢀ Input Linear ꢀandwidth  
Aperture Delay  
MHz  
ps  
500  
4
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
0.5  
µs  
232816fb  
3
For more information www.linear.com/LTC2328-16  
LTC2328-16  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5  
PARAMETER  
COIDꢁTꢁOIL  
MꢁI  
TYP  
2.048  
2
MAX  
2.053  
20  
UIꢁTL  
V
V
Internal Reference Output Voltage  
2.043  
REFIN  
l
V
REFIN  
Temperature Coefficient  
(Note 14)  
ppm/°C  
kΩ  
REFIN Output Impedance  
Line Regulation  
15  
V
REFIN  
V
= 4.75V to 5.25V  
DD  
0.08  
mV/V  
V
REFIN Input Voltage Range  
(REFIN Overdriven) (Note 5)  
1.25  
2.4  
reFerence buFFer characTerisTics The l denotes the specifications which apply over the full  
operating temperature rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5 PARAMETER  
COIDꢁTꢁOIL  
= 2.048V  
MꢁI  
4.091  
2.5  
TYP  
MAX  
4.101  
5
UIꢁTL  
l
l
V
Reference ꢀuffer Output Voltage  
REFꢀUF Input Voltage Range  
REFꢀUF Output Impedance  
REFꢀUF Load Current  
V
4.096  
V
V
REFꢀUF  
REFIN  
(REFꢀUF Overdriven) (Notes 5, 9)  
V
= 0V  
13  
kΩ  
REFIN  
l
I
V
V
= 5V (REFꢀUF Overdriven) (Notes 9, 10)  
= 5V, Nap Mode (REFꢀUF Overdriven) (Note 9)  
0.89  
0.39  
1.2  
mA  
mA  
REFꢀUF  
REFꢀUF  
REFꢀUF  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating temperature rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5  
PARAMETER  
COIDꢁTꢁOIL  
MꢁI  
TYP  
MAX  
UIꢁTL  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 OV  
IH  
IL  
DD  
0.2 OV  
V
DD  
I
V
IN  
= 0V to OV  
DD  
–10  
10  
μA  
pF  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA  
O
OV – 0.2  
DD  
V
OH  
OL  
I = 500µA  
O
0.2  
10  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5  
PARAMETER  
COIDꢁTꢁOIL  
MꢁI  
4.75  
1.71  
TYP  
MAX  
5.25  
5.25  
16  
UIꢁTL  
l
l
l
V
Supply Voltage  
Supply Voltage  
Supply Current  
5
V
V
DD  
OV  
DD  
+
+
I
1Msps Sample Rate (IN = –10.24V, IN = 0V)  
14.5  
10  
0.4  
8.4  
60  
mA  
mA  
mA  
mA  
μA  
VDD  
1Msps Sample Rate (IN = IN = 0V)  
1Msps Sample Rate (C = 20pF)  
I
I
I
Supply Current  
Nap Mode Current  
Sleep Mode Current  
OVDD  
NAP  
SLEEP  
L
+ I  
OVDD  
+
+
+
l
l
Conversion Done (I  
Sleep Mode (I  
, IN = –10.24V, IN = 0V)  
OVDD  
10  
225  
VDD  
+ I  
)
VDD  
l
P
Power Dissipation  
1Msps Sample Rate (IN = –10.24V, IN = 0V)  
72.5  
50  
42  
0.3  
80  
mW  
mW  
mW  
mW  
D
1Msps Sample Rate (IN = IN = 0V)  
+
l
l
Nap Mode  
Sleep Mode  
Conversion Done (I  
+ I  
OVDD  
, IN = –10.24V, IN = 0V)  
50  
1.1  
VDD  
+ I  
OVDD  
Sleep Mode (I  
)
VDD  
232816fb  
4
For more information www.linear.com/LTC2328-16  
LTC2328-16  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeV otherwise specifications are at TA = ꢄ.°Cꢀ ꢂIote 2x  
LYMSO5  
PARAMETER  
COIDꢁTꢁOIL  
MꢁI  
TYP  
MAX  
1
UIꢁTL  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
460  
460  
1
527  
Acquisition Time  
t
= t  
CYC  
– t  
– t (Note 11)  
ꢀUSYLH  
ns  
ACQ  
CONV  
Time ꢀetween Conversions  
CNV High Time  
µs  
CYC  
20  
ns  
CNVH  
ꢀUSYLH  
CNVL  
CNVto ꢀUSY Delay  
Minimum Low Time for CNV  
SCK Quiet Time from CNV↑  
SCK Period  
C = 20pF  
L
13  
ns  
(Note 12)  
(Note 11)  
20  
20  
10  
4
ns  
ns  
QUIET  
SCK  
(Notes 12, 13)  
ns  
SCK High Time  
ns  
SCKH  
SCKL  
SCK Low Time  
4
ns  
SDI Setup Time From SCK↑  
SDI Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
(Note 12)  
(Note 12)  
4
ns  
SSDISCK  
HSDISCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Note 12)  
DSDO  
13.5  
ns  
SCKCH  
SSDISCK  
l
l
l
C = 20pF, OV = 5.25V  
7.5  
8
9.5  
ns  
ns  
ns  
L
DD  
DD  
DD  
C = 20pF, OV = 2.5V  
L
C = 20pF, OV = 1.71V  
L
l
l
l
l
t
t
t
t
t
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from ꢀUSY↓  
ꢀus Enable Time After RDL↓  
C = 20pF (Note 11)  
1
ns  
ns  
HSDO  
DSDOꢀUSYL  
EN  
L
C = 20pF (Note 11)  
L
5
(Note 12)  
(Note 12)  
16  
13  
ns  
ꢀus Relinquish Time After RDL↑  
REFꢀUF Wake-Up Time  
ns  
DIS  
C
= 47μF, C = 100nF  
REFIN  
200  
ms  
WAKE  
REFꢀUF  
Iote 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iote 7: ꢀipolar zero error is the offset voltage measured from –0.5LSꢀ  
when the output code flickers between 0000 0000 0000 0000 and 1111  
1111 1111 1111. Full-scale bipolar error is the worst-case of –FS or +FS  
untrimmed deviation from ideal first and last code transitions and includes  
the effect of offset error.  
Iote ꢄ: All voltage values are with respect to ground.  
Iote 8: All specifications in dꢀ are referred to a full-scale 10.24V input  
with REFIN = 2.048V.  
Iote 3: When these pin voltages are taken below ground or above V or  
OV , they will be clamped by internal diodes. This product can handle  
DD  
DD  
input currents up to 100mA below ground or above V or OV without  
latch-up.  
Iote 9: When REFꢀUF is overdriven, the internal reference buffer must be  
turned off by setting REFIN = 0V.  
DD  
DD  
Iote 2: V = 5V, OV = 2.5V, 10.24V Range, REFIN = 2.048V,  
Iote 1ꢆ: f  
= 1MHz, I  
varies proportionally with sample rate.  
DD  
DD  
SMPL  
REFꢀUF  
f
= 1MHz.  
SMPL  
Iote 11: Guaranteed by design, not subject to test.  
Iote 1ꢄ: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Iote .: Recommended operating conditions.  
DD  
DD  
Iote 6: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
and OV = 5.25V.  
DD  
Iote 13: t  
of 10ns maximum allows a shift clock frequency up to  
SCK  
100MHz for rising edge capture.  
Iote 12: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
232816 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 1ꢀ ꢅoltage 5evels for Timing Lpecifications  
232816fb  
5
For more information www.linear.com/LTC2328-16  
LTC2328-16  
TA = ꢄ.°CV ꢅDD = .ꢅV OꢅDD = ꢄꢀ.ꢅV REFꢁI = ꢄꢀꢆ28ꢅV  
DC Histogram  
Typical perForMance characTerisTics  
fLMP5 = 1MspsV unless otherwise notedꢀ  
ꢁntegral Ionlinearity  
vs Output Code  
Differential Ionlinearity  
vs Output Code  
9000  
1.0  
0.8  
0.5  
0.4  
σ = 0.5  
8000  
0.6  
0.3  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–32768  
–16384  
0
16384  
32768  
–32768  
–16384  
0
16384  
32768  
–1  
0
1
2
OUTPUT CODE  
OUTPUT CODE  
232816 G03  
CODE  
232816 G01  
232616 G02  
3ꢄk Point FFT fL = 1MspsV  
fꢁI = ꢄkHz  
THDV Harmonics vs ꢁnput  
Frequency  
LIRV LꢁIAD vs ꢁnput Frequency  
0
–20  
100  
90  
–70  
–80  
SNR = 93.5dB  
THD = –111dB  
SINAD = 93.4dB  
SFDR = –115dB  
SNR  
–40  
–90  
–60  
SINAD  
–100  
–110  
–80  
80  
–100  
–120  
–140  
–160  
–180  
–120  
–130  
–140  
–150  
70  
THD  
2ND  
3RD  
60  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
100  
200  
300  
400  
500  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
232816 G06  
232816 G04  
232816 G05  
LIRV LꢁIAD vs ꢁnput 5evelV  
fꢁI = ꢄkHz  
LIRV LꢁIAD vs TemperatureV  
fꢁI = ꢄkHz  
THDV Harmonics vs TemperatureV  
fꢁI = ꢄkHz  
–105  
–110  
–115  
–120  
–125  
96  
95  
94  
93  
92  
96  
95  
THD  
2ND  
SNR  
94  
93  
92  
SINAD  
91  
90  
3RD  
SNR  
SINAD  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40  
–30  
–20  
–10  
0
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
INPUT LEVEL (dB)  
TEMPERATURE (°C)  
232816 G09  
232816 G07  
232816 G08  
232816fb  
6
For more information www.linear.com/LTC2328-16  
LTC2328-16  
TA = ꢄ.°CV ꢅDD = .ꢅV OꢅDD = ꢄꢀ.ꢅV REFꢁI = ꢄꢀꢆ28ꢅV  
Typical perForMance characTerisTics  
fLMP5 = 1MspsV unless otherwise notedꢀ  
ꢁI5/DI5 vs Temperature  
Full-Lcale Error vs Temperature  
Offset Error vs Temperature  
1.0  
0.8  
20  
15  
5
4
3
0.6  
10  
2
0.4  
MAX INL  
MAX DNL  
5
0.2  
1
0
0
0
MIN DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
–5  
MIN INL  
–10  
–15  
–20  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
80 95  
80 95  
110 125  
–40 –25 –10  
5
20 35 50 65  
110 125  
–40 –25 –10  
5
20 35 50 65  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
232816 G10  
232816 G11  
232816 G12  
ꢁnternal Reference Output vs  
Temperature  
Lupply Current vs Temperature  
Lleep Current vs Temperature  
12  
10  
8
120  
100  
80  
60  
40  
20  
0
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
V
DD  
+
(IN = IN = 0V)  
6
4
2
OV  
DD  
0
–40 –25 –10  
5
20 35 50 65  
80 95 110  
125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
232816 G13  
232816 G14  
232816 G15  
ꢁnternal Reference Output  
Temperature Coefficient  
Distribution  
CMRR vs ꢁnput Frequency  
Lupply Current vs Lampling Rate  
80  
75  
16  
14  
12  
10  
8
35  
30  
+
V
(IN = –10.24V)  
DD  
25  
70  
65  
20  
15  
10  
5
+
V
(IN = 0V)  
DD  
6
60  
55  
50  
4
+
V
DD  
(IN = 10.24V)  
2
OV  
DD  
0
0
0
100  
200  
300  
400  
500  
–10  
–4  
0
2
4
6
8
10  
0
100 200 300  
400 500  
600 700 800 9001000  
–8 –6  
–2  
FREQUENCY (kHz)  
DRIFT (ppm/°C)  
SAMPLING FREQUENCY (kHz)  
232816 G17  
232816 G16  
232816 G18  
232816fb  
7
For more information www.linear.com/LTC2328-16  
LTC2328-16  
pin FuncTions  
ꢂPin 1x: 2.5V Supply ꢀypass Pin. The voltage  
CHAꢁI ꢂPin 1ꢆx: Chain Mode Selector Pin. When low,  
the LTC2328-16 operates in normal mode and the  
RDL/SDI input pin functions to enable or disable SDO.  
Whenhigh,theLTC2328-16operatesinchainmodeandthe  
RDL/SDI pin functions as SDI, the daisy-chain serial data  
DD5SYP  
on this pin is generated via an onboard regulator off of  
DD  
V . This pin must be bypassed with a 2.2μF ceramic  
capacitor to GND.  
ꢂPinx:5VPowerSupply.TherangeofV is4.75Vto  
DD  
DD  
input. Logic levels are determined by OV .  
DD  
5.25V. ꢀypass V to GND with a 10µF ceramic capacitor.  
DD  
SULY ꢂPin 11x: ꢀUSY Indicator. Goes high at the start of  
GID ꢂPins 3V 6 and 16x: Ground.  
a new conversion and returns low when the conversion  
+
+
ꢁI ꢂPin 2x: Analog Input. IN operates differential with  
has finished. Logic levels are determined by OV .  
DD  
+
respect to IN with an IN -IN range of –2.5 V  
to  
REFꢀUF  
RD5/LDꢁ ꢂPin 1ꢄx: When CHAIN is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAIN is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
2.5 V  
.
REFꢀUF  
ꢁI ꢂPin .x: Analog Ground Sense. IN has an input range  
of 500mV with respect to GND and must be tied to the  
ground plane or a remote sense.  
determined by OV .  
DD  
REFSUF ꢂPin 7x: Reference ꢀuffer Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referredtoGNDandshouldbedecoupledcloselytothepin  
with a 47μF ceramic capacitor. The internal buffer driving  
this pin may be disabled by grounding its input at REFIN.  
Once the buffer is disabled, an external reference may  
overdrive this pin in the range of 2.5V to 5V. A resistive  
load greater than 500kΩ can be placed on the reference  
buffer output.  
LCKPin13x:SerialDataClockInput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSꢀ  
first. Logic levels are determined by OV .  
DD  
LDOPin12x:SerialDataOutput. Theconversionresultor  
daisy-chain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format. Logic levels are determined by OV .  
DD  
REFꢁI ꢂPin 8x: Reference Output/Reference ꢀuffer Input.  
An onboard bandgap reference nominally outputs 2.048V  
at this pin. ꢀypass this pin with a 100nF ceramic capacitor  
to GND to limit the reference output noise. If more accu-  
racy is desired, this pin may be overdriven by an external  
reference in the range of 1.25V to 2.4V.  
Oꢅ ꢂPin 1.x: I/O Interface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). ꢀypass OV to GND with a 0.1μF capacitor.  
DD  
CIꢅ ꢂPin 9x: Convert Input. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by OV .  
DD  
232816fb  
8
For more information www.linear.com/LTC2328-16  
LTC2328-16  
FuncTional block DiagraM  
REFIN = 1.25V REFBUF = 2.5V  
OV = 1.8V  
DD  
TO 5V  
V
= 5V  
V
= 2.5V  
DDLBYP  
TO 2.4V  
TO 5V  
DD  
LDO  
15k  
2.048V  
REFERENCE  
2× REFERENCE  
BUFFER  
R
0.63× BUFFER  
4R  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
IN  
IN  
+
SPI  
PORT  
R
16-BIT SAMPLING ADC  
4R  
CNV  
BUSY  
CONTROL LOGIC  
GND  
232816 BD01  
TiMing DiagraM  
Conversion Timing Using the Lerial ꢁnterface  
CHAIN, RDL/SDI = 0  
CNV  
CONVERT  
NAP AND ACQUIRE  
BUSY  
SCK  
SDO  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
232816 TD01  
232816fb  
9
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
OꢅERꢅꢁEꢇ  
TRAILFER FUICTꢁOI  
The LTC2328-16 is a low noise, high speed 16-bit suc-  
cessive approximation register (SAR) ADC with pseudo-  
differential inputs. Operating from a single 5V supply, the  
LTC2328-16hasa 10.24Vtruebipolarinputrange,making  
it ideal for high voltage applications which require a wide  
dynamic range. The LTC2328-16 achieves 1.5LSꢀ INL  
maximum, no missing codes at 16-bits and 93.5dꢀ SNR.  
The LTC2328-16 digitizes the full-scale voltage of 2.5 •  
16  
REFꢀUFinto2 levels,resultinginanLSsizeof312.5µV  
withREFꢀUF=4.096V.Theidealtransferfunctionisshown  
in Figure 2. The output data is in 2’s complement format.  
AIA5OG ꢁIPUT  
TheanaloginputsoftheLTC2328-16arepseudo-differen-  
tialinordertoreduceanyunwantedsignalthatiscommon  
to both inputs. The analog inputs can be modeled by the  
equivalent circuit shown in Figure 3. The back-to-back  
diodes at the inputs form clamps that provide ESD protec-  
tion. Each input drives a resistor divider network that has  
The LTC2328-16 has an onboard single-shot capable  
reference buffer and low drift (20ppm/°C max) 2.048V  
temperature-compensated reference. The LTC2328-16  
also has a high speed SPI-compatible serial interface that  
supports 1.8V, 2.5V, 3.3V and 5V logic while also featur-  
ing a daisy-chain mode. The fast 1Msps throughput with  
no cycle latency makes the LTC2328-16 ideally suited  
for a wide variety of high speed applications. An internal  
oscillator sets the conversion time, easing external timing  
considerations. The LTC2328-16 dissipates only 50mW  
and automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided to reduce the power  
consumption of the LTC2328-16 to 300μW for further  
power savings during inactive periods.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
COIꢅERTER OPERATꢁOI  
INPUT VOLTAGE (V)  
232816 F02  
The LTC2328-16 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
converter (CDAC) is connected to the outputs of the resis-  
tor divider networks that pins IN and IN drive to sample  
an attenuated and level-shifted version of the pseudo-  
differential analog input voltage as shown in Figure 3. A  
rising edge on the CNV pin initiates a conversion. During  
the conversion phase, the 16-bit CDAC is sequenced  
throughasuccessiveapproximationalgorithm,effectively  
comparing the sampled input with binary-weighted frac-  
Figure ꢄꢀ 5TCꢄ3ꢄ8-16 Transfer Function  
+
0.63 • V  
REFBUF  
C
IN  
45pF  
R
50Ω  
400Ω  
ON  
1.6k  
+
IN  
0.63 • V  
BIAS  
VOLTAGE  
REFBUF  
C
IN  
45pF  
R
50Ω  
400Ω  
ON  
1.6k  
232816 F03  
IN  
tions of the reference voltage (e.g. V  
/2, V  
/4  
REFꢀUF  
REFꢀUF  
… V  
/65536) using the differential comparator. At  
REFꢀUF  
the end of conversion, the CDAC output approximates the  
sampledanaloginput.TheADCcontrollogicthenprepares  
the 16-bit digital output code for serial transfer.  
Figure 3ꢀ The Equivalent Circuit for the Differential  
Analog ꢁnput of the 5TCꢄ3ꢄ8-16  
232816fb  
10  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
a total impedance of 2kΩ. The resistor divider network  
attenuates and level shifts the 2.5 REFꢀUF true bipolar  
signal swing of each input to the 0-REFꢀUF input signal  
50Ω  
66nF  
+
+
LT±468  
IN  
±±0ꢀ.4ꢁ  
LTC.3.8-±6  
swingoftheADCcore.Intheacquisitionphase,45pF(C )  
IN  
BW = 48kHz  
IN  
fromthesamplingCDACinserieswithapproximately50Ω  
(R ) from the on-resistance of the sampling switch is  
.3.8±6 F04  
ON  
connected to the output of the resistor divider network.  
Any unwanted signal that is common to both inputs will  
be reduced by the common mode rejection of the ADC  
Figure 2ꢀ ꢁnput Lignal Chain  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
+
core and resistor divider network. The IN input of the  
ADC core draws a current spike while charging the C  
capacitor during acquisition.  
IN  
ꢁIPUT DRꢁꢅE CꢁRCUꢁTL  
A low impedance source can directly drive the high im-  
pedance input of the LTC2328-16 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC input  
draws a current spike when entering acquisition.  
Pseudo-Differential Sipolar ꢁnputs  
For most applications, we recommend the low power  
LT1468 ADC driver to drive the LTC2328-16. With a low  
noisedensityof5nV/√Hzandalowsupplycurrentof3mA,  
the LT1468 is flexible and may be configured to convert  
signals of various amplitudes to the 10.24V input range  
of the LTC2328-16.  
For best performance, a buffer amplifier should be used  
to drive the analog input of the LTC2328-16. The amplifier  
provides low output impedance to minimize gain error  
and allows for fast settling of the analog signal during  
the acquisition phase. It also provides isolation between  
the signal source and the ADC input which draws a small  
current spike during acquisition.  
To achieve the full distortion performance of the  
LTC2328-16, a low distortion single-ended signal source  
driven through the LT1468 configured as a unity-gain  
buffer as shown in Figure 4 can be used to get the full  
data sheet THD specification of –111dꢀ.  
ꢁnput Filtering  
ADC REFEREICE  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter to  
minimizenoise.Thesimple1-poleRClowpassfiltershown  
in Figure 4 is sufficient for many applications.  
There are three ways of providing the ADC reference. The  
first is to use both the internal reference and reference  
buffer. The second is to externally overdrive the internal  
reference and use the internal reference buffer. The third  
is to disable the internal reference buffer and overdrive  
the REFꢀUF pin from an external source. The following  
tables give examples of these cases and the resulting  
bipolar input ranges.  
The input resistor divider network, sampling switch on-  
resistance (R ) and the sample capacitor (C ) form a  
ON  
IN  
second lowpass filter that limits the input bandwidth to  
the ADC core to 7MHz. A buffer amplifier with a low noise  
density must be selected to minimize the degradation of  
the SNR over this bandwidth.  
232816fb  
11  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
Table 1ꢀ ꢁnternal Reference with ꢁnternal Suffer  
Eꢃternal Reference with ꢁnternal Suffer  
REFꢁI  
REFSUF  
SꢁPO5AR ꢁIPUT RAIGE  
If more accuracy and/or lower drift is desired, REFIN  
can be easily overdriven by an external reference since  
a 15k resistor is in series with the reference as shown  
in Figure 5b. REFIN can be overdriven in the range from  
1.25V to 2.4V. The resulting voltage at REFꢀUF will be  
2 REFIN. So the input range is 5 REFIN, as shown  
in Table 2. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications.Withitssmallsize,lowpower,andhigh  
accuracy, the LTC6655-2.048 is well suited for use with  
the LTC2328-16 when overdriving the internal reference.  
The LTC6655-2.048 offers 0.025% (max) initial accuracy  
and 2ppm/°C (max) temperature coefficient for high pre-  
cision applications. The LTC6655-2.048 is fully specified  
over the H-grade temperature range and complements  
the extended temperature range of the LTC2328-16 up to  
125°C.ypassingtheLTC6655-2.048witha2.7μFto100µF  
ceramiccapacitorclosetotheREFINpinisrecommended.  
2.048V  
4.096V  
10.24V  
Table ꢄꢀ Eꢃternal Reference with ꢁnternal Suffer  
REFꢁI  
ꢂOꢅERDRꢁꢅEx  
REFSUF  
SꢁPO5AR ꢁIPUT RAIGE  
1.25V (Min)  
2.048V  
2.5V  
4.096V  
4.8V  
6.25V  
10.24V  
12V  
2.4V (Max)  
Table 3ꢀ Eꢃternal Reference Unbuffered  
REFꢁI  
REFSUF  
ꢂOꢅERDRꢁꢅEx  
SꢁPO5AR ꢁIPUT RAIGE  
0V  
0V  
2.5V (Min)  
5V (Max)  
6.25V  
12.5V  
ꢁnternal Reference with ꢁnternal Suffer  
The LTC2328-16 has an on-chip, low noise, low drift  
(20ppm/°C max), temperature compensated bandgap  
reference that is factory trimmed to 2.048V. It is internally  
connected to a reference buffer as shown in Figure 5a and  
is available at REFIN (Pin 8). REFIN should be bypassed to  
GNDwitha100nFceramiccapacitortominimizenoise.The  
reference buffer gains the REFIN voltage by 2 to 4.096V at  
REFꢀUF (Pin 7). So the input range is 10.24V, as shown  
in Table 1. ꢀypass REFꢀUF to GND with at least a 47μF  
ceramic capacitor (X7R, 10V, 1210 size) to compensate  
the reference buffer and minimize noise.  
Eꢃternal Reference Unbuffered  
The internal reference buffer can also be overdriven from  
2.5V to 5V with an external reference at REFꢀUF as shown  
in Figure 5c. So the input ranges are 6.25V to 12.5V,  
respectively, as shown in Table 3. To do so, REFIN must  
be grounded to disable the reference buffer. A 13k resistor  
loadstheREFꢀUFpinwhenthereferencebufferisdisabled.  
To maximize the input signal swing and corresponding  
SNR, the LTC6655-5 is recommended when overdriv-  
ing REFꢀUF. The LTC6655-5 offers the same small size,  
accuracy, drift and extended temperature range as the  
LTC6655-2.048. ꢀy using this 5V reference, an SNR of  
94.5dꢀ can be achieved. ꢀypassing the LTC6655-5 with  
a 47μF ceramic capacitor (X5R, 0805 size) close to the  
REFꢀUF pin is recommended.  
15k  
REFIN  
BANDGAP  
REFERENCE  
100nF  
+
REFBUF  
REFERENCE  
BUFFER  
TheREFꢀUFpinoftheLTC2328-16drawsacharge(Q  
)
CONV  
6.5k  
fromtheexternalbypasscapacitorduringeachconversion  
cycle. If the internal reference buffer is overdriven, the  
external reference must provide all of this charge with a  
47µF  
6.5k  
LTC2328-16  
GND  
232816 F05a  
DC current equivalent to I  
= Q  
/t . Thus, the  
REFꢀUF  
CONV CYC  
DC current draw of REFꢀUF depends on the sampling  
Figure .aꢀ 5TCꢄ3ꢄ8-16 ꢁnternal Reference Circuit  
232816fb  
12  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
of the output code. If an external reference is used to  
overdrive REFꢀUF, the fast settling LTC6655-5 reference  
is recommended.  
15k  
REFIN  
BANDGAP  
REFERENCE  
2.7µF  
+
REFBUF  
REFERENCE  
BUFFER  
ꢁnternal Reference Suffer Transient Response  
47µF  
LTC6655-2.048  
6.5k  
Foroptimumtransientperformance,theinternalreference  
buffer should be used. The internal reference buffer uses a  
proprietarydesignthatresultsinanoutputvoltagechange  
atREFꢀUFoflessthan0.25LSwhenrespondingtoasud-  
denburstofconversions.Thismakestheinternalreference  
bufferoftheLTC2328-16trulysingle-shotcapablesincethe  
first sample taken after idling will yield the same result as  
a sample taken after the transient response of the internal  
reference buffer has settled. Figure 7 shows the transient  
responses of the LTC2328-16 with the internal reference  
buffer and with the internal reference buffer overdriven by  
the LTC6655-5, both with a bypass capacitance of 47μF.  
6.5k  
LTC2328-16  
GND  
232816 F05b  
Figure .bꢀ Using the 5TC66..-ꢄꢀꢆ28 as an Eꢃternal Reference  
15k  
REFIN  
BANDGAP  
REFERENCE  
+
REFBUF  
REFERENCE  
BUFFER  
6.5k  
47µF  
LTC6655-5  
0.5  
6.5k  
INTERNAL REFERENCE BUFFER  
LTC2328-16  
GND  
0
232816 F05c  
–0.5  
Figure .cꢀ Overdriving REFSUF Using the 5TC66..-.  
EXTERNAL SOURCE ON REFBUF  
–1.0  
rate and output code. In applications where a burst of  
samples is taken after idling for long periods, as shown in  
–1.5  
–2.0  
Figure 6, I  
quickly goes from approximately 390µA  
REFꢀUF  
0
100 200 300 400 500 600 700 800 9001000  
to a maximum of 1.2mA for REFꢀUF = 5V at 1Msps. This  
step in DC current draw triggers a transient response in  
the external reference that must be considered since any  
deviation in the voltage at REFꢀUF will affect the accuracy  
TIME (µs)  
232816 F07  
Figure 7ꢀ Transient Response of the 5TCꢄ3ꢄ8-16  
CNV  
232816 F06  
IDLE  
PERIOD  
IDLE  
PERIOD  
Figure 6ꢀ CIꢅ ꢇaveform Lhowing Surst Lampling  
232816fb  
13  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
DYIAMꢁC PERFORMAICE  
Total Harmonic Distortion ꢂTHDx  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2328-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
2
V22 + V32 + V42 +…+ VN  
THD=20log  
V1  
where V1 is the RMS amplitude of the fundamental  
Lignal-to-Ioise and Distortion Ratio ꢂLꢁIADx  
frequency and V2 through V are the amplitudes of the  
N
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 8 shows that the LTC2328-16 achieves  
a typical SINAD of 93.4dꢀ at a 1MHz sampling rate with  
a 2kHz input.  
second through Nth harmonics.  
POꢇER COILꢁDERATꢁOIL  
The LTC2328-16 provides two power supply pins: the 5V  
power supply (V ), and the digital input/output interface  
DD  
power supply (OV ). The flexible OV supply allows  
DD  
DD  
the LTC2328-16 to communicate with any digital logic  
operating between 1.8V and 5V, including 2.5V and 3.3V  
systems.  
Lignal-to-Ioise Ratio ꢂLIRx  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 8 shows  
that the LTC2328-16 achieves a typical SNR of 93.5dꢀ at  
a 1MHz sampling rate with a 2kHz input.  
Power Lupply Lequencing  
The LTC2328-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2328-16  
has a power-on reset (POR) circuit that will reset the  
LTC2328-16 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
reenters the nominal supply voltage range, the POR will  
re-initialize the ADC. No conversions should be initiated  
until 200μs after a POR event to ensure the re-initialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
0
SNR = 93.5dB  
–20  
–40  
THD = –111dB  
SINAD = 93.4dB  
SFDR = –115dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
TꢁMꢁIG AID COITRO5  
CIꢅ Timing  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
232816 F08  
The LTC2328-16 conversion is controlled by CNV. A ris-  
ing edge on CNV will start a conversion and power up  
the LTC2328-16. Once a conversion has been initiated,  
Figure 8ꢀ 3ꢄk Point FFT of the 5TCꢄ3ꢄ8-16  
it cannot be restarted until the conversion is complete.  
232816fb  
14  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
For optimum performance, CNV should be driven by a  
clean low jitter signal. Converter status is indicated by the  
ꢀUSY output which remains high while the conversion is  
in progress. To ensure that no errors occur in the digitized  
results, any additional transitions on CNV should occur  
within 40ns from the start of the conversion or after the  
conversion has been completed. Once the conversion has  
completed, the LTC2328-16 powers down and begins  
acquiring the input signal.  
Lleep Mode  
Theautonapmodefeatureprovideslimitedpowersavings  
since only the ADC core powers down. To obtain greater  
power savings, the LTC2328-16 provides a sleep mode.  
During sleep mode, the entire part is powered down  
except for a small standby current resulting in a power  
dissipation of 300μW. To enter sleep mode, toggle CNV  
twice with no intervening rising edge on SCK. The part  
will enter sleep mode on the falling edge of ꢀUSY from  
the last conversion initiated. Once in sleep mode, a rising  
edge on SCK will wake the part up. Upon emerging from  
ꢁnternal Conversion Clock  
The LTC2328-16 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof527ns.Withamini-  
mum acquisition time of 460ns, throughput performance  
of 1Msps is guaranteed without any external adjustments.  
sleep mode, wait t  
ms before initiating a conversion  
WAKE  
to allow the reference and reference buffer to wake up  
and charge the bypass capacitors at REFIN and REFꢀUF.  
(Refer to the Timing Diagrams section for more detailed  
timing information about sleep mode.)  
Auto Iap Mode  
The LTC2328-16 automatically enters nap mode after a  
conversion has been completed and completely powers  
up once a new conversion is initiated on the rising edge of  
CNV. During nap mode, only the ADC core powers down  
and all other circuits remain active. During nap, data from  
thelastconversioncanbeclockedout. Theautonapmode  
featurewillreducethepowerdissipationoftheLTC2328-16  
as the sampling frequency is reduced. Since full power is  
consumed only during a conversion, the ADC core of the  
LTC2328-16remainspowereddownforalargerfractionof  
DꢁGꢁTA5 ꢁITERFACE  
The LTC2328-16 has a serial digital interface. The flexible  
OV supplyallowstheLTC2328-16tocommunicatewith  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
40MHz, a 1Msps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D15 remains valid till the first rising edge of SCK.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 9.  
16  
The serial interface on the LTC2328-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operationoftheLTC2328-16. Severalmodesareprovided  
depending on whether a single or multiple ADCs share the  
SPI bus or are daisy-chained.  
14  
+
V
(IN = –10.24V)  
DD  
12  
10  
8
+
V
(IN = 0V)  
DD  
6
4
+
V
(IN = 10.24V)  
DD  
2
OV  
DD  
0
400 500  
1
100 200 300  
600 700 800 9001000  
SAMPLING FREQUENCY (kHz)  
232816 F09  
Figure 9ꢀ Power Lupply Current of the 5TCꢄ3ꢄ8-16  
ꢅersus Lampling Rate  
232816fb  
15  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
Iormal ModeV Lingle Device  
shows a single LTC2328-16 operated in normal mode  
with CHAIN and RDL/SDI tied to ground. With RDL/SDI  
grounded, SDO is enabled and the MSꢀ(D15) of the new  
conversion data is available at the falling edge of ꢀUSY.  
This is the simplest way to operate the LTC2328-16.  
When CHAIN = 0, the LTC2328-16 operates in normal  
mode. In normal mode, RDL/SDI enables or disables the  
serial data output pin SDO. If RDL/SDI is high, SDO is in  
highimpedance.IfRDL/SDIislow,SDOisdriven.Figure10  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
SDO  
LTC2328-16  
RDL/SDI  
SCK  
DATA IN  
CLK  
NAP AND ACQUIRE  
CONVERT  
NAP AND ACQUIRE  
CONVERT  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
= t  
– t  
– t  
ACQ CYC CONV BUSYLH  
t
t
CONV  
ACQ  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
14  
15  
16  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D15  
D14  
D13  
D1  
D0  
232816 F10  
Figure 1ꢆꢀ Using a Lingle 5TCꢄ3ꢄ8-16 in Iormal Mode  
232816fb  
16  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
Iormal ModeV Multiple Devices  
be used to allow only one LTC2328-16 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure11,  
the RDL/SDI inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDI is brought low, the MSꢀ of the selected  
device is output onto SDO.  
Figure 11 shows multiple LTC2328-16 devices operating  
in normal mode (CHAIN = 0) sharing CNV, SCK and SDO.  
ꢀy sharing CNV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDI input of each ADC must  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2328-16  
B
LTC2328-16  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
NAP AND  
ACQUIRE  
CONVERT  
CONVERT  
NAP AND ACQUIRE  
CHAIN = 0  
t
CNVL  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
SCK  
SDO  
1
2
3
14  
15  
16  
17  
18  
19  
30  
31  
32  
t
t
SCKL  
HSDO  
t
t
DIS  
DSDO  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
A
D0  
A
D15  
D14  
D13  
D1  
B
D0  
B
A
A
A
B
B
B
232818 F11  
Figure 11ꢀ Iormal Mode with Multiple Devices Lharing CIV LCKV and LDO  
232816fb  
17  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
Chain ModeV Multiple Devices  
may limit the numberoflines needed to interface toa large  
number of converters. Figure 12 shows an example with  
two daisy-chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 16 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDI/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
When CHAIN = OV , the LTC2328-16 operates in  
DD  
chain mode. In chain mode, SDO is always enabled and  
RDL/SDI serves as the serial data input pin (SDI) where  
daisy-chain data output from another ADC can be input.  
This is useful for applications where hardware constraints  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2328-16  
LTC2328-16  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
NAP AND  
ACQUIRE  
CONVERT  
NAP AND ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D15  
D14  
D13  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D15  
D14  
D13  
D1  
B
D15  
D14  
D1  
A
D0  
A
SDO  
B
B
B
B
A
A
B
232816 F12  
Figure 1ꢄꢀ Chain Mode Timing Diagram  
232816fb  
18  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
applicaTions inForMaTion  
Lleep Mode  
the last conversion initiated. Once in sleep mode, a rising  
edge on SCK will wake the part up. Upon emerging from  
To enter sleep mode, toggle CNV twice with no interven-  
ing rising edge on SCK as shown in Figure 13. The part  
will enter sleep mode on the falling edge of ꢀUSY from  
sleep mode, wait t  
ms before initiating a conversion  
WAKE  
to allow the reference and reference buffer to wake up  
and charge the bypass capacitors at REFIN and REFꢀUF.  
NAP AND  
NAP AND  
ACQUIRE  
CHAIN = DONT CARE  
ACQUIRE  
RDL/SDI = DONT CARE  
CONVERT  
CONVERT  
SLEEP  
CONVERT  
t
t
CNVH  
WAKE  
CNV  
t
t
CONV  
CONV  
BUSY  
t
BUSYLH  
SCK  
NAP AND  
ACQUIRE  
CHAIN = DONT CARE  
RDL/SDI = DONT CARE  
CONVERT  
SLEEP  
CONVERT  
t
t
WAKE  
CNVH  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
SCK  
232816 F13  
Figure 13ꢀ Lleep Mode Timing Diagram  
232816fb  
19  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
boarD layouT  
To obtain the best performance from the LTC2328-16 a  
printed circuit board (PCꢀ) is recommended. Layout for  
PCꢀ should ensure the digital and analog signal lines are  
separated as much as possible. In particular, care should  
be taken not to run any digital clocks or signals alongside  
analog signals or underneath the ADC.  
Recommended 5ayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1908, the  
evaluation kit for the LTC2328-16.  
Partial Top Lilkscreen  
232816fb  
20  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
boarD layouT  
Partial 5ayer 1 Component Lide  
Partial 5ayer ꢄ Ground Plane  
232816fb  
21  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
boarD layouT  
Partial 5ayer 3 Power Plane  
Partial 5ayer 2 Sottom 5ayer  
232816fb  
22  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
boarD layouT  
Partial Lchematic of Demo Soard  
232816fb  
23  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
package DescripTion  
Please refer to http://wwwꢀlinearcom/product/5TCꢄ3ꢄ8-16#packaging for the most recent package drawingsꢀ  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
232816fb  
24  
For more information www.linear.com/LTC2328-16  
LTC2328-16  
revision hisTory  
REꢅ  
DATE  
DELCRꢁPTꢁOI  
PAGE IUMSER  
A
12/14 Change t  
time units to ns  
5
6
ACQ  
08/16 Updated graphs G01, G02 and G03  
232816fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2328-16  
Typical applicaTion  
5T1268 Configured to Suffer a 1ꢆꢀꢄ2ꢅ Lingle-Ended Lignal ꢁnto the 5TCꢄ3ꢄ8-16  
15V  
7
LT1468  
5V  
+10.24V  
–10.24V  
3
2
+
V
DD  
+
IN  
IN  
6
LTC2328-16  
REFBUF  
47µF  
REFIN  
4
100nF  
232816 TA02  
–15V  
relaTeD parTs  
PART IUMSER  
ADCs  
DELCRꢁPTꢁOI  
COMMEITL  
LTC2338-18/LTC2337-18/ 18-ꢀit, 1Msps/500ksps/250ksps Serial,  
LTC2336-18 Low Power ADC  
5V Supply, 10.24V True ꢀipolar, Differential Input, 100dꢀ SNR, Pin-Compatible  
Family in MSOP-16 Package  
LTC2328-18/LTC2327-18/ 18-ꢀit, 1Msps/500ksps/250ksps Serial,  
LTC2326-18 Low Power ADC  
5V Supply, 10.24V True ꢀipolar, Pseudo-Differential Input, 95dꢀ SNR,  
Pin-Compatible Family in MSOP-16 Package  
LTC2378-20/LTC2377-20/ 20-ꢀit, 1Msps/500ksps/250ksps Serial,  
LTC2376-20 Low Power ADC  
2.5V Supply, Differential Input, 0.5ppm INL, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2379-18/LTC2378-18/ 18-ꢀit, 1.6Msps/1Msps/500ksps/250ksps  
LTC2377-18/LTC2376-18 Serial, Low Power ADC  
2.5V Supply, Differential Input, 101.2dꢀ SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16/ 16-ꢀit, 2Msps/1Msps/500ksps/250ksps  
LTC2377-16/LTC2376-16 Serial, Low Power ADC  
2.5V Supply, Differential Input, 96.2dꢀ SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2369-18/LTC2368-18/ 18-ꢀit, 1.6Msps/1Msps/500ksps/250ksps  
LTC2367-18/LTC2364-18 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 96.5dꢀ SNR, 0V to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2370-16/LTC2368-16/ 16-ꢀit, 2Msps/1Msps/500ksps/250ksps  
LTC2367-16/LTC2364-16 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 94dꢀ SNR, 0V to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2389-18/LTC2389-16 18-ꢀit/16-ꢀit, 2.5Msps Parallel/Serial ADC  
5V Supply, Pin-Configurable Input Range, 99.8dꢀ/96dꢀ SNR, Parallel or Serial  
I/O 7mm × 7mm LQFP-48 and QFN-48 Packages  
DACs  
LTC2756/LTC2757  
18-ꢀit, Single Serial/Parallel I  
SoftSpan™  
OUT  
1LSꢀ INL/DNL, Software-Selectable Ranges, SSOP-28/7mm × 7mm LQFP-48  
Package  
DAC  
LTC2641  
LTC2630  
References  
LTC6655  
16-ꢀit/14-ꢀit/12-ꢀit Single Serial V  
DAC  
1LSꢀ INL /DNL, MSOP-8 Package, 0V to 5V Output  
OUT  
12-ꢀit/10-ꢀit/8-ꢀit Single V  
DACs  
1LSꢀ INL (12 ꢀits), Internal Reference, SC70 6-Pin Package  
OUT  
Precision Low Drift Low Noise ꢀuffered  
Reference  
5V/2.5V/2.048V/1.2V, 2ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
5V/2.5V/2.048V/1.2V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift Low Noise ꢀuffered  
Reference  
Amplifiers  
LT1468/LT1469  
Single/Dual 90MHz, 22V/μs, 16-ꢀit Accurate Low Input Offset: 75μV/125µV  
Op Amp  
232816fb  
LT 0816 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
26  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2328-16  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LTC2328-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2328HMS-18#PBF

LTC2328-18 - 18-Bit, 1Msps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 95dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C
Linear

LTC2333

16-/18-Bit, Octal, Quad and Dual 200ksps/350ksps/550ksps/800ksps SAR ADCs
Linear

LTC2335-16

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2335-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2335CLX-18#PBF

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: 0°C to 70°C
Linear

LTC2335HLX-18#PBF

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: -40°C to 125°C
Linear

LTC2335ILX-18#PBF

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: -40°C to 85°C
Linear

LTC2336

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2336-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2336CMS-18#PBF

LTC2336-18 - 18-Bit, 250ksps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC2337

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear