LTC2335ILX-18#PBF [Linear]

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: -40°C to 85°C;
LTC2335ILX-18#PBF
型号: LTC2335ILX-18#PBF
厂家: Linear    Linear
描述:

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: -40°C to 85°C

转换器
文件: 总40页 (文件大小:2034K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2335-18  
18-Bit, 1Msps 8-Channel  
Differential 1ꢀ0.24 ꢁnpꢂt ꢃSftꢃpan ꢄDC  
with Wide ꢁnpꢂt CSmmSn MSde Range  
DescripTion  
FeaTures  
The LTC®2335-18 is an 18-bit, low noise 8-channel multi-  
n
1Msps Throughput  
n
plexedsuccessiveapproximationregister(SAR)ADCwith  
differential, wide common mode range inputs. Operating  
froma5Vlowvoltagesupply,flexiblehighvoltagesupplies,  
andusingtheinternalreferenceandbuffer,thisSoftSpanTM  
ADC can be configured on a conversion-by-conversion  
basis to accept 1ꢀ.2ꢁV, ꢀV to 1ꢀ.2ꢁV, 5.12V, or ꢀV to  
5.12V signals on any channel. Alternately, the ADC may  
be programmed to cycle through a sequence of channels  
and ranges without further user intervention.  
±±3LS ꢀI3 ꢁMꢂaxiuim ±1ꢃꢄ0.2 VꢂRgnꢅ  
GuꢂrꢂRtnnd 18-Sxtm Io MxssxRg Codns  
DxffnrnRtxꢂlm Wxdn CoiioR Modn VꢂRgn ꢀRputs  
8-ChꢂRRnl Multxplnanr wxth LoftLpꢂR ꢀRput VꢂRgns:  
±1ꢃꢄ0.2m ꢃ2 to 1ꢃꢄ0.2m ±ꢆꢄ102m ꢃ2 to ꢆꢄ102  
±10ꢄꢆ2m ꢃ2 to 10ꢄꢆ2m ±ꢇꢄ0ꢆ2m ꢃ2 to ꢇꢄ0ꢆ2  
9ꢇꢄ7dS LxRgln-CoRvnrsxoR LIV ꢁTypxcꢂlꢅ  
n
n
n
n
n
−1ꢃ9dS THD ꢁTypxcꢂlꢅ ꢂt f = 0kHz  
ꢀI  
n
n
n
n
n
n
n
n
n
118dS CMVVm 10ꢆdS Actxvn Crosstꢂlk ꢁTypxcꢂlꢅ  
Vꢂxl-to-Vꢂxl ꢀRput Ovnrdrxvn TolnrꢂRcn  
Programmable Sequencer with No-Latency Control  
Guaranteed Operation to 125°C  
Integrated Reference and Buffer (ꢁ.ꢀ96V)  
SPI CMOS (1.8V to 5V) and LVDS Serial I/O  
No Pipeline Delay, No Cycle Latency  
The wide input common mode range and 118dB CMRR of  
the LTC2335-18 analog inputs allow the ADC to directly  
digitize a variety of signals, simplifying signal chain de-  
sign. This input signal flexibility, combined with 3LSB  
INL, no missing codes at 18 bits, and 96.7dB SNR, makes  
the LTC2335-18 an ideal choice for many high voltage  
applications requiring wide dynamic range.  
18ꢀmW Power Dissipation (Typical)  
ꢁ8-Lead (7mm × 7mm) LQFP Package  
TheLTC2335-18supportspin-selectableSPICMOS(1.8V  
to 5V) and LVDS serial interfaces.  
applicaTions  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents, including 77ꢀ5765, 7961132, 8319673.  
Other Patents pending.  
n
Programmable Logic Controllers  
n
Industrial Process Control  
Power Line Monitoring  
Test and Measurement  
n
n
Typical applicaTion  
15V  
0.1µF  
5V  
0.1µF  
1.8V TO 5V  
0.1µF  
ꢀRtngrꢂl IoRlxRnꢂrxty vs  
2.2µF  
V
Output Codn ꢂRd ChꢂRRnl  
CMOS OR LVDS  
I/O INTERFACE  
2.0  
±±10.24V RANG  
FULLY  
DIFFERENTIAL  
+5V  
TRUE BIPOLAR DRIVE (IN = 0V)  
1.5  
1.0  
V
V
OV  
DD  
LVDS/CMOS  
CC  
DD  
DDLBYP  
+
ARBITRARY  
ALL CHANNELS  
IN0  
IN0  
PD  
+10V  
LTC2335-18  
0V  
0V  
0.5  
SDO  
SCKO  
SCKI  
SDI  
CS  
BUSY  
CNV  
–10V  
–5V  
0
18-BIT  
MUX  
SAMPLING  
ADC  
–0.5  
–1.0  
–1.5  
–2.0  
UNIPOLAR  
TRUE BIPOLAR  
+10V  
+10V  
SAMPLE  
CLOCK  
0V  
0V  
+
–10V  
–10V  
IN7  
IN7  
+
V
REFBUF REFIN  
47µF  
GND  
0.1µF  
EE  
DIFFERENTIAL INPUTS IN /IN WITH  
WIDE INPUT COMMON MODE RANGE  
–131072 –65536  
0
65536  
131072  
233518 TA01a  
OUTPUT CODE  
233518 TA01b  
0.1µF  
–15V  
233518f  
1
For more information www.linear.com/LTC2335-18  
LTC2335-18  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
ꢁIotns 1m 0ꢅ  
TOP VIEW  
Supply Voltage (V ) .....................–ꢀ.3V to (V + ꢁꢀV)  
CC  
EE  
Supply Voltage (V )................................ –17.ꢁV to ꢀ.3V  
EE  
Supply Voltage Difference (V – V )......................ꢁꢀV  
CC  
EE  
Supply Voltage (V )..................................................6V  
DD  
Supply Voltage (OV )................................................6V  
DD  
IN6  
IN6  
IN5  
IN5  
IN4  
IN4  
IN3  
IN3  
IN2  
1
2
3
4
5
6
7
8
9
36 GND  
Internal Regulated Supply Bypass (V  
Analog Input Voltage  
) ... (Note 3)  
+
+
+
+
+
+
DDLBYP  
35 SDO  
34 SDO  
33 SCKO /SDO  
+
+
+
INꢀ to IN7 ,  
32 SCKO /SCKO  
31 OV  
DD  
INꢀ to IN7 (Note ꢁ) .........(V – ꢀ.3V) to (V + ꢀ.3V)  
EE  
CC  
30 GND  
29 SCKI /SCKI  
REFIN.................................................... –ꢀ.3V to 2.8V  
+
28 SCKI  
+
IN2 10  
27 SDI  
REFBUF, CNV (Note 5) ............. –ꢀ.3V to (V + ꢀ.3V)  
DD  
DD  
DD  
IN1 11  
26 SDI  
+
Digital Input Voltage (Note 5)..... –ꢀ.3V to (OV + ꢀ.3V)  
IN1 12  
25 GND  
Digital Output Voltage (Note 5).. –ꢀ.3V to (OV + ꢀ.3V)  
Power Dissipation.............................................. 5ꢀꢀmW  
Operating Temperature Range  
LTC2335C................................................ ꢀ°C to 7ꢀ°C  
LTC2335I .............................................–ꢁꢀ°C to 85°C  
LTC2335H.......................................... –ꢁꢀ°C to 125°C  
Storage Temperature Range .................. –65°C to 15ꢀ°C  
LX PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC LQFP  
T
JMAX  
= 15ꢀ°C, θ = 53°C/W  
JA  
orDer inForMaTion  
3EAD FVEE FꢀIꢀLH  
LTC2335CLX-18#PBF  
LTC2335ILX-18#PBF  
LTC2335HLX-18#PBF  
TVAY  
PAVT MAVKꢀIG*  
LTC2335LX-18  
LTC2335LX-18  
LTC2335LX-18  
PACKAGE DELCVꢀPTꢀOI  
TEMPEVATUVE VAIGE  
ꢀ°C to 7ꢀ°C  
LTC2335CLX-18#PBF  
LTC2335ILX-18#PBF  
LTC2335HLX-18#PBF  
ꢁ8-Lead (7mm × 7mm) Plastic LQFP  
ꢁ8-Lead (7mm × 7mm) Plastic LQFP  
ꢁ8-Lead (7mm × 7mm) Plastic LQFP  
–ꢁꢀ°C to 85°C  
–ꢁꢀ°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
233518f  
2
For more information www.linear.com/LTC2335-18  
LTC2335-18  
elecTrical characTerisTics Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full opnrꢂtxRg  
tnipnrꢂturn rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn ꢇꢅ  
LYMSO3  
V +  
PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
TYP  
MAX  
UIꢀTL  
l
l
Absolute Input Range  
(Note 7)  
V
V
CC  
– ꢁ  
V
IN  
EE  
+
+
(INꢀ to IN7 )  
V –  
IN  
Absolute Input Range  
(Note 7)  
V
V
CC  
– ꢁ  
V
EE  
(INꢀ to IN7 )  
l
l
l
l
l
l
l
l
V + – V – Input Differential Voltage  
SoftSpan 7: ±2.5 • V  
SoftSpan 6: ±2.5 • V  
Range (Note 7)  
–2.5 • V  
2.5 • V  
REFBUF  
2.5 • V  
REFBUF  
V
V
V
V
V
V
V
V
IN  
IN  
REFBUF  
REFBUF  
SoftSpan 5: ꢀV to 2.5 • V  
SoftSpan ꢁ: ꢀV to 2.5 • V  
REFBUF  
REFBUF  
Range  
/1.ꢀ2ꢁ Range (Note 7)  
–2.5 • V  
/1.ꢀ2ꢁ  
2.5 • V  
/1.ꢀ2ꢁ  
REFBUF  
Range (Note 7)  
REFBUF  
REFBUF  
REFBUF  
REFBUF  
/1.ꢀ2ꢁ Range (Note 7)  
2.5 • V  
/1.ꢀ2ꢁ  
REFBUF  
SoftSpan 3: ±1.25 • V  
SoftSpan 2: ±1.25 • V  
SoftSpan 1: ꢀV to 1.25 • V  
SoftSpan ꢀ: ꢀV to 1.25 • V  
Range (Note 7)  
–1.25 • V  
1.25 • V  
REFBUF  
REFBUF  
/1.ꢀ2ꢁ  
/1.ꢀ2ꢁ Range (Note 7)  
–1.25 • V  
1.25 • V  
/1.ꢀ2ꢁ  
REFBUF  
REFBUF  
Range (Note 7)  
1.25 • V  
REFBUF  
REFBUF  
REFBUF  
/1.ꢀ2ꢁ Range (Note 7)  
1.25 • V  
/1.ꢀ2ꢁ  
REFBUF  
l
l
l
V
Input Common Mode Voltage (Note 7)  
Range  
V
V – ꢁ  
CC  
V
CM  
EE  
V + – V – Input Differential Overdrive  
(Note 8)  
−(V − V  
)
EE  
(V − V  
CC  
)
V
IN  
IN  
CC  
EE  
Tolerance  
I
Analog Input Leakage Current  
Analog Input Capacitance  
–1  
1
µA  
IN  
C
Sample Mode  
Hold Mode  
5ꢀ  
1ꢀ  
pF  
pF  
IN  
l
CMRR  
Input Common Mode  
Rejection Ratio  
V + = V − = 18V 2ꢀꢀHz Sine  
1ꢀꢀ  
1.3  
118  
dB  
IN  
IN  
P-P  
l
l
l
V
V
CNV High Level Input Voltage  
CNV Low Level Input Voltage  
CNV Input Current  
V
V
IHCNV  
ILCNV  
INCNV  
ꢀ.5  
1ꢀ  
I
V
= ꢀV to V  
–1ꢀ  
μA  
IN  
DD  
converTer characTerisTics Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full opnrꢂtxRg  
tnipnrꢂturn rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn 9ꢅ  
LYMSO3 PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
18  
TYP  
MAX  
UIꢀTL  
Bits  
l
l
Resolution  
No Missing Codes  
18  
Bits  
Transition Noise  
SoftSpans 7 and 6: 1ꢀ.2ꢁV and 1ꢀV Ranges  
SoftSpans 5 and ꢁ: ꢀV to 1ꢀ.2ꢁV and ꢀV to 1ꢀV Ranges  
SoftSpans 3 and 2: 5.12V and 5V Ranges  
1.3  
2.6  
2.ꢀ  
ꢁ.ꢀ  
LSB  
RMS  
RMS  
RMS  
RMS  
LSB  
LSB  
LSB  
SoftSpans 1 and ꢀ: ꢀV to 5.12V and ꢀV to 5V Ranges  
l
l
l
l
INL  
Integral Linearity Error  
SoftSpans 7 and 6: 1ꢀ.2ꢁV and 1ꢀV Ranges (Note 1ꢀ)  
SoftSpans 5 and ꢁ: ꢀV to 1ꢀ.2ꢁV and ꢀV to 1ꢀV Ranges (Note 1ꢀ)  
SoftSpans 3 and 2: 5.12V and 5V Ranges (Note 1ꢀ)  
–3  
–ꢁ  
–2.5  
–2.5  
1
3
LSB  
LSB  
LSB  
LSB  
1.5  
ꢀ.75  
ꢀ.75  
2.5  
2.5  
SoftSpans 1 and ꢀ: ꢀV to 5.12V and ꢀV to 5V Ranges (Note 1ꢀ)  
l
l
DNL  
ZSE  
Differential Linearity Error (Note 11)  
−ꢀ.9  
ꢀ.2  
8ꢀ  
ꢀ.9  
LSB  
μV  
Zero-Scale Error  
(Note 12)  
(Note 12)  
−55ꢀ  
55ꢀ  
Zero-Scale Error Drift  
Full-Scale Error  
2
μV/°C  
%FS  
l
FSE  
−ꢀ.1  
ꢀ.ꢀ25  
2.5  
ꢀ.1  
Full-Scale Error Drift  
ppm/°C  
233518f  
3
For more information www.linear.com/LTC2335-18  
LTC2335-18  
DynaMic accuracy Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full opnrꢂtxRg tnipnrꢂturn rꢂRgnm  
othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ AꢀI = –1dSFLꢄ ꢁIotns 9m 1±ꢅ  
LYMSO3 PAVAMETEV  
COIDꢀTꢀOIL  
SoftSpans 7 and 6: 1ꢀ.2ꢁV and 1ꢀV Ranges, f = 2kHz  
MꢀI  
TYP  
MAX  
UIꢀTL  
l
l
l
l
SINAD  
SNR  
Signal-to-(Noise +  
93.ꢀ  
87.6  
9ꢀ.ꢀ  
8ꢁ.2  
96.5  
9ꢀ.6  
93.2  
87.3  
dB  
dB  
dB  
dB  
IN  
Distortion) Ratio  
SoftSpans 5 and ꢁ: ꢀV to 1ꢀ.2ꢁV and ꢀV to 1ꢀV Ranges, f = 2kHz  
IN  
SoftSpans 3 and 2: 5.12V and 5V Ranges, f = 2kHz  
IN  
SoftSpans 1 and ꢀ: ꢀV to 5.12V and ꢀV to 5V Ranges, f = 2kHz  
IN  
l
l
l
l
Signal-to-Noise Ratio  
SoftSpans 7 and 6: 1ꢀ.2ꢁV and 1ꢀV Ranges, f = 2kHz  
93.7  
87.7  
9ꢀ.2  
8ꢁ.3  
96.7  
9ꢀ.7  
93.2  
87.3  
dB  
dB  
dB  
dB  
IN  
SoftSpans 5 and ꢁ: ꢀV to 1ꢀ.2ꢁV and ꢀV to 1ꢀV Ranges, f = 2kHz  
IN  
SoftSpans 3 and 2: 5.12V and 5V Ranges, f = 2kHz  
IN  
SoftSpans 1 and ꢀ: ꢀV to 5.12V and ꢀV to 5V Ranges, f = 2kHz  
IN  
l
l
l
l
THD  
Total Harmonic Distortion  
SoftSpans 7 and 6: 1ꢀ.2ꢁV and 1ꢀV Ranges, f = 2kHz  
–1ꢀ9  
–111  
–113  
–11ꢁ  
–1ꢀ1  
–99  
–1ꢀꢁ  
–1ꢀ3  
dB  
dB  
dB  
dB  
IN  
SoftSpans 5 and ꢁ: ꢀV to 1ꢀ.2ꢁV and ꢀV to 1ꢀV Ranges, f = 2kHz  
IN  
SoftSpans 3 and 2: 5.12V and 5V Ranges, f = 2kHz  
IN  
SoftSpans 1 and ꢀ: ꢀV to 5.12V and ꢀV to 5V Ranges, f = 2kHz  
IN  
l
l
l
l
SFDR  
Spurious Free Dynamic  
Range  
SoftSpans 7 and 6: 1ꢀ.2ꢁV and 1ꢀV Ranges, f = 2kHz  
1ꢀ1  
99  
1ꢀ5  
1ꢀ5  
11ꢀ  
112  
11ꢁ  
115  
dB  
dB  
dB  
dB  
IN  
SoftSpans 5 and ꢁ: ꢀV to 1ꢀ.2ꢁV and ꢀV to 1ꢀV Ranges, f = 2kHz  
IN  
SoftSpans 3 and 2: 5.12V and 5V Ranges, f = 2kHz  
IN  
SoftSpans 1 and ꢀ: ꢀV to 5.12V and ꢀV to 5V Ranges, f = 2kHz  
IN  
Channel-to-Channel  
Active Crosstalk  
Alternating Conversions with 18V 2ꢀꢀHz Sine in 1ꢀ.2ꢁV  
–125  
dB  
P-P  
Range, Crosstalk to Any Other Channel  
–3dB Input Bandwidth  
Aperture Delay  
7
1
MHz  
ns  
Aperture Delay Matching  
Aperture Jitter  
15ꢀ  
3
ps  
ps  
RMS  
Transient Response  
Full-Scale Step, ꢀ.ꢀꢀ5% Settling  
36ꢀ  
ns  
inTernal reFerence characTerisTics Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full  
opnrꢂtxRg tnipnrꢂturn rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn 9ꢅ  
LYMSO3  
PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
TYP  
2.ꢀꢁ8  
5
MAX  
2.ꢀ53  
2ꢀ  
UIꢀTL  
V
V
REFIN  
Internal Reference Output Voltage  
Internal Reference Temperature Coefficient  
Internal Reference Line Regulation  
Internal Reference Output Impedance  
REFIN Voltage Range  
2.ꢀꢁ3  
l
(Note 1ꢁ)  
ppm/°C  
mV/V  
kΩ  
V
DD  
= ꢁ.75V to 5.25V  
ꢀ.1  
2ꢀ  
V
REFIN Overdriven (Note 7)  
1.25  
2.2  
V
REFIN  
233518f  
4
For more information www.linear.com/LTC2335-18  
LTC2335-18  
reFerence buFFer characTerisTics  
Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full  
opnrꢂtxRg tnipnrꢂturn rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn 9ꢅ  
LYMSO3  
PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
ꢁ.ꢀ91  
2.5  
TYP  
MAX  
ꢁ.1ꢀ1  
5
UIꢀTL  
l
l
V
Reference Buffer Output Voltage REFIN Overdriven, V  
= 2.ꢀꢁ8V  
REFIN  
ꢁ.ꢀ96  
V
V
REFBUF  
REFBUF Voltage Range  
REFBUF Input Impedance  
REFBUF Load Current  
REFBUF Overdriven (Notes 7, 15)  
V
REFIN  
= ꢀV, Buffer Disabled  
13  
kΩ  
l
I
V
V
= 5V, (Notes 15, 16)  
= 5V, Acquisition or Nap Mode (Note 15)  
1.1  
ꢀ.39  
1.ꢁ  
mA  
mA  
REFBUF  
REFBUF  
REFBUF  
DigiTal inpuTs anD DigiTal ouTpuTs Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn  
full opnrꢂtxRg tnipnrꢂturn rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn 9ꢅ  
LYMSO3  
PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
0.8 • OV  
–1ꢀ  
TYP  
MAX  
UIꢀTL  
CMOL Dxgxtꢂl ꢀRputs ꢂRd Outputs  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
IH  
IL  
DD  
0.2 • OV  
DD  
I
V
IN  
= ꢀV to OV  
DD  
1ꢀ  
μA  
pF  
V
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I
I
= –5ꢀꢀμA  
= 5ꢀꢀμA  
OV – ꢀ.2  
DD  
OH  
OL  
OUT  
ꢀ.2  
1ꢀ  
V
OUT  
I
I
I
V
OUT  
V
OUT  
V
OUT  
= ꢀV to OV  
= ꢀV  
–1ꢀ  
μA  
mA  
mA  
OZ  
DD  
–5ꢀ  
5ꢀ  
SOURCE  
SINK  
= OV  
DD  
32DL Dxgxtꢂl ꢀRputs ꢂRd Outputs  
l
l
V
Differential Input Voltage  
2ꢀꢀ  
9ꢀ  
35ꢀ  
6ꢀꢀ  
125  
mV  
ID  
R
On-Chip Input Termination  
Resistance  
CS = ꢀV, V  
= 1.2V  
1ꢀ6  
1ꢀ  
Ω
MΩ  
ID  
ICM  
DD  
CS = OV  
l
l
l
l
l
V
Common-Mode Input Voltage  
Common-Mode Input Current  
Differential Output Voltage  
ꢀ.3  
–1ꢀ  
275  
1.1  
1.2  
2.2  
1ꢀ  
V
μA  
mV  
V
ICM  
I
V + = V – = ꢀV to OV  
IN IN DD  
ICM  
V
V
R = 1ꢀꢀΩ Differential Termination  
L
35ꢀ  
1.2  
ꢁ25  
1.3  
1ꢀ  
OD  
Common-Mode Output Voltage  
Hi-Z Output Leakage Current  
R = 1ꢀꢀΩ Differential Termination  
L
OCM  
I
V
OUT  
= ꢀV to OV  
DD  
–1ꢀ  
μA  
OZ  
233518f  
5
For more information www.linear.com/LTC2335-18  
LTC2335-18  
power requireMenTs Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full opnrꢂtxRg tnipnrꢂturn  
rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn 9ꢅ  
LYMSO3 PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
TYP  
MAX  
38  
UIꢀTL  
l
l
l
l
V
V
V
V
Supply Voltage  
V
V
V
V
CC  
EE  
Supply Voltage  
–16.5  
1ꢀ  
− V  
Supply Voltage Difference  
Supply Voltage  
38  
CC  
EE  
ꢁ.75  
5.ꢀꢀ  
5.25  
DD  
VCC  
l
l
l
l
I
Supply Current  
1Msps Sample Rate  
Acquisition Mode  
Nap Mode  
3.5  
3.8  
ꢀ.7  
1
ꢁ.3  
ꢁ.5  
ꢀ.9  
15  
mA  
mA  
mA  
μA  
Power Down Mode  
l
l
l
l
I
Supply Current  
1Msps Sample Rate  
Acquisition Mode  
Nap Mode  
–5.1  
–ꢁ.9  
–1.1  
–15  
–ꢁ.ꢀ  
–ꢁ.ꢀ  
–ꢀ.8  
–1  
mA  
mA  
mA  
μA  
VEE  
Power Down Mode  
CMOL ꢀ/O Modn  
l
OV  
Supply Voltage  
Supply Current  
1.71  
5.25  
V
DD  
l
l
l
l
l
l
I
1Msps Sample Rate  
1Msps Sample Rate, V  
Acquisition Mode  
Nap Mode  
12.6  
11.3  
1.6  
1.ꢁ  
65  
1ꢁ.5  
13.ꢀ  
2.1  
1.9  
175  
ꢁ5ꢀ  
mA  
mA  
mA  
mA  
μA  
VDD  
= 5V (Note 15)  
REFBUF  
Power Down Mode (C-Grade and I-Grade)  
Power Down Mode (H-Grade)  
65  
µA  
l
l
l
I
Supply Current  
1Msps Sample Rate (C = 25pF)  
2.6  
1
1
ꢁ.2  
2ꢀ  
2ꢀ  
mA  
μA  
μA  
OVDD  
L
Acquisition or Nap Mode  
Power Down Mode  
l
l
l
l
l
P
Power Dissipation  
1Msps Sample Rate  
182  
125  
3ꢀ  
ꢀ.36  
ꢀ.36  
22ꢁ  
152  
ꢁꢀ  
1.ꢁ  
2.8  
mW  
mW  
mW  
mW  
mW  
D
Acquisition Mode  
Nap Mode  
Power Down Mode (C-Grade and I-Grade)  
Power Down Mode (H-Grade)  
32DL ꢀ/O Modn  
l
OV  
Supply Voltage  
Supply Current  
2.375  
5.25  
V
DD  
l
l
l
l
l
l
I
1Msps Sample Rate  
1ꢁ.8  
13.8  
3.2  
3.ꢀ  
65  
17.1  
15.9  
3.8  
3.7  
175  
ꢁ5ꢀ  
mA  
mA  
mA  
mA  
μA  
VDD  
1Msps Sample Rate, V  
Acquisition Mode  
Nap Mode  
= 5V (Note 15)  
REFBUF  
Power Down Mode (C-Grade and I-Grade)  
Power Down Mode (H-Grade)  
65  
µA  
l
l
l
I
Supply Current  
1Msps Sample Rate, (R = 1ꢀꢀΩ)  
7
7
1
8.5  
8.ꢀ  
2ꢀ  
mA  
mA  
μA  
OVDD  
L
Acquisition or Nap Mode (R = 1ꢀꢀΩ)  
L
Power Down Mode  
l
l
l
l
l
P
Power Dissipation  
1Msps Sample Rate  
2ꢀꢁ  
151  
55  
ꢀ.36  
ꢀ.36  
2ꢁ8  
18ꢀ  
69  
1.ꢁ  
2.8  
mW  
mW  
mW  
mW  
mW  
D
Acquisition Mode  
Nap Mode  
Power Down Mode (C-Grade and I-Grade)  
Power Down Mode (H-Grade)  
233518f  
6
For more information www.linear.com/LTC2335-18  
LTC2335-18  
aDc TiMing characTerisTics Thn l dnRotns thn spncxfxcꢂtxoRs whxch ꢂpply ovnr thn full opnrꢂtxRg  
tnipnrꢂturn rꢂRgnm othnrwxsn spncxfxcꢂtxoRs ꢂrn ꢂt TA = 0ꢆ°Cꢄ ꢁIotn 9ꢅ  
LYMSO3  
PAVAMETEV  
COIDꢀTꢀOIL  
MꢀI  
TYP  
MAX  
UIꢀTL  
Msps  
μs  
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Time Between Conversions  
Conversion Time  
1
SMPL  
CYC  
1
ꢁ5ꢀ  
ꢁ2ꢀ  
ꢁꢀ  
5ꢀꢀ  
ꢁ8ꢀ  
55ꢀ  
3ꢀ  
ns  
CONV  
ACQ  
Acquisition Time  
(t  
= t  
– t  
– t  
)
ns  
ACQ  
CYC  
CONV  
BUSYLH  
CNV High Time  
ns  
CNVH  
CNVL  
BUSYLH  
QUIET  
PDH  
CNV Low Time  
ꢁ2ꢀ  
ns  
C = 25pF  
L
ns  
CNVto BUSY Delay  
Digital I/O Quiet Time from CNV↑  
PD High Time  
2ꢀ  
ꢁꢀ  
ꢁꢀ  
ns  
ns  
PD Low Time  
ns  
PDL  
REFBUF Wake-Up Time  
C
= ꢁ7μF, C  
= ꢀ.1μF  
2ꢀꢀ  
ms  
WAKE  
REFBUF  
REFIN  
CMOL ꢀ/O Modn  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
SCKI Period  
(Notes 17, 18)  
1ꢀ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKI  
SCKI High Time  
SCKIH  
SCKI Low Time  
SCKIL  
(Note 17)  
(Note 17)  
2
SDI Setup Time from SCKI↑  
SDI Hold Time from SCKI↑  
SDO Data Valid Delay from SCKI↑  
SDO Remains Valid Delay from SCKI↑  
SDO to SCKO Skew  
SSDISCKI  
HSDISCKI  
DSDOSCKI  
HSDOSCKI  
SKEW  
1
C = 25pF (Note 17)  
L
7.5  
1
C = 25pF (Note 17)  
L
1.5  
–1  
(Note 17)  
C = 25pF (Note 17)  
L
SDO Data Valid Delay from BUSY↓  
Bus Enable Time After CS↓  
Bus Relinquish Time After CS↑  
DSDOBUSYL  
EN  
(Note 17)  
(Note 17)  
15  
15  
DIS  
32DL ꢀ/O Modn  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
SCKI Period  
(Note 19)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKI  
SCKI High Time  
(Note 19)  
1.5  
1.5  
1.2  
–ꢀ.2  
SCKIH  
SCKI Low Time  
(Note 19)  
SCKIL  
SDI Setup Time from SCKI  
SDI Hold Time from SCKI  
SDO Data Valid Delay from SCKI  
SDO Remains Valid Delay from SCKI  
SDO to SCKO Skew  
(Notes 11, 19)  
(Notes 11, 19)  
(Notes 11, 19)  
(Notes 11, 19)  
(Note 11)  
SSDISCKI  
HSDISCKI  
DSDOSCKI  
HSDOSCKI  
SKEW  
6
1
–ꢀ.ꢁ  
ꢀ.ꢁ  
(Note 11)  
SDO Data Valid Delay from BUSY↓  
Bus Enable Time After CS↓  
Bus Relinquish Time After CS↑  
DSDOBUSYL  
EN  
5ꢀ  
15  
DIS  
233518f  
7
For more information www.linear.com/LTC2335-18  
LTC2335-18  
aDc TiMing characTerisTics  
Iotn 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iotn 11: Guaranteed by design, not subject to test.  
Iotn 10: For bipolar SoftSpan ranges 7, 6, 3, and 2, zero-scale error is  
the offset voltage measured from –ꢀ.5LSB when the output code flickers  
between ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and 11 1111 1111 1111 1111. Full-  
scale error for these SoftSpan ranges is the worst-case deviation of the  
first and last code transitions from ideal and includes the effect of offset  
error. For unipolar SoftSpan ranges 5, ꢁ, 1, and ꢀ, zero-scale error is  
the offset voltage measured from ꢀ.5LSB when the output code flickers  
between ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀ1. Full-  
scale error for these SoftSpan ranges is the worst-case deviation of the  
last code transition from ideal and includes the effect of offset error.  
Iotn 1±: All specifications in dB are referred to a full-scale input in the  
relevant SoftSpan input range, except for crosstalk, which is referred to  
the crosstalk injection signal amplitude.  
Iotn 1.: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Iotn 0: All voltage values are with respect to ground.  
Iotn ±: V  
is the output of an internal voltage regulator, and should  
DDLBYP  
only be connected to a 2.2μF ceramic capacitor to bypass the pin to GND,  
as described in the Pin Functions section. Do not connect this pin to any  
external circuitry.  
Iotn .: When these pin voltages are taken below V or above V , they  
EE  
CC  
will be clamped by internal diodes. This product can handle input currents  
of up to 1ꢀꢀmA below V or above V without latch-up.  
EE  
CC  
Iotn ꢆ: When these pin voltages are taken below ground or above V or  
DD  
OV , they will be clamped by internal diodes. This product can handle  
DD  
currents of up to 1ꢀꢀmA below ground or above V or OV without  
DD  
DD  
latch-up.  
Iotn 1ꢆ: When REFBUF is overdriven, the internal reference buffer must  
be disabled by setting REFIN = ꢀV.  
Iotn ꢇ: –16.5V ≤ V ≤ ꢀV, ꢀV ≤ V ≤ 38V, 1ꢀV ≤ (V – V ) ≤ 38V,  
EE  
CC  
CC  
EE  
V
DD  
= 5V, unless otherwise specified.  
Iotn 1ꢇ: I  
varies proportionally with sample rate.  
REFBUF  
Iotn 7: Recommended operating conditions.  
Iotn 17: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V,  
DD  
DD  
Iotn 8: Refer to Absolute Maximum Ratings section for pin voltage limits  
related to device reliability.  
and OV = 5.25V.  
DD  
Iotn 18: A t  
up to 1ꢀꢀMHz for rising edge capture.  
period of 1ꢀns minimum allows a shift clock frequency of  
SCKI  
Iotn 9: V = 15V, V = –15V, V = 5V, OV = 2.5V, f = 1Msps,  
CC  
EE  
DD  
DD  
SMPL  
internal reference and buffer, true bipolar input signal drive in bipolar  
SoftSpan ranges, unipolar signal drive in unipolar SoftSpan ranges, unless  
otherwise specified.  
Iotn 19: V = 1.2V, V = 35ꢀmV for LVDS differential input pairs.  
ICM  
ID  
Iotn 1ꢃ: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
CMOL TxixRgs  
0.8 • OV  
DD  
t
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
DELAY  
DELAY  
233518 F01a  
0.8 • OV  
0.2 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
32DL TxixRgs ꢁDxffnrnRtxꢂlꢅ  
+200mV  
t
WIDTH  
–200mV  
0V  
0V  
t
t
DELAY  
DELAY  
233518 F01b  
+200mV  
–200mV  
+200mV  
–200mV  
Fxgurn 1ꢄ 2oltꢂgn 3nvnls for TxixRg LpncxfxcꢂtxoRs  
233518f  
8
For more information www.linear.com/LTC2335-18  
LTC2335-18  
TA = 25°C, VCC = +15V, VEE = –15V, VDD = 5V,  
Typical perForMance characTerisTics  
OVDD = 2.5V, Internal Reference and Buffer (VREFBUF = 4.096V), fSMPL = 1Msps, unless otherwise noted.  
Integral Nonlinearity  
Integral Nonlinearity  
Differential Nonlinearity  
vs Output Code and Range  
vs Output Code and Channel  
vs Output Code and Channel  
2.0  
1.5  
2.0  
1.5  
0.5  
0.4  
±±10.24V RANG  
±±10.24V RANG  
ALL RANGES  
ALL CHANNELS  
+
TRUE BIPOLAR DRIVE (IN = 0V)  
FULLY DIFFERENTIAL DRIVE (IN = –IN )  
ALL CHANNELS  
ALL CHANNELS  
0.3  
1.0  
1.0  
0.2  
0.5  
0.5  
0.1  
0
0
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–131072 –65536  
0
65536  
131072  
–131072 –65536  
0
65536  
131072  
0
65536  
131072  
196608  
262144  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
233518 G01  
233518 G02  
233518 G03  
Integral Nonlinearity  
vs Output Code and Range  
Integral Nonlinearity  
vs Output Code and Range  
Integral Nonlinearity  
vs Output Code and Range  
2.0  
1.5  
2.0  
1.5  
2.0  
1.5  
+
UNIPOLAR DRIVE (IN = 0V)  
FULLY DIFFERENTIAL DRIVE (IN = –IN )  
TRUE BIPOLAR DRIVE (IN = 0V)  
ONE CHANNEL  
ONE CHANNEL  
ONE CHANNEL  
1.0  
1.0  
1.0  
±±10.24, ±±14,  
±±5.12, AND ±±2  
RANGES  
0V to 5.12V AND  
0V to 5V RANGES  
±±5.12V ANV±±2  
RANGES  
0.5  
0.5  
0.5  
0
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
±±10.24V ANV±±14  
RANGES  
0V to 10.24V AND  
0V to 10V RANGES  
0
65536  
131072  
OUTPUT CODE  
196608  
262144  
–131072 –65536  
0
65536  
131072  
–131072 –65536  
0
65536  
131072  
OUTPUT CODE  
OUTPUT CODE  
233518 G06  
233518 G05  
233518 G04  
Integral Nonlinearity  
vs Output Code  
DC Histogram (Zero-Scale)  
DC Histogram (Near Full-Scale)  
2.0  
1.5  
90000  
80000  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
90000  
80000  
70000  
60000  
50000  
40000  
30000  
20000  
10000  
0
±±10.24V RANG  
±±10.24V RANG  
±±10.24V RANG  
σ = 1.3  
σ = 1.4  
TRUE BIPOLAR DRIVE (IN = 0V)  
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
ARBITRARY DRIVE  
+
IN /IN COMMON MODE  
SWEPT –10.24V to 10.24V  
–131072 –65536  
0
65536  
131072  
–6  
–4  
–2  
0
2
4
6
130971  
130974  
130977  
130980  
130983  
OUTPUT CODE  
CODE  
CODE  
233518 G07  
233518 G08  
233518 G09  
233518f  
9
For more information www.linear.com/LTC2335-18  
LTC2335-18  
TA = 25°C, VCC = +15V, VEE = –15V, VDD = 5V,  
Typical perForMance characTerisTics  
OVDD = 2.5V, Internal Reference and Buffer (VREFBUF = 4.096V), fSMPL = 1Msps, unless otherwise noted.  
32k Point Arbitrary Two-Tone FFT  
fSMPL = 1Msps, IN+ = –7dBFS 2kHz  
Sine, IN= –7dBFS 3.1kHz Sine  
32k Point FFT fSMPL = 1Msps,  
fIN = 2kHz  
32k Point FFT fSMPL = 1Msps,  
fIN = 2kHz  
0
–20  
0
–20  
0
–20  
±±10.24V RANG  
±±10.24V RANG  
±±10.24V RANG  
ARBITRARY DRIVE  
+
TRUE BIPOLAR DRIVE (IN = 0V)  
FULLY DIFFERENTIAL DRIVE (IN = –IN )  
–40  
–40  
–40  
SNR = 96.9dB  
THD = –109dB  
SINAD = 96.7dB  
SFDR = 111dB  
SNR = 96.7dB  
THD = –124dB  
SINAD = 96.7dB  
SFDR = 119dB  
SFDR = 119dB  
SNR = 96.7dB  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
233518 G10  
233518 G11  
233518 G12  
32k Point FFT fSMPL = 1Msps,  
fIN = 2kHz  
SNR, SINAD vs VREFBUF  
,
THD, Harm onics vs VREFBUF  
,
fIN = 2kHz  
fIN = 2kHz  
0
–20  
100.0  
98.0  
96.0  
94.0  
92.0  
90.0  
–100  
–105  
–110  
–115  
–120  
–125  
–130  
±±5.12V RANG  
±2.5 • V  
RANGE  
±2.5 • V  
RANGE  
REFBUF  
REFBUF  
TRUE BIPOLAR DRIVE (IN = 0V)  
TRUE BIPOLAR DRIVE (IN = 0V)  
TRUE BIPOLAR DRIVE (IN = 0V)  
–40  
SNR = 93.4dB  
THD = –118dB  
SINAD = 93.4dB  
SFDR = 120dB  
SNR  
THD  
–60  
SINAD  
–80  
2ND  
–100  
–120  
–140  
–160  
–180  
3RD  
0
100  
200  
300  
400  
500  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
FREQUENCY (kHz)  
REFBUF VOLTAGE (V)  
REFBUF VOLTAGE (V)  
233518 G13  
233518 G14  
233518 G15  
SNR, SINAD  
vs Input Frequency  
THD, Harm onics  
THD, Harm onics vs Input  
Com m on Mode, fIN = 2kHz  
vs Input Frequency  
–70  
–80  
100.0  
96.0  
92.0  
88.0  
84.0  
80.0  
76.0  
0
±±10.24V RANG  
TRUE BIPOLAR DRIVE (IN = 0V)  
±±10.24V RANG  
2V FULLY DIFFERENTIAL DRIVE  
P-P  
–20  
–40  
SNR  
–90  
–60  
SINAD  
–100  
–110  
–120  
–130  
–80  
THD  
–100  
–120  
–140  
–160  
3RD  
THD  
2ND  
±±10.24V RANG  
3RD  
TRUE BIPOLAR DRIVE (IN = 0V)  
2ND  
–10  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
–15  
–5  
0
5
10  
15  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
INPUT COMMON MODE (V)  
233518 G17  
233518 G16  
233518 G18  
233518f  
10  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
TA = 25°C, VCC = +15V, VEE = –15V, VDD = 5V,  
Typical perForMance characTerisTics  
OVDD = 2.5V, Internal Reference and Buffer (VREFBUF = 4.096V), fSMPL = 1Msps, unless otherwise noted.  
SNR, SINAD vs Input Level,  
fIN = 2kHz  
CMRR vs Input Frequency  
and Channel  
Crosstalk vs Input Frequency  
and Conversion Sequence  
98.0  
97.5  
97.0  
96.5  
96.0  
–60  
–70  
140  
130  
120  
110  
100  
90  
±±10.24V RANG  
TRUE BIPOLAR DRIVE (IN = 0V)  
±±10.24V RANG  
±±10.24V RANG  
+
+
IN0 = 0V  
IN = IN = 18V SINE  
P-P  
+
IN0 = 18V SINE  
ALL CHANNELS  
P-P  
+
IN1 , IN1 , IN2 , IN2 = 0V  
CH0, CH2, CH0, CH2...  
CH0, CH1, CH0, CH1...  
–80  
–90  
SNR  
–100  
–110  
–120  
–130  
–140  
–150  
SINAD  
80  
70  
CH1, CH1, CH1, CH1...  
10k 100k 1M  
FREQUENCY (Hz)  
60  
–40  
–30  
–20  
–10  
0
10  
100  
1k  
10  
100  
1k  
10k  
100k  
1M  
INPUT LEVEL (dBFS)  
FREQUENCY (Hz)  
233518 G19  
233518 G21  
233518 G20  
SNR, SINAD vs Tem perature,  
fIN = 2kHz  
THD, Harm onics vs Tem perature,  
fIN = 2kHz  
INL, DNL vs Tem perature  
2.0  
1.5  
–95  
–100  
–105  
–110  
–115  
–120  
–125  
99  
98  
97  
96  
95  
94  
93  
±±10.24V RANG  
±±10.24V RANG  
TRUE BIPOLAR DRIVE (IN = 0V)  
±±10.24V RANG  
TRUE BIPOLAR DRIVE (IN = 0V)  
TRUE BIPOLAR DRIVE (IN = 0V)  
1.0  
MAX INL  
0.5  
MAX DNL  
SNR  
THD  
0
SINAD  
2ND  
MIN DNL  
–0.5  
–1.0  
–1.5  
–2.0  
3RD  
MIN INL  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
233518 G24  
233518 G23  
233518 G22  
Positive Full-Scale Error vs  
Tem perature and Channel  
Negative Full-Scale Error vs  
Tem perature and Channel  
Zero-Scale Error vs  
Tem perature and Channel  
0.100  
0.075  
0.100  
0.075  
5
4
±±10.24V RANG  
ALL CHANNELS  
±±10.24 4ꢀRANG  
ALL CHANNELS  
±±10.24V RANG  
ALL CHANNELS  
3
0.050  
0.050  
2
0.025  
0.025  
1
0.000  
0.000  
0
–1  
–2  
–3  
–4  
–5  
–0.025  
–0.050  
–0.075  
–0.100  
–0.025  
–0.050  
–0.075  
–0.100  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
233518 G26  
233518 G25  
233518 G27  
233518f  
11  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
TA = 25°C, VCC = +15V, VEE = –15V, VDD = 5V,  
Typical perForMance characTerisTics  
OVDD = 2.5V, Internal Reference and Buffer (VREFBUF = 4.096V), fSMPL = 1Msps, unless otherwise noted.  
Power-Down Current  
vs Tem perature  
PSRR vs Frequency  
Supply Current vs Tem perature  
18  
16  
14  
12  
10  
8
150  
140  
130  
120  
110  
100  
90  
1000  
100  
10  
+
IN = IN = 0V  
OV  
DD  
I
I
VDD  
VDD  
V
CC  
6
V
EE  
I
VCC  
4
1
2
80  
I
0
OVDD  
–I  
VEE  
70  
0.1  
–2  
–4  
–6  
I
I
VEE  
I
VCC  
OVDD  
60  
V
DD  
50  
0.01  
–55 –35 –15  
5
25 45 65 85 105 125  
10  
100  
1k  
10k  
100k  
1M  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
233518 G28  
233518 G30  
233518 G29  
Offset Error  
vs Input Com m on Mode  
Internal Reference Output  
vs Tem perature  
Supply Current vs Sam pling Rate  
2.0  
1.5  
2.051  
2.050  
2.049  
2.048  
2.047  
2.046  
2.045  
16  
14  
12  
10  
8
±±10.24V RANG  
WITH NAP MODE  
CNVL  
15 UNITS  
t
= 500ns  
I
VDD  
1.0  
0.5  
V
= 38V, V = 0V  
CC  
CM  
EE  
V
= 0V to 34V  
6
0
I
4
VCC  
–0.5  
–1.0  
–1.5  
–2.0  
2
0
I
OVDD  
V
V
= 21.5V, V = –16.5V  
CC  
CM  
EE  
–2  
–4  
–6  
= –16.5V to 17.5V  
I
VEE  
–17  
0
17  
34  
–55 –35 –15  
5
25 45 65 85 105 125  
0
200  
400  
600  
800  
1000  
INPUT COMMON MODE (V)  
TEMPERATURE (°C)  
SAMPLING FREQUENCY (kHz)  
233518 G31  
233518 G32  
233518 G33  
Step Response  
(Large-Signal Settling)  
Step Response  
(Fine Settling)  
250  
200  
150  
100  
50  
131072  
98304  
65536  
32768  
0
±±10.24V RANG  
+
IN = 249.99984kHz  
SQUARE WAVE  
IN = 0V  
±±10.24V RANG  
+
0
IN = 249.99984kHz SQUARE WAVE  
IN = 0V  
–50  
–100  
–150  
–200  
–250  
–32768  
–65536  
–98304  
–131072  
–100  
0
100 200 300 400 500 600 700 800 900  
–100  
0
100 200 300 400 500 600 700 800 900  
SETTLING TIME (ns)  
SETTLING TIME (ns)  
233518 G35  
233518 G34  
233518f  
12  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
pin FuncTions  
Pins that are the Sam e for All Digital I/O Modes  
buffer may be disabled by grounding its input at REFIN.  
With the buffer disabled, overdrive REFBUF with an ex-  
ternal reference voltage in the range of 2.5V to 5V. When  
using the internal reference buffer, limit the loading of any  
external circuitry connected to REFBUF to less than 10µA.  
+
+
IN0 to IN7 , IN0 to IN7 (Pins 1, 2, 3, 4, 5, 6, 7, 8, 9,  
10, 11, 12, 13, 14, 47, and 48): Positive and Negative  
Analog Inputs, Channels 0 to 7. The converter samples  
(V + – V –) and digitizes the selected channel. Wide  
IN  
IN  
Using a high input impedance amplifier to buffer V  
to any external circuits is recommended.  
REFBUF  
input common mode range (V ≤ V ≤ V – 4V) and  
EE  
CM  
CC  
high common mode rejection allow the inputs to accept  
a wide variety of signal swings. Full-scale input range is  
determined by the selected SoftSpan configuration.  
PD (Pin 22): Power Down Input. When this pin is brought  
high, the LTC2335-18 is powered down and subsequent  
conversion requests are ignored. If this occurs during a  
conversion, the device powers down once the conversion  
completes. If this pin is brought high twice without an  
intervening conversion, an internal global reset is initi-  
ated, equivalent to a power-on-reset event. Logic levels  
GND (Pins 15, 18, 20, 25, 30, 36, 41, 44, 46): Ground.  
Solder all GND pins to a solid ground plane.  
V
(Pin 16): Positive High Voltage Power Supply. The  
CC  
range of V is 0V to 38V with respect to GND and 10V to  
CC  
38V with respect to V . Bypass V to GND close to the  
are determined by OV .  
EE  
CC  
DD  
pin with a 0.1μF ceramic capacitor. In applications where  
LVDS/CMOS(Pin23):I/OModeSelect.TiethispintoOV  
DD  
V
CC  
is shorted to GND this capacitor may be omitted.  
to select LVDS I/O mode, or to ground to select CMOS I/O  
V
(Pins 17, 45): Negative High Voltage Power Supply.  
mode. Logic levels are determined by OV .  
EE  
DD  
The range of V is 0V to –16.5V with respect to GND and  
EE  
CNV (Pin 24): Conversion Start Input. A rising edge on  
this pin puts the internal sample-and-holds into the hold  
mode and initiates a new conversion. CNV is not gated  
by CS, allowing conversions to be initiated independent  
of the state of the serial I/O bus.  
–10V to –38V with respect to V . Connect Pins 17 and 45  
CC  
together and bypass the V network to GND close to Pin  
EE  
17 with a 0.1μF ceramic capacitor. In applications where  
V
EE  
is shorted to GND this capacitor may be omitted.  
REFIN (Pin 19): Bandgap Reference Output/Reference  
Buffer Input. An internal bandgap reference nominally  
outputs 2.048V on this pin. An internal reference buffer  
BUSY (Pin 38): Busy Output. The BUSY signal indicates  
that a conversion is in progress. This pin transitions low-  
to-high at the start of each conversion and stays high until  
the conversion is complete. Logic levels are determined  
amplifies V  
to create the converter master reference  
REFIN  
voltage V  
= 2 • V  
on the REFBUF pin. When  
REFBUF  
REFIN  
by OV .  
DD  
using the internal reference, bypass REFIN to GND (Pin  
20) close to the pin with a 0.1μF ceramic capacitor to filter  
the bandgap output noise. If more accuracy is desired,  
overdrive REFIN with an external reference in the range  
of 1.25V to 2.2V.  
V
(Pin40):Internal2.5VRegulatorBypassPin. The  
DDLBYP  
voltage on this pin is generated via an internal regulator  
operating off of V . This pin must be bypassed to GND  
DD  
close to the pin with a 2.2μF ceramic capacitor. Do not  
connect this pin to any external circuitry.  
REFBUF (Pin 21): Internal Reference Buffer Output. An  
internal reference buffer amplifies V  
convertermasterreferencevoltageV  
thispin,nominally4.096Vwhenusingtheinternalbandgap  
reference. Bypass REFBUF to GND (Pin 20) close to the  
pin with a 47μF ceramic capacitor. The internal reference  
to create the  
=2V  
V
(Pins 42, 43): 5V Power Supply. The range of V  
REFIN  
REFBUF  
DD DD  
is 4.75V to 5.25V. Connect Pins 42 and 43 together and  
on  
REFIN  
bypass the V network to GND with a shared 0.1μF  
ceramic capacitor close to the pins.  
DD  
233518f  
13  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
pin FuncTions  
CMOS I/O Mode  
LVDS I/O Mode  
+
+
+
+
SDI , SDI , SCKI , SDO , SDO (Pins 26, 27, 28, 34,  
and 35): LVDS Inputs and Outputs. In CMOS I/O mode  
these pins are Hi-Z.  
SDI , SDI (Pins 26 and 27): LVDS Positive and Nega-  
+
tive Serial Data Input. Differentially drive SDI /SDI with  
the desired MUX control words (see Table 1a), latched  
+
on both the rising and falling edges of SCKI /SCKI . The  
SCKI (Pin 29): CMOS Serial Clock Input. Drive SCKI with  
the serial I/O clock. SCKI rising edges latch serial data in  
on SDI and clock serial data out on SDO. For standard  
SPI bus operation, capture output data at the receiver on  
rising edges of SCKI. SCKI is allowed to idle either high  
+
SDI /SDI input pair is internally terminated with a 100Ω  
differential resistor when CS is low.  
+
SCKI ,SCKI (Pins28and29):LVDSPositiveandNegative  
+
Serial Clock Input. Differentially drive SCKI /SCKI with  
+
or low. Logic levels are determined by OV .  
the serial I/O clock. SCKI /SCKI rising and falling edges  
DD  
+
latch serial data in on SDI /SDI and clock serial data out  
OV (Pin 31): I/O Interface Power Supply. In CMOS I/O  
DD  
+
+
on SDO /SDO . Idle SCKI /SCKI low, including when  
mode, the range of OV is 1.71V to 5.25V. Bypass OV  
DD  
DD  
+
transitioning CS. The SCKI /SCKI input pair is internally  
terminatedwitha100ΩdifferentialresistorwhenCSislow.  
to GND (Pin 30) close to the pin with a 0.1μF ceramic  
capacitor.  
OV (Pin 31): I/O Interface Power Supply. In LVDS I/O  
DD  
SCKO (Pin 32): CMOS Serial Clock Output. SCKI rising  
edgestriggertransitionsonSCKOthatareskew-matchedto  
the serial output data stream on SDO. The resulting SCKO  
frequency is half that of SCKI. Rising and falling edges of  
SCKO may be used to capture SDO data at the receiver  
(FPGA) in double data rate (DDR) fashion. For standard  
SPI bus operation, SCKO is not used and should be left  
unconnected. SCKO is forced low at the falling edge of  
mode, therangeofOV is2.375Vto5.25V. BypassOV  
DD  
DD  
to GND (Pin 30) close to the pin with a 0.1μF ceramic  
capacitor.  
+
SCKO , SCKO (Pins 32 and 33): LVDS Positive and  
+
Negative Serial Clock Output. SCKO /SCKO outputs a  
+
copy of the input serial I/O clock received on SCKI /SCKI ,  
+
skew-matchedwiththeserialoutputdatastreamonSDO /  
+
BUSY. Logic levels are determined by OV .  
SDO . Use the rising and falling edges of SCKO /SCKO  
DD  
+
to capture SDO /SDO data at the receiver (FPGA). The  
SDO (Pin 33): CMOS Serial Data Output. The most recent  
conversionresultalongwithchannelconfigurationinforma-  
tion is clocked out onto the SDO pin on each rising edge  
of SCKI. Output data formatting is described in the Digital  
+
SCKO /SCKO outputpairmustbedifferentiallyterminated  
with a 100Ω resistor at the receiver (FPGA).  
+
SDO , SDO (Pins 34 and 35): LVDS Positive and Nega-  
tive Serial Data Output. The most recent conversion result  
alongwithchannelconfigurationinformationisclockedout  
Interface section. Logic levels are determined by OV .  
DD  
SDI (Pin 37): CMOS Serial Data Input. Drive this pin with  
the desired MUX control words (see Table 1a), latched  
on the rising edges of SCKI. Hold SDI low while clock-  
ing SCKI to configure the next conversion according to  
the previously programmed sequence. Logic levels are  
+
+
ontoSDO /SDO onbothrisingandfallingedgesofSCKI /  
SCKI . The SDO /SDO output pair must be differentially  
terminated with a 100Ω resistor at the receiver (FPGA).  
+
SDI (Pin 37): CMOS Serial Data Input. In LVDS I/O mode  
this pin is Hi-Z.  
determined by OV .  
DD  
CS (Pin 39): Chip Select Input. The serial data I/O bus is  
enabled when CS is low and is disabled and Hi-Z when  
CS is high. CS also gates the external shift clock, SCKI.  
CS (Pin 39): Chip Select Input. The serial data I/O bus is  
enabled when CS is low, and is disabled and Hi-Z when  
+
CS is high. CS also gates the external shift clock, SCKI /  
Logic levels are determined by OV .  
SCKI .Theinternal100Ωdifferentialterminationresistors  
DD  
+
+
ontheSCKI /SCKI andSDI /SDI inputpairsaredisabled  
when CS is high. Logic levels are determined by OV .  
DD  
233518f  
14  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
conFiguraTion Tables  
Table 1a. SoftSpan Configuration Table. Use This Table with Table 1b to Choose Binary SoftSpan Codes SS[2:0] Based on Desired  
Analog Input Range. Com bine MUX Word Header (10) with Binary Channel Num ber and SoftSpan Code to Form MUX Control Word  
C[7:0]. Use Serial Interface to Program LTC2335-18 Sequencer as Shown in Figures 17 to 20  
BINARY SoftSpan CODE  
SS[2:0]  
BINARY FORMAT OF  
CONVERSION RESULT  
ANALOG INPUT RANGE  
FULL SCALE RANGE  
111  
110  
101  
100  
011  
010  
001  
000  
±2.5 • V  
5 • V  
Two’s Complement  
Two’s Complement  
Straight Binary  
REFBUF  
REFBUF  
±2.5 • V  
/1.024  
5 • V  
/1.024  
REFBUF  
REFBUF  
0V to 2.5 • V  
2.5 • V  
REFBUF  
REFBUF  
0V to 2.5 • V  
/1.024  
2.5 • V  
/1.024  
REFBUF  
Straight Binary  
REFBUF  
±1.25 • V  
2.5 • V  
Two’s Complement  
Two’s Complement  
Straight Binary  
REFBUF  
REFBUF  
±1.25 • V  
/1.024  
2.5 • V  
/1.024  
REFBUF  
REFBUF  
0V to 1.25 • V  
1.25 • V  
REFBUF  
REFBUF  
0V to 1.25 • V  
/1.024  
1.25 • V  
/1.024  
REFBUF  
Straight Binary  
REFBUF  
Table 1b. Reference Configuration Table. The LTC2335-18 Supports Three Reference Configurations. Analog Input Range Scales with  
the Converter Master Reference Voltage, VREFBUF  
BINARY SoftSpan CODE  
REFERENCE CONFIGURATION  
V
REFIN  
V
ANALOG INPUT RANGE  
REFBUF  
SS[2:0]  
111  
110  
101  
100  
011  
010  
001  
000  
111  
110  
101  
100  
011  
010  
001  
000  
111  
110  
101  
100  
011  
010  
001  
000  
10.24V  
10V  
0V to 10.24V  
0V to 10V  
5.12V  
Internal Reference with  
Internal Buffer  
2.048V  
4.096V  
5V  
0V to 5.12V  
0V to 5V  
6.25V  
6.104V  
0V to 6.25V  
0V to 6.104V  
3.125V  
1.25V  
(Min Value)  
2.5V  
3.052V  
0V to 3.125V  
0V to 3.052V  
11V  
Ex ternal Reference with  
Internal Buffer  
(REFIN Pin Ex ternally  
Overdriven)  
10.742V  
0V to 11V  
0V to 10.742V  
5.5V  
2.2V  
(Max Value)  
4.4V  
5.371V  
0V to 5.5V  
0V to 5.371V  
233518f  
15  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
conFiguraTion Tables  
Table 1b. Reference Configuration Table (Continued). The LTC2335-18 Supports Three Reference Configurations. Analog Input Range  
Scales with the Converter Master Reference Voltage, VREFBUF  
BINARY SoftSpan CODE  
REFERENCE CONFIGURATION  
V
REFIN  
V
ANALOG INPUT RANGE  
REFBUF  
SS[2:0]  
111  
110  
101  
100  
011  
010  
001  
000  
111  
110  
101  
100  
011  
010  
001  
000  
6.25V  
6.104V  
0V to 6.25V  
0V to 6.104V  
3.125V  
2.5V  
0V  
(Min Value)  
3.052V  
Ex ternal Reference  
Unbuffered  
0V to 3.125V  
0V to 3.052V  
12.5V  
(REFBUF Pin  
Ex ternally Overdriven,  
REFIN Pin Grounded)  
12.207V  
0V to 12.5V  
0V to 12.207V  
6.25V  
5V  
0V  
(Max Value)  
6.104V  
0V to 6.25V  
0V to 6.104V  
233518f  
16  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
FuncTional block DiagraM  
CMOS I/O Mode  
V
CC  
V
V
OV  
DD  
DD  
DDLBYP  
LTC2335-18  
+
+
+
+
+
+
+
+
IN0  
IN0  
IN1  
IN1  
IN2  
IN2  
IN3  
IN3  
IN4  
IN4  
IN5  
IN5  
IN6  
IN6  
IN7  
IN7  
2.5V  
REGULATOR  
SDO  
SCKO  
SDI  
SEQUENCER  
CMOS  
SERIAL  
I/O  
SCKI  
CS  
INTERFACE  
18-BIT  
SAMPLING  
ADC  
18 BITS  
REFERENCE  
BUFFER  
20k  
BUSY  
CONTROL  
LOGIC  
2.048V  
REFERENCE  
2×  
V
EE  
GND  
REFIN  
REFBUF  
CNV PD LVDS/CMOS  
233518 BD01  
LVDS I/O Mode  
V
CC  
V
V
OV  
DD  
DD  
DDLBYP  
LTC2335-18  
+
IN0  
IN0  
IN1  
IN1  
IN2  
IN2  
IN3  
IN3  
IN4  
IN4  
IN5  
IN5  
IN6  
IN6  
IN7  
IN7  
+
+
+
+
+
+
+
+
+
+
+
SDO  
SDO  
SCKO  
SCKO  
SDI  
2.5V  
REGULATOR  
SEQUENCER  
LVDS  
SERIAL  
I/O  
SDI  
INTERFACE  
SCKI  
SCKI  
18-BIT  
SAMPLING  
ADC  
18 BITS  
CS  
REFERENCE  
BUFFER  
20k  
BUSY  
CONTROL  
LOGIC  
2.048V  
REFERENCE  
2×  
V
EE  
GND  
REFIN  
REFBUF  
CNV PD LVDS/CMOS  
233518 BD02  
233518f  
17  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
TiMing DiagraM  
CMOS I/O Mode  
CS = PD = 0  
SAMPLE N  
CNV  
SAMPLE N + 1  
BUSY  
CONVERT  
ACQUIRE  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
2
3
4
5
6
7
8
9
SCKI  
SDI  
DONT CARE  
C7 C6 C5 C4 C3 C2 C1 C0 C7 C6 C5 C4 C3 C2 C1 C0  
CONTROL WORD FOR  
CONVERSION N + 1  
CONTROL WORD FOR  
CONVERSION N + 2  
SCKO  
SDO  
DONT CARE  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CH2 CH1 CH0 SS2 SS1 SS0 D17  
CONVERSION RESULT  
(REPETITION)  
CONVERSION RESULT  
CONVERSION N  
CHANNEL ID  
SoftSpan  
233518 TD01  
LVDS I/O Mode  
CS = PD = 0  
SAMPLE N  
SAMPLE N + 1  
CNV  
(CMOS)  
BUSY  
(CMOS)  
CONVERT  
ACQUIRE  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
2
3
4
5
6
7
8
9
SCKI  
(LVDS)  
SDI  
(LVDS)  
DONT CARE  
C7 C6 C5 C4 C3 C2 C1 C0 C7 C6 C5 C4 C3 C2 C1 C0  
CONTROL WORD FOR  
CONVERSION N + 1  
CONTROL WORD FOR  
CONVERSION N + 2  
SCKO  
(LVDS)  
SDO  
(LVDS)  
DONT CARE  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CH2 CH1 CH0 SS2 SS1 SS0 D17  
CONVERSION RESULT  
(REPETITION)  
CONVERSION RESULT  
CONVERSION N  
CHANNEL ID  
SoftSpan  
233518 TD02  
233518f  
18  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
OVERVIEW  
an 18-bit charge redistribution capacitor D/A converter  
(CDAC). TheCDACissequencedthroughasuccessiveap-  
proximationalgorithm,effectivelycomparingthesampled  
input voltage with binary-weighted fractions of the chan-  
The LTC2335-18 is an 18-bit, low noise 8-channel multi-  
plexedsuccessiveapproximationregister(SAR)ADCwith  
differential, wide common mode range inputs. The ADC  
operates from a 5V low voltage supply and flexible high  
voltage supplies, nominally 15V. Using the integrated  
nel’s SoftSpan full-scale range (e.g., V /2, V /4 …  
FSR  
FSR  
V
FSR  
/262144) using a differential comparator. At the end  
of this process, the CDAC output approximates the chan-  
nel’s sampled analog input. The ADC control logic then  
prepares the 18-bit digital output code for serial transfer.  
low-driftreferenceandbuffer(V  
=4.096Vnominal),  
REFBUF  
this SoftSpan ADC can be configured on a conversion-by-  
conversionbasistoaccept 10.24V,0Vto10.24V, 5.12V,  
or 0V to 5.12V signals on any channel. Alternately, the  
ADC may be programmed to cycle through a sequence of  
channelsandrangeswithoutfurtheruserintervention.The  
input signal range may be expanded up to 12.5V using  
an external 5V reference.  
TRANSFER FUNCTION  
The LTC2335-18 digitizes the full-scale voltage range into  
18  
2
levels. In conjunction with the ADC master reference  
voltage, V  
, the selected SoftSpan configuration  
REFBUF  
The wide input common mode range and high CMRR  
(118dB typical, V + = V – = 18V 200Hz Sine) of the  
determines its input voltage range, full-scale range, LSB  
size, and the binary format of its conversion result, as  
shown in Tables 1a and 1b. For example, employing the  
IN  
IN  
P-P  
LTC2335-18analoginputsallowtheADCtodirectlydigitize  
a variety of signals, simplifying signal chain design. The  
absolute common mode input range is determined by  
the choice of high voltage supplies, which may be biased  
asymmetrically around ground and include the ability for  
either the positive or negative supply to be tied directly to  
ground. This input signal flexibility, combined with 3LSB  
INL, no missing codes at 18-bits, and 96.7dB SNR, makes  
the LTC2335-18 an ideal choice for many high voltage  
applications requiring wide dynamic range.  
internal reference and buffer (V  
= 4.096V nominal),  
REFBUF  
SoftSpan 7 configures a channel to accept a 10.24V  
bipolar analog input voltage range, which corresponds  
to a 20.48V full-scale range with a 78.125μV LSB. Other  
SoftSpan configurations and reference voltages may be  
employed to convert both larger and smaller bipolar and  
unipolar input ranges. Conversion results are output in  
two’s complement binary format for all bipolar SoftSpan  
ranges, and in straight binary format for all unipolar  
SoftSpan ranges. The ideal two’s complement transfer  
function is shown in Figure 2, while the ideal straight  
binary transfer function is shown in Figure 3.  
TheLTC2335-18supportspin-selectableSPICMOS(1.8V  
to 5V) and LVDS serial interfaces, enabling it to communi-  
cateequallywellwithlegacymicrocontrollersandmodern  
FPGAs.TheLTC2335-18typicallydissipates180mWwhen  
converting at 1Msps throughput. Optional nap and power  
down modes may be employed to further reduce power  
consumption during inactive periods.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
CONVERTER OPERATION  
The LTC2335-18 operates in two phases. During the ac-  
quisition phase, the sampling capacitors in each channel  
connect to their respective analog input pins and track  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/262144  
the differential analog input voltage (V + – V –). A ris-  
IN  
IN  
–1 0V  
ing edge on the CNV pin transitions the S/H circuits from  
track mode to hold mode, sampling the input signals and  
initiating a conversion. During the conversion phase, the  
selected channel's sampling capacitors are connected to  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
LSB  
INPUT VOLTAGE (V)  
233518 F02  
Figure 2. LTC2335-18 Two’s Com plem ent Transfer Function  
233518f  
19  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
the sampling switches, each of which has approximately  
111...111  
111...110  
600Ω (R ) of on-resistance. This behavior occurs on all  
IN  
channels, so that the LTC2335-18 may respond instantly  
to user-requested changes in multiplexer configuration  
with no additional settling time required.  
100...001  
100...000  
UNIPOLAR  
ZERO  
011...111  
011...110  
V
CC  
C
IN  
000...001  
000...000  
R
IN  
FSR = +FS  
40pF  
600Ω  
1LSB = FSR/262144  
+
IN  
IN  
0V  
FSR – 1LSB  
V
EE  
INPUT VOLTAGE (V)  
233518 F03  
BIAS  
VOLTAGE  
V
CC  
C
IN  
Figure 3. LTC2335-18 Straight Binary Transfer Function  
R
IN  
40pF  
600Ω  
233518 F04  
ANALOG INPUTS  
V
EE  
The LTC2335-18 samples the voltage difference (V + –  
IN  
IN  
Figure 4. Equivalent Circuit for Differential Analog Inputs,  
Single Channel Shown  
V –) between its analog input pins over a wide common  
mode input range while attenuating unwanted signals  
common to both input pins by the common-mode rejec-  
tion ratio (CMRR) of the ADC. Wide common mode input  
The initial voltage on both capacitors of the just-converted  
channelwillbeapproximatelythesampledcommonmode  
voltage (V + + V –)/2 from the previous conversion.  
+
range coupled with high CMRR allows the IN /IN analog  
inputs to swing with an arbitrary relationship to each  
IN  
IN  
Other channels’ capacitors will retain approximately the  
other, provided each pin remains between (V – 4V)  
CC  
+
voltage of their respective IN /IN pin at the beginning of  
the previous conversion. The external circuitry connected  
and V . This unique feature of the LTC2335-18 enables  
EE  
it to accept a wide variety of signal swings, including  
traditionalclassesofanaloginputsignalssuchaspseudo-  
differentialunipolar, pseudo-differentialtruebipolar, and  
fully differential, simplifying signal chain design.  
+
to IN and IN must source or sink the charge that flows  
through R as the sampling capacitors settle from their  
IN  
initial voltages to the new input pin voltages over the  
course of the acquisition interval. During conversion, nap,  
and power down modes, the analog inputs draw only a  
small leakage current. The diodes at the inputs provide  
ESD protection.  
The wide operating range of the high voltage supplies  
offers further input common mode flexibility. As long as  
the voltage difference limits of 10V ≤ V – V ≤ 38V  
CC  
EE  
are observed, V and V may be independently biased  
CC  
EE  
anywhere within their own individual allowed operating  
ranges, including the ability for either of the supplies to be  
tied directly to ground. This feature enables the common  
mode input range of the LTC2335-18 to be tailored to the  
specific application’s requirements.  
Bipolar SoftSpan Input Ranges  
For conversions configured in SoftSpan ranges 7, 6, 3,  
or 2, the LTC2335-18 digitizes the differential analog  
input voltage (V + – V –) over a bipolar span of  
IN  
IN  
REFBUF  
±2.5 • V  
, ±2.5 • V  
/1.024, ±1.25 • V  
, or  
REFBUF  
REFBUF  
In all SoftSpan ranges, each channel’s analog inputs can  
be modeled by the equivalent circuit shown in Figure 4.  
At the start of acquisition, the 40pF sampling capacitors  
±1.25 • V  
/1.024, respectively, as shown in Table  
REFBUF  
1a. These SoftSpan ranges are useful for digitizing input  
+
signals where IN and IN swing above and below each  
+
(C ) connect to the analog input pins IN /IN through  
IN  
233518f  
20  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
24ns implies an 18-bit settling time to a full-scale step of  
other. Traditional examples include fully differential input  
+
approximately13(R C )=312ns.Theimpedanceand  
signals, where IN and IN are driven 180 degrees out-of-  
phasewithrespecttoeachothercenteredaroundacommon  
IN IN  
self-settling of external circuitry connected to the analog  
input pins will increase the overall settling time required.  
Low impedance sources can directly drive the inputs of  
the LTC2335-18 without gain error, but high impedance  
sources should be buffered to ensure sufficient settling  
during acquisition and to optimize the linearity and distor-  
tion performance of the ADC. Settling time is an important  
considerationevenforDCinputsignals, asthevoltageson  
the sampling capacitors will differ from the analog input  
pin voltages at the start of acquisition.  
modevoltage(V ++V )/2,andpseudo-differentialtrue  
IN  
IN  
+
bipolar input signals, where IN swings above and below  
a ground reference level, driven on IN . Regardless of the  
chosen SoftSpan range, the wide common mode input  
+
range and high CMRR of the IN /IN analog inputs allow  
them to swing with an arbitrary relationship to each other,  
provided each pin remains between (V – 4V) and V .  
CC  
EE  
The output data format for all bipolar SoftSpan ranges is  
two’s complement.  
Mostapplicationsshoulduseabufferamplifiertodrivethe  
analog inputs of the LTC2335-18. The amplifier provides  
low output impedance, enabling fast settling of the analog  
signal during the acquisition phase. It also provides isola-  
tion between the signal source and the charge flow at the  
analog inputs when entering acquisition.  
Unipolar SoftSpan Input Ranges  
For conversions configured in SoftSpan ranges 5, 4, 1,  
or 0, the LTC2335-18 digitizes the differential analog  
input voltage (V + – V –) over a unipolar span of 0V  
IN  
IN  
to 2.5 • V  
REFBUF  
, 0V to 2.5 • V  
, or 0V to 1.25 • V  
shown in Table 1a. These SoftSpan ranges are useful for  
/1.024, 0V to 1.25 •  
REFBUF  
REFBUF  
V
/1.024, respectively, as  
REFBUF  
Input Filtering  
+
digitizing input signals where IN remains above IN . A  
traditional example includes pseudo-differential unipolar  
The noise and distortion of an input buffer amplifier and  
other supporting circuitry must be considered since they  
add to the ADC noise and distortion. Noisy input signals  
should be filtered prior to the buffer amplifier with a low-  
bandwidth filter to minimize noise. The simple one-pole  
RC lowpass filter shown in Figure 5 is sufficient for many  
applications.  
+
input signals, where IN swings above a ground reference  
level, driven on IN . Regardless of the chosen SoftSpan  
range, the wide common mode input range and high  
+
CMRR of the IN /IN analog inputs allow them to swing  
with an arbitrary relationship to each other, provided each  
pin remains between (V – 4V) and V . The output data  
format for all unipolar SoftSpan ranges is straight binary.  
CC  
EE  
At the output of the buffer, a lowpass RC filter network  
formed by the 600Ω sampling switch on-resistance (R )  
IN  
and the 40pF sampling capacitance (C ) limits the input  
IN  
INPUT DRIVE CIRCUITS  
bandwidth on each channel to 7MHz, which is fast enough  
to allow for sufficient transient settling during acquisition  
while simultaneously filtering driver wideband noise.  
A buffer amplifier with low noise density should be se-  
lected to minimize SNR degradation over this bandwidth.  
An additional filter network may be placed between the  
buffer output and ADC input to further minimize the noise  
The initial voltage on each channel’s sampling capacitors  
at the start of acquisition must settle to the new input  
pin voltages during the acquisition interval. The external  
+
circuitry connected to IN and IN must source or sink  
the charge that flows through R as this settling occurs.  
IN  
The LTC2335-18 sampling network RC time constant of  
233518f  
21  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
TRUE BIPOLAR  
INPUT SIGNAL  
LOWPASS  
SIGNAL FILTER  
160Ω  
BUFFER  
0V  
AMPLIFIER  
+
IN0  
IN0  
10nF  
LTC2335-18  
BW = 100kHz  
ONLY CHANNEL 0 SHOWN FOR CLARITY  
233518 F05  
Figure 5. True Bipolar Signal Chain with Input Filtering  
contribution of the buffer. A simple one-pole lowpass RC  
filter is sufficient for many applications.  
a wide variety of signal swings, simplifying signal chain  
+
design. In many applications, connecting a channel’s IN  
and IN pins directly to the existing signal chain circuitry  
This filter interacts with the buffer amplifier and slows  
input settling. It is important that the inputs settle to  
will not allow the channel’s sampling network to settle to  
18-bitresolutionwithintheADCacquisitiontime(t ). In  
ACQ  
18-bit resolution within the ADC acquisition time (t ),  
ACQ  
thesecases,itisrecommendedthattwounity-gainbuffers  
be inserted between the signal source and the ADC input  
pins, as shown in Figure 6a. Table 2 lists several amplifier  
and lowpass filter combinations recommended for use in  
this circuit.  
asinsufficientsettlingcanlimitINLandTHDperformance.  
High quality capacitors and resistors should be used in  
the RC filters since these components can add distortion.  
NPO/COG and silver mica type dielectric capacitors have  
excellent linearity. Carbon surface mount resistors can  
generate distortion from self-heating and from damage  
thatmayoccurduringsoldering. Metalfilmsurfacemount  
resistors are much less susceptible to both problems.  
The LT1358 combines fast settling, high linearity, and low  
input-referrednoisedensity,allowingittoapproachthefull  
ADC data sheet SNR and THD specifications when used  
withalowpassfilter,asshownintheFFTplotsinFigures6b  
to 6e. It may be used without a filter at a loss of 0.3dB  
SNR due to wideband noise. The LT1469 achieves the full  
ADC specifications for DC precision, THD, and linearity,  
at a cost of 0.8dB in SNR. Finally, the LT1355 provides a  
good general-purpose combination of THD and SNR at a  
lower power. Neither the LT1469 nor LT1355 can afford  
the slowing effect of a lowpass filter if they are to be used  
Buffering Arbitrary and Fully Differential Analog Input  
Signals  
The wide common mode input range and high CMRR of  
+
the LTC2335-18 allow each channel’s IN and IN pins  
to swing with an arbitrary relationship to each other,  
provided each pin remains between (V – 4V) and V .  
CC  
EE  
ThisuniquefeatureoftheLTC2335-18enablesittoaccept  
at the minimum t  
of 420ns.  
ACQ  
Table 2. Recom m ended Am plifier and Filter Com binations for the Buffer Circuits in Figures 6a and 9. AC Perform ance Measured  
Using Circuit in Figure 6a, ±10.24V Range  
R
C
SNR  
(dB)  
THD  
(dB)  
SINAD  
(dB)  
SFDR  
(dB)  
FILT  
FILT  
AMPLIFIER  
INPUT SIGNAL DRIVE  
(Ω)  
100  
0
(pF)  
270  
0
½ LT1358  
½ LT1469  
½ LT1358  
½ LT1358  
½ LT1469  
½ LT1355  
FULLY DIFFERENTIAL  
FULLY DIFFERENTIAL  
TRUE BIPOLAR  
96.8  
96.0  
96.8  
96.5  
96.0  
96.2  
−120  
−124  
−107  
−108  
−109  
−106  
96.8  
96.0  
96.4  
96.2  
95.8  
95.9  
120  
120  
108  
110  
110  
109  
100  
0
270  
0
TRUE BIPOLAR  
0
0
TRUE BIPOLAR  
0
0
TRUE BIPOLAR  
233518f  
22  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
15V  
OPTIONAL  
FULLY  
DIFFERENTIAL  
+5V  
15V  
LOWPASS FILTERS  
ARBITRARY  
+10V  
0.1µF  
R
FILT  
AMPLIFIER  
+
0V  
0V  
+
V
C
C
+
IN  
IN  
CC  
FILT  
FILT  
IN0  
IN0  
–10V  
–5V  
LTC2335-18  
UNIPOLAR  
TRUE BIPOLAR  
+10V  
+
+10V  
V
REFBUF  
47µF  
REFIN  
0.1µF  
AMPLIFIER  
EE  
0V  
R
FILT  
0V  
0.1µF  
–15V  
–10V  
–10V  
–15V  
ONLY CHANNEL 0 SHOWN FOR CLARITY  
233518 F06a  
Figure 6a. Buffering Arbitrary, Fully Differential, True Bipolar, and Unipolar Signals.  
See Table 2 for Recom m ended Am plifier and Filter Com binations  
Arbitrary Drive  
Fully Differential Drive  
0
–20  
0
–20  
±±10.24V RANG  
±±10.24V RANG  
SFDR = 118dB  
SNR = 97.0dB  
SNR = 96.8dB  
THD = –120dB  
SINAD = 96.8dB  
SFDR = 120dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
233518 F06b  
233518 F06c  
Figure 6b. Two-Tone Test. IN+ = –7dBFS 2kHz Sine, IN= –7dBFS  
3.1kHz Sine, 32k Point FFT, fSMPL = 1Msps. Circuit Shown in  
Figure 6a with LT1358 Am plifiers, RFILT = 100Ω, CFILT = 270pF  
Figure 6c. IN+/IN= –1dBFS 2kHz Fully Differential Sine, VCM = 0V,  
32k Point FFT, fSMPL = 1Msps. Circuit Shown in Figure 6a with  
LT1358 Am plifiers, RFILT = 100Ω, CFILT = 270pF  
True Bipolar Drive  
Unipolar Drive  
0
0
±±10.24V RANG  
0V to 10.24V RANGE  
–20  
–20  
SNR = 91.0dB  
SNR = 96.8dB  
THD = –107dB  
SINAD = 96.4dB  
SFDR = 108dB  
–40  
–40  
–60  
THD = –111dB  
SINAD = 91.0dB  
SFDR = 111dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
233518 F06d  
233518 F06e  
Figure 6d. IN+ = –1dBFS 2kHz True Bipolar Sine, IN= 0V, 32k  
Point FFT, fSMPL = 1Msps. Circuit Shown in Figure 6a with LT1358  
Am plifiers, RFILT = 100Ω, CFILT = 270pF  
Figure 6e. IN+ = –1dBFS 2kHz Unipolar Sine, IN= 0V, 32k Point  
FFT, fSMPL = 1Msps. Circuit Shown in Figure 6a with LT1358  
Am plifiers, RFILT = 100Ω, CFILT = 270pF  
233518f  
23  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
The two-tone test shown in Figure 6b demonstrates the  
many sensors produce a differential sensor voltage riding  
on top of a large common mode signal. Figure 7a depicts  
one way of using the LTC2335-18 to digitize signals of  
this type. The amplifier stage provides a differential gain  
of approximately 10V/V to the desired sensor signal while  
the unwanted common mode signal is attenuated by the  
ADCCMRR.Thecircuitemploysthe 5VSoftSpanrangeof  
the ADC. Figure 7b shows measured CMRR performance  
of this solution, which is competitive with the best com-  
mercially available instrumentation amplifiers. Figure 7c  
shows measured AC performance of this solution.  
arbitraryinputdrivecapabilityoftheLTC2335-18.Thistest  
+
simultaneouslydrivesIN witha7dBFS2kHzsingle-ended  
sinewaveandIN witha7dBFS3.1kHzsingle-endedsine  
wave. Together, these signals sweep the analog inputs  
across a wide range of common mode and differential  
mode voltage combinations, similar to the more general  
arbitrary input signal case. They also have a simple spec-  
tral representation. An ideal differential converter with no  
common-mode sensitivity will digitize this signal as two  
−7dBFS spectral tones, one at each sine wave frequency.  
The FFT plot in Figure 6b demonstrates the LTC2335-18  
response, which approaches this ideal with 118dB of  
SFDR limited by the converter's second harmonic distor-  
In Figure 8, another application circuit is shown which  
uses two channels of the LTC2335-18 to sense the volt-  
age on and bidirectional current through a sense resistor  
over a wide common mode range. In many applications  
of this type, the impedance of the external circuitry is low  
enough that the ADC sampling network can fully settle  
without buffering.  
tion response to the 3.1kHz sine wave on IN .  
The ability of the LTC2335-18 to accept arbitrary signal  
swings over a wide input common mode range with high  
CMRR can simplify application solutions. In practice,  
31V  
+
½ LT1124  
+
IN  
ARBITRARY  
LOWPASS FILTERS  
31V  
18pF  
49.9Ω  
24V  
0.1µF  
2.49k  
6.6nF  
6.6nF  
V
+
CC  
COMMON MODE  
INPUT RANGE  
IN0  
IN0  
549Ω  
2.49k  
LTC2335-18  
DIFFERENTIAL MODE  
INPUT RANGE: 500ꢀV  
18pF  
49.9Ω  
V
REFBUF  
47µF  
REFIN  
EE  
0V  
+
0.1µF  
0.1µF  
–5V  
BW ~ 500kHz  
IN  
½ LT1124  
–5V  
ONLY CHANNEL 0 SHOWN FOR CLARITY  
233518 F07a  
Figure 7a. Digitize Differential Signals Over a Wide Com m on Mode Range  
233518f  
24  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
120  
15V  
±±5V RANG  
110  
100  
90  
0.1µF  
V
CC  
+
IN0  
IN0  
V
S1  
LTC2335-18  
80  
+
+
IN1  
IN1  
IN = IN = 24V SINE  
R
SENSE  
I
SENSE  
P-P  
OP AMPS SLEW f > 30kHz  
IN  
70  
60  
50  
V
REFBUF  
47µF  
REFIN  
EE  
+
V
S2  
IN = IN = 1V SINE  
0.1µF  
P-P  
0.1µF  
–15V  
233518 F08  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
ONLY CHANNELS 0 AND 1 SHOWN FOR CLARITY  
– V –10.24V ≤ V ≤ 10.24V  
233518 F07b  
V
S1  
S2  
S1  
I
=
Figure 7b. CMRR vs Input Frequency. Circuit Shown in Figure 7a  
SENSE  
R
–10.24V ≤ V ≤ 10.24V  
SENSE  
S2  
Figure 8. Sense Voltage (CH0) and Current (CH1)  
Over a Wide Com m on Mode Range  
0
±±5V RANG  
FULLYVDIFFG GATIRLVD I5GV(IA V=V+IA )  
+
–20  
–40  
Buffering Single-Ended Analog Input Signals  
SNR = 90.0dB  
THD = –113dB  
SINAD = 90.0dB  
SFDR = 117dB  
–60  
While the circuit shown in Figure 6a is capable of buffering  
single-ended input signals, the circuit shown in Figure 9 is  
preferable when the single-ended signal reference level is  
inherently low impedance and doesn't require buffering.  
Thiscircuiteliminatesonedriverandlowpassfilter,reduc-  
ing part count, power dissipation, and SNR degradation  
due to driver noise. Using the recommended driver and  
filter combinations in Table 2, the performance of this  
circuit with single-ended input signals is on par with the  
performance of the circuit in Figure 6a.  
–80  
–100  
–120  
–140  
–160  
–180  
0
20  
40  
60  
80  
100  
FREQUENCY (kHz)  
233518 F07c  
Figure 7c. IN+/IN= 450m V 2kHz Fully Differential Sine,  
0V ≤ VCM ≤ 24V, 32k Point FFT, fSMPL = 200ksps. Circuit  
Shown in Figure 7a  
TRUE BIPOLAR  
+10V  
15V  
OPTIONAL  
LOWPASS FILTER  
15V  
+
+
IN  
IN  
0V  
0.1µF  
R
FILT  
AMPLIFIER  
–10V  
V
CC  
+
C
FILT  
IN0  
IN0  
–15V  
UNIPOLAR  
+10V  
LTC2335-18  
0V  
V
REFBUF  
47µF  
REFIN  
EE  
–10V  
0.1µF  
0.1µF  
–15V  
ONLY CHANNEL 0 SHOWN FOR CLARITY  
233518 F09  
Figure 9. Buffering Single-Ended Input Signals. See Table 2 For Recom m ended Am plifier and Filter Com binations  
233518f  
25  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
ADC REFERENCE  
LTC2335-18  
REFIN  
AsshownpreviouslyinTable1b,theLTC2335-18supports  
three reference configurations. The first uses both the in-  
ternalbandgapreferenceandreferencebuffer.Thesecond  
externally overdrives the internal reference but retains the  
internal buffer, which isolates the external reference from  
ADC conversion transients. This configuration is ideal  
for sharing a single precision external reference across  
multiple ADCs. The third disables the internal buffer and  
overdrives the REFBUF pin externally.  
20k  
BANDGAP  
REFERENCE  
0.1µF  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
47µF  
6.5k  
GND  
233518 F10a  
Internal Reference with Internal Buffer  
Figure 10a. Internal Reference with Internal Buffer Configuration  
The LTC2335-18 has an on-chip, low noise, low drift  
(20ppm/°C maximum), temperature compensated band-  
gap reference that is factory trimmed to 2.048V. The  
reference output connects through a 20kΩ resistor to  
the REFIN pin, which serves as the input to the on-chip  
referencebuffer, asshowninFigure10a. Whenemploying  
the internal bandgap reference, the REFIN pin should be  
bypassed to GND (Pin 20) close to the pin with a 0.1μF  
ceramic capacitor to filter wideband noise. The reference  
Ex ternal Reference with Internal Buffer  
If more accuracy and/or lower drift is desired, REFIN can  
be easily overdriven by an external reference since 20kΩ  
of resistance separates the internal bandgap reference  
output from the REFIN pin, as shown in Figure 10b. The  
valid range of external reference voltage overdrive on the  
REFIN pin is 1.25V to 2.2V, resulting in converter mas-  
buffer amplifies V  
to create the converter master  
ter reference voltages V  
between 2.5V and 4.4V,  
REFIN  
REFBUF  
reference voltage V  
= 2 • V  
on the REFBUF pin,  
respectively. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications.Withitssmallsize,lowpower,andhigh  
accuracy,theLTC6655-2.048iswellsuitedforusewiththe  
LTC2335-18 when overdriving the internal reference. The  
LTC6655-2.048offers0.025%(maximum)initialaccuracy  
REFBUF  
REFIN  
nominally 4.096V when using the internal bandgap refer-  
ence. BypassREFBUFtoGND(Pin20)closetothepinwith  
at least a 47μF ceramic capacitor (X7R, 10V, 1210 size or  
X5R, 10V, 0805 size) to compensate the reference buffer,  
absorbtransientconversioncurrents,andminimizenoise.  
LTC2335-18  
20k  
REFIN  
BANDGAP  
REFERENCE  
2.7µF  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
LTC6655-2.048  
47µF  
6.5k  
GND  
233518 F10b  
Figure 10b. Ex ternal Reference with Internal Buffer Configuration  
233518f  
26  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
and2ppm/°C(maximum)temperaturecoefficientforhigh  
precision applications. The LTC6655-2.048 is fully speci-  
fied over the H-grade temperature range, complementing  
the extended temperature range of the LTC2335-18 up to  
125°C.BypassingtheLTC6655-2.048witha2.7µFto100µF  
ceramiccapacitorclosetotheREFINpinisrecommended.  
LTC2335-18  
REFIN  
20k  
BANDGAP  
REFERENCE  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
LTC6655-5  
47µF  
Ex ternal Reference with Disabled Internal Buffer  
6.5k  
The internal reference buffer supports V  
= 4.4V  
REFBUF  
GND  
233518 F10c  
maximum. Grounding REFIN disables the internal buffer,  
allowing REFBUF to be overdriven with an external refer-  
ence voltage between 2.5V and 5V, as shown in Figure  
10c. Maximum input signal swing and SNR are achieved  
byoverdrivingREFBUFusinganexternal5Vreference.The  
buffer feedback resistors load the REFBUF pin with 13kΩ  
evenwhenthereferencebufferisdisabled.TheLTC6655-5  
offers the same small size, accuracy, drift, and extended  
temperature range as the LTC6655-2.048, and achieves  
a typical SNR of 98.3dB when paired with the LTC2335-  
18. Bypass the LTC6655-5 to GND (Pin 20) close to the  
REFBUF pin with at least a 47μF ceramic capacitor (X7R,  
10V, 1210sizeorX5R, 10V, 0805size)toabsorbtransient  
conversion currents and minimize noise.  
Figure 10c. Ex ternal Reference with Disabled Internal  
Buffer Configuration  
to sample rate. In applications where a burst of samples  
is taken after idling for long periods of time, as shown in  
Figure 11, I  
quickly transitions from approximately  
REFBUF  
0.4mA to 1.1mA (V  
= 5V, f  
= 1Msps). This  
REFBUF  
SMPL  
current step triggers a transient response in the external  
reference that must be considered, since any deviation in  
V
affectsconverteraccuracy.Ifanexternalreference  
REFBUF  
is used to overdrive REFBUF, the fast settling LTC6655  
family of references is recommended.  
The LTC2335-18 converter draws a charge (Q  
) from  
CONV  
the REFBUF pin during each conversion cycle. On short  
time scales most of this charge is supplied by the external  
REFBUF bypass capacitor, but on longer time scales all of  
the charge is supplied by either the reference buffer, or  
when the internal reference buffer is disabled, the external  
reference. This charge draw corresponds to a DC current  
Internal Reference Buffer Transient Response  
Foroptimumperformanceinapplicationsemployingburst  
sampling, the external reference with internal reference  
bufferconfigurationshouldbeused.Theinternalreference  
buffer incorporates a proprietary design that minimizes  
movements in V  
when responding to a burst of  
equivalentofI  
=Q  
f  
,whichisproportional  
REFBUF  
REFBUF  
CONV SMPL  
CNV  
233518 F11  
IDLE  
PERIOD  
IDLE  
PERIOD  
Figure 11. CNV Waveform Showing Burst Sam pling  
233518f  
27  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
0
–20  
conversions following an idle period. Figure 12 compares  
the burst conversion response of the LTC2335-18 with an  
input near full scale for two reference configurations. The  
first configuration employs the internal reference buffer  
with REFIN externally overdriven by an LTC6655-2.048,  
while the second configuration disables the internal ref-  
erence buffer and overdrives REFBUF with an external  
LTC6655-4.096. In both cases REFBUF is bypassed to  
GND with a 47µF ceramic capacitor.  
±±10.24V RANG  
T UGVBIPOLR VD I4GV(IA V=V14)  
–40  
SNR = 96.9dB  
THD = –109dB  
SINAD = 96.7dB  
SFDR = 111dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
15  
0
100  
200  
300  
400  
500  
±±10.24V RANG  
+
FREQUENCY (kHz)  
VIA V=V±14  
233518 F13  
VIA V=V14  
10  
Figure 13. 32k Point FFT fSMPL = 1Msps, fIN = 2kHz  
EXTERNAL REFERENCE ON REFBUF  
5
Signal-to-Noise Ratio (SNR)  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 13 shows  
that the LTC2335-18 achieves a typical SNR of 96.9dB in  
the 10.24V range at a 1Msps sampling rate with a true  
bipolar 2kHz input signal.  
0
INTERNAL REFERENCE BUFFER  
–5  
0
100  
200  
300  
400  
500  
TIME (µs)  
233518 F12  
Figure 12. Burst Conversion Response of the  
LTC2335-18, fSMPL = 1Msps  
Total Harm onic Distortion (THD)  
DYNAMIC PERFORMANCE  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
Fast Fourier transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion, and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2335-18 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
V22 + V32 + V42...VN2  
THD = 20log  
V1  
where V is the RMS amplitude of the fundamental fre-  
1
Signal-to-Noise and Distortion Ratio (SINAD)  
quencyandV throughV aretheamplitudesofthesecond  
2
N
throughNthharmonics,respectively.Figure13showsthat  
the LTC2335-18 achieves a typical THD of –109dB (N = 6)  
in the 10.24V range at a 1Msps sampling rate with a true  
bipolar 2kHz input signal.  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
to frequencies below half the sampling frequency, exclud-  
ing DC. Figure 13 shows that the LTC2335-18 achieves a  
typical SINAD of 96.7dB in the 10.24V range at a 1Msps  
sampling rate with a true bipolar 2kHz input signal.  
233518f  
28  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
POWER CONSIDERATIONS  
TIMING AND CONTROL  
CNV Tim ing  
The LTC2335-18 provides four power supply pins: the  
positive and negative high voltage power supplies (V  
CC  
The LTC2335-18 sampling and conversion is controlled  
by CNV. A rising edge on CNV transitions the S/H circuits  
from track mode to hold mode, sampling the input signals  
and initiating a conversion. Once a conversion has been  
started, it cannot be terminated early except by resetting  
the ADC, as discussed in the Reset Timing section. For  
optimum performance, drive CNV with a clean, low jitter  
signal and avoid transitions on data I/O lines leading up  
to the rising edge of CNV. Additionally, for best crosstalk  
performance,avoidhighslewratesontheanaloginputsfor  
100ns before and after the rising edge of CNV. Converter  
status is indicated by the BUSY output, which transitions  
low-to-high at the start of each conversion and stays high  
untiltheconversioniscomplete.OnceCNVisbroughthigh  
to begin a conversion, it should be returned low between  
40ns and 60ns later or after the falling edge of BUSY to  
minimizeexternaldisturbancesduringtheinternalconver-  
sion process. The CNV timing required to take advantage  
of the reduced power nap mode of operation is described  
in the Nap Mode section.  
and V ), the 5V core power supply (V ) and the digital  
EE  
DD  
input/output (I/O) interface power supply (OV ). As long  
DD  
as the voltage difference limits of 10V ≤ V – V ≤ 38V  
CC  
EE  
are observed, V and V may be independently biased  
CC  
EE  
anywhere within their own individual allowed operating  
ranges, including the ability for either of the supplies to be  
tied directly to ground. This feature enables the common  
mode input range of the LTC2335-18 to be tailored to the  
specificapplication’srequirements.TheflexibleOV sup-  
DD  
ply allows the LTC2335-18 to communicate with CMOS  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems. When using LVDS I/O mode, the range of  
OV is 2.375V to 5.25V.  
DD  
Power Supply Sequencing  
The LTC2335-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2335-18 has  
an internal power-on-reset (POR) circuit which resets the  
Internal Conversion Clock  
converter on initial power-up and whenever V drops  
DD  
below 2V. Once the supply voltage re-enters the nominal  
supply voltage range, the POR reinitializes the ADC. No  
conversions should be initiated until at least 10ms after  
a POR event to ensure the initialization period has ended.  
Whenemployingtheinternalreferencebuffer,allow200ms  
forthebuffertopowerupandrechargetheREFBUFbypass  
capacitor. Any conversion initiated before these times will  
produce invalid results.  
The LTC2335-18 has an internal clock that is trimmed  
to achieve a maximum conversion time of 550ns. With  
a minimum acquisition time of 420ns, throughput per-  
formance of 1Msps is guaranteed without any external  
adjustments. The LTC2335-18 is a multiplexed ADC and  
converts one channel per CNV edge, taking a minimum  
of 1μs per conversion. Thus, while scanning N channels  
(N = 1 to 8), a complete scan takes at least N μs and the  
maximum per-channel throughput is 1/N Msps/ch.  
Nap Mode  
The LTC2335-18 can be placed into nap mode after a con-  
versionhasbeencompletedtoreducepowerconsumption  
between conversions. In this mode a portion of the device  
233518f  
29  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
circuitry is turned off, including circuits associated with  
sampling the analog input signals. Nap mode is enabled  
by keeping CNV high between conversions, as shown in  
Figure 14. To initiate a new conversion after entering nap  
mode, bring CNV low and hold for at least 420ns before  
Reset Tim ing  
A global reset of the LTC2335-18, equivalent to a power-  
on-reset event, may be executed without needing to cycle  
the supplies. This feature is useful when recovering from  
system-level events that require the state of the entire sys-  
tem to be reset to a known synchronized value. To initiate  
a global reset, bring PD high twice without an intervening  
conversion, as shown in Figure 15. The reset event is trig-  
geredonthesecondrisingedgeofPD,andasynchronously  
ends based on an internal timer. Reset clears all serial data  
outputregistersandrestorestheinternalsequencerdefault  
state of converting channels 0 through 7 sequentially, all  
in SoftSpan 7. If reset is triggered during a conversion, the  
conversion is immediately halted. The normal power down  
behavior associated with PD going high is not affected by  
reset. Once PD is brought low, wait at least 10ms before  
initiating a conversion. When employing the internal refer-  
ence buffer, allow 200ms for the buffer to power up and  
recharge the REFBUF bypass capacitor. Any conversion  
initiated before these times will produce invalid results.  
bringingithighagain.Theconverteracquisitiontime(t  
)
ACQ  
is set by the CNV low time (t  
) when using nap mode.  
CNVL  
Power Down Mode  
When PD is brought high, the LTC2335-18 is powered  
down and subsequent conversion requests are ignored. If  
this occurs during a conversion, the device powers down  
once the conversion completes. In this mode, the device  
draws only a small regulator standby current resulting in a  
typical power dissipation of 0.36mW. To exit power down  
mode, bring the PD pin low and wait at least 10ms before  
initiatingaconversion. When employing theinternal refer-  
ence buffer, allow 200ms for the buffer to power up and  
recharge the REFBUF bypass capacitor. Any conversion  
initiated before these times will produce invalid results.  
t
CNVL  
CNV  
t
CONV  
BUSY  
NAP  
t
ACQ  
NAP MODE  
233518 F14  
Figure 14. Nap Mode Tim ing for the LTC2335-18  
t
PDH  
t
PD  
CNV  
WAKE  
t
t
PDL  
CNVH  
SECOND RISING EDGE OF  
PD TRIGGERS RESET  
BUSY  
t
CONV  
RESET TIME  
SET INTERNALLY  
RESET  
233518 F15  
Figure 15. Reset Tim ing for the LTC2335-18  
233518f  
30  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
Power Dissipation vs Sam pling Frequency  
DIGITAL INTERFACE  
TheLTC2335-18featuresCMOSandLVDSserialinterfaces,  
selectable using the LVDS/CMOS pin. The flexible OV  
supply allows the LTC2335-18 to communicate with any  
CMOSlogicoperatingbetween1.8Vand5V,including2.5V  
and 3.3V systems, while the LVDS interface supports low  
noisedigitaldesigns. Together, theseI/Ointerfaceoptions  
enable the LTC2335-18 to communicate equally well with  
legacy microcontrollers and modern FPGAs.  
When nap mode is employed, the power dissipation of  
the LTC2335-18 decreases as the sampling frequency is  
reduced, as shown in Figure 16. This decrease in aver-  
age power dissipation occurs because a portion of the  
LTC2335-18 circuitry is turned off during nap mode, and  
DD  
the fraction of the conversion cycle (t ) spent napping  
CYC  
increasesasthesamplingfrequency(f  
)isdecreased.  
SMPL  
16  
WITH NAP MODE  
CNVL  
14  
12  
10  
8
t
= 500ns  
Serial CMOS I/O Mode  
I
VDD  
As shown in Figure 17, in CMOS I/O mode the serial data  
bus consists of a serial clock input, SCKI, serial data input,  
SDI, serial clock output, SCKO, and serial data output,  
SDO. Communication with the LTC2335-18 across this  
bus occurs during predefined data transaction windows.  
Within a window, the device accepts control words on SDI  
to configure the SoftSpan range and channel for the next  
conversionandprogramthesequencer,andoutputs24-bit  
packetscontainingtheconversionresultandconfiguration  
information from the previous conversion on SDO.  
6
4
I
VCC  
2
I
0
OVDD  
–2  
–4  
–6  
I
VEE  
0
200  
400  
600  
800  
1000  
SAMPLING FREQUENCY (kHz)  
233518 F16  
Figure 16. Power Dissipation of the LTC2335-18  
Decreases with Decreasing Sam pling Frequency  
CS = PD = 0  
SAMPLE N  
SAMPLE N + 1  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
BUSY  
CONV  
t
ACQ  
t
RECOMMENDED DATA TRANSACTION WINDOW  
BUSYLH  
t
QUIET  
t
t
t
SCKIH  
SSDISCKI  
SCKI  
SCKI  
SDI  
1
2
3
4
5
6
7
8
t
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
t
HSDISCKI  
SCKIL  
C7  
C6 C5 C4 C3 C2 C1 C0  
DONT CARE  
DONT CARE  
CONTROL WORD FOR CONVERSION N + 1  
t
t
SKEW  
t
DSDOBUSYL  
HSDOSCKI  
SCKO  
SDO  
t
DSDOSCKI  
DONT CARE  
D17  
D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CH2 CH1 CH0 SS2 SS1 SS0 D17  
CONVERSION RESULT CHANNEL ID SoftSpan  
24-BIT PACKET CONVERSION N  
CONVERSION RESULT  
24-BIT PACKET CONVERSION N  
(REPETITION)  
233518 F17  
Figure 17. Serial CMOS I/O Mode, Direct Per-Conversion Configuration  
233518f  
31  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
New data transaction windows open 10ms after power-  
ing up or resetting the LTC2335-18, and at the end of  
each conversion on the falling edge of BUSY. The data  
The LTC2335-18 guarantees a minimum data transfer  
window(t t )of400nswhileconvertingat1Msps.  
ACQ QUIET  
Thus, if an application needs to read the full 24-bit packet  
of conversion result plus channel ID and SoftSpan, the  
minimum usable SCKI frequency is 60MHz. Applications  
needing to read only the conversion result may send only  
18 SCKI pulses and thus have a minimum SCKI frequency  
of45MHz.TheLTC2335-18supportsCMOSSCKIfrequen-  
cies up to 100MHz.  
transaction should be completed with a minimum t  
QUIET  
time of 20ns prior to the start of the next conversion, as  
shown in Figure 17. New control words are only accepted  
within this recommended data transaction window, but  
configuration changes take effect immediately with no ad-  
ditional analog input settling time required before starting  
the next conversion.  
Configuring the Multiplex er and SoftSpan Range in  
CMOS I/O Mode  
Just prior to the falling edge of BUSY and the opening of  
a new data transaction window, SCKO is forced low and  
SDO is updated with the latest conversion result from the  
just-completed conversion. Rising edges on SCKI serially  
clock the conversion result and analog input channel con-  
figuration information out on SDO and trigger transitions  
on SCKO that are skew-matched to the data on SDO. The  
resulting SCKO frequency is half that of SCKI.  
On power-up and after a reset, the LTC2335-18 defaults  
to converting channels 0 through 7 sequentially, all in  
SoftSpan 7. If this configuration does not need to be  
changed, simply hold SDI low.  
The LTC2335-18 multiplexer and SoftSpan range may  
be controlled in two ways, depending on the needs of  
the application. If the desired sequence of channels and  
SoftSpan ranges are known ahead of time, the LTC2335-  
18’s internal sequencer may be programmed with a se-  
quence of up to 16 configurations, and will cycle through  
those configurations on subsequent conversions without  
further user intervention. Alternately, if ultimate flexibility  
is desired, the LTC2335-18 may be directly controlled by  
overwriting the sequencer each conversion with the chan-  
nel and SoftSpan range for the following conversion. This  
reconfiguration has no latency and requires no additional  
settling time or digital I/O overhead.  
SCKI rising edges also latch control words provided on  
SDI, which are used to set the SoftSpan range and chan-  
nel for the next conversion, and program the sequencer.  
See the section Configuring the Multiplexer and SoftSpan  
Range for further details. SCKI is allowed to idle either  
high or low in CMOS I/O mode. As shown in Figure 18,  
the CMOS bus is enabled when CS is low and is disabled  
and Hi-Z when CS is high, allowing the bus to be shared  
across multiple devices.  
ThedataonSDOareformattedasa24-bitpacketconsisting  
ofan18-bitconversionresult,3-bitanalogchannelID,and  
3-bitSoftSpancode,allpresentedMSBfirst.Assuggested  
in Figures 17 and 18, if more than 24 SCKI clocks are  
applied, the 24-bit packet is repeated indefinitely on SDO.  
Using the Sequencer  
To use the internal sequencer of the LTC2335-18, first  
program it as described below with the desired sequence  
of up to 16 configurations. Each of these configurations  
specifies the desired channel number and SoftSpan range  
for one conversion. The LTC2335-18 will then apply the  
first configuration to the first conversion, the second  
configuration to the second conversion, and so on until  
the end of the programmed sequence is reached, at which  
point the cycle will start again from the beginning.  
When interfacing the LTC2335-18 with a standard SPI  
bus, capture output data at the receiver on rising edges  
of SCKI. SCKO is not used in this case. In other applica-  
tions, such as interfacing the LTC2335-18 with an FPGA  
or CPLD, rising and falling edges of SCKO may be used  
to capture serial output data on SDO in double data rate  
(DDR) fashion. Capturing data using SCKO adds robust-  
ness to delay variations over temperature and supply.  
233518f  
32  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
233518f  
33  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
Eachdatatransactionwindowisanopportunitytoprogram  
thesequencerbyclockinginaseriesof8-bitcontrolwords  
on SDI, each specifying a channel number and SoftSpan  
range, as shown in Figures 17 and 18. To program the  
sequencer with a series of up to 16 conversion configu-  
rations, write in the corresponding control words in the  
desired conversion order during a single data transaction.  
Words beyond the 16th valid word will be ignored.  
Direct Per-Conversion Configuration  
As a special case of the sequencer, the LTC2335-18  
multiplexer and SoftSpan range can be directly controlled  
every conversion with no latency and no additional set-  
tling time or digital I/O overhead. To use the part in this  
direct fashion, simply supply one control word on SDI  
during a data transaction to specify the desired channel  
number and SoftSpan range for the following conversion,  
as shown in Figure 17.  
The control word format is as follows:  
If the desired channel and SoftSpan range for conversion  
N+1 are known before seeing the result of conversion N,  
specifytheconfigurationbyclockinginthecorresponding  
control word on SDI while clocking out the first 8 bits,  
then hold SDI low. This particular use case is illustrated in  
Figure 17. If the desired configuration is not known until  
after the conversion data has been read, clock in 24 zeros  
on SDI while the 24 bits of data are being read out; since  
the V bits of those words are then 0, they are ignored.  
Once the configuration has been determined, clock in 8  
more bits on SDI which specify the desired configuration  
for conversion N+1.  
C[7]  
V
C[6]  
0
C[5]  
C[4]  
C[3]  
C[2] C[1]  
C[0]  
CH[2] CH[1] CH[0] SS[2] SS[1] SS[0]  
The V bit (C[7]) controls whether the LTC2335-18 should  
consider this a valid word. Any words which have V =  
0 are considered invalid and are ignored (though valid  
words will still be accepted after an invalid word). Words  
which have V = 1 will be added to the sequencer in the  
order provided. The C[6] bit is reserved for future use and  
should be set to 0. The CH[2:0] (C[5:3]) bits are a binary  
value 0 to 7 controlling the channel to be converted. The  
SS[2:0] (C[2:0]) bits specify the desired SoftSpan range  
for the conversion, as described in Table 1.  
Serial LVDS I/O Mode  
In LVDS I/O mode, information is transmitted using  
Sequencer programming is completed when the next  
conversion is started. At this time, any incomplete words  
are considered invalid and discarded. If one or more  
valid words were provided, the sequencer is completely  
overwritten with the new sequence, and the just-initiated  
conversion employs the first provided configuration.  
+
positiveandnegativesignalpairs(LVDS /LVDS )withbits  
+
differentially encoded as (LVDS LVDS ). These signals  
are typically routed using differential transmission lines  
with 100Ω characteristic impedance. Logical 1s and 0s  
are nominally represented by differential +350mV and  
−350mV,respectively.Forclarity,allLVDStimingdiagrams  
and interface discussions adopt the logical rather than  
physical convention.  
If no valid words were provided during the data transac-  
tion window, the sequencer program is unchanged, and  
the pointer advances to the next entry in the previously  
programmed cycle to configure the next conversion.  
As shown in Figure 19, in LVDS I/O mode the serial data  
busconsistsofaserialclockdifferentialinput, SCKI, serial  
data differential input, SDI, serial clock differential output,  
SCKO, and serial data differential output, SDO. Communi-  
cation with the LTC2335-18 across this bus occurs during  
predefined data transaction windows. Within a window,  
the device accepts control words on SDI to configure the  
SoftSpan range and channel for the next conversion and  
Thus, once the sequencer has been programmed, simply  
hold SDI low during subsequent data transactions to  
cycle continually through the programmed sequence of  
configurations.  
233518f  
34  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
CS = PD = 0  
SAMPLE N  
SAMPLE N + 1  
t
CYC  
t
CNVH  
CNV  
(CMOS)  
t
CNVL  
BUSY  
(CMOS)  
t
t
CONV  
ACQ  
t
RECOMMENDED DATA TRANSACTION WINDOW  
BUSYLH  
t
QUIET  
t
t
SCKI  
t
SSDISCKI  
SCKIH  
SCKI  
(LVDS)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
t
t
SCKIL  
HSDISCKI  
SDI  
(LVDS)  
C7  
C6 C5 C4 C3 C2 C1 C0  
DONT CARE  
DONT CARE  
CONTROL WORD FOR CONVERSION N + 1  
t
t
SKEW  
t
DSDOBUSYL  
HSDOSCKI  
SCKO  
(LVDS)  
t
DSDOSCKI  
SDO  
(LVDS)  
DONT CARE  
D17  
D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CH2 CH1 CH0 SS2 SS1 SS0 D17  
CONVERSION RESULT CHANNEL ID SoftSpan  
24-BIT PACKET CONVERSION N  
CONVERSION RESULT  
24-BIT PACKET CONVERSION N  
(REPETITION)  
233518 F19  
Figure 19. Serial LVDS I/O Mode, Direct Per-Conversion Configuration  
it is recommend that rising and falling edges of SCKO be  
usedtocaptureDDRserialoutputdataonSDO, asthiswill  
yield the best robustness to delay variations over supply  
and temperature.  
program the sequencer, and outputs 24-bit packets con-  
tainingtheconversionresultandconfigurationinformation  
from the previous conversion on SDO.  
New data transaction windows open 10ms after power-  
ing up or resetting the LTC2335-18, and at the end of  
each conversion on the falling edge of BUSY. The data  
SCKI rising and falling edges also latch control words  
provided on SDI, which are used to set the SoftSpan range  
and channel for the next conversion, and program the  
sequencer. See the section Configuring the Multiplexer  
and SoftSpan Range in LVDS I/O Mode for further details.  
As shown in Figure 20, the LVDS bus is enabled when CS  
is low and is disabled and Hi-Z when CS is high, allow-  
ing the bus to be shared across multiple devices. Due to  
the high speeds often involved in LVDS signaling, LVDS  
bus sharing must be carefully considered. Transmission  
line limitations imposed by the shared bus may limit the  
maximum achievable bus clock speed. LVDS inputs are  
internallyterminatedwitha100Ωdifferentialresistorwhen  
CS is low, while outputs must be differentially terminated  
with a 100Ω resistor at the receiver (FPGA). SCKI must  
idle in the low state in LVDS I/O mode, including when  
transitioning CS.  
transaction should be completed with a minimum t  
QUIET  
time of 20ns prior to the start of the next conversion, as  
shown in Figure 19. New control words are only accepted  
within this recommended data transaction window, but  
configuration changes take effect immediately with no ad-  
ditional analog input settling time required before starting  
the next conversion.  
Just prior to the falling edge of BUSY and the opening of  
a new data transaction window, SDO is updated with the  
latest conversion result from the just-completed conver-  
sion.BothrisingandfallingedgesonSCKIseriallyclockthe  
conversion result and analog input channel configuration  
information out on SDO. SCKI is also echoed on SCKO,  
skew-matched to the data on SDO. Whenever possible,  
233518f  
35  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
233518f  
36  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
for one conversion. The LTC2335-18 will then apply the  
first configuration to the first conversion, the second  
configuration to the second conversion, and so on until  
the end of the programmed sequence is reached, at which  
point the cycle will start again from the beginning.  
ThedataonSDOareformattedasa24-bitpacketconsisting  
ofan18-bitconversionresult,3-bitanalogchannelID,and  
3-bitSoftSpancode,allpresentedMSBfirst.Assuggested  
in Figures 19 and 20, if more than 24 SCKI clocks are  
applied, the 24-bit packet is repeated indefinitely on SDO.  
Eachdatatransactionwindowisanopportunitytoprogram  
thesequencerbyclockinginaseriesof8-bitcontrolwords  
on SDI, each specifying a channel number and SoftSpan  
range, as shown in Figures 19 and 20. To program the  
sequencer with a series of up to 16 conversion configu-  
rations, write in the corresponding control words in the  
desired conversion order during a single data transaction.  
Words beyond the 16th valid word will be ignored.  
The LTC2335-18 guarantees a minimum data transfer  
window(t t  
)of400nswhileconvertingat1Msps.  
ACQ QUIET  
Thus, if an application needs to read the full 24-bit packet  
of conversion result plus channel ID and SoftSpan, the  
minimum usable SCKI frequency is 30MHz (60Mbps).  
Applications needing to read only the conversion result  
may send only 18 SCKI edges and thus have a minimum  
SCKI frequency of 22.5MHz (45Mbps). The LTC2335-18  
supportsLVDSSCKIfrequenciesupto250MHz(500Mbps).  
The control word format is as follows:  
Configuring the Multiplex er and SoftSpan Range in  
LVDS I/O Mode  
C[7]  
V
C[6]  
0
C[5]  
C[4]  
C[3]  
C[2] C[1]  
C[0]  
CH[2] CH[1] CH[0] SS[2] SS[1] SS[0]  
On power-up and after a reset, the LTC2335-18 defaults  
to converting channels 0 through 7 sequentially, all in  
SoftSpan 7. If this configuration does not need to be  
changed, simply hold SDI at an LVDS low level.  
The V bit (C[7]) controls whether the LTC2335-18 should  
consider this a valid word. Any words which have V =  
0 are considered invalid and are ignored (though valid  
words will still be accepted after an invalid word). Words  
which have V = 1 will be added to the sequencer in the  
order provided. The C[6] bit is reserved for future use and  
should be set to 0. The CH[2:0] (C[5:3]) bits are a binary  
value 0 to 7 controlling the channel to be converted. The  
SS[2:0] (C[2:0]) bits specify the desired SoftSpan range  
for the conversion, as described in Table 1.  
The LTC2335-18 multiplexer and SoftSpan range may be  
controlled in two ways, depending on the needs of the ap-  
plication.IfthedesiredsequenceofchannelsandSoftSpan  
rangesareknownaheadoftime,theLTC2335-18’sinternal  
sequencer may be programmed with a sequence of up to  
16 configurations, and will cycle through those configu-  
rations on subsequent conversions without further user  
intervention.Alternatelyifultimateflexibilityisdesired,the  
LTC2335-18 may be directly controlled by overwriting the  
sequencereachconversionwiththechannelandSoftSpan  
range for the following conversion. This reconfiguration  
has no latency and requires no additional settling time or  
digital I/O overhead.  
Sequencer programming is completed when the next  
conversion is started. At this time, any incomplete words  
are considered invalid and discarded. If one or more  
valid words were provided, the sequencer is completely  
overwritten with the new sequence, and the just-initiated  
conversion employs the first provided configuration.  
If no valid words were provided during the data transac-  
tion window, the sequencer program is unchanged, and  
the pointer advances to the next entry in the previously  
programmed cycle to configure the next conversion.  
Using the Sequencer  
To use the internal sequencer of the LTC2335-18, first  
program it as described below with the desired sequence  
of up to 16 configurations. Each of these configurations  
specifies the desired channel number and SoftSpan range  
233518f  
37  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
applicaTions inForMaTion  
Thus, once the sequencer has been programmed, simply  
hold SDI at an LVDS low level during subsequent data  
transactionstocyclecontinuallythroughtheprogrammed  
sequence of configurations.  
If the desired channel and SoftSpan range for conversion  
N+1 are known before seeing the result of conversion N,  
specifytheconfigurationbyclockinginthecorresponding  
control word on SDI while clocking out the first 8 bits,  
then hold SDI at an LVDS low level. This particular use  
case is illustrated in Figure 19. If the desired configura-  
tion is not known until after the conversion data has been  
read, clock in 24 zeros on SDI while the 24 bits of data  
are being read out; since the V bits of those words are  
then 0, they are ignored. Once the configuration has been  
determined, clock in 8 more bits on SDI which specify the  
desired configuration for conversion N+1.  
Direct Per-Conversion Configuration  
As a special case of the sequencer, the LTC2335-18  
multiplexer and SoftSpan range can be directly controlled  
every conversion with no latency and no additional set-  
tling time or digital I/O overhead. To use the part in this  
direct fashion, simply supply one control word on SDI  
during a data transaction to specify the desired channel  
number and SoftSpan range for the following conversion,  
as shown in Figure 19.  
boarD layouT  
To obtain the best performance from the LTC2335-18, a  
four-layer printed circuit board (PCB) is recommended.  
Layout for the PCB should ensure the digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital clocks or  
signals alongside analog signals or underneath the ADC.  
Also minimize the length of the REFBUF to GND (Pin 20)  
bypass capacitor return loop, and avoid routing CNV near  
signals which could potentially disturb its rising edge.  
Supply bypass capacitors should be placed as close as  
possible to the supply pins. Low impedance common re-  
turns for these bypass capacitors are essential to the low  
noise operation of the ADC. A single solid ground plane  
is recommended for this purpose. When possible, screen  
the analog input traces using ground.  
Reference Design  
For a detailed look at the reference design for this con-  
verter, including schematics and PCB layout, please refer  
to DC2412A, the evaluation kit for the LTC2335-18.  
233518f  
38  
For more information www.linear.com/LTC2335-18  
LTC2335-18  
package DescripTion  
Please refer to http://www.linear.com /product/LTC2335-18#packaging for the m ost recent package drawings.  
LX Package  
48-Lead Plastic LQFP (7mm × 7mm)  
(Reference LTC DWG # 05-08-1760 Rev A)  
7.15 – 7.25  
5.50 REF  
9.00 BSC  
7.00 BSC  
48  
48  
SEE NOTE: 4  
1
2
1
2
0.50 BSC  
9.00 BSC  
7.00 BSC  
5.50 REF  
7.15 – 7.25  
0.20 – 0.30  
A
A
PACKAGE OUTLINE  
C0.30 – 0.50  
1.30 MIN  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
1.60  
1.35 – 1.45 MAX  
11° – 13°  
R0.08 – 0.20  
GAUGE PLANE  
0.25  
0° – 7°  
11° – 13°  
1.00 REF  
0.50  
BSC  
0.09 – 0.20  
0.17 – 0.27  
0.05 – 0.15  
0.45 – 0.75  
SECTION A – A  
e 3  
NOTE:  
1. PACKAGE DIMENSIONS CONFORM TO JEDEC #MS-026 PACKAGE OUTLINE  
2. DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT  
4. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER  
5. DRAWING IS NOT TO SCALE  
COMPONENT  
PIN “A1”  
LX48 LQFP 0113 REV A  
TRAY PIN 1  
BEVEL  
PACKAGE IN TRAY LOADING ORIENTATION  
233518f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
39  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2335-18  
Typical applicaTion  
Digitize Differential Signals Over a Wide Com m on Mode Range  
31V  
+
½ LT1124  
+
IN  
ARBITRARY  
LOWPASS FILTERS  
49.9Ω  
31V  
18pF  
24V  
0.1µF  
2.49k  
6.6nF  
V
+
CC  
COMMON MODE  
INPUT RANGE  
IN0  
IN0  
549Ω  
2.49k  
LTC2335-18  
6.6nF  
DIFFERENTIAL MODE  
INPUT RANGE: 500ꢀV  
18pF  
49.9Ω  
V
REFBUF  
47µF  
REFIN  
EE  
0V  
+
0.1µF  
0.1µF  
–5V  
BW ~ 500kHz  
IN  
½ LT1124  
–5V  
ONLY CHANNEL 0 SHOWN FOR CLARITY  
233518 TA02  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2348-18/LTC2348-16 18-/16-Bit, 200ksps, 8-Channel Simultaneous  
Sampling, 3/ 1LSB INL, Serial ADC  
10.24V SoftSpan Inputs with Wide Common Mode Range, 97/94dB SNR,  
Serial CMOS and LVDS I/O, 7mm × 7mm LQFP-48 Package  
LTC2378-20/LTC2377-20/ 20-Bit, 1Msps/500ksps/250ksps,  
2.5V Supply, 5V Fully Differential Input, 104dB SNR, MSOP-16 and  
4mm × 3mm DFN-16 Packages  
LTC2376-20  
0.5ppm INL Serial, Low Power ADC  
LTC2338-18/LTC2337-18/ 18-Bit, 1Msps/500ksps/250ksps, Serial,  
LTC2336-18 Low Power ADC  
LTC2328-18/LTC2327-18/ 18-Bit, 1Msps/500ksps/250ksps, Serial,  
LTC2326-18 Low Power ADC  
LTC2373-18/LTC2372-18 18-Bit, 1Msps/500ksps, 8-Channel, Serial ADC  
5V Supply, 10.24V Fully Differential Input, 100dB SNR, MSOP-16 Package  
5V Supply, 10.24V Pseudo-Differential Input, 95dB SNR,  
MSOP-16 Package  
5V Supply, 8 Channel Multiplexed, Configurable Input Range, 100dB SNR,  
DGC, 5mm × 5mm QFN-32 Package  
LTC2379-18/LTC2378-18/ 18-Bit,1.6Msps/1Msps/500ksps/250ksps, Serial, 2.5V Supply, Differential Input, 101.2dB SNR, 5V Input Range, DGC, Pin  
LTC2377-18/LTC2376-18 Low Power ADC Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16/ 16-Bit, 2Msps/1Msps/500ksps/250ksps, Serial, 2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC, Pin  
LTC2377-16/LTC2376-16 Low Power ADC  
Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2387-18  
18-Bit, 15Msps, 3LSB INL, Serial SAR ADC  
4.096V Fully Differential Input, 96dB SNR, Serial LVDS I/O, 5mm × 5mm  
QFN-32 Package  
LTC1859/LTC1858/  
LTC1857  
LTC1609  
16-/14-/12-Bit, 8-Channel, 100ksps, Serial ADC  
16-Bit, 200ksps Serial ADC  
10V, SoftSpan, Single-Ended or Differential Inputs, Single 5V Supply,  
SSOP-28 Package  
10V, Configurable Unipolar/Bipolar Input, Single 5V Supply, SSOP-28 and  
SO-20 Packages  
LTC1606/LTC1605  
DACs  
16-Bit, 250ksps/100ksps, Parallel ADC  
10V Input, 5V Supply, 75mW/55mW, SSOP-28 and SO-28 Packages  
LTC2756/LTC2757  
18-Bit, Serial/Parallel I  
SoftSpan DAC  
1LSB INL/DNL, Software-Selectable Ranges,  
SSOP-28/7mm × 7mm LQFP-48 Package  
OUT  
LTC2668  
16-Channel 16-/12-Bit 10V V  
SoftSpan DACs 4LSB INL, Precision Reference 10ppm/°C Max, 6mm × 6mm QFN-40 Package  
OUT  
References  
LTC6655  
LTC6652  
Precision Low Drift Low Noise Buffered Reference 5V/2.5V/2.048V/1.25V, 2ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
Precision Low Drift Low Noise Buffered Reference 5V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
Am plifiers  
LT1468/LT1469  
LT1354/LT1355/LT1356  
LT1357/LT1358/LT1359  
Single/Dual 90MHz, 22V/µs, 16-Bit Accurate Op Amp Low Input Offset: 75µV/125µV  
Single/Dual/Quad 1mA, 12MHz, 400V/µs Op Amp Good DC Precision, Stable with All Capacitive Loads  
Single/Dual/Quad 2mA, 25MHz, 800V/µs Op Amp Good DC Precision, Stable with All Capacitive Loads  
233518f  
LT 0116 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2335-18  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

LTC2336

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2336-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2336CMS-18#PBF

LTC2336-18 - 18-Bit, 250ksps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC2337

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2337-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2337-18_15

True Bipolar, Fully Differential Input ADC with 100dB SNR
Linear

LTC2338

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2338-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2338HMS-18#PBF

LTC2338-18 - 18-Bit, 1Msps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C
Linear

LTC2338IMS-18#PBF

LTC2338-18 - 18-Bit, 1Msps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC2345-16

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2345-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear