LTC2336CMS-18#PBF [Linear]

LTC2336-18 - 18-Bit, 250ksps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2336CMS-18#PBF
型号: LTC2336CMS-18#PBF
厂家: Linear    Linear
描述:

LTC2336-18 - 18-Bit, 250ksps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总24页 (文件大小:750K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2336-18  
18-Bit, 250ksps, 10ꢀ2ꢁ4  
True Bipolar, Fully Differential  
Input ADC with 100dB SNR  
DescripTion  
FeaTures  
TheLTC®2336-18isalownoise,highspeed18-bitsucces-  
siveapproximationregister(SAR)ADCwithfullydifferential  
inputs.Operatingfromasingle5Vsupply,theLTC2336-18  
has a 1ꢀ.2ꢁV true bipolar input range, making it ideal for  
high voltage applications which require a wide dynamic  
range. The LTC2336-18 achieves ꢁLSB INL maximum,  
no missing codes at 18-bits with 1ꢀꢀdB SNR.  
n
250ksps Throughput Rate  
n
±±LSB INL (Max)  
n
Guaranteed 18-Bit No Missing Codes  
Fully Differential Inputs  
n
n
True Bipolar Input Ranges ±ꢀ625V, ±1062±V, ±1265V  
n
100dB SNR (Typ) at f = 2kHz  
IN  
IN  
n
n
n
n
n
n
n
n
n
n
n
–115dB THD (Typ) at f = 2kHz  
Guaranteed Operation to 125°C  
The LTC2336-18 has an onboard single-shot capable  
reference buffer and low drift (2ꢀppm/°C max) 2.ꢀꢁ8V  
temperature compensated reference. The LTC2336-18  
also has a high speed SPI-compatible serial interface that  
supports1.8V,2.5V,3.3Vand5Vlogicwhilealsofeaturing  
a daisy-chain mode. The fast 25ꢀksps throughput with  
no cycle latency makes the LTC2336-18 ideally suited  
for a wide variety of high speed applications. An internal  
oscillator sets the conversion time, easing external timing  
considerations. The LTC2336-18 dissipates only 28mW  
and automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided to reduce the power  
consumption of the LTC2336-18 to 3ꢀꢀμW for further  
power savings during inactive periods.  
Single 5V Supply  
Low Drift (2ꢀppm/°C Max) 2.ꢀꢁ8V Internal Reference  
Onboard Single-Shot Capable Reference Buffer  
No Pipeline Delay, No Cycle Latency  
1.8V to 5V I/O Voltages  
SPI-Compatible Serial I/O with Daisy-Chain Mode  
Internal Conversion Clock  
Power Dissipation 28mW (Typ)  
16-Lead MSOP Package  
applicaTions  
n
Programmable Logic Controllers  
n
Industrial Process Control  
n
High Speed Data Acquisition  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 77ꢀ5765 and 7961132  
n
Portable or Compact Instrumentation  
n
ATE  
Typical applicaTion  
32k Point FFT fS = 250ksps,  
fIN = 2kHz  
5V  
1.8V TO 5V  
0
SNR = 100.3dB  
–20  
–40  
THD = –117dB  
SINAD = 100.2dB  
SFDR = –118dB  
10µF  
2.2µF  
0.1µF  
V
V
OV  
DD  
DDLBYP DD  
+10.24V  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
–60  
+
IN  
+
–80  
–10.24V  
+10.24V  
LTC2336-18  
–100  
–120  
–140  
–160  
–180  
IN  
SAMPLE CLOCK  
–10.24V  
REFBUF  
REFIN  
100nF  
GND  
233618 TA01  
47µF  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
233618 TA01b  
233618f  
1
For more information www.linear.com/LTC2336-18  
LTC2336-18  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage (V )..................................................6V  
DD  
V
1
2
16 GND  
DDLBYP  
V
15 OV  
DD  
DD  
Supply Voltage (OV )................................................6V  
DD  
GND 3  
14 SDO  
13 SCK  
+
IN  
IN  
4
5
Supply Bypass Voltage (V  
Analog Input Voltage  
) ...........................3.2V  
DDLBYP  
12 RDL/SDI  
11 BUSY  
10 CHAIN  
GND 6  
REFBUF 7  
REFIN 8  
+
IN , IN ..............................................–16.5V to 16.5V  
REFBUF...................................................................6V  
REFIN ..................................................................2.8V  
Digital Input Voltage  
9
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
= 15ꢀ°C, θ = 11ꢀ°C/W  
T
JMAX  
JA  
(Note 3)........................... (GND –ꢀ.3V) to (OV + ꢀ.3V)  
DD  
Digital Output Voltage  
(Note 3)........................... (GND –ꢀ.3V) to (OV + ꢀ.3V)  
DD  
Power Dissipation.............................................. 5ꢀꢀmW  
Operating Temperature Range  
LTC2336C................................................ ꢀ°C to 7ꢀ°C  
LTC2336I .............................................–ꢁꢀ°C to 85°C  
LTC2336H.......................................... –ꢁꢀ°C to 125°C  
Storage Temperature Range .................. –65°C to 15ꢀ°C  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
ꢀ°C to 7ꢀ°C  
LTC2336CMS-18#PBF  
LTC2336IMS-18#PBF  
LTC2336HMS-18#PBF  
LTC2336CMS-18#TRPBF 233618  
LTC2336IMS-18#TRPBF 233618  
LTC2336HMS-18#TRPBF 233618  
–ꢁꢀ°C to 85°C  
–ꢁꢀ°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
233618f  
2
For more information www.linear.com/LTC2336-18  
LTC2336-18  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
+
+
l
l
l
l
l
V
V
V
V
Absolute Input Range (IN )  
(Note 5)  
–2.5 • V  
–2.5 • V  
– ꢀ.25  
– ꢀ.25  
2.5 • V  
2.5 • V  
+ ꢀ.25  
+ ꢀ.25  
IN  
IN  
IN  
REFBUF  
REFBUF  
REFBUF  
REFBUF  
+
Absolute Input Range (IN )  
(Note 5)  
V
+
– V  
Input Differential Voltage Range  
Common Mode Input Range  
Analog Input Current  
V
= V – V  
–5 • V  
5 • V  
REFBUF  
V
IN  
IN  
IN  
IN  
REFBUF  
(Note 11)  
–ꢀ.5  
–7.8  
ꢀ.5  
ꢁ.8  
V
CM  
I
IN  
mA  
pF  
kΩ  
dB  
C
Analog Input Capacitance  
5
IN  
R
Analog Input Resistance  
2.ꢀ83  
67  
IN  
CMRR  
Input Common Mode Rejection Ratio  
f = 125kHz  
IN  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
18  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
18  
Bits  
Transition Noise  
ꢀ.8  
1
LSB  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Bipolar Zero-Scale Error  
Bipolar Zero-Scale Error Drift  
Bipolar Full-Scale Error  
(Note 6)  
(Note 7)  
–ꢁ  
–1  
1
LSB  
DNL  
BZE  
ꢀ.1  
LSB  
LSB  
–15  
15  
ꢀ.ꢀ1  
LSB/°C  
LSB  
l
l
FSE  
V
= ꢁ.ꢀ96V (REFBUF Overdriven)  
–1ꢀꢀ  
–15ꢀ  
1ꢀꢀ  
15ꢀ  
REFBUF  
(Notes 7, 9)  
REFIN = 2.ꢀꢁ8V (Note 7)  
LSB  
Bipolar Full-Scale Error Drift  
ꢀ.5  
ppm/°C  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS6 (Notes ±, 8)  
SYMBOL PARAMETER  
CONDITIONS  
6.25V Range, f = 2kHz, REFIN = 1.25V  
MIN  
93  
TYP  
97  
MAX  
UNITS  
dB  
l
l
l
l
l
l
l
l
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
95  
1ꢀꢀ  
1ꢀ1  
97  
dB  
IN  
12.5V Range, f = 2kHz, REFBUF = 5V  
96  
dB  
IN  
SNR  
Signal-to-Noise Ratio  
6.25V Range, f = 2kHz, REFIN = 1.25V  
93.5  
96  
dB  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
1ꢀꢀ  
1ꢀ2  
–111  
–115  
–112  
113  
117  
11ꢁ  
7
dB  
IN  
12.5V Range, f = 2kHz, REFBUF = 5V  
98  
dB  
IN  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
6.25V Range, f = 2kHz, REFIN = 1.25V  
–1ꢀ2  
–1ꢀ2  
–1ꢀꢀ  
dB  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
dB  
IN  
12.5V Range, f = 2kHz, REFBUF = 5V  
dB  
IN  
SFDR  
6.25V Range, f = 2kHz, REFIN = 1.25V  
1ꢀ2  
1ꢀ2  
1ꢀꢀ  
dB  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
dB  
IN  
12.5V Range, f = 2kHz, REFBUF = 5V  
dB  
IN  
–3dB Input Linear Bandwidth  
Aperture Delay  
MHz  
ps  
5ꢀꢀ  
Aperture Jitter  
ps  
Transient Response  
Full-Scale Step  
1
µs  
233618f  
3
For more information www.linear.com/LTC2336-18  
LTC2336-18  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.ꢀꢁ8  
2
MAX  
2.ꢀ53  
2ꢀ  
UNITS  
V
V
Internal Reference Output Voltage  
2.ꢀꢁ3  
REFIN  
l
V
REFIN  
Temperature Coefficient  
(Note 1ꢁ)  
ppm/°C  
kΩ  
REFIN Output Impedance  
Line Regulation  
15  
V
REFIN  
V
= ꢁ.75V to 5.25V  
DD  
ꢀ.ꢀ8  
mV/V  
V
REFIN Input Voltage Range  
(REFIN Overdriven) (Note 5)  
1.25  
2.ꢁ  
reFerence buFFer characTerisTics The l denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL PARAMETER  
CONDITIONS  
= 2.ꢀꢁ8V  
MIN  
ꢁ.ꢀ91  
2.5  
TYP  
MAX  
ꢁ.1ꢀ1  
5
UNITS  
l
l
V
Reference Buffer Output Voltage  
REFBUF Input Voltage Range  
REFBUF Output Impedance  
REFBUF Load Current  
V
ꢁ.ꢀ96  
V
V
REFBUF  
REFIN  
(REFBUF Overdriven) (Notes 5, 9)  
V
= ꢀV  
13  
kΩ  
REFIN  
l
I
V
V
= 5V (REFBUF Overdriven) (Notes 9, 1ꢀ)  
= 5V, Nap Mode (REFBUF Overdriven) (Note 9)  
ꢀ.56  
ꢀ.39  
ꢀ.6  
mA  
mA  
REFBUF  
REFBUF  
REFBUF  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 • OV  
IH  
IL  
DD  
0.2 • OV  
V
DD  
I
V
IN  
= ꢀV to OV  
DD  
–1ꢀ  
1ꢀ  
μA  
pF  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –5ꢀꢀµA  
O
OV – ꢀ.2  
DD  
V
OH  
OL  
I = 5ꢀꢀµA  
O
ꢀ.2  
1ꢀ  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= ꢀV to OV  
DD  
–1ꢀ  
µA  
mA  
mA  
OZ  
= ꢀV  
= OV  
–1ꢀ  
1ꢀ  
SOURCE  
SINK  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
ꢁ.75  
1.71  
TYP  
MAX  
5.25  
5.25  
6.5  
UNITS  
l
l
l
V
5
V
V
DD  
OV  
DD  
+
I
I
I
I
Supply Current  
Supply Current  
Nap Mode Current  
Sleep Mode Current  
25ꢀksps Sample Rate (IN = IN = ꢀV)  
25ꢀksps Sample Rate (C = 2ꢀpF)  
Conversion Done (I  
Sleep Mode (I  
5.5  
ꢀ.ꢀ5  
3.9  
6ꢀ  
mA  
mA  
mA  
μA  
VDD  
OVDD  
NAP  
L
+ I  
l
l
)
OVDD  
ꢁ.6  
225  
VDD  
+ I )  
OVDD  
SLEEP  
VDD  
+
l
l
l
P
Power Dissipation  
Nap Mode  
Sleep Mode  
25ꢀksps Sample Rate (IN = IN = ꢀV)  
Conversion Done (I + I  
27.5  
19.5  
ꢀ.3  
32.5  
23  
1.1  
mW  
mW  
mW  
D
)
OVDD  
VDD  
Sleep Mode (I  
+ I  
)
VDD  
OVDD  
233618f  
4
For more information www.linear.com/LTC2336-18  
LTC2336-18  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C6 (Note ±)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
25ꢀ  
3
UNITS  
ksps  
µs  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
1.9  
Acquisition Time  
t
= t  
CYC  
– t (Note 11)  
HOLD  
3.ꢁ6ꢀ  
µs  
ACQ  
Maximum Time between Acquisitions  
Time Between Conversions  
CNV High Time  
5ꢁꢀ  
13  
ns  
HOLD  
CYC  
µs  
2ꢀ  
ns  
CNVH  
BUSYLH  
CNVL  
C = 2ꢀpF  
L
ns  
CNVto BUSY Delay  
Minimum Low Time for CNV  
SCK Quiet Time from CNV↑  
SCK Period  
(Note 12)  
(Note 11)  
2ꢀ  
2ꢀ  
1ꢀ  
ns  
ns  
QUIET  
SCK  
(Notes 12, 13)  
ns  
SCK High Time  
ns  
SCKH  
SCKL  
SCK Low Time  
ns  
(Note 12)  
(Note 12)  
ns  
SDI Setup Time From SCK↑  
SDI Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
SSDISCK  
HSDISCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Note 12)  
DSDO  
13.5  
ns  
SCKCH  
SSDISCK  
l
l
l
C = 2ꢀpF, OV = 5.25V  
7.5  
8
9.5  
ns  
ns  
ns  
L
DD  
DD  
DD  
C = 2ꢀpF, OV = 2.5V  
L
C = 2ꢀpF, OV = 1.71V  
L
l
l
l
l
t
t
t
t
t
C = 2ꢀpF (Note 11)  
1
ns  
ns  
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from BUSY↓  
Bus Enable Time After RDL↓  
HSDO  
DSDOBUSYL  
EN  
L
C = 2ꢀpF (Note 11)  
L
5
(Note 12)  
(Note 12)  
16  
13  
ns  
ns  
Bus Relinquish Time After RDL↑  
REFBUF Wakeup Time  
DIS  
C
= ꢁ7μF, C = 1ꢀꢀnF  
REFIN  
2ꢀꢀ  
ms  
WAKE  
REFBUF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
when the output code flickers between ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and 11  
1111 1111 1111 1111. Full-scale bipolar error is the worst-case of –FS  
or +FS untrimmed deviation from ideal first and last code transitions and  
includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above V or  
Note 8: All specifications in dB are referred to a full-scale 2ꢀ.ꢁ8V input  
with REFIN = 2.ꢀꢁ8V.  
DD  
OV , they will be clamped by internal diodes. This product can handle  
Note 9: When REFBUF is overdriven, the internal reference buffer must be  
turned off by setting REFIN = ꢀV.  
DD  
input currents up to 1ꢀꢀmA below ground or above V or OV without  
DD  
DD  
latch-up.  
Note 10: f  
= 25ꢀkHz, I  
varies proportionally with sample rate.  
SMPL  
REFBUF  
Note ±: V = 5V, OV = 2.5V, 1ꢀ.2ꢁV Range, REFIN = 2.ꢀꢁ8V,  
DD  
DD  
Note 11: Guaranteed by design, not subject to test.  
Note 12: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
f
= 25ꢀkHz.  
SMPL  
DD  
DD  
Note 5: Recommended operating conditions.  
and OV = 5.25V.  
DD  
Note ꢀ: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 13: t  
1ꢀꢀMHz for rising edge capture.  
Note 1±: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
of 1ꢀns maximum allows a shift clock frequency up to  
SCK  
Note 7: Bipolar zero error is the offset voltage measured from –ꢀ.5LSB  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
233618 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 16 Voltage Levels for Timing Specifications  
233618f  
5
For more information www.linear.com/LTC2336-18  
LTC2336-18  
TA = 25°C, VDD = 5V, OVDD = 265V, REFIN = 260±8V,  
DC Histogram  
Typical perForMance characTerisTics  
fSMPL = 250ksps, unless otherwise noted6  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
3.0  
2.5  
0.5  
0.4  
5000  
σ = 0.8  
4500  
2.0  
0.3  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
1.5  
0.2  
1.0  
0.1  
0.5  
0
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
131067 131069 131071 131073 131075  
CODE  
OUTPUT CODE  
OUTPUT CODE  
233618 G03  
233618 G01  
233618 G02  
32k Point FFT fS = 250ksps,  
fIN = 2kHz  
THD, Harmonics  
SNR, SINAD vs Input Frequency  
vs Input Frequency  
0
–20  
110  
100  
90  
–70  
–80  
SNR = 100.3dB  
THD  
2ND  
3RD  
THD = –117dB  
SINAD = 100.2dB  
SFDR = –118dB  
SNR  
–40  
–90  
SINAD  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–80  
–100  
–120  
–140  
–160  
–180  
80  
70  
60  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
233618 G05  
233618 G06  
233618 G04  
SNR, SINAD vs Input Level,  
fIN = 2kHz  
SNR, SINAD vs Temperature,  
fIN = 2kHz  
THD, Harmonics vs Temperature,  
fIN = 2kHz  
102.0  
101.5  
101.0  
100.5  
100.0  
102.0  
101.5  
101.0  
100.5  
100.0  
99.5  
–105  
–110  
–115  
–120  
–125  
–130  
–135  
THD  
3RD  
SNR  
SNR  
SINAD  
SINAD  
2ND  
99.0  
98.5  
98.0  
–40  
–30  
–20  
–10  
0
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
INPUT LEVEL (dB)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
233618 G07  
233618 G08  
233618 G09  
233618f  
6
For more information www.linear.com/LTC2336-18  
LTC2336-18  
TA = 25°C, VDD = 5V, OVDD = 265V, REFIN = 260±8V,  
Typical perForMance characTerisTics  
fSMPL = 250ksps, unless otherwise noted6  
INL/DNL vs Temperature  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
2.0  
1.5  
20  
15  
5
4
3
1.0  
10  
MAX INL  
MAX DNL  
2
0.5  
5
1
0
0
0
MIN DNL  
MIN INL  
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
–20  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
233618 G11  
233618 G12  
233618 G10  
Internal Reference Output vs  
Temperature  
Supply Current vs Temperature  
Sleep Current vs Temperature  
6
5
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
V
DD  
OV  
DD  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
233618 G15  
233618 G13  
233618 G14  
Internal Reference Output  
Temperature Coefficient  
Distribution  
CMRR vs Input Frequency  
Supply Current vs Sampling Rate  
35  
30  
25  
20  
15  
10  
5
80  
75  
70  
65  
60  
55  
50  
6
5
4
3
2
1
0
V
DD  
OV  
DD  
0
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
250  
–10 –8 –6 –4 –2  
0
2
4
6
8 10  
FREQUENCY (kHz)  
DRIFT (ppm/°C)  
SAMPLING FREQUENCY (kHz)  
233618 G16  
233618 G18  
233618 G17  
233618f  
7
For more information www.linear.com/LTC2336-18  
LTC2336-18  
pin FuncTions  
V
(Pin 1): 2.5V Supply Bypass Pin. The voltage  
CHAIN (Pin 10): Chain Mode Selector Pin. When low,  
the LTC2336-18 operates in normal mode and the  
RDL/SDI input pin functions to enable or disable SDO.  
Whenhigh,theLTC2336-18operatesinchainmodeandthe  
RDL/SDI pin functions as SDI, the daisy-chain serial data  
DDLBYP  
on this pin is generated via an onboard regulator off of  
DD  
V . This pin must be bypassed with a 2.2μF ceramic  
capacitor to GND.  
V
(Pin2):5VPowerSupply.TherangeofV is.75Vto  
DD  
DD  
input. Logic levels are determined by OV .  
DD  
5.25V. Bypass V to GND with a 1ꢀµF ceramic capacitor.  
DD  
BUSY (Pin 11): BUSY Indicator. Goes high at the start of  
GND (Pins 3, ꢀ and 1ꢀ): Ground.  
a new conversion and returns low when the conversion  
+
IN , IN (Pins ±, 5): Positive and Negative Differential  
has finished. Logic levels are determined by OV .  
DD  
Analog Inputs. Typical input range 1ꢀ.2ꢁV.  
RDL/SDI (Pin 12): When CHAIN is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAIN is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
REFBUF (Pin 7): Reference Buffer Output. An onboard  
buffer nominally outputs ꢁ.ꢀ96V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a ꢁ7μF ceramic capacitor. The internal buffer  
driving this pin may be disabled by grounding its input  
at REFIN. Once the buffer is disabled, an external refer-  
ence may overdrive this pin in the range of 2.5V to 5V. A  
resistive load greater than 5ꢀꢀkΩ can be placed on the  
reference buffer output.  
determined by OV .  
DD  
SCK(Pin13):SerialDataClockInput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSB  
first. Logic levels are determined by OV .  
DD  
REFIN (Pin 8): Reference Output/Reference Buffer Input.  
An onboard bandgap reference nominally outputs 2.ꢀꢁ8V  
at this pin. Bypass this pin with a 1ꢀꢀnF ceramic capacitor  
to GND to limit the reference output noise. If more accu-  
racy is desired, this pin may be overdriven by an external  
reference in the range of 1.25V to 2.ꢁV.  
SDO(Pin1±):SerialDataOutput. Theconversionresultor  
daisy-chain data is output on this pin on each rising edge  
of SCK MSB first. The output data is in 2’s complement  
format. Logic levels are determined by OV .  
DD  
OV (Pin 15): I/O Interface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
CNV (Pin 9): Convert Input. A rising edge on this input  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
powers up the part and initiates a new conversion. Logic  
or 5V). Bypass OV to GND with a ꢀ.1μF capacitor.  
DD  
levels are determined by OV .  
DD  
233618f  
8
For more information www.linear.com/LTC2336-18  
LTC2336-18  
FuncTional block DiagraM  
REFIN = 1.25V REFBUF = 2.5V  
OV = 1.8V  
DD  
TO 5V  
V
DD  
= 5V  
V
= 2.5V  
DDLBYP  
TO 2.4V  
TO 5V  
LDO  
15k  
2.048V  
REFERENCE  
2× REFERENCE  
BUFFER  
R
0.63× BUFFER  
4R  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
IN  
IN  
+
SPI  
PORT  
R
18-BIT SAMPLING ADC  
4R  
CNV  
BUSY  
CONTROL LOGIC  
GND  
233618 BD01  
TiMing DiagraM  
Conversion Timing Using the Serial Interface  
CHAIN, RDL/SDI = 0  
CNV  
CONVERT  
NAP  
BUSY  
SCK  
HOLD  
ACQUIRE  
D17 D16 D15 D2 D1 D0  
SDO  
233618 TD01  
233618f  
9
For more information www.linear.com/LTC2336-18  
LTC2336-18  
applicaTions inForMaTion  
OVERVIEꢁ  
withREFBUF=.ꢀ96V.Theidealtransferfunctionisshown  
in Figure 2. The output data is in 2’s complement format.  
The LTC2336-18 is a low noise, high speed 18-bit succes-  
siveapproximationregister(SAR)ADCwithfullydifferential  
inputs.Operatingfromasingle5Vsupply,theLTC2336-18  
has a 1ꢀ.2ꢁV true bipolar input range, making it ideal for  
high voltage applications which require a wide dynamic  
range. The LTC2336-18 achieves ꢁLSB INL maximum,  
no missing codes at 18-bits and 1ꢀꢀdB SNR.  
ANALOG INPUT  
The analog inputs of the LTC2336-18 are fully differential  
to maximize the signal swing that can be digitized. The  
analog inputs can be modeled by the equivalent circuit  
shown in Figure 3. The back-to-back diodes at the inputs  
form clamps that provide ESD protection. Each input  
drives a resistor divider network that has a total imped-  
ance of 2kΩ. The resistor divider network attenuates and  
level shifts the ±2.5 • REFBUF true bipolar signal swing of  
each input to the ꢀ-REFBUF input signal swing of the ADC  
TheLTC2336-18hasanonboardsingle-shotcapablereference  
buffer and low drift (2ꢀppm/°C max) 2.ꢀꢁ8V temperature-  
compensated reference. The LTC2336-18 also has a high  
speed SPI-compatible serial interface that supports 1.8V,  
2.5V, 3.3V and 5V logic while also featuring a daisy-chain  
mode. The fast 25ꢀksps throughput with no cycle latency  
makes the LTC2336-18 ideally suited for a wide variety  
of high speed applications. An internal oscillator sets the  
conversion time, easing external timing considerations. The  
LTC2336-18 dissipates only 28mW and automatically naps  
between conversions, leading to reduced power dissipation  
that scales with the sampling rate. A sleep mode is also pro-  
vided to reduce the power consumption of the LTC2336-18  
to 3ꢀꢀμW for further power savings during inactive periods.  
core. In the acquisition phase, ꢁ5pF (C ) from the sam-  
IN  
pling CDAC in series with approximately 5ꢀΩ (R ) from  
ON  
the on-resistance of the sampling switch is connected to  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
CONVERTER OPERATION  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/262144  
The LTC2336-18 operates in two phases. During the  
acquisition phase, the charge redistribution capacitor  
D/A converter (CDAC) is connected to the outputs of  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
+
the resistor divider networks that pins IN and IN drive  
to sample an attenuated and level-shifted version of the  
differential analog input voltage as shown in Figure 3. A  
rising edge on the CNV pin initiates a conversion. Dur-  
ing the conversion phase, the 18-bit CDAC is sequenced  
throughasuccessiveapproximationalgorithm,effectively  
comparing the sampled input with binary-weighted frac-  
INPUT VOLTAGE (V)  
233618 F02  
Figure 26 LTC233ꢀ-18 Transfer Function  
0.63 • V  
REFBUF  
C
45pF  
IN  
R
50Ω  
400Ω  
ON  
1.6k  
+
IN  
tions of the reference voltage (e.g. V  
/2, V  
/ꢁ  
REFBUF  
REFBUF  
… V  
/2621ꢁꢁ) using the differential comparator. At  
REFBUF  
0.63 • V  
BIAS  
REFBUF  
the end of conversion, the CDAC output approximates the  
sampledanaloginput.TheADCcontrollogicthenprepares  
the 18-bit digital output code for serial transfer.  
VOLTAGE  
C
45pF  
IN  
R
50Ω  
400Ω  
ON  
1.6k  
IN  
TRANSFER FUNCTION  
233618 F03  
The LTC2336-18 digitizes the full-scale voltage of ±5 •  
Figure 36 The Equivalent Circuit for the Differential  
Analog Input of the LTC233ꢀ-18  
18  
REFBUF into 2 levels, resulting in an LSB size of 156µV  
233618f  
10  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
applicaTions inForMaTion  
the output of the resistor divider network. Any unwanted  
signal that is common to both inputs will be reduced by  
the common mode rejection of the ADC core and resistor  
divider network. The inputs of the ADC core draw a current  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
spike while charging the C capacitors during acquisition.  
IN  
INPUT DRIVE CIRCUITS  
A low impedance source can directly drive the high im-  
pedance inputs of the LTC2336-18 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC inputs  
draw a current spike when entering acquisition.  
Single-Ended-to-Differential Conversion  
Forsingle-endedinputsignals,asingle-ended-to-differen-  
tialconversioncircuitmustbeusedtoproduceadifferential  
signal at the inputs of the LTC2336-18. The LT1ꢁ69 high  
speed dual operational amplifier is recommended for per-  
formingsingle-ended-to-differentialconversionsasshown  
in Figure 5a. In this case, the first amplifier is configured  
as a unity gain buffer and the single-ended input signal  
directly drives the high impedance input of this amplifier.  
Figure5bshowstheresultingFFT whentheLT1ꢁ69isused  
to drive the LTC2336-18 in this configuration.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2336-18. The amplifier  
provides low output impedance to minimize gain error  
and allows for fast settling of the analog signal during  
the acquisition phase. It also provides isolation between  
the signal source and the ADC inputs which draw a small  
current spike during acquisition.  
LT1469  
OUT1  
OUT2  
1
7
3
2
+
Input Filtering  
10ꢀ24ꢁ  
10ꢀ24ꢁ  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter to  
minimizenoise.Thesimple1-poleRClowpassfiltershown  
in Figure ꢁ is sufficient for many applications.  
5
6
+
10ꢀ24ꢁ  
4ꢀ99k  
4ꢀ99k  
233618 F05a  
Figure 5a6 LT1±ꢀ9 Converting a ±1062±V Single-Ended  
Signal to a ±206±8V Differential Input Signal  
The input resistor divider network, sampling switch on-  
0
SNR = 100dB  
resistance (R ) and the sample capacitor (C ) form a  
ON  
IN  
–20  
–40  
THD = –115dB  
SINAD = 99.9dB  
SFDR = –118dB  
second lowpass filter that limits the input bandwidth to  
the ADC core to 7MHz. A buffer amplifier with a low noise  
density must be selected to minimize the degradation of  
the SNR over this bandwidth.  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
SINGLE-ENDED  
INPUT SIGNAL  
+
IN  
IN  
500Ω  
LTC2336-18  
6600pF  
0
25  
50  
75  
100  
125  
233618 F04  
SINGLE-ENDED-  
TO-DIFFERENTIAL  
DRIVER  
FREQUENCY (kHz)  
233618 F05b  
BW = 48kHz  
Figure 5b6 128k Point FFT Plot with fIN = 2kHz  
for Circuit Shown in Figure 5a  
Figure ±6 Input Signal Chain  
233618f  
11  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
applicaTions inForMaTion  
Fully Differential Inputs  
Internal Reference with Internal Buffer  
The LTC2336-18 has an on-chip, low noise, low drift  
(2ꢀppm/°C max), temperature compensated bandgap  
reference that is factory trimmed to 2.ꢀꢁ8V. It is internally  
connected to a reference buffer as shown in Figure 7a and  
is available at REFIN (Pin 8). REFIN should be bypassed to  
GNDwitha1ꢀꢀnFceramiccapacitortominimizenoise.The  
reference buffer gains the REFIN voltage by 2 to ꢁ.ꢀ96V at  
REFBUF (Pin 7). So the input range is 1ꢀ.2ꢁV, as shown  
in Table 1. Bypass REFBUF to GND with at least a ꢁ7μF  
ceramic capacitor (X7R, 1ꢀV, 121ꢀ size) to compensate  
the reference buffer and minimize noise.  
To achieve the full distortion performance of the  
LTC2336-18,alowdistortionfullydifferentialsignalsource  
driven through the LT1ꢁ69 configured as two unity gain  
buffers as shown in Figure 6 can be used to get the full  
data sheet THD specification of –115dB.  
LT1469  
3
2
+
1
7
10ꢀ24ꢁ  
10ꢀ24ꢁ  
10ꢀ24ꢁ  
5
6
+
10ꢀ24ꢁ  
233618 F06  
15k  
REFIN  
BANDGAP  
Figure ꢀ6 LT1±ꢀ9 Buffering a Fully Differential Signal Source  
REFERENCE  
100nF  
REFBUF  
ADC REFERENCE  
REFERENCE  
BUFFER  
There are three ways of providing the ADC reference. The  
first is to use both the internal reference and reference  
buffer. The second is to externally overdrive the internal  
reference and use the internal reference buffer. The third  
is to disable the internal reference buffer and overdrive  
the REFBUF pin from an external source. The following  
tables give examples of these cases and the resulting  
bipolar input ranges.  
6.5k  
47µF  
6.5k  
LTC2336-18  
GND  
233618 F07a  
Figure 7a6LTC233ꢀ-18 Internal Reference Circuit  
External Reference with Internal Buffer  
Table 16 Internal Reference with Internal Buffer  
If more accuracy and/or lower drift is desired, REFIN  
can be easily overdriven by an external reference since  
a 15k resistor is in series with the reference as shown  
in Figure 7b. REFIN can be overdriven in the range from  
1.25V to 2.ꢁV. The resulting voltage at REFBUF will be  
2 • REFIN. So the input range is ±5 • REFIN, as shown  
in Table 2. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications.Withitssmallsize,lowpower,andhigh  
accuracy, the LTC6655-2.ꢀꢁ8 is well suited for use with  
the LTC2336-18 when overdriving the internal reference.  
The LTC6655-2.ꢀꢁ8 offers ꢀ.ꢀ25% (max) initial accuracy  
and 2ppm/°C (max) temperature coefficient for high pre-  
cision applications. The LTC6655-2.ꢀꢁ8 is fully specified  
over the H-grade temperature range and complements  
the extended temperature range of the LTC2336-18 up to  
125°C.BypassingtheLTC6655-2.ꢀꢁ8witha2.7μFto1ꢀꢀμF  
ceramiccapacitorclosetotheREFINpinisrecommended.  
233618f  
REFIN  
REFBUF  
BIPOLAR INPUT RANGE  
2.ꢀꢁ8V  
ꢁ.ꢀ96V  
1ꢀ.2ꢁV  
Table 26 External Reference with Internal Buffer  
REFIN  
(OVERDRIVE)  
REFBUF  
BIPOLAR INPUT RANGE  
1.25V (Min)  
2.ꢀꢁ8V  
2.5V  
ꢁ.ꢀ96V  
ꢁ.8V  
6.25V  
1ꢀ.2ꢁV  
12V  
2.ꢁV (Max)  
Table 36 External Reference Unbuffered  
REFIN  
REFBUF  
(OVERDRIVE)  
BIPOLAR INPUT RANGE  
ꢀV  
ꢀV  
2.5V (Min)  
5V (Max)  
6.25V  
12.5V  
12  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
applicaTions inForMaTion  
15k  
15k  
REFIN  
REFIN  
BANDGAP  
BANDGAP  
REFERENCE  
REFERENCE  
2.7µF  
REFBUF  
REFBUF  
REFERENCE  
BUFFER  
REFERENCE  
BUFFER  
47µF  
LTC6655-2.048  
6.5k  
6.5k  
47µF  
LTC6655-5  
6.5k  
6.5k  
LTC2336-18  
LTC2336-18  
GND  
GND  
233618 F07b  
233618 F07c  
Figure7b6 Using the LTCꢀꢀ55-260±8 as an External Reference  
Figure 7c6 Overdriving REFBUF Using the LTCꢀꢀ55-5  
External Reference Unbuffered  
reference that must be considered since any deviation in  
the voltage at REFBUF will affect the accuracy of the output  
code. If an external reference is used to overdrive REFBUF,  
the fast settling LTC6655-5 reference is recommended.  
The internal reference buffer can also be overdriven from  
2.5V to 5V with an external reference at REFBUF as shown  
in Figure 7c. So the input ranges are 6.25V to 12.5V,  
respectively, as shown in Table 3. To do so, REFIN must  
be grounded to disable the reference buffer. A 13k resis-  
tor loads the REFBUF pin when the reference buffer is  
disabled. To maximize the input signal swing and cor-  
responding SNR, the LTC6655-5 is recommended when  
overdrivingREFBUF.TheLTC6655-5offersthesamesmall  
size, accuracy, drift and extended temperature range as  
the LTC6655-2.ꢀꢁ8. By using a 5V reference, an SNR of  
1ꢀ2dB can be achieved. Bypassing the LTC6655-5 with  
a ꢁ7μF ceramic capacitor (X5R, ꢀ8ꢀ5 size) close to the  
REFBUF pin is recommended.  
Internal Reference Buffer Transient Response  
Foroptimumtransientperformance,theinternalreference  
buffer should be used. The internal reference buffer uses a  
proprietarydesignthatresultsinanoutputvoltagechange  
atREFBUFoflessthan1LSBwhenrespondingtoasudden  
burst of conversions. This makes the internal reference  
bufferoftheLTC2336-18trulysingle-shotcapablesincethe  
first sample taken after idling will yield the same result as  
a sample taken after the transient response of the internal  
reference buffer has settled. Figure 9 shows the transient  
responses of the LTC2336-18 with the internal reference  
buffer and with the internal reference buffer overdriven by  
the LTC6655-5, both with a bypass capacitance of ꢁ7μF.  
TheREFBUFpinoftheLTC2336-18drawsacharge(Q  
)
CONV  
fromtheexternalbypasscapacitorduringeachconversion  
cycle. If the internal reference buffer is overdriven, the  
external reference must provide all of this charge with a  
DYNAMIC PERFORMANCE  
DC current equivalent to I  
= Q  
/t . Thus, the  
REFBUF  
CONV CYC  
DC current draw of REFBUF depends on the sampling rate  
and output code. In applications where a burst of samples  
is taken after idling for long periods, as shown in Figure 8,  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
ratedthroughput.Byapplyingalowdistortionsinewaveand  
analyzingthedigitaloutputusinganFFT algorithm,theADC’s  
spectralcontentcanbeexaminedforfrequenciesoutsidethe  
I
quickly goes from approximately 39ꢀµA to a maxi-  
REFBUF  
mumof.6mAforREFBUF=5Vat25ꢀksps.ThisstepinDC  
current draw triggers a transient response in the external  
CNV  
IDLE  
PERIOD  
IDLE  
PERIOD  
233618 F08  
Figure 86 CNV ꢁaveform Showing Burst Sampling  
233618f  
13  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
applicaTions inForMaTion  
2
that the LTC2336-18 achieves a typical SNR of 1ꢀꢀdB at  
a 25ꢀkHz sampling rate with a 2kHz input.  
INTERNAL REFERENCE BUFFER  
0
Total Harmonic Distortion (THD)  
–2  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
EXTERNAL SOURCE ON REFBUF  
–4  
–6  
–8  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
0
100 200 300 400 500 600 700 800 9001000  
TIME (µs)  
2
V22 + V32 + Vꢁ2 +…+ VN  
233618 F09  
THD= 2ꢀlog  
Figure 96 Transient Response of the LTC233ꢀ-18  
V1  
fundamental. The LTC2336-18 provides guaranteed tested  
limits for both AC distortion and noise measurements.  
where V1 is the RMS amplitude of the fundamental  
frequency and V2 through V are the amplitudes of the  
N
second through Nth harmonics.  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure1showsthattheLTC2336-18achieves  
a typical SINAD of 1ꢀꢀdB at a 25ꢀkHz sampling rate with  
a 2kHz input.  
POꢁER CONSIDERATIONS  
The LTC2336-18 provides two power supply pins: the 5V  
power supply (V ), and the digital input/output interface  
DD  
power supply (OV ). The flexible OV supply allows the  
DD  
DD  
LTC2336-18tocommunicatewithanydigitallogicoperat-  
ingbetween1.8Vand5V,including2.5Vand3.3Vsystems.  
Power Supply Sequencing  
The LTC2336-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2336-18  
has a power-on reset (POR) circuit that will reset the  
LTC2336-18 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
reenters the nominal supply voltage range, the POR will  
re-initialize the ADC. No conversions should be initiated  
until 2ꢀꢀμs after a POR event to ensure the re-initialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
Signal-to-Noise Ratio (SNR)  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 1ꢀ shows  
0
SNR = 100.3dB  
–20  
–40  
THD = –117dB  
SINAD = 100.2dB  
SFDR = –118dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
TIMING AND CONTROL  
CNV Timing  
0
25  
50  
75  
100  
125  
FREQUENCY (kHz)  
233618 F10  
The LTC2336-18 conversion is controlled by CNV. A ris-  
ing edge on CNV will start a conversion and power up  
233618f  
Figure 106 32k Point FFT of the LTC233ꢀ-18  
14  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
applicaTions inForMaTion  
6
5
4
3
2
1
0
the LTC2336-18. Once a conversion has been initiated,  
it cannot be restarted until the conversion is complete.  
For optimum performance, CNV should be driven by a  
clean low jitter signal. Converter status is indicated by the  
BUSY output which remains high while the conversion is  
in progress. To ensure that no errors occur in the digitized  
results, any additional transitions on CNV should occur  
within ꢁꢀns from the start of the conversion or after the  
conversion has been completed. Once the conversion has  
completed, the LTC2336-18 powers down.  
V
DD  
OV  
DD  
0
50  
100  
150  
200  
250  
SAMPLING FREQUENCY (kHz)  
233618 F11  
Acquisition  
Figure 116 Power Supply Current of the LTC233ꢀ-18  
Versus Sampling Rate6  
AproprietarysamplingarchitectureallowstheLTC2336-18  
to begin acquiring the input signal for the next conver-  
sion 527ns after the start of the current conversion. This  
extends the acquisition time to 3.ꢁ6ꢀµs, easing settling  
requirementsandallowingtheuseofextremelylowpower  
ADC drivers. (Refer to the Timing Diagram.)  
standby current resulting in a power dissipation of 3ꢀꢀμW.  
To enter sleep mode, toggle CNV twice with no intervening  
rising edge on SCK. The part will enter sleep mode on the  
falling edge of BUSY from the last conversion initiated. Once  
in sleep mode, a rising edge on SCK will wake the part up.  
Uponemergingfromsleepmode,waitt  
secondsbefore  
WAKE  
Internal Conversion Clock  
initiating a conversion to allow the reference and reference  
buffertowakeupandchargethebypasscapacitorsatREFIN  
andREFBUF.(RefertotheTimingDiagramssectionformore  
detailed timing information about sleep mode.)  
The LTC2336-18 has an internal clock that is trimmed to  
achieve a maximum conversion time of 3µs.  
Auto Nap Mode  
The LTC2336-18 automatically enters nap mode after a  
conversion has been completed and completely powers  
up once a new conversion is initiated on the rising edge of  
CNV. During nap mode, only the ADC core powers down  
and all other circuits remain active. During nap, data from  
thelastconversioncanbeclockedout. Theautonapmode  
featurewillreducethepowerdissipationoftheLTC2336-18  
as the sampling frequency is reduced. Since full power is  
consumed only during a conversion, the ADC core of the  
LTC2336-18remainspowereddownforalargerfractionof  
DIGITAL INTERFACE  
The LTC2336-18 has a serial digital interface. The flexible  
OV supplyallowstheLTC2336-18tocommunicatewith  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
2ꢀMHz, a 25ꢀksps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D17 remains valid till the first rising edge of SCK.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 11.  
Sleep Mode  
The serial interface on the LTC2336-18 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operationoftheLTC2336-18. Severalmodesareprovided  
depending on whether a single or multiple ADCs share the  
SPI bus or are daisy-chained.  
The auto nap mode feature provides limited power savings  
sinceonlytheADCcorepowersdown.To obtaingreaterpower  
savings,theLTC2336-18providesasleepmode.Duringsleep  
mode, the entire part is powered down except for a small  
233618f  
15  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
TiMing DiagraMs  
Normal Mode, Single Device  
shows a single LTC2336-18 operated in normal mode  
with CHAIN and RDL/SDI tied to ground. With RDL/SDI  
grounded, SDO is enabled and the MSB(D17) of the new  
conversion data is available at the falling edge of BUSY.  
This is the simplest way to operate the LTC2336-18.  
When CHAIN = ꢀ, the LTC2336-18 operates in normal  
mode. In normal mode, RDL/SDI enables or disables the  
serial data output pin SDO. If RDL/SDI is high, SDO is in  
highimpedance.IfRDL/SDIislow,SDOisdriven.Figure12  
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CHAIN  
BUSY  
SDO  
LTC2336-18  
RDL/SDI  
SCK  
DATA IN  
CLK  
233618 F12a  
NAP  
CONVERT  
NAP  
CONVERT  
ACQUIRE  
ACQUIRE  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
t
HOLD  
ACQ  
t
= t  
– t  
ACQ CYC HOLD  
t
CONV  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D17  
D16  
D15  
D1  
D0  
233618 F12  
Figure 126 Using a Single LTC233ꢀ-18 in Normal Mode  
233618f  
16  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
TiMing DiagraMs  
Normal Mode, Multiple Devices  
be used to allow only one LTC2336-18 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure13,  
the RDL/SDI inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDI is brought low, the MSB of the selected  
device is output onto SDO.  
Figure 13 shows multiple LTC2336-18 devices operating  
in normal mode (CHAIN = ꢀ) sharing CNV, SCK and SDO.  
By sharing CNV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDI input of each ADC must  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2336-18  
B
LTC2336-18  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
233618 F13a  
NAP  
CONVERT  
NAP  
CONVERT  
ACQUIRE  
ACQUIRE  
CHAIN = 0  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
SCK  
SDO  
1
2
3
16  
17  
18  
19  
20  
21  
34  
35  
36  
t
t
SCKL  
HSDO  
t
t
DIS  
DSDO  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D17  
D16  
D15  
D1  
A
D0  
A
D17  
D16  
D15  
D1  
B
D0  
B
A
A
A
B
B
B
233618 F13  
Figure 136 Normal Mode with Multiple Devices Sharing CNV, SCK, and SDO  
233618f  
17  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
TiMing DiagraMs  
Chain Mode, Multiple Devices  
may limitthe numberoflinesneeded to interface to a large  
number of converters. Figure 1ꢁ shows an example with  
two daisy-chained devices. The MSB of converter A will  
appear at SDO of converter B after 18 SCK cycles. The  
MSB of converter A is clocked in at the SDI/RDL pin of  
converter B on the rising edge of the first SCK.  
When CHAIN = OV , the LTC2336-18 operates in  
DD  
chain mode. In chain mode, SDO is always enabled and  
RDL/SDI serves as the serial data input pin (SDI) where  
daisy-chain data output from another ADC can be input.  
This is useful for applications where hardware constraints  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2336-18  
LTC2336-18  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
233618 F14a  
NAP  
ACQUIRE  
CONVERT  
NAP  
ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
19  
20  
34  
35  
36  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D17  
D16  
D16  
D15  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D17  
D15  
D1  
B
D17  
D16  
D1  
D0  
A
SDO  
B
B
B
B
A
A
A
B
233618 F14  
Figure 1±6 Chain Mode Timing Diagram  
233618f  
18  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
TiMing DiagraMs  
Sleep Mode  
lastconversioninitiated.Onceinsleepmode,arisingedge  
on SCK will wake the part up. Upon emerging from sleep  
To entersleepmode, toggleCNVtwicewithnointervening  
rising edge on SCK as shown in Figure 15. The part will  
enter sleep mode on the falling edge of BUSY from the  
mode, wait t  
seconds before initiating a conversion  
WAKE  
to allow the reference and reference buffer to wake up  
and charge the bypass capacitors at REFIN and REFBUF.  
NAP AND  
ACQUIRE  
CHAIN = DONT CARE  
NAP  
RDL/SDI = DONT CARE  
CONVERT  
CONVERT  
SLEEP  
CONVERT  
ACQUIRE  
t
t
WAKE  
t
CNVH  
ACQ  
CNV  
t
HOLD  
t
t
CONV  
CONV  
BUSY  
t
BUSYLH  
SCK  
NAP AND  
ACQUIRE  
CHAIN = DONT CARE  
RDL/SDI = DONT CARE  
CONVERT  
SLEEP  
CONVERT  
t
t
WAKE  
CNVH  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
SCK  
233618 F15  
Figure 156 Sleep Mode Timing Diagram  
233618f  
19  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
boarD layouT  
To obtain the best performance from the LTC2336-18 a  
printedcircuitboard(PCB)isrecommended.Layoutforthe  
PCB should ensure the digital and analog signal lines are  
separated as much as possible. In particular, care should  
be taken not to run any digital clocks or signals alongside  
analog signals or underneath the ADC.  
Recommended Layout  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC19ꢀ8, the  
evaluation kit for the LTC2336-18.  
Partial Top Silkscreen  
Partial Layer 1 Component Side  
233618f  
20  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
boarD layouT  
Partial Layer 2 Ground Plane  
Partial Layer 3 Power Plane  
Partial Layer ± Bottom Layer  
233618f  
21  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
boarD layouT  
Partial Schematic of Demoboard  
5
3
1
3
C V C  
S S V  
4
5
3
8
1
3
N I F R E  
P
B Y D V D L 1  
C H A I  
8
7
B F U F R E  
N
0 1  
D V D O  
D V D  
5 1  
2
N D G  
6 1  
6
N D G  
N D G  
3
5
5
3
3
8
4
233618f  
22  
For more information www.linear.com/LTC2336-18  
LTC2336-18  
package DescripTion  
Please refer to http://www6linear6com/designtools/packaging/ for the most recent package drawings6  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
233618f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
23  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2336-18  
Typical applicaTion  
LT1±ꢀ9 Configured to Convert a ±1062±V Single-Ended Signal to a ±206±8V Differential Signal  
15V  
10.24V  
0V  
8
5V  
2
3
+
–10.24V  
V
10.24V  
0V  
–10.24V  
DD  
1
7
+
IN  
IN  
LTC2336-18  
LT1469  
4.99k  
6
5
+
REFBUF  
47µF  
REFIN  
10.24V  
0V  
–10.24V  
100nF  
4
4.99k  
–15V  
233618 TA02  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2379-18/LTC2378-18/ 18-Bit, 1.6Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2377-18/LTC2376-18 Serial, Low Power ADC  
2.5V Supply, Differential Input, 1ꢀ1.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC238ꢀ-16/LTC2378-16/ 16-Bit, 2Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2377-16/LTC2376-16 Serial, Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC2369-18/LTC2368-18/ 18-Bit, 1.6Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2367-18/LTC236ꢁ-18 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 96.5dB SNR, ꢀV to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC237ꢀ-16/LTC2368-16/ 16-Bit, 2Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2367-16/LTC236ꢁ-16 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 9ꢁdB SNR, ꢀV to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC2389-18/LTC2389-16 18-Bit/16-Bit, 2.5Msps Parallel/Serial ADC  
5V Supply, Pin-Configurable Input Range, 99.8dB/96dB SNR, Parallel or Serial  
I/O 7mm × 7mm LQFP-ꢁ8 and QFN-ꢁ8 Packages  
LTC16ꢀ9  
16-Bit, 2ꢀꢀksps Serial ADC  
1ꢀV, Configurable Unipolar/Bipolar Input, Single 5V Supply, SSOP-28 and  
SO-2ꢀ Packages  
LTC16ꢀ6/LTC16ꢀ5  
16-Bit, 2ꢀꢀksps/1ꢀꢀksps Parallel ADCs  
1ꢀV, 75mW/55mW 5V Pin Compatible ADCs  
LTC1859/LTC1858/  
LTC1857  
16-/1ꢁ-/12-Bit, 8-Channel 1ꢀꢀksps Serial  
ADCs  
1ꢀV, SoftSpanꢂ, Single-Ended or Differential Inputs, Single 5V Supply,  
SSOP-28 Package  
DACs  
LTC2756/LTC2757  
18-Bit, Single Serial/Parallel I  
SoftSpan  
OUT  
1LSB INL/DNL, Software-Selectable Ranges, SSOP-28/7mm × 7mm LQFP-ꢁ8  
Package  
DAC  
LTC26ꢁ1  
LTC263ꢀ  
References  
LTC6655  
16-Bit/1ꢁ-Bit/12-Bit Single Serial V  
DAC  
1LSB INL /DNL, MSOP-8 Package, ꢀV to 5V Output  
OUT  
12-Bit/1ꢀ-Bit/8-Bit Single V  
DACs  
1LSB INL (12 Bits), Internal Reference, SC7ꢀ 6-Pin Package  
OUT  
Precision Low Drift Low Noise Buffered  
Reference  
5V/2.5V/2.ꢀꢁ8V/1.2V, 2ppm/°C, ꢀ.25ppm Peak-to-Peak Noise, MSOP-8 Package  
5V/2.5V/2.ꢀꢁ8V/1.2V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift Low Noise Buffered  
Reference  
Amplifiers  
LT1ꢁ68/LT1ꢁ69  
Single/Dual 9ꢀMHz, 22V/μs, 16-Bit Accurate Low Input Offset: 75μV/125µV  
Op Amp  
233618f  
LT 0913 • PRINTED IN USA  
LinearTechnology Corporation  
163ꢀ McCarthy Blvd., Milpitas, CA 95ꢀ35-7ꢁ17  
24  
(ꢁꢀ8)32-19ꢀꢀ FAX: (ꢁꢀ8) ꢁ3ꢁ-ꢀ5ꢀ7 www.linear.com/LTC2336-18  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

LTC2337

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2337-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2337-18_15

True Bipolar, Fully Differential Input ADC with 100dB SNR
Linear

LTC2338

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2338-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2338HMS-18#PBF

LTC2338-18 - 18-Bit, 1Msps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C
Linear

LTC2338IMS-18#PBF

LTC2338-18 - 18-Bit, 1Msps, ±10.24V True Bipolar, Fully Differential Input ADC with 100dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC2345-16

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2345-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2345CUK-16#PBF

LTC2345-16 - Octal, 16-Bit, 200ksps Differential SoftSpan ADC with Wide Input Common Mode Range; Package: QFN; Pins: 48; Temperature Range: 0°C to 70°C
Linear

LTC2348-16

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2348-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear