LTC2327HMS-18#PBF [Linear]

LTC2327-18 - 18-Bit, 500ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 95dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C;
LTC2327HMS-18#PBF
型号: LTC2327HMS-18#PBF
厂家: Linear    Linear
描述:

LTC2327-18 - 18-Bit, 500ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 95dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C

光电二极管 转换器
文件: 总26页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2327-18  
18-Bit, 500ksps, 10ꢀ.24  
True Bipolar, Pseudo-Differential  
Input ADC with 95dB SNR  
DescripTion  
FeaTures  
The LTC®2327-18 is a low noise, high speed 18-bit suc-  
cessive approximation register (SAR) ADC with pseudo-  
differential inputs. Operating from a single 5V supply,  
the LTC2327-18 has a 1ꢀ.2ꢁV true bipolar input range,  
n
500ksps Throughput Rate  
n
±5ꢀLS ꢁIꢀ ꢂ(aꢃx  
n
Guaranteed 18-Sit Io (issing Codes  
Pseudo-Differential ꢁnputs  
n
n
True Sipolar ꢁnput Ranges ±±6.5ꢄV ±106.2ꢄV ±1.65ꢄ  
making it ideal for high voltage applications which require  
a wide dynamic range. The LTC2327-18 achieves 5LSꢂ  
INLmaximum,nomissingcodesat18bitswith95dSNR.  
n
n
n
n
n
n
n
n
n
n
n
n
95dS LIR ꢂTypx at f = .kHz  
ꢁI  
–111dS THD ꢂTypx at f = .kHz  
ꢁI  
Guaranteed Operation to 125°C  
Single 5V Supply  
The LTC2327-18 has an onboard single-shot capable  
reference buffer and low drift (2ꢀppm/°C max) 2.ꢀꢁ8V  
temperature compensated reference. The LTC2327-18  
also has a high speed SPI-compatible serial interface that  
supports1.8V,2.5V,3.3Vand5Vlogicwhilealsofeaturing  
a daisy-chain mode. The fast 5ꢀꢀksps throughput with  
no cycle latency makes the LTC2327-18 ideally suited  
for a wide variety of high speed applications. An internal  
oscillator sets the conversion time, easing external timing  
considerations. The LTC2327-18 dissipates only 36mW  
and automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided to reduce the power  
consumption of the LTC2327-18 to 3ꢀꢀμW for further  
power savings during inactive periods.  
Low Drift (2ꢀppm/°C Max) 2.ꢀꢁ8V Internal Reference  
Onboard Single-Shot Capable Reference ꢂuffer  
No Pipeline Delay, No Cycle Latency  
1.8V to 5V I/O Voltages  
SPI-Compatible Serial I/O with Daisy-Chain Mode  
Internal Conversion Clock  
Power Dissipation 36mW (Typ)  
16-Lead MSOP Package  
applicaTions  
n
Programmable Logic Controllers  
n
Industrial Process Control  
n
High Speed Data Acquisition  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 77ꢀ5765, 7961132.  
n
Portable or Compact Instrumentation  
n
ATE  
Typical applicaTion  
3.k Point FFT fL = 500kspsV  
fꢁI = .kHz  
0
5V  
1.8V TO 5V  
–20  
–40  
10µF  
2.2µF  
0.1µF  
+10.24V  
–60  
+
V
V
OV  
DD  
DDLBYP DD  
–80  
CHAIN  
RDL/SDI  
SDO  
SCK  
BUSY  
CNV  
–10.24V  
+
LT®1468  
IN  
–100  
–120  
–140  
–160  
–180  
LTC2327-18  
IN  
SAMPLE CLOCK  
REFBUF  
REFIN  
GND  
232718 TA01  
100nF  
47µF  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
232718 TA01b  
232718fb  
1
For more information www.linear.com/LTC2327-18  
LTC2327-18  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
ꢂIotes 1V .x  
TOP VIEW  
Supply Voltage (V )..................................................6V  
DD  
V
1
2
16 GND  
DDLBYP  
V
15 OV  
DD  
DD  
Supply Voltage (OV )................................................6V  
DD  
GND 3  
14 SDO  
13 SCK  
+
IN  
IN  
4
5
Supply ꢂypass Voltage (V  
Analog Input Voltage  
) ...........................3.2V  
DDLꢂYP  
12 RDL/SDI  
11 BUSY  
10 CHAIN  
GND 6  
REFBUF 7  
REFIN 8  
+
IN , IN ..............................................–16.5V to 16.5V  
REFꢂUF...................................................................6V  
REFIN ..................................................................2.8V  
Digital Input Voltage  
9
CNV  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
= 15ꢀ°C, θ = 11ꢀ°C/W  
T
JMAX  
JA  
(Note 3)........................... (GND –ꢀ.3V) to (OV + ꢀ.3V)  
DD  
Digital Output Voltage  
(Note 3)........................... (GND –ꢀ.3V) to (OV + ꢀ.3V)  
DD  
Power Dissipation.............................................. 5ꢀꢀmW  
Operating Temperature Range  
LTC2327C ................................................ ꢀ°C to 7ꢀ°C  
LTC2327I .............................................–ꢁꢀ°C to 85°C  
LTC2327H.......................................... –ꢁꢀ°C to 125°C  
Storage Temperature Range .................. –65°C to 15ꢀ°C  
orDer inForMaTion http://www6linear6com/product/ꢀTC.3.7-18#orderinfo  
ꢀEAD FREE FꢁIꢁLH  
TAPE AID REEꢀ  
PART (ARKꢁIG*  
PACKAGE DELCRꢁPTꢁOI  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TE(PERATURE RAIGE  
ꢀ°C to 7ꢀ°C  
LTC2327CMS-18#PꢂF  
LTC2327IMS-18#PꢂF  
LTC2327HMS-18#PꢂF  
LTC2327CMS-18#TRPꢂF 232718  
LTC2327IMS-18#TRPꢂF 232718  
LTC2327HMS-18#TRPꢂF 232718  
–ꢁꢀ°C to 85°C  
–ꢁꢀ°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 5ꢀꢀ unit reels through  
designated sales channels with #TRMPꢂF suffix.  
232718fb  
2
For more information www.linear.com/LTC2327-18  
LTC2327-18  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ  
PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
TYP  
(AX  
UIꢁTL  
V
+
+
l
l
l
l
V
IN  
V
IN  
V
IN  
Absolute Input Range (IN )  
(Note 5)  
–2.5 V  
– ꢀ.5  
2.5 V  
+ ꢀ.5  
REFꢂUF  
REFꢂUF  
+
Absolute Input Range (IN )  
(Note 5)  
–ꢀ.5  
ꢀ.5  
V
+
– V  
Input Differential Voltage Range  
Analog Input Current  
V
= V – V  
–2.5 V  
2.5 V  
REFꢂUF  
V
IN  
IN  
IN  
IN  
REFꢂUF  
I
–7.8  
ꢁ.8  
mA  
pF  
IN  
C
Analog Input Capacitance  
Analog Input Resistance  
5
IN  
R
2.ꢀ83  
66  
kΩ  
dꢂ  
IN  
CMRR  
Input Common Mode Rejection Ratio  
f
= 25ꢀkHz  
IN  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ  
PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
18  
TYP  
(AX  
UIꢁTL  
ꢂits  
l
l
Resolution  
No Missing Codes  
18  
ꢂits  
Transition Noise  
1.6  
1
LSꢂ  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
ꢂipolar Zero-Scale Error  
ꢂipolar Zero-Scale Error Drift  
ꢂipolar Full-Scale Error  
(Note 6)  
(Note 7)  
–5  
–1  
5
LSꢂ  
DNL  
ꢂZE  
ꢀ.1  
1.25  
3ꢀ  
LSꢂ  
LSꢂ  
–3ꢀ  
ꢀ.ꢀ1  
LSꢂ/°C  
LSꢂ  
l
l
FSE  
V
= ꢁ.ꢀ96V (REFꢂUF Overdriven)  
–125  
–15ꢀ  
125  
15ꢀ  
REFꢂUF  
(Notes 7, 9)  
REFIN = 2.ꢀꢁ8V (Note 7)  
LSꢂ  
ꢂipolar Full-Scale Error Drift  
ꢀ.5  
ppm/°C  
The l denotes the specifications which apply over the full operating temperature rangeV  
DynaMic accuracy  
otherwise specifications are at TA = .5°C and AꢁI = –1dSFL6 ꢂIotes 2V 8x  
LY(SOꢀ PARA(ETER COIDꢁTꢁOIL  
6.25V Range, f = 2kHz, REFIN = 1.25V  
(ꢁI  
87.6  
91  
TYP  
91  
(AX  
UIꢁTL  
dꢂ  
l
l
l
l
l
l
l
l
l
l
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
95  
dꢂ  
IN  
12.5V Range, f = 2kHz, REFꢂUF = 5V  
92  
96.5  
91.5  
95  
dꢂ  
IN  
SNR  
Signal-to-Noise Ratio  
6.25V Range, f = 2kHz, REFIN = 1.25V  
88  
dꢂ  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
92  
dꢂ  
IN  
12.5V Range, f = 2kHz, REFꢂUF = 5V  
9ꢁ  
97  
dꢂ  
IN  
THD  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
6.25V Range, f = 2kHz, REFIN = 1.25V  
–1ꢀ8  
–111  
–1ꢀ6  
11ꢀ  
113  
1ꢀ8  
7
–98  
–98  
–96  
dꢂ  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
dꢂ  
IN  
12.5V Range, f = 2kHz, REFꢂUF = 5V  
dꢂ  
IN  
SFDR  
6.25V Range, f = 2kHz, REFIN = 1.25V  
98  
98  
96  
dꢂ  
IN  
1ꢀ.2ꢁV Range, f = 2kHz, REFIN = 2.ꢀꢁ8V  
dꢂ  
IN  
12.5V Range, f = 2kHz, REFꢂUF = 5V  
dꢂ  
IN  
–3dꢂ Input Linear ꢂandwidth  
Aperture Delay  
MHz  
ps  
5ꢀꢀ  
232718fb  
3
For more information www.linear.com/LTC2327-18  
LTC2327-18  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature rangeV  
otherwise specifications are at TA = .5°C and AꢁI = –1dSFL6 ꢂIotes 2V 8x  
LY(SOꢀ PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
TYP  
(AX  
UIꢁTL  
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
ꢀ.5  
µs  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating temperature rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ  
PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
TYP  
2.ꢀꢁ8  
2
(AX  
2.ꢀ53  
2ꢀ  
UIꢁTL  
V
V
Internal Reference Output Voltage  
2.ꢀꢁ3  
REFIN  
l
V
REFIN  
Temperature Coefficient  
(Note 1ꢁ)  
ppm/°C  
kΩ  
REFIN Output Impedance  
Line Regulation  
15  
V
REFIN  
V
= ꢁ.75V to 5.25V  
DD  
ꢀ.ꢀ8  
mV/V  
V
REFIN Input Voltage Range  
(REFIN Overdriven) (Note 5)  
1.25  
2.ꢁ  
reFerence buFFer characTerisTics The l denotes the specifications which apply over the full  
operating temperature rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ PARA(ETER  
COIDꢁTꢁOIL  
= 2.ꢀꢁ8V  
(ꢁI  
ꢁ.ꢀ91  
2.5  
TYP  
(AX  
ꢁ.1ꢀ1  
5
UIꢁTL  
l
l
V
Reference ꢂuffer Output Voltage  
REFꢂUF Input Voltage Range  
REFꢂUF Output Impedance  
REFꢂUF Load Current  
V
ꢁ.ꢀ96  
V
V
REFꢂUF  
REFIN  
(REFꢂUF Overdriven) (Notes 5, 9)  
V
= ꢀV  
13  
kΩ  
REFIN  
l
I
V
V
= 5V (REFꢂUF Overdriven) (Notes 9, 1ꢀ)  
= 5V, Nap Mode (REFꢂUF Overdriven) (Note 9)  
ꢀ.6ꢁ  
ꢀ.39  
ꢀ.7  
mA  
mA  
REFꢂUF  
REFꢂUF  
REFꢂUF  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating temperature rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ  
PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
TYP  
(AX  
UIꢁTL  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
ꢀ.8 OV  
IH  
IL  
DD  
ꢀ.2 OV  
V
DD  
I
V
IN  
= ꢀV to OV  
DD  
–1ꢀ  
1ꢀ  
μA  
pF  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –5ꢀꢀµA  
O
OV – ꢀ.2  
DD  
V
OH  
OL  
I = 5ꢀꢀµA  
O
ꢀ.2  
1ꢀ  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= ꢀV to OV  
DD  
–1ꢀ  
µA  
mA  
mA  
OZ  
= ꢀV  
= OV  
–1ꢀ  
1ꢀ  
SOURCE  
SINK  
DD  
232718fb  
4
For more information www.linear.com/LTC2327-18  
LTC2327-18  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ  
PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
ꢁ.75  
1.71  
TYP  
(AX  
5.25  
5.25  
1ꢁ  
UIꢁTL  
l
l
l
V
Supply Voltage  
Supply Voltage  
Supply Current  
5
V
V
DD  
OV  
DD  
+
+
I
5ꢀꢀksps Sample Rate (IN = –1ꢀ.2ꢁV, IN = ꢀV)  
11.ꢁ  
7.2  
ꢀ.1  
8.ꢁ  
6ꢀ  
mA  
mA  
mA  
mA  
μA  
VDD  
5ꢀꢀksps Sample Rate (IN = IN = ꢀV)  
5ꢀꢀksps Sample Rate (C = 2ꢀpF)  
I
I
I
Supply Current  
Nap Mode Current  
Sleep Mode Current  
OVDD  
NAP  
SLEEP  
L
+
l
l
Conversion Done (I  
Sleep Mode (I  
+ I  
OVDD  
, IN = –1ꢀ.2ꢁV, IN = ꢀV)  
1ꢀ  
225  
VDD  
+ I )  
OVDD  
VDD  
+
+
l
P
Power Dissipation  
5ꢀꢀksps Sample Rate (IN = –1ꢀ.2ꢁV, IN = ꢀV)  
57  
36  
ꢁ2  
ꢀ.3  
7ꢀ  
mW  
mW  
mW  
mW  
D
5ꢀꢀksps Sample Rate (IN = IN = ꢀV)  
+
l
l
Nap Mode  
Sleep Mode  
Conversion Done (I  
+ I  
OVDD  
, IN = –1ꢀ.2ꢁV, IN = ꢀV)  
5ꢀ  
1.1  
VDD  
+ I  
OVDD  
Sleep Mode (I  
)
VDD  
aDc TiMing characTerisTics The l denotes the specifications which apply over the full operating  
temperature rangeV otherwise specifications are at TA = .5°C6 ꢂIote 2x  
LY(SOꢀ  
PARA(ETER  
COIDꢁTꢁOIL  
(ꢁI  
TYP  
(AX  
5ꢀꢀ  
1.5  
UIꢁTL  
ksps  
µs  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
1
Acquisition Time  
t
= t  
CYC  
– t (Note 11)  
HOLD  
1.ꢁ6ꢀ  
µs  
ACQ  
Maximum Time between Acquisitions  
Time ꢂetween Conversions  
CNV High Time  
5ꢁꢀ  
13  
ns  
HOLD  
CYC  
2
µs  
2ꢀ  
ns  
CNVH  
ꢂUSYLH  
CNVL  
CNVto ꢂUSY Delay  
Minimum Low Time for CNV  
SCK Quiet Time from CNV↑  
SCK Period  
C = 2ꢀpF  
L
ns  
(Note 12)  
(Note 11)  
2ꢀ  
2ꢀ  
1ꢀ  
ns  
ns  
QUIET  
SCK  
(Notes 12, 13)  
ns  
SCK High Time  
ns  
SCKH  
SCKL  
SCK Low Time  
ns  
SDI Setup Time From SCK↑  
SDI Hold Time From SCK↑  
SCK Period in Chain Mode  
SDO Data Valid Delay from SCK↑  
(Note 12)  
(Note 12)  
ns  
SSDISCK  
HSDISCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Note 12)  
DSDO  
13.5  
ns  
SCKCH  
SSDISCK  
l
l
l
C = 2ꢀpF, OV = 5.25V  
7.5  
8
9.5  
ns  
ns  
ns  
L
DD  
DD  
DD  
C = 2ꢀpF, OV = 2.5V  
L
C = 2ꢀpF, OV = 1.71V  
L
l
l
l
l
t
t
t
t
t
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from ꢂUSY↓  
ꢂus Enable Time After RDL↓  
C = 2ꢀpF (Note 11)  
1
ns  
ns  
HSDO  
DSDOꢂUSYL  
EN  
L
C = 2ꢀpF (Note 11)  
L
5
(Note 12)  
(Note 12)  
16  
13  
ns  
ꢂus Relinquish Time After RDL↑  
REFꢂUF Wakeup Time  
ns  
DIS  
C
= ꢁ7μF, C = 1ꢀꢀnF  
REFIN  
2ꢀꢀ  
ms  
WAKE  
REFꢂUF  
232718fb  
5
For more information www.linear.com/LTC2327-18  
LTC2327-18  
elecTrical characTerisTics  
Iote 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iote 8: All specifications in dꢂ are referred to a full-scale 1ꢀ.2ꢁV input  
with REFIN = 2.ꢀꢁ8V.  
Iote 9: When REFꢂUF is overdriven, the internal reference buffer must be  
turned off by setting REFIN = ꢀV.  
Iote .: All voltage values are with respect to ground.  
Iote 10: f  
= 5ꢀꢀkHz, I  
varies proportionally with sample rate.  
SMPL  
REFꢂUF  
Iote 3: When these pin voltages are taken below ground or above V or  
DD  
Iote 11: Guaranteed by design, not subject to test.  
Iote 1.: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
OV , they will be clamped by internal diodes. This product can handle  
DD  
DD  
DD  
input currents up to 1ꢀꢀmA below ground or above V or OV without  
DD  
DD  
and OV = 5.25V.  
DD  
latch-up.  
Iote 13: t  
of 1ꢀns maximum allows a shift clock frequency up to  
SCK  
Iote 2: V = 5V, OV = 2.5V, 1ꢀ.2ꢁV Range, REFIN = 2.ꢀꢁ8V,  
DD  
DD  
1ꢀꢀMHz for rising edge capture.  
Iote 12: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
f
= 5ꢀꢀkHz.  
SMPL  
Iote 5: Recommended operating conditions.  
Iote ±: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Iote 7: ꢂipolar zero error is the offset voltage measured from –ꢀ.5LSꢂ  
when the output code flickers between ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ and 11  
1111 1111 1111 1111. Full-scale bipolar error is the worst-case of –FS  
or +FS untrimmed deviation from ideal first and last code transitions and  
includes the effect of offset error.  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
232718 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 16 ꢄoltage ꢀevels for Timing Lpecifications  
232718fb  
6
For more information www.linear.com/LTC2327-18  
LTC2327-18  
TA = .5°CV ꢄDD = 5ꢄV OꢄDD = .65ꢄV REFꢁI = .6028ꢄV  
Typical perForMance characTerisTics  
fL(Pꢀ = 500kspsV unless otherwise noted6  
ꢁntegral Ionlinearity  
vs Output Code  
Differential Ionlinearity  
vs Output Code  
DC Histogram  
3.0  
2.5  
3000  
0.5  
0.4  
σ = 1.6  
2.0  
2500  
2000  
1500  
1000  
500  
0.3  
1.5  
0.2  
1.0  
0.1  
0.5  
0
0.0  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
–6 –5 –4 –3 –2 –1 0  
1 2 3 4 5 6 7  
–131072 –65536  
0
65536  
131072  
–131072 –65536  
0
65536  
131072  
OUTPUT CODE  
OUTPUT CODE  
CODE  
232718 G01  
232718 G02  
233718 G03  
3.k Point FFT fL = 500kspsV  
fꢁI = .kHz  
THDV Harmonics  
vs ꢁnput Frequency  
LIRV LꢁIAD vs ꢁnput Frequency  
–70  
–80  
0
–20  
100  
90  
SNR  
–40  
–90  
–60  
SINAD  
–100  
–110  
–120  
–130  
–140  
–80  
80  
–100  
–120  
–140  
–160  
–180  
70  
THD  
2ND  
3RD  
60  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
232718 G06  
232718 G04  
232718 G05  
LIRV LꢁIAD vs ꢁnput ꢀevelV  
fꢁI = .kHz  
LIRV LꢁIAD vs TemperatureV  
fꢁI = .kHz  
THDV Harmonics vs TemperatureV  
fꢁI = .kHz  
96.0  
95.5  
95.0  
94.5  
–105  
–110  
–115  
–120  
–125  
98  
97  
THD  
3RD  
2ND  
96  
SNR  
SNR  
95  
94  
SINAD  
SINAD  
93  
92  
–40  
–30  
–20  
–10  
0
5
20 35 50 65  
80 95 110  
125  
–40 –25 –10  
5
20 35 50 65  
80 95 110  
125  
–40 –25 –10  
TEMPERATURE (°C)  
INPUT LEVEL (dB)  
TEMPERATURE (°C)  
232718 G09  
232718 G07  
232718 G08  
232718fb  
7
For more information www.linear.com/LTC2327-18  
LTC2327-18  
TA = .5°CV ꢄDD = 5ꢄV OꢄDD = .65ꢄV REFꢁI = .6028ꢄV  
Typical perForMance characTerisTics  
fL(Pꢀ = 500kspsV unless otherwise noted6  
ꢁIꢀ/DIꢀ vs Temperature  
Full-Lcale Error vs Temperature  
Offset Error vs Temperature  
2.0  
1.5  
20  
15  
5
4
3
1.0  
10  
2
MAX INL  
0.5  
5
1
MAX DNL  
MIN DNL  
MIN INL  
0
0
0
–1  
–2  
–3  
–4  
–5  
–0.5  
–1.0  
–1.5  
–2.0  
–5  
–10  
–15  
–20  
5
20 35 50 65  
80 95 110  
125  
–40 –25 –10  
5
20 35 50 65  
80 95 110  
125  
–40  
–25 –10  
5
20  
TEMPERATURE (°C)  
35 50  
65  
80 95 110 125  
–40 –25 –10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
232718 G10  
232718 G11  
232718 G12  
ꢁnternal Reference Output vs  
Temperature  
Lupply Current vs Temperature  
Lleep Current vs Temperature  
8
7
6
5
4
3
2
1
0
120  
100  
80  
60  
40  
20  
0
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
V
DD  
+
IN = IN = 0V  
OV  
DD  
5
20 35 50 65  
TEMPERATURE (°C)  
80 95 110  
125  
–40  
–25 –10  
5
20  
35 50  
65  
80 95 110 125  
–40  
–25 –10  
5
35 50  
20 65  
80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
TEMPERATURE (°C)  
232718 G15  
232718 G13  
232718 G14  
ꢁnternal Reference Output  
Temperature Coefficient  
Distribution  
C(RR vs ꢁnput Frequency  
Lupply Current vs Lampling Rate  
80  
75  
12  
10  
35  
30  
+
V
(IN = –10.24V)  
DD  
25  
70  
65  
8
6
20  
15  
10  
5
+
V
(IN = 0V)  
DD  
+
60  
55  
50  
4
2
0
V
(IN = 10.24V)  
DD  
OV  
DD  
0
0
50  
100  
150  
200  
250  
0
100  
200  
300  
400  
500  
–10  
–4  
0
2
4
6
10  
8
–8 –6  
–2  
FREQUENCY (kHz)  
SAMPLING FREQUENCY (kHz)  
DRIFT (ppm/°C)  
232718 G17  
232718 G18  
232718 G16  
232718fb  
8
For more information www.linear.com/LTC2327-18  
LTC2327-18  
pin FuncTions  
ꢂPin 1x: 2.5V Supply ꢂypass Pin. The voltage  
CHAꢁI ꢂPin 10x: Chain Mode Selector Pin. When low,  
the LTC2327-18 operates in normal mode and the  
RDL/SDI input pin functions to enable or disable SDO.  
Whenhigh,theLTC2327-18operatesinchainmodeandthe  
RDL/SDI pin functions as SDI, the daisy-chain serial data  
DDꢀSYP  
on this pin is generated via an onboard regulator off of  
DD  
V . This pin must be bypassed with a 2.2μF ceramic  
capacitor to GND.  
ꢂPin.x:5VPowerSupply.TherangeofV is.75Vto  
DD  
DD  
input. Logic levels are determined by OV .  
DD  
5.25V. ꢂypass V to GND with a 1ꢀµF ceramic capacitor.  
DD  
SULY ꢂPin 11x: ꢂUSY Indicator. Goes high at the start of  
GID ꢂPins 3V ± and 1±x: Ground.  
a new conversion and returns low when the conversion  
+
+
ꢁI ꢂPin 2x: Analog Input. IN operates differential with  
has finished. Logic levels are determined by OV .  
DD  
+
respect to IN with an IN -IN range of –2.5 V  
to  
REFꢂUF  
RDꢀ/LDꢁ ꢂPin 1.x: When CHAIN is low, the part is in nor-  
mal mode and the pin is treated as a bus enabling input.  
When CHAIN is high, the part is in chain mode and the  
pin is treated as a serial data input pin where data from  
another ADC in the daisy chain is input. Logic levels are  
2.5 V  
.
REFꢂUF  
ꢁI ꢂPin 5x: Analog Ground Sense. IN has an input range  
of 5ꢀꢀmV with respect to GND and must be tied to the  
ground plane or a remote sense.  
determined by OV .  
DD  
REFSUF ꢂPin 7x: Reference ꢂuffer Output. An onboard  
buffer nominally outputs ꢁ.ꢀ96V to this pin. This pin is  
referredtoGNDandshouldbedecoupledcloselytothepin  
with a ꢁ7μF ceramic capacitor. The internal buffer driving  
this pin may be disabled by grounding its input at REFIN.  
Once the buffer is disabled, an external reference may  
overdrive this pin in the range of 2.5V to 5V. A resistive  
load greater than 5ꢀꢀkΩ can be placed on the reference  
buffer output.  
LCKPin13x:SerialDataClockInput.WhenSDOisenabled,  
the conversion result or daisy-chain data from another  
ADC is shifted out on the rising edges of this clock MSꢂ  
first. Logic levels are determined by OV .  
DD  
LDOPin12x:SerialDataOutput. Theconversionresultor  
daisy-chain data is output on this pin on each rising edge  
of SCK MSꢂ first. The output data is in 2’s complement  
format. Logic levels are determined by OV .  
DD  
REFꢁI ꢂPin 8x: Reference Output/Reference ꢂuffer Input.  
An onboard bandgap reference nominally outputs 2.ꢀꢁ8V  
at this pin. ꢂypass this pin with a 1ꢀꢀnF ceramic capacitor  
to GND to limit the reference output noise. If more accu-  
racy is desired, this pin may be overdriven by an external  
reference in the range of 1.25V to 2.ꢁV.  
Oꢄ ꢂPin 15x: I/O Interface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). ꢂypass OV to GND with a ꢀ.1μF capacitor.  
DD  
CIꢄ ꢂPin 9x: Convert Input. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by OV .  
DD  
232718fb  
9
For more information www.linear.com/LTC2327-18  
LTC2327-18  
FuncTional block DiagraM  
REFIN = 1.25V REFBUF = 2.5V  
OV = 1.8V  
DD  
TO 5V  
V
= 5V  
V
= 2.5V  
DDLBYP  
TO 2.4V  
TO 5V  
DD  
LDO  
15k  
2.048V  
REFERENCE  
2× REFERENCE  
BUFFER  
R
0.63× BUFFER  
4R  
CHAIN  
SDO  
RDL/SDI  
SCK  
+
IN  
IN  
+
SPI  
PORT  
R
18-BIT SAMPLING ADC  
4R  
CNV  
BUSY  
CONTROL LOGIC  
GND  
232718 BD01  
TiMing DiagraM  
Conversion Timing Using the Lerial ꢁnterface  
CHAIN, RDL/SDI = 0  
CNV  
CONVERT  
NAP  
BUSY  
SCK  
HOLD  
ACQUIRE  
D17 D16 D15 D2 D1 D0  
SDO  
232718 TD01  
232718fb  
10  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
OꢄERꢄꢁEꢅ  
TRAILFER FUICTꢁOI  
The LTC2327-18 is a low noise, high speed 18-bit suc-  
cessive approximation register (SAR) ADC with pseudo-  
differential inputs. Operating from a single 5V supply,  
the LTC2327-18 has a 1ꢀ.2ꢁV true bipolar input range,  
making it ideal for high voltage applications which require  
a wide dynamic range. The LTC2327-18 achieves 5LSꢂ  
INLmaximum,nomissingcodesat18-bitsand95dSNR.  
The LTC2327-18 digitizes the full-scale voltage of 2.5 •  
18  
REFꢂUF into 2 levels, resulting in an LSꢂ size of 78µV  
withREFꢂUF=.ꢀ96V.Theidealtransferfunctionisshown  
in Figure 2. The output data is in 2’s complement format.  
AIAꢀOG ꢁIPUT  
TheanaloginputsoftheLTC2327-18arepseudo-differen-  
tialinordertoreduceanyunwantedsignalthatiscommon  
to both inputs. The analog inputs can be modeled by the  
equivalent circuit shown in Figure 3. The back-to-back  
diodes at the inputs form clamps that provide ESD protec-  
tion. Each input drives a resistor divider network that has  
The LTC2327-18 has an onboard single-shot capable  
reference buffer and low drift (2ꢀppm/°C max) 2.ꢀꢁ8V  
temperature-compensated reference. The LTC2327-18  
also has a high speed SPI-compatible serial interface that  
supports1.8V,2.5V,3.3Vand5Vlogicwhilealsofeaturing  
a daisy-chain mode. The fast 5ꢀꢀksps throughput with  
no cycle latency makes the LTC2327-18 ideally suited  
for a wide variety of high speed applications. An internal  
oscillator sets the conversion time, easing external timing  
considerations. The LTC2327-18 dissipates only 36mW  
and automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided to reduce the power  
consumption of the LTC2327-18 to 3ꢀꢀμW for further  
power savings during inactive periods.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/262144  
–1 0V  
LSB  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
COIꢄERTER OPERATꢁOI  
INPUT VOLTAGE (V)  
232718 F02  
The LTC2327-18 operates in two phases. During the ac-  
quisition phase, the charge redistribution capacitor D/A  
converter (CDAC) is connected to the outputs of the resis-  
tor divider networks that pins IN and IN drive to sample  
an attenuated and level-shifted version of the pseudo-  
differential analog input voltage as shown in Figure 3. A  
rising edge on the CNV pin initiates a conversion. During  
the conversion phase, the 18-bit CDAC is sequenced  
throughasuccessiveapproximationalgorithm,effectively  
comparing the sampled input with binary-weighted frac-  
Figure .6 ꢀTC.3.7-18 Transfer Function  
0.63 • V  
+
REFBUF  
C
45pF  
IN  
R
50Ω  
400Ω  
ON  
1.6k  
+
IN  
0.63 • V  
BIAS  
VOLTAGE  
REFBUF  
C
45pF  
IN  
R
50Ω  
400Ω  
ON  
1.6k  
232718 F03  
IN  
tions of the reference voltage (e.g. V  
/2, V  
/ꢁ  
REFꢂUF  
REFꢂUF  
… V  
/2621ꢁꢁ) using the differential comparator. At  
REFꢂUF  
the end of conversion, the CDAC output approximates the  
sampledanaloginput.TheADCcontrollogicthenprepares  
the 18-bit digital output code for serial transfer.  
Figure 36 The Equivalent Circuit for the Differential  
Analog ꢁnput of the ꢀTC.3.7-18  
232718fb  
11  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
a total impedance of 2kΩ. The resistor divider network  
attenuates and level shifts the 2.5 REFꢂUF true bipolar  
signal swing of each input to the ꢀ-REFꢂUF input signal  
50Ω  
66nF  
+
+
LT±468  
IN  
±±0ꢀ.4ꢁ  
LTC.3.7-±8  
swingoftheADCcore.Intheacquisitionphase,5pF(C )  
BW = 48kHz  
IN  
IN  
fromthesamplingCDACinserieswithapproximately5ꢀΩ  
.3.7±8 F04  
(R ) from the on-resistance of the sampling switch is  
ON  
connected to the output of the resistor divider network.  
Any unwanted signal that is common to both inputs will  
be reduced by the common mode rejection of the ADC  
Figure 26 ꢁnput Lignal Chain  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
+
core and resistor divider network. The IN input of the  
ADC core draws a current spike while charging the C  
capacitor during acquisition.  
IN  
ꢁIPUT DRꢁꢄE CꢁRCUꢁTL  
A low impedance source can directly drive the high im-  
pedance input of the LTC2327-18 without gain error. A  
high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the dis-  
tortion performance of the ADC. Minimizing settling time  
is important even for DC inputs, because the ADC input  
draws a current spike when entering acquisition.  
Pseudo-Differential Sipolar ꢁnputs  
For most applications, we recommend the low power  
LT1ꢁ68 ADC driver to drive the LTC2327-18. With a low  
noisedensityof5nV/√Hzandalowsupplycurrentof3mA,  
the LT1ꢁ68 is flexible and may be configured to convert  
signals of various amplitudes to the 1ꢀ.2ꢁV input range  
of the LTC2327-18.  
For best performance, a buffer amplifier should be used  
to drive the analog input of the LTC2327-18. The amplifier  
provides low output impedance to minimize gain error  
and allows for fast settling of the analog signal during  
the acquisition phase. It also provides isolation between  
the signal source and the ADC input which draws a small  
current spike during acquisition.  
To achieve the full distortion performance of the  
LTC2327-18, a low distortion single-ended signal source  
driven through the LT1ꢁ68 configured as a unity-gain  
buffer as shown in Figure ꢁ can be used to get the full  
data sheet THD specification of –111dꢂ.  
ꢁnput Filtering  
ADC REFEREICE  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Noisy input signals should be filtered prior  
to the buffer amplifier input with a low bandwidth filter to  
minimizenoise.Thesimple1-poleRClowpassfiltershown  
in Figure ꢁ is sufficient for many applications.  
There are three ways of providing the ADC reference. The  
first is to use both the internal reference and reference  
buffer. The second is to externally overdrive the internal  
reference and use the internal reference buffer. The third  
is to disable the internal reference buffer and overdrive  
the REFꢂUF pin from an external source. The following  
tables give examples of these cases and the resulting  
bipolar input ranges.  
The input resistor divider network, sampling switch on-  
resistance (R ) and the sample capacitor (C ) form a  
ON  
IN  
second lowpass filter that limits the input bandwidth to  
the ADC core to 7MHz. A buffer amplifier with a low noise  
density must be selected to minimize the degradation of  
the SNR over this bandwidth.  
232718fb  
12  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
Table 16 ꢁnternal Reference with ꢁnternal Suffer  
Eꢃternal Reference with ꢁnternal Suffer  
REFꢁI  
REFSUF  
SꢁPOꢀAR ꢁIPUT RAIGE  
If more accuracy and/or lower drift is desired, REFIN  
can be easily overdriven by an external reference since  
a 15k resistor is in series with the reference as shown  
in Figure 5b. REFIN can be overdriven in the range from  
1.25V to 2.ꢁV. The resulting voltage at REFꢂUF will be  
2 REFIN. So the input range is 5 REFIN, as shown  
in Table 2. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications.Withitssmallsize,lowpower,andhigh  
accuracy, the LTC6655-2.ꢀꢁ8 is well suited for use with  
the LTC2327-18 when overdriving the internal reference.  
The LTC6655-2.ꢀꢁ8 offers ꢀ.ꢀ25% (max) initial accuracy  
and 2ppm/°C (max) temperature coefficient for high pre-  
cision applications. The LTC6655-2.ꢀꢁ8 is fully specified  
over the H-grade temperature range and complements  
the extended temperature range of the LTC2327-18 up to  
125°C.ypassingtheLTC6655-2.ꢀꢁ8witha2.7μFto1ꢀꢀµF  
ceramiccapacitorclosetotheREFINpinisrecommended.  
2.ꢀꢁ8V  
ꢁ.ꢀ96V  
1ꢀ.2ꢁV  
Table .6 Eꢃternal Reference with ꢁnternal Suffer  
REFꢁI  
ꢂOꢄERDRꢁꢄEx  
REFSUF  
SꢁPOꢀAR ꢁIPUT RAIGE  
1.25V (Min)  
2.ꢀꢁ8V  
2.5V  
ꢁ.ꢀ96V  
ꢁ.8V  
6.25V  
1ꢀ.2ꢁV  
12V  
2.ꢁV (Max)  
Table 36 Eꢃternal Reference Unbuffered  
REFꢁI  
REFSUF  
ꢂOꢄERDRꢁꢄEx  
SꢁPOꢀAR ꢁIPUT RAIGE  
ꢀV  
ꢀV  
2.5V (Min)  
5V (Max)  
6.25V  
12.5V  
ꢁnternal Reference with ꢁnternal Suffer  
The LTC2327-18 has an on-chip, low noise, low drift  
(2ꢀppm/°C max), temperature compensated bandgap  
reference that is factory trimmed to 2.ꢀꢁ8V. It is internally  
connected to a reference buffer as shown in Figure 5a and  
is available at REFIN (Pin 8). REFIN should be bypassed to  
GNDwitha1ꢀꢀnFceramiccapacitortominimizenoise.The  
reference buffer gains the REFIN voltage by 2 to ꢁ.ꢀ96V at  
REFꢂUF (Pin 7). So the input range is 1ꢀ.2ꢁV, as shown  
in Table 1. ꢂypass REFꢂUF to GND with at least a ꢁ7μF  
ceramic capacitor (X7R, 1ꢀV, 121ꢀ size) to compensate  
the reference buffer and minimize noise.  
Eꢃternal Reference Unbuffered  
The internal reference buffer can also be overdriven from  
2.5V to 5V with an external reference at REFꢂUF as shown  
in Figure 5c. So the input ranges are 6.25V to 12.5V,  
respectively, as shown in Table 3. To do so, REFIN must  
be grounded to disable the reference buffer. A 13k resis-  
tor loads the REFꢂUF pin when the reference buffer is  
disabled. To maximize the input signal swing and cor-  
responding SNR, the LTC6655-5 is recommended when  
overdrivingREFꢂUF.TheLTC6655-5offersthesamesmall  
size, accuracy, drift and extended temperature range as  
the LTC6655-2.ꢀꢁ8. ꢂy using this 5V reference, an SNR  
of 97dꢂ can be achieved. ꢂypassing the LTC6655-5 with  
a ꢁ7μF ceramic capacitor (X5R, ꢀ8ꢀ5 size) close to the  
REFꢂUF pin is recommended.  
15k  
REFIN  
BANDGAP  
REFERENCE  
100nF  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
TheREFꢂUFpinoftheLTC2327-18drawsacharge(Q  
)
CONV  
47µF  
fromtheexternalbypasscapacitorduringeachconversion  
cycle. If the internal reference buffer is overdriven, the  
external reference must provide all of this charge with a  
6.5k  
LTC2327-18  
GND  
232718 F05a  
DC current equivalent to I  
= Q  
/t . Thus, the  
REFꢂUF  
CONV CYC  
Figure 5a6 ꢀTC.3.7-18 ꢁnternal Reference Circuit  
DC current draw of REFꢂUF depends on the sampling  
232718fb  
13  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
of the output code. If an external reference is used to  
overdrive REFꢂUF, the fast settling LTC6655-5 reference  
is recommended.  
15k  
REFIN  
BANDGAP  
REFERENCE  
2.7µF  
REFBUF  
REFERENCE  
BUFFER  
ꢁnternal Reference Suffer Transient Response  
47µF  
LTC6655-2.048  
6.5k  
Foroptimumtransientperformance,theinternalreference  
buffer should be used. The internal reference buffer uses a  
proprietarydesignthatresultsinanoutputvoltagechange  
atREFꢂUFoflessthan1LSwhenrespondingtoasudden  
burst of conversions. This makes the internal reference  
bufferoftheLTC2327-18trulysingle-shotcapablesincethe  
first sample taken after idling will yield the same result as  
a sample taken after the transient response of the internal  
reference buffer has settled. Figure 7 shows the transient  
responses of the LTC2327-18 with the internal reference  
buffer and with the internal reference buffer overdriven by  
the LTC6655-5, both with a bypass capacitance of ꢁ7μF.  
6.5k  
LTC2327-18  
GND  
232718 F05b  
Figure 5b6 Using the ꢀTC±±55-.6028 as an Eꢃternal Reference  
15k  
REFIN  
BANDGAP  
REFERENCE  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
47µF  
LTC6655-5  
6.5k  
2
LTC2327-18  
INTERNAL REFERENCE BUFFER  
GND  
232718 F05c  
0
Figure 5c6 Overdriving REFSUF Using the ꢀTC±±55-5  
–2  
EXTERNAL SOURCE ON REFBUF  
–4  
rate and output code. In applications where a burst of  
samples is taken after idling for long periods, as shown in  
–6  
–8  
Figure 6, I  
quickly goes from approximately 39ꢀµA  
REFꢂUF  
to a maximum of ꢀ.7mA for REFꢂUF = 5V at 5ꢀꢀksps. This  
step in DC current draw triggers a transient response in  
the external reference that must be considered since any  
deviation in the voltage at REFꢂUF will affect the accuracy  
0
100 200 300 400 500 600 700 800 9001000  
TIME (µs)  
232718 F07  
Figure 76 Transient Response of the ꢀTC.3.7-18  
CNV  
232718 F06  
IDLE  
PERIOD  
IDLE  
PERIOD  
Figure ±6 CIꢄ ꢅaveform Lhowing Surst Lampling  
232718fb  
14  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
DYIA(ꢁC PERFOR(AICE  
Total Harmonic Distortion ꢂTHDx  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢂy applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2327-18 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
2
V22 +V32 +Vꢁ2 +…+VN  
THD=2ꢀlog  
V1  
where V1 is the RMS amplitude of the fundamental  
Lignal-to-Ioise and Distortion Ratio ꢂLꢁIADx  
frequency and V2 through V are the amplitudes of the  
N
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 8 shows that the LTC2327-18 achieves  
a typical SINAD of 95dꢂ at a 5ꢀꢀkHz sampling rate with  
a 2kHz input.  
second through Nth harmonics.  
POꢅER COILꢁDERATꢁOIL  
The LTC2327-18 provides two power supply pins: the 5V  
power supply (V ), and the digital input/output interface  
DD  
power supply (OV ). The flexible OV supply allows  
DD  
DD  
the LTC2327-18 to communicate with any digital logic  
operating between 1.8V and 5V, including 2.5V and 3.3V  
systems.  
Lignal-to-Ioise Ratio ꢂLIRx  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 8 shows  
that the LTC2327-18 achieves a typical SNR of 95dꢂ at a  
5ꢀꢀkHz sampling rate with a 2kHz input.  
Power Lupply Lequencing  
The LTC2327-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2327-18  
has a power-on reset (POR) circuit that will reset the  
LTC2327-18 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
reenters the nominal supply voltage range, the POR will  
re-initialize the ADC. No conversions should be initiated  
until 2ꢀꢀμs after a POR event to ensure the re-initialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
Tꢁ(ꢁIG AID COITROꢀ  
CIꢄ Timing  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
232718 F08  
The LTC2327-18 conversion is controlled by CNV. A ris-  
ing edge on CNV will start a conversion and power up  
the LTC2327-18. Once a conversion has been initiated,  
Figure 86 3.k Point FFT of the ꢀTC.3.7-18  
232718fb  
15  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
it cannot be restarted until the conversion is complete.  
For optimum performance, CNV should be driven by a  
clean low jitter signal. Converter status is indicated by the  
ꢂUSY output which remains high while the conversion is  
in progress. To ensure that no errors occur in the digitized  
results, any additional transitions on CNV should occur  
within ꢁꢀns from the start of the conversion or after the  
conversion has been completed. Once the conversion has  
completed, the LTC2327-18 powers down.  
12  
10  
+
V
(IN = –10.24V)  
DD  
8
6
+
V
(IN = 0V)  
DD  
+
4
2
0
V
(IN = 10.24V)  
DD  
OV  
DD  
Acquisition  
0
100  
200  
300  
400  
500  
SAMPLING FREQUENCY (kHz)  
AproprietarysamplingarchitectureallowstheLTC2327-18  
to begin acquiring the input signal for the next conver-  
sion 527ns after the start of the current conversion. This  
extends the acquisition time to 1.ꢁ6ꢀµs, easing settling  
requirementsandallowingtheuseofextremelylowpower  
ADC drivers. (Refer to the Timing Diagram.)  
232718 F09  
Figure 96 Power Lupply Current of the ꢀTC.3.7-18  
ꢄersus Lampling Rate  
twice with no intervening rising edge on SCK. The part  
will enter sleep mode on the falling edge of ꢂUSY from  
the last conversion initiated. Once in sleep mode, a rising  
edge on SCK will wake the part up. Upon emerging from  
ꢁnternal Conversion Clock  
sleep mode, wait t  
ms before initiating a conversion  
The LTC2327-18 has an internal clock that is trimmed to  
achieve a maximum conversion time of 1.5µs.  
WAKE  
to allow the reference and reference buffer to wake up  
and charge the bypass capacitors at REFIN and REFꢂUF.  
(Refer to the Timing Diagrams section for more detailed  
timing information about sleep mode.)  
Auto Iap (ode  
The LTC2327-18 automatically enters nap mode after a  
conversion has been completed and completely powers  
up once a new conversion is initiated on the rising edge of  
CNV. During nap mode, only the ADC core powers down  
and all other circuits remain active. During nap, data from  
thelastconversioncanbeclockedout. Theautonapmode  
featurewillreducethepowerdissipationoftheLTC2327-18  
as the sampling frequency is reduced. Since full power is  
consumed only during a conversion, the ADC core of the  
LTC2327-18remainspowereddownforalargerfractionof  
DꢁGꢁTAꢀ ꢁITERFACE  
The LTC2327-18 has a serial digital interface. The flexible  
OV supplyallowstheLTC2327-18tocommunicatewith  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin when  
anexternalclockisappliedtotheSCKpinifSDOisenabled.  
Clocking out the data after the conversion will yield the  
best performance. With a shift clock frequency of at least  
ꢁꢀMHz, a 5ꢀꢀksps throughput is still achieved. The serial  
output data changes state on the rising edge of SCK and  
can be captured on the falling edge or next rising edge of  
SCK. D17 remains valid till the first rising edge of SCK.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 9.  
Lleep (ode  
Theautonapmodefeatureprovideslimitedpowersavings  
since only the ADC core powers down. To obtain greater  
power savings, the LTC2327-18 provides a sleep mode.  
During sleep mode, the entire part is powered down  
except for a small standby current resulting in a power  
dissipation of 3ꢀꢀμW. To enter sleep mode, toggle CNV  
The serial interface on the LTC2327-18 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operationoftheLTC2327-18. Severalmodesareprovided  
depending on whether a single or multiple ADCs share the  
SPI bus or are daisy-chained.  
232718fb  
16  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
Iormal (odeV Lingle Device  
shows a single LTC2327-18 operated in normal mode  
with CHAIN and RDL/SDI tied to ground. With RDL/SDI  
grounded, SDO is enabled and the MSꢂ(D17) of the new  
conversion data is available at the falling edge of ꢂUSY.  
This is the simplest way to operate the LTC2327-18.  
When CHAIN = ꢀ, the LTC2327-18 operates in normal  
mode. In normal mode, RDL/SDI enables or disables the  
serial data output pin SDO. If RDL/SDI is high, SDO is in  
highimpedance.IfRDL/SDIislow,SDOisdriven.Figure1ꢀ  
CONVERT  
DIGITAL HOST  
CNV  
CHAIN  
BUSY  
IRQ  
LTC2327-18  
RDL/SDI  
SCK  
SDO  
DATA IN  
CLK  
NAP  
CONVERT  
NAP  
CONVERT  
ACQUIRE  
ACQUIRE  
CHAIN = 0  
RDL/SDI = 0  
t
CYC  
t
CNVH  
t
CNVL  
CNV  
t
t
HOLD  
ACQ  
t
= t  
– t  
ACQ CYC HOLD  
t
CONV  
BUSY  
t
SCK  
t
BUSYLH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
SCK  
SDO  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOBUSYL  
D17  
D16  
D15  
D1  
D0  
232718 F12  
Figure 106 Using a Lingle ꢀTC.3.7-18 in Iormal (ode  
232718fb  
17  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
Iormal (odeV (ultiple Devices  
be used to allow only one LTC2327-18 to drive SDO at a  
timeinordertoavoidbusconflicts. AsshowninFigure11,  
the RDL/SDI inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDI is brought low, the MSꢂ of the selected  
device is output onto SDO.  
Figure 11 shows multiple LTC2327-18 devices operating  
in normal mode (CHAIN = ꢀ) sharing CNV, SCK and SDO.  
ꢂy sharing CNV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDI input of each ADC must  
RDL  
RDL  
B
A
CONVERT  
CNV  
CNV  
CHAIN  
BUSY  
SDO  
IRQ  
CHAIN  
LTC2327-18  
B
LTC2327-18  
A
DIGITAL HOST  
SDO  
RDL/SDI  
RDL/SDI  
SCK  
SCK  
DATA IN  
CLK  
NAP  
CONVERT  
NAP  
CONVERT  
ACQUIRE  
ACQUIRE  
CHAIN = 0  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
RDL/SDI  
A
B
RDL/SDI  
t
SCK  
t
t
QUIET  
SCKH  
SCK  
SDO  
1
2
3
16  
17  
18  
19  
20  
21  
34  
35  
36  
t
t
SCKL  
HSDO  
t
t
DIS  
DSDO  
t
EN  
Hi-Z  
Hi-Z  
Hi-Z  
D17  
D16  
D15  
D1  
A
D0  
A
D17  
D16  
D15  
D1  
B
D0  
B
A
A
A
B
B
B
232718 F11  
Figure 116 Iormal (ode with (ultiple Devices Lharing CIV LCKV and LDO  
232718fb  
18  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
Chain (odeV (ultiple Devices  
may limit the numberoflines needed to interface toa large  
number of converters. Figure 12 shows an example with  
two daisy-chained devices. The MSꢂ of converter A will  
appear at SDO of converter ꢂ after 18 SCK cycles. The  
MSꢂ of converter A is clocked in at the SDI/RDL pin of  
converter ꢂ on the rising edge of the first SCK.  
When CHAIN = OV , the LTC2327-18 operates in  
DD  
chain mode. In chain mode, SDO is always enabled and  
RDL/SDI serves as the serial data input pin (SDI) where  
daisy-chain data output from another ADC can be input.  
This is useful for applications where hardware constraints  
CONVERT  
OV  
OV  
DD  
DD  
CNV  
CNV  
CHAIN  
CHAIN  
DIGITAL HOST  
LTC2327-18  
LTC2327-18  
RDL/SDI  
SDO  
RDL/SDI  
BUSY  
SDO  
IRQ  
A
B
DATA IN  
SCK  
SCK  
CLK  
NAP  
ACQUIRE  
CONVERT  
NAP  
ACQUIRE  
CONVERT  
CHAIN = OV  
DD  
RDL/SDI = 0  
A
t
CYC  
t
CNVL  
CNV  
t
HOLD  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
t
SCKCH  
t
t
QUIET  
SCKH  
1
2
3
16  
17  
18  
19  
20  
34  
35  
36  
t
SCKL  
t
t
HSDO  
SSDISCK  
t
t
DSDO  
HSDISCK  
SDO = RDL/SDI  
A
B
D17  
D16  
D15  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOBUSYL  
D17  
D16  
D15  
D1  
B
D17  
D16  
D1  
A
D0  
A
SDO  
B
B
B
B
A
A
B
232718 F12  
Figure 1.6 Chain (ode Timing Diagram  
232718fb  
19  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
applicaTions inForMaTion  
Lleep (ode  
the last conversion initiated. Once in sleep mode, a rising  
edge on SCK will wake the part up. Upon emerging from  
To enter sleep mode, toggle CNV twice with no interven-  
ing rising edge on SCK as shown in Figure 13. The part  
will enter sleep mode on the falling edge of ꢂUSY from  
sleep mode, wait t  
ms before initiating a conversion  
WAKE  
to allow the reference and reference buffer to wake up  
and charge the bypass capacitors at REFIN and REFꢂUF.  
NAP AND  
ACQUIRE  
CHAIN = DONT CARE  
RDL/SDI = DONT CARE  
CONVERT  
t
CONVERT  
SLEEP  
CONVERT  
NAP  
ACQUIRE  
t
WAKE  
CNVH  
CNV  
t
t
ACQ  
HOLD  
BUSY  
t
t
CONV  
CONV  
t
BUSYLH  
SCK  
NAP AND  
ACQUIRE  
CHAIN = DONT CARE  
RDL/SDI = DONT CARE  
CONVERT  
SLEEP  
CONVERT  
t
t
WAKE  
CNVH  
CNV  
t
CONV  
BUSY  
t
BUSYLH  
SCK  
232718 F13  
Figure 136 Lleep (ode Timing Diagram  
232718fb  
20  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
boarD layouT  
To obtain the best performance from the LTC2327-18 a  
printed circuit board (PCꢂ) is recommended. Layout for  
PCꢂ should ensure the digital and analog signal lines are  
separated as much as possible. In particular, care should  
be taken not to run any digital clocks or signals alongside  
analog signals or underneath the ADC.  
Recommended ꢀayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢂypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC19ꢀ8, the  
evaluation kit for the LTC2327-18.  
Partial Top Lilkscreen  
Partial ꢀayer 1 Component Lide  
232718fb  
21  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
boarD layouT  
Partial ꢀayer . Ground Plane  
Partial ꢀayer 3 Power Plane  
Partial ꢀayer 2 Sottom ꢀayer  
232718fb  
22  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
boarD layouT  
Partial Lchematic of Demo Soard  
232718fb  
23  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
package DescripTion  
Please refer to http://www6linear6com/product/ꢀTC.3.7-18#packaging for the most recent package drawings6  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
232718fb  
24  
For more information www.linear.com/LTC2327-18  
LTC2327-18  
revision hisTory  
REꢄ  
DATE  
DELCRꢁPTꢁOI  
PAGE IU(SER  
A
ꢀ9/1ꢁ Updated minimum SNR/SINAD for 6.25V input range.  
ꢀ7/16 Updated graphs Gꢀ1, Gꢀ2 and Gꢀ3  
3
7
232718fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
25  
LTC2327-18  
Typical applicaTion  
ꢀT12±8 Configured to Suffer a ±106.2ꢄ Lingle-Ended Lignal ꢁnto the ꢀTC.3.7-18  
15V  
7
LT1468  
5V  
+10.24V  
–10.24V  
3
2
+
V
DD  
+
IN  
IN  
6
LTC2327-18  
REFBUF  
47µF  
REFIN  
4
100nF  
232718 TA02  
–15V  
relaTeD parTs  
PART IU(SER  
ADCs  
DELCRꢁPTꢁOI  
CO((EITL  
LTC2338-18/LTC2337-18/ 18-ꢂit, 1Msps/5ꢀꢀksps/25ꢀksps Serial,  
LTC2336-18 Low Power ADC  
5V Supply, 1ꢀ.2ꢁV True ꢂipolar, Differential Input, 1ꢀꢀdꢂ SNR, Pin-Compatible  
Family in MSOP-16 Package  
LTC2378-2ꢀ/LTC2377-2ꢀ/ 2ꢀ-ꢂit, 1Msps/5ꢀꢀksps/25ꢀksps Serial,  
LTC2376-2ꢀ Low Power ADC  
2.5V Supply, Differential Input, ꢀ.5ppm INL, 5V Input Range, DGC, Pin-  
Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC2379-18/LTC2378-18/ 18-ꢂit, 1.6Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2377-18/LTC2376-18 Serial, Low Power ADC  
2.5V Supply, Differential Input, 1ꢀ1.2dꢂ SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC238ꢀ-16/LTC2378-16/ 16-ꢂit, 2Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2377-16/LTC2376-16 Serial, Low Power ADC  
2.5V Supply, Differential Input, 96.2dꢂ SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC2369-18/LTC2368-18/ 18-ꢂit, 1.6Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2367-18/LTC236ꢁ-18 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 96.5dꢂ SNR, ꢀV to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC237ꢀ-16/LTC2368-16/ 16-ꢂit, 2Msps/1Msps/5ꢀꢀksps/25ꢀksps  
LTC2367-16/LTC236ꢁ-16 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 9ꢁdꢂ SNR, ꢀV to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and ꢁmm × 3mm DFN-16 Packages  
LTC2389-18/LTC2389-16 18-ꢂit/16-ꢂit, 2.5Msps Parallel/Serial ADC  
5V Supply, Pin-Configurable Input Range, 99.8dꢂ/96dꢂ SNR, Parallel or Serial  
I/O 7mm × 7mm LQFP-ꢁ8 and QFN-ꢁ8 Packages  
LTC16ꢀ9  
16-ꢂit, 2ꢀꢀksps Serial ADC  
1ꢀV, Configurable Unipolar/ꢂipolar Input, Single 5V Supply, SSOP-28 and  
SO-2ꢀ Packages  
DACs  
LTC2756/LTC2757  
18-ꢂit, Single Serial/Parallel I  
DAC  
SoftSpan™ 1LSꢂ INL/DNL, Software-Selectable Ranges, SSOP-28/7mm × 7mm LQFP-ꢁ8  
OUT  
Package  
LTC26ꢁ1  
LTC263ꢀ  
References  
LTC6655  
16-ꢂit/1ꢁ-ꢂit/12-ꢂit Single Serial V  
DAC  
1LSꢂ INL /DNL, MSOP-8 Package, ꢀV to 5V Output  
OUT  
12-ꢂit/1ꢀ-ꢂit/8-ꢂit Single V  
DACs  
1LSꢂ INL (12 ꢂits), Internal Reference, SC7ꢀ 6-Pin Package  
OUT  
Precision Low Drift Low Noise ꢂuffered  
Reference  
5V/2.5V/2.ꢀꢁ8V/1.2V, 2ppm/°C, ꢀ.25ppm Peak-to-Peak Noise, MSOP-8 Package  
5V/2.5V/2.ꢀꢁ8V/1.2V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Precision Low Drift Low Noise ꢂuffered  
Reference  
Amplifiers  
LT1ꢁ68/LT1ꢁ69  
Single/Dual 9ꢀMHz, 22V/μs, 16-ꢂit Accurate Low Input Offset: 75μV/125µV  
Op Amp  
232718fb  
LT 0716 REV B • PRINTED IN USA  
LinearTechnology Corporation  
163ꢀ McCarthy ꢂlvd., Milpitas, CA 95ꢀ35-7ꢁ17  
26  
(ꢁꢀ8)32-19ꢀꢀ FAX: (ꢁꢀ8) ꢁ3ꢁ-ꢀ5ꢀ7 www.linear.com/LTC2327-18  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LTC2327IMS-16#PBF

LTC2327-16 - 16-Bit, 500ksps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 93.5dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC2328

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear

LTC2328-16

16-Bit, 1Msps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 93.5dB SNR
Linear

LTC2328-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2328HMS-18#PBF

LTC2328-18 - 18-Bit, 1Msps, ±10.24V True Bipolar, Pseudo-Differential Input ADC with 95dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C
Linear

LTC2333

16-/18-Bit, Octal, Quad and Dual 200ksps/350ksps/550ksps/800ksps SAR ADCs
Linear

LTC2335-16

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2335-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2335CLX-18#PBF

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: 0°C to 70°C
Linear

LTC2335HLX-18#PBF

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: -40°C to 125°C
Linear

LTC2335ILX-18#PBF

LTC2335-18 - 18-Bit, 1Msps 8-Channel Differential ±10.24V Input SoftSpan ADC with Wide Input Common Mode Range; Package: LQFP; Pins: 48; Temperature Range: -40°C to 85°C
Linear

LTC2336

18-Bit/16-Bit,1Msps/500ksps/250ksps True Bipolar Low Power, Single Supply ADCs
Linear