LTC2145-14_15 [Linear]

14-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs;
LTC2145-14_15
型号: LTC2145-14_15
厂家: Linear    Linear
描述:

14-Bit, 125Msps/105Msps/ 80Msps Low Power Dual ADCs

文件: 总38页 (文件大小:657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2145-14/  
LTC2144-14/LTC2143-14  
14-Bit, 125Msps/105Msps/  
80Msps Low Power Dual ADCs  
FEATURES  
DESCRIPTION  
TheLTC®2145-14/LTC2144-14/LTC2143-14are2-channel  
simultaneous sampling 14-bit A/D converters designed  
for digitizing high frequency, wide dynamic range signals.  
They are perfect for demanding communications applica-  
tions with AC performance that includes 73.1dB SNR and  
90dB spurious free dynamic range (SFDR). Ultralow jitter  
n
Two-Channel Simultaneously Sampling ADC  
n
73.1dB SNR  
n
90dB SFDR  
Low Power: 189mW/149mW/113mW Total  
95mW/75mW/57mW per Channel  
Single 1.8V Supply  
CMOS, DDR CMOS, or DDR LVDS Outputs  
n
n
n
of0.08ps  
allowsundersamplingofIFfrequencieswith  
RMS  
n
excellent noise performance.  
Selectable Input Ranges: 1V to 2V  
P-P  
P-P  
n
n
n
n
n
n
750MHz Full Power Bandwidth S/H  
Optional Data Output Randomizer  
Optional Clock Duty Cycle Stabilizer  
Shutdown and Nap Modes  
Serial SPI Port for Configuration  
64-Pin (9mm × 9mm) QFN Package  
DC specs include 1LSB INL (typ), 0.3LSB DNL (typ)  
and no missing codes over temperature. The transition  
noise is 1.2LSB  
.
RMS  
The digital outputs can be either full rate CMOS, double  
data rate CMOS, or double data rate LVDS. A separate  
output power supply allows the CMOS output swing to  
range from 1.2V to 1.8V.  
APPLICATIONS  
+
The ENC and ENC inputs may be driven differentially  
or single-ended with a sine wave, PECL, LVDS, TTL, or  
CMOS inputs. An optional clock duty cycle stabilizer al-  
lows high performance at full speed for a wide range of  
clock duty cycles.  
n
Communications  
n
Cellular Base Stations  
n
Software Defined Radios  
n
Portable Medical Imaging  
n
Multi-Channel Data Acquisition  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Nondestructive Testing  
TYPICAL APPLICATION  
64k Point 2-Tone FFT, fIN = 69MHz,  
70MHz, –1dBFS, 125Msps  
1.8V  
1.8V  
OV  
V
DD  
DD  
0
–10  
–20  
CH 1  
ANALOG  
INPUT  
14-BIT  
D1_13  
S/H  
S/H  
t
–30  
–40  
–50  
–60  
–70  
ADC CORE  
t
t
CMOS,  
D1_0  
DDR CMOS  
OR DDR LVDS  
OUTPUTS  
D2_13  
t
t
t
OUTPUT  
DRIVERS  
CH 2  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
–80  
–90  
D2_0  
–100  
–110  
–120  
125MHz  
CLOCK  
CLOCK  
CONTROL  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
21454314 TA03b  
21454314 TA01a  
GND  
OGND  
21454314fa  
1
LTC2145-14/  
LTC2144-14/LTC2143-14  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
Supply Voltages (V , OV )....................... –0.3V to 2V  
Digital Output Voltage ................–0.3V to (OV + 0.3V)  
DD  
DD  
DD  
+
Analog Input Voltage (A , A  
,
Operating Temperature Range  
IN  
IN  
PAR/SER, SENSE) (Note 3).......... –0.3V to (V + 0.2V)  
LTC2145C, LTC2144C, LTC2143C............. 0°C to 70°C  
LTC2145I, LTC2144I, LTC2143I............–40°C to 85°C  
Storage Temperature Range...................–65°C to 150°C  
DD  
+
Digital Input Voltage (ENC , ENC , CS,  
SDI, SCK) (Note 4).................................... –0.3V to 3.9V  
SDO (Note 4) ............................................ –0.3V to 3.9V  
PIN CONFIGURATIONS  
FULL RATE CMOS OUTPUT MODE  
TOP VIEW  
DOUBLE DATA RATE CMOS OUTPUT MODE  
TOP VIEW  
V
1
2
48 D1_3  
47 D1_2  
46 D1_1  
45 D1_0  
44 DNC  
43 DNC  
V
1
2
48 D1_2_3  
47 DNC  
46 D1_0_1  
45 DNC  
44 DNC  
43 DNC  
DD  
DD  
V
V
CM1  
CM1  
GND 3  
GND 3  
+
+
A
A
4
5
A
A
4
5
IN1  
IN1  
IN1  
IN1  
GND 6  
REFH 7  
REFL 8  
REFH 9  
REFL 10  
GND 6  
REFH 7  
REFL 8  
REFH 9  
REFL 10  
42 OV  
42 OV  
DD  
DD  
41 OGND  
40 CLKOUT  
39 CLKOUT  
38 D2_13  
37 D2_12  
36 D2_11  
35 D2_10  
34 D2_9  
41 OGND  
40 CLKOUT  
39 CLKOUT  
38 D2_12_13  
37 DNC  
36 D2_10_11  
35 DNC  
65  
GND  
65  
GND  
+
+
PAR/SER 11  
PAR/SER 11  
+
+
A
A
12  
13  
A
A
12  
13  
IN2  
IN2  
GND 14  
IN2  
IN2  
GND 14  
V
15  
16  
V
15  
16  
34 D2_8_9  
33 DNC  
CM2  
CM2  
V
DD  
33 D2_8  
V
DD  
UP PACKAGE  
64-LEAD (9mm s 9mm) PLASTIC QFN  
UP PACKAGE  
64-LEAD (9mm s 9mm) PLASTIC QFN  
T
= 150°C, θ = 20°C/W  
T
= 150°C, θ = 20°C/W  
JMAX  
JA  
JMAX JA  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
21454314fa  
2
LTC2145-14/  
LTC2144-14/LTC2143-14  
PIN CONFIGURATIONS  
DOUBLE DATA RATE LVDS OUTPUT MODE  
TOP VIEW  
+
V
1
2
48 D1_2_3  
47 D1_2_3  
46 D1_0_1  
45 D1_0_1  
44 DNC  
43 DNC  
DD  
V
CM1  
+
GND 3  
+
A
A
4
5
IN1  
IN1  
GND 6  
REFH 7  
REFL 8  
REFH 9  
REFL 10  
42 OV  
DD  
41 OGND  
65  
GND  
+
40 CLKOUT  
39 CLKOUT  
+
+
PAR/SER 11  
38 D2_12_13  
37 D2_12_13  
36 D2_10_11  
35 D2_10_11  
+
A
A
12  
13  
IN2  
IN2  
GND 14  
+
V
V
15  
16  
34 D2_8_9  
CM2  
33 D2_8_9  
DD  
UP PACKAGE  
64-LEAD (9mm s 9mm) PLASTIC QFN  
T
JMAX  
= 150°C, θ = 20°C/W  
JA  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2145CUP-14#PBF  
LTC2145IUP-14#PBF  
LTC2144CUP-14#PBF  
LTC2144IUP-14#PBF  
LTC2143CUP-14#PBF  
LTC2143IUP-14#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2145UP-14  
LTC2145UP-14  
LTC2144UP-14  
LTC2144UP-14  
LTC2143UP-14  
LTC2143UP-14  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2145CUP-14#TRPBF  
LTC2145IUP-14#TRPBF  
LTC2144CUP-14#TRPBF  
LTC2144IUP-14#TRPBF  
LTC2143CUP-14#TRPBF  
LTC2143IUP-14#TRPBF  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
21454314fa  
3
LTC2145-14/  
LTC2144-14/LTC2143-14  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2145-14  
TYP  
LTC2144-14  
TYP  
LTC2143-14  
TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
14  
MAX  
MIN  
14  
MAX  
MIN  
14  
UNITS  
Bits  
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–2.6  
–0.9  
–9  
1
2.6  
0.9  
9
–2.6  
–0.9  
–9  
1
2.6  
0.9  
9
–2.6  
–0.8  
–9  
1
2.6  
0.8  
9
LSB  
LSB  
mV  
0.3  
1.5  
0.3  
1.5  
0.3  
1.5  
Gain Error  
Internal Reference  
External Reference  
1.5  
–0.4  
1.5  
–0.3  
1.5  
–0.3  
%FS  
%FS  
l
–1.8  
0.9  
–1.5  
1.1  
–1.5  
1.1  
Offset Drift  
10  
10  
10  
μV/°C  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
30  
10  
30  
10  
ppm/°C  
ppm/°C  
Gain Matching  
Offset Matching  
Transition Noise  
0.2  
1.5  
0.2  
1.5  
0.2  
1.5  
%FS  
mV  
1.25  
1.28  
1.20  
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.7V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
V
V
V
Analog Input Range (A – A  
)
1 to 2  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
0.7  
V
CM  
1.25  
V
IN(CM)  
SENSE  
INCM  
IN  
IN  
External Voltage Reference Applied to SENSE External Reference Mode  
0.625  
1.250  
1.300  
V
I
Analog Input Common Mode Current  
Per Pin, 125Msps  
Per Pin, 105Msps  
Per Pin, 80Msps  
155  
130  
100  
μA  
μA  
μA  
+
l
l
l
I
I
I
t
t
Analog Input Leakage Current (No Encode)  
PAR/SER Input Leakage Current  
0 < A , A < V  
–1.5  
–3  
1.5  
3
μA  
μA  
μA  
ns  
IN1  
IN  
IN  
DD  
DD  
0 < PAR/SER < V  
IN2  
SENSE Input Leakage Current  
0.625 < SENSE < 1.3V  
–3  
3
IN3  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
0
AP  
Single-Ended Encode  
Differential Encode  
0.08  
0.10  
ps  
ps  
JITTER  
RMS  
RMS  
CMRR  
BW-3B  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
80  
dB  
Figure 6 Test Circuit  
750  
MHz  
21454314fa  
4
LTC2145-14/  
LTC2144-14/LTC2143-14  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2145-14  
TYP  
LTC2144-14  
TYP  
LTC2143-14  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
SNR  
Signal-to-Noise Ratio  
5MHz Input  
73.1  
73  
72.9  
72.8  
72.4  
73.4  
73.3  
72.9  
dBFS  
dBFS  
dBFS  
l
l
l
l
l
70MHz Input  
140MHz Input  
71.4  
71.2  
71.7  
72.6  
SFDR  
Spurious Free Dynamic Range 5MHz Input  
2nd Harmonic  
90  
89  
84  
90  
89  
84  
90  
89  
84  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
76  
79  
77  
79  
78  
81  
Spurious Free Dynamic Range 5MHz Input  
3rd Harmonic  
90  
89  
84  
90  
89  
84  
90  
89  
84  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
Spurious Free Dynamic Range 5MHz Input  
4th Harmonic or Higher  
95  
95  
95  
95  
95  
95  
95  
95  
95  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
86  
86  
86  
S/(N+D) Signal-to-Noise Plus  
Distortion Ratio  
5MHz Input  
70MHz Input  
140MHz Input  
73  
72.8  
72.2  
72.8  
72.6  
72  
73.2  
73.1  
72.4  
dBFS  
dBFS  
dBFS  
70.8  
70.8  
71.4  
Crosstalk  
10MHz Input  
–110  
–110  
–110  
dBc  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
0.5 • V  
25  
MAX  
UNITS  
V
V
CM  
V
CM  
V
CM  
V
REF  
V
REF  
V
REF  
V
REF  
Output Voltage  
I
0.5 • V – 25mV  
0.5 • V + 25mV  
OUT  
DD  
DD  
DD  
Output Temperature Drift  
Output Resistance  
Output Voltage  
ppm/°C  
Ω
–600μA < I  
< 1mA  
< 1mA  
4
OUT  
I
= 0  
1.225  
1.250  
25  
1.275  
V
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400μA < I  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
21454314fa  
5
LTC2145-14/  
LTC2144-14/LTC2143-14  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
Differential Encode Mode (ENC Not Tied to GND)  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.6  
3.6  
+
V
IN  
Input Voltage Range  
Input Resistance  
ENC , ENC to GND  
(See Figure 10)  
(Note 8)  
V
kΩ  
pF  
R
10  
IN  
IN  
C
Input Capacitance  
3.5  
Single-Ended Encode Mode (ENC Tied to GND)  
l
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Voltage Range  
Input Resistance  
V
V
= 1.8V  
= 1.8V  
1.2  
0
V
V
IH  
IL  
IN  
DD  
0.6  
3.6  
DD  
+
ENC to GND  
(See Figure 11)  
(Note 8)  
V
R
30  
kΩ  
pF  
IN  
IN  
C
Input Capacitance  
3.5  
DIGITAL INPUTS (CS, SDI, SCK in Serial or Parallel Programming Mode. SDO in Parallel Programming Mode)  
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
l
l
= 1.8V  
0.6  
10  
I
= 0V to 3.6V  
–10  
μA  
pF  
IN  
C
Input Capacitance  
(Note 8)  
3
200  
3
IN  
SDO OUTPUT (Serial Programming Mode. Open-Drain Output. Requires 2kΩ Pull-Up Resistor if SDO is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
DD  
= 1.8V, SDO = 0V  
Ω
μA  
pF  
OL  
l
I
OH  
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
C
OUT  
DIGITAL DATA OUTPUTS (CMOS MODES: FULL DATA RATE AND DOUBLE DATA RATE)  
OV = 1.8V  
DD  
l
l
V
V
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
1.750  
1.790  
0.010  
V
V
OH  
OL  
O
I = 500μA  
O
0.050  
OV = 1.5V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
1.488  
0.010  
V
V
O
I = 500μA  
O
OV = 1.2V  
DD  
V
OH  
V
OL  
High Level Output Voltage  
Low Level Output Voltage  
I = –500μA  
1.185  
0.010  
V
V
O
I = 500μA  
O
DIGITAL DATA OUTPUTS (LVDS MODE)  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
350  
175  
454  
mV  
mV  
OD  
V
OS  
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.250  
1.250  
1.375  
V
V
R
Termination Enabled, OV = 1.8V  
100  
Ω
TERM  
DD  
21454314fa  
6
LTC2145-14/  
LTC2144-14/LTC2143-14  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 9)  
LTC2145-14  
TYP  
LTC2144-14  
TYP  
LTC2143-14  
TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
CMOS Output Modes: Full Data Rate and Double Data Rate  
l
l
l
V
Analog Supply Voltage (Note 10)  
Output Supply Voltage (Note 10)  
Analog Supply Current DC Input  
1.7  
1.1  
1.8  
1.8  
1.9  
1.9  
1.7  
1.1  
1.8  
1.8  
1.9  
1.9  
92  
1.7  
1.1  
1.8  
1.8  
1.9  
1.9  
70  
V
V
DD  
OV  
DD  
I
105.2 116  
105.9  
82.8  
83.3  
62.8  
63.2  
mA  
mA  
VDD  
Sine Wave Input  
I
Digital Supply Current Sine Wave Input, OV = 1.2V  
8.5  
7.1  
5.4  
mA  
OVDD  
DD  
l
P
Power Dissipation  
DC Input  
Sine Wave Input, OV = 1.2V  
189  
201  
209  
149  
159  
166  
113  
120  
126  
mW  
mW  
DISS  
DD  
LVDS Output Mode  
Analog Supply Voltage (Note 10)  
l
l
V
DD  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
OV  
DD  
Output Supply Voltage (Note 10)  
I
Analog Supply Current Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
107.3  
84.7  
86.1  
64.6  
66.1  
mA  
mA  
VDD  
l
l
l
108.7 123  
97  
76  
75  
76  
I
Digital Supply Current Sine Input, 1.75mA Mode  
35.1  
66.3  
34.8  
66  
34.5  
65.7  
mA  
mA  
OVDD  
(0V = 1.8V)  
Sine Input, 3.5mA Mode  
77  
DD  
P
Power Dissipation  
Sine Input, 1.75mA Mode  
Sine Input, 3.5mA Mode  
256  
315  
215  
274  
178  
237  
mW  
mW  
DISS  
360  
312  
272  
All Output Modes  
P
P
P
Sleep Mode Power  
Nap Mode Power  
1
1
1
mW  
mW  
mW  
SLEEP  
NAP  
16  
20  
16  
20  
16  
20  
Power Increase with Differential Encode Mode Enabled  
(No increase for Nap or Sleep Modes)  
DIFFCLK  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2145-14  
TYP  
LTC2144-14  
TYP  
LTC2143-14  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
MIN  
TYP MAX UNITS  
l
f
t
Sampling Frequency  
(Note 10)  
1
125  
1
105  
1
80  
MHz  
S
L
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2
4
4
500  
500  
4.52  
2
4.76  
4.76  
500  
500  
5.93  
2
6.25  
6.25  
500  
500  
ns  
ns  
l
l
t
t
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
3.8  
2
4
4
500  
500  
4.52  
2
4.76  
4.76  
500  
500  
5.93  
2
6.25  
6.25  
500  
500  
ns  
ns  
H
Sample-and-Hold  
Acquisition Delay Time  
0
0
0
ns  
AP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Data Outputs (CMOS Modes: Full Data Rate and Double Data Rate)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.7  
1.4  
0.3  
3.1  
2.6  
0.6  
ns  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
SKEW  
D
C
Full Data Rate Mode  
Double Data Rate Mode  
6
6.5  
Cycles  
Cycles  
21454314fa  
7
LTC2145-14/  
LTC2144-14/LTC2143-14  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Data Outputs (LVDS Mode)  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
C = 5pF (Note 8)  
1.1  
1
1.8  
1.5  
0.3  
6.5  
3.2  
2.7  
0.6  
ns  
ns  
D
L
C = 5pF (Note 8)  
L
C
t – t (Note 8)  
0
ns  
SKEW  
D
C
Cycles  
SPI Port Timing (Note 8)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode, C  
= 20pF, R  
= 20pF, R  
= 2k  
= 2k  
250  
SDO  
PULLUP  
l
l
l
l
l
t
t
t
t
t
CS to SCK Setup Time  
SCK to CS Setup Time  
SDI Setup Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode, C  
125  
SDO  
PULLUP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to GND with GND and OGND  
shorted (unless otherwise noted).  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5 LSB when  
the output code flickers between 00 0000 0000 0000 and 11 1111 1111  
1111 in 2’s complement output mode.  
Note 3: When these pin voltages are taken below GND or above V , they  
Note 8: Guaranteed by design, not subject to test.  
DD  
will be clamped by internal diodes. This product can handle input currents  
Note 9: V = 1.8V, f  
= 125MHz (LTC2145), 105MHz (LTC2144),  
DD  
SAMPLE  
+
of greater than 100mA below GND or above V without latchup.  
DD  
or 80MHz (LTC2143), CMOS outputs, ENC = single-ended 1.8V square  
Note 4: When these pin voltages are taken below GND they will be  
wave, ENC = 0V, input range = 2V with differential drive, 5pF load on  
P-P  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
each digital output unless otherwise noted. The supply current and power  
dissipation specifications are totals for the entire IC, not per channel.  
Note 10: Recommended operating conditions.  
DD  
Note 5: V = OV = 1.8V, f  
(LTC2144), or 80MHz (LTC2143), LVDS outputs, differential ENC /ENC  
= 125MHz (LTC2145), 105MHz  
DD  
DD  
SAMPLE  
+
= 2V sine wave, input range = 2V with differential drive, unless  
P-P  
P-P  
otherwise noted.  
21454314fa  
8
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2145-14: Integral  
Nonlinearity (INL)  
LTC2145-14: Differential  
Nonlinearity (DNL)  
LTC2145-14: 64k Point FFT,  
fIN = 5MHz, –1dBFS, 125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.0  
0.8  
2.0  
1.5  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
10  
0
4096  
8192  
12288  
16384  
0
8192  
12288  
16384  
4096  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
21454314 G03  
21454314 G02  
21454314 G01  
LTC2145-14: 64k Point FFT,  
fIN = 30MHz, –1dBFS, 125Msps  
LTC2145-14: 64k Point FFT,  
fIN = 70MHz, –1dBFS, 125Msps  
LTC2145-14: 64k Point FFT,  
fIN = 140MHz, –1dBFS, 125Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
0
20  
30  
40  
50  
60  
10  
10  
10  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21454314 G04  
21454314 G05  
21454314 G06  
LTC2145-14: 64k Point 2-Tone  
FFT, fIN = 69MHz, 70MHz,  
–1dBFS, 125Msps  
LTC2145-14: SNR vs Input  
LTC2145-14: Shorted Input  
Histogram  
Frequency, 1dBFS, 125Msps,  
2V Range  
74  
73  
72  
71  
70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
6000  
5000  
4000  
3000  
2000  
1000  
0
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
0
50  
100  
150  
200  
250  
300  
0
20  
30  
40  
50  
60  
10  
8183  
8187  
8189  
8191  
8185  
INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
OUTPUT CODE  
21454314 G09  
21454314 G08  
21454314 G07  
21454314fa  
9
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2145-14: 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
125Msps, 2V Range  
LTC2145-14: 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
125Msps, 1V Range  
LTC2145-14: SFDR vs Input Level,  
fIN = 70MHz, 125Msps, 2V Range  
120  
110  
100  
90  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
dBFS  
3RD  
2ND  
3RD  
2ND  
80  
dBc  
70  
60  
50  
40  
30  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
218543 G11  
21454314 G10  
21454314 G12  
LTC2145-14: IVDD vs Sample  
Rate, 5MHz, –1dBFS, Sine Wave  
Input on Each Channel  
LTC2145-14: IOVDD vs Sample  
Rate, 5MHz, –1dBFS, Sine Wave  
on Each Input  
LTC2145-14: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
70  
60  
50  
40  
30  
20  
10  
0
74  
73  
72  
71  
70  
69  
68  
67  
66  
110  
105  
100  
95  
3.5mA LVDS  
1.75mA LVDS  
LVDS OUTPUTS  
CMOS OUTPUTS  
90  
85  
80  
1.8V CMOS  
75  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
21454314 G15  
21454314 G14  
21454314 G13  
LTC2144-14: Integral  
Nonlinearity (INL)  
LTC2144-14: Differential  
Nonlinearity (DNL)  
LTC2144-14: 64k Point FFT,  
fIN = 5MHz, –1dBFS, 105Msps  
2.0  
1.5  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
1.0  
0.8  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
8192  
12288  
16384  
4096  
0
10  
20  
30  
40  
50  
0
8192  
12288  
16384  
4096  
OUTPUT CODE  
FREQUENCY (MHz)  
OUTPUT CODE  
21454314 G16  
21454314 G1  
21454314 G17  
21454314fa  
10  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2144-14: 64k Point FFT,  
fIN = 140MHz, –1dBFS, 105Msps  
LTC2144-14: 64k Point FFT,  
LTC2144-14: 64k Point FFT,  
fIN = 70MHz, –1dBFS, 105Msps  
f
IN = 30MHz, –1dBFS, 105Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21454314 G19  
21454314 G20  
21454314 G21  
LTC2144-14: 64k Point 2-Tone  
FFT, fIN = 69MHz, 70MHz,  
–1dBFS, 105Msps  
LTC2144-14: SNR vs Input  
Frequency, 1dBFS, 105Msps,  
2V Range  
LTC2144-14: Shorted Input  
Histogram  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
74  
73  
72  
71  
70  
6000  
5000  
4000  
3000  
2000  
1000  
0
SINGLE-ENDED  
ENCODE  
DIFFERENTIAL  
ENCODE  
–80  
–90  
–100  
–110  
–120  
0
10  
20  
30  
40  
50  
0
50  
100  
150  
200  
250  
300  
8190  
8194  
8196  
8198  
8192  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
OUTPUT CODE  
21454314 G22  
21454314 G24  
21454314 G23  
LTC2144-14: 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
105Msps, 2V Range  
LTC2144-14: 2nd, 3rd Harmonic  
vs Input Frequency, 1dBFS,  
105Msps, 1V Range  
LTC2144-14: SFDR vs Input Level,  
fIN = 70MHz, 105Msps, 2V Range  
100  
95  
90  
85  
80  
75  
70  
65  
100  
95  
90  
85  
80  
75  
70  
65  
120  
110  
100  
90  
dBFS  
3RD  
2ND  
3RD  
2ND  
80  
dBc  
70  
60  
50  
40  
30  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
–80  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
218543 G26  
21454314 G25  
21454314 G27  
21454314fa  
11  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2144-14: IVDD vs Sample  
Rate, 5MHz, –1dBFS, Sine Wave  
Input on Each Channel  
LTC2144-14: IOVDD vs Sample  
Rate, 5MHz, –1dBFS, Sine Wave  
on Each Input  
LTC2144-14: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
74  
73  
72  
71  
70  
69  
68  
67  
66  
70  
60  
50  
40  
30  
20  
10  
0
90  
85  
80  
75  
70  
65  
60  
55  
3.5mA LVDS  
1.75mA LVDS  
LVDS OUTPUTS  
CMOS OUTPUTS  
1.8V CMOS  
0
25  
50  
75  
100  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
25  
50  
75  
100  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
21454314 G30  
21454314 G29  
21454314 G28  
LTC2143-14: Integral  
Nonlinearity (INL)  
LTC2143-14: Differential  
Nonlinearity (DNL)  
LTC2143-14: 64k Point FFT,  
fIN = 5MHz, –1dBFS, 80Msps  
0
2.0  
1.5  
1.0  
0.8  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–90  
–100  
–110  
–120  
0
4096  
8192  
12288  
16384  
0
10  
20  
30  
40  
0
8192  
12288  
16384  
4096  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
21454314 G32  
21454314 G31  
21454314 G33  
LTC2143-14: 64k Point FFT,  
fIN = 30MHz, –1dBFS, 80Msps  
LTC2143-14: 64k Point FFT,  
fIN = 70MHz, –1dBFS, 80Msps  
LTC2143-14: 64k Point FFT,  
fIN = 140MHz, –1dBFS, 80Msps  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–80  
–90  
–80  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
–100  
–110  
–120  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21454314 G34  
21454314 G35  
21454314 G36  
21454314fa  
12  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2143-14: 64k Point 2-Tone FFT,  
LTC2143-14: SNR vs Input  
fIN = 69MHz, 70MHz, –1dBFS,  
80Msps  
LTC2143-14: Shorted Input  
Histogram  
Frequency, 1dBFS, 80Msps,  
2V Range  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
74  
6000  
5000  
4000  
3000  
2000  
1000  
0
SINGLE-ENDED  
73  
ENCODE  
72  
DIFFERENTIAL  
ENCODE  
–80  
–90  
71  
70  
–100  
–110  
–120  
0
10  
20  
30  
40  
0
50  
100  
150  
200  
250  
300  
8183  
8187  
8189  
8191  
8185  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
OUTPUT CODE  
21454314 G39  
21454314 G37  
21454314 G38  
LTC2143-14: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 80Msps,  
2V Range  
LTC2143-14: 2nd, 3rd Harmonic vs  
Input Frequency, 1dBFS, 80Msps,  
1V Range  
LTC2143-14: SFDR vs Input Level,  
fIN = 70MHz, 80Msps, 2V Range  
100  
95  
90  
85  
80  
75  
70  
65  
120  
110  
100  
90  
100  
95  
90  
85  
80  
75  
70  
65  
dBFS  
3RD  
2ND  
3RD  
2ND  
80  
dBc  
70  
60  
50  
40  
30  
0
50  
100  
150  
200  
250  
300  
–80  
–70  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
50  
100  
150  
200  
250  
300  
INPUT FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
21454314 G40  
218543 G41  
21454314 G42  
LTC2143-14: IOVDD vs Sample  
Rate, 5MHz, –1dBFS, Sine Wave  
on Each Input  
LTC2143-14: IVDD vs Sample  
Rate, 5MHz, –1dBFS, Sine Wave  
Input on Each Channel  
LTC2143-14: SNR vs SENSE,  
fIN = 5MHz, –1dBFS  
70  
60  
50  
40  
30  
20  
10  
0
74  
73  
72  
71  
70  
69  
68  
67  
66  
70  
65  
60  
55  
50  
45  
40  
3.5mA LVDS  
1.75mA LVDS  
LVDS OUTPUTS  
CMOS OUTPUTS  
1.8V CMOS  
0
20  
40  
60  
80  
0.6 0.7 0.8 0.9  
1
1.1 1.2 1.3  
0
20  
40  
60  
80  
SAMPLE RATE (Msps)  
SENSE PIN (V)  
SAMPLE RATE (Msps)  
21454314 G44  
21454314 G45  
21454314 G43  
21454314fa  
13  
LTC2145-14/  
LTC2144-14/LTC2143-14  
PIN FUNCTIONS  
PINS THAT ARE THE SAME FOR ALL DIGITAL  
CS (Pin 20): In Serial Programming Mode, (PAR/SER =  
0V), CS Is the Serial Interface Chip Select Input. When  
CS is low, SCK is enabled for shifting data on SDI into the  
modecontrolregisters. Intheparallelprogrammingmode  
OUTPUT MODES  
V
(Pins 1, 16, 17, 64): Analog Power Supply, 1.7V to  
DD  
1.9V. Bypass to ground with 0.1μF ceramic capacitors.  
(PAR/SER=V ),CScontrolstheclockdutycyclestabilizer  
DD  
Adjacent pins can share a bypass capacitor.  
(See Table 2). CS can be driven with 1.8V to 3.3V logic.  
V
(Pin2):CommonModeBiasOutput,NominallyEqual  
CM1  
to V /2. V  
SCK (Pin 21): In Serial Programming Mode, (PAR/SER =  
should be used to bias the common mode  
DD  
CM1  
0V), SCK Is the Serial Interface Clock Input. In the parallel  
of the analog inputs to channel 1. Bypass to ground with  
a 0.1μF ceramic capacitor.  
programming mode (PAR/SER = V ), SCK controls the  
DD  
digital output mode (see Table 2). SCK can be driven with  
GND (Pins 3, 6, 14): ADC Power Ground.  
1.8V to 3.3V logic.  
+
A
IN1  
A
IN1  
(Pin4):Channel1PositiveDifferentialAnalogInput.  
(Pin5):Channel1NegativeDifferentialAnalogInput.  
SDI (Pin 22): In Serial Programming Mode, (PAR/SER =  
0V), SDI Is the Serial Interface Data Input. Data on SDI  
is clocked into the mode control registers on the rising  
edge of SCK. In the parallel programming mode (PAR/  
REFH (Pins 7, 9): ADC High Reference. See the Applica-  
tions Information section for recommended bypassing  
circuits for REFH and REFL.  
SER = V ), SDI can be used together with SDO to power  
DD  
down the part (see Table 2). SDI can be driven with 1.8V  
to 3.3V logic.  
REFL (Pins 8, 10): ADC Low Reference. See the Applica-  
tions Information section for recommended bypassing  
circuits for REFH and REFL.  
OGND (Pin 41): Output Driver Ground. Must be shorted  
to the ground plane by a very low inductance path. Use  
multiple vias close to the pin.  
PAR/SER (Pin 11): Programming Mode Selection Pin.  
Connecttogroundtoenabletheserialprogrammingmode.  
CS, SCK, SDI, SDO become a serial interface that control  
OV (Pin 42): Output Driver Supply. Bypass to ground  
DD  
with a 0.1μF ceramic capacitor.  
the A/D operating modes. Connect to V to enable the  
DD  
SDO (Pin 61): In Serial Programming Mode, (PAR/SER  
= 0V), SDO Is the Optional Serial Interface Data Output.  
Data on SDO is read back from the mode control regis-  
ters and can be latched on the falling edge of SCK. SDO  
is an open-drain NMOS output that requires an external  
2k pull-up resistor to 1.8V – 3.3V. If read back from the  
mode control registers is not needed, the pull-up resistor  
is not necessary and SDO can be left unconnected. In the  
parallel programming mode where CS, SCK, SDI, SDO  
become parallel logic inputs that control a reduced set of  
the A/D operating modes. PAR/SER should be connected  
directlytogroundorV andnotbedrivenbyalogicsignal.  
DD  
+
A
A
V
(Pin12):Channel2PositiveDifferentialAnalogInput.  
(Pin13):Channel2NegativeDifferentialAnalogInput.  
(Pin 15): Common Mode Bias Output, Nominally  
IN2  
IN2  
CM2  
parallel programming mode (PAR/SER = V ), SDO can  
DD  
Equal to V /2. V  
should be used to bias the common  
DD  
CM2  
be used together with SDI to power down the part (see  
Table 2). When used as an input, SDO can be driven with  
1.8V to 3.3V logic through a 1k series resistor.  
mode of the analog inputs to channel 2. Bypass to ground  
with a 0.1μF ceramic capacitor.  
+
ENC (Pin 18): Encode Input. Conversion starts on the  
V
(Pin 62): Reference Voltage Output. Bypass to  
REF  
rising edge.  
ground with a 2.2μF ceramic capacitor. The output voltage  
ENC (Pin 19): Encode Complement Input. Conversion  
is nominally 1.25V.  
starts on the falling edge. Tie to GND for single-ended  
encode mode.  
21454314fa  
14  
LTC2145-14/  
LTC2144-14/LTC2143-14  
PIN FUNCTIONS  
is low. The odd data bits (D1, D3, D5, D7, D9, D11, D13)  
appear when CLKOUT is high.  
SENSE(Pin63):ReferenceProgrammingPin.Connecting  
+
SENSEtoV selectstheinternalreferenceanda 1Vinput  
DD  
range. Connecting SENSE to ground selects the internal  
reference and a 0.5V input range. An external reference  
between 0.625V and 1.3V applied to SENSE selects an  
DNC (Pins 23, 24, 25, 27, 29, 31, 33, 35, 37, 43, 44, 45,  
47, 49, 51, 53, 55, 57, 59): Do not connect these pins.  
+
CLKOUT (Pin 39): Inverted Version of CLKOUT .  
input range of 0.8 • V  
.
SENSE  
+
CLKOUT (Pin40):DataOutputClock. TheDigitalOutputs  
Ground (Exposed Pad Pin 65): The exposed pad must be  
soldered to the PCB ground.  
normally transition at the same time as the falling and ris-  
+
+
ing edges of CLKOUT . The phase of CLKOUT can also  
be delayed relative to the Digital Outputs by programming  
the mode control registers.  
FULL RATE CMOS OUTPUT MODE  
All Pins Below Have CMOS Output Levels  
D1_0_1 to D1_12_13 (Pins 46, 48, 50, 52, 54, 56, 58):  
Channel 1 Double Data Rate Digital Outputs. Two data bits  
are multiplexed onto each output pin. The even data bits  
(OGND to OV )  
DD  
D2_0 to D2_13 (Pins 25, 26, 27, 28, 29, 30, 31, 32, 33,  
34, 35, 36, 37, 38): Channel 2 Digital Outputs. D2_13 is  
the MSB.  
+
(D0, D2, D4, D6, D8, D10, D12) appear when CLKOUT  
is low. The odd data bits (D1, D3, D5, D7, D9, D11, D13)  
+
appear when CLKOUT is high.  
DNC (Pins 23, 24, 43, 44): Do not connect these pins.  
OF2_1 (Pin 60): Over/Underflow Digital Output. OF2_1 is  
high when an overflow or underflow has occurred. The  
over/under flow for both channels are multiplexed onto  
+
CLKOUT (Pin 39): Inverted Version of CLKOUT .  
+
CLKOUT (Pin 40): Data Output Clock. The digital outputs  
+
normally transition at the same time as the falling edge  
this pin. Channel 2 appears when CLKOUT is low, and  
+
+
+
of CLKOUT . The phase of CLKOUT can also be delayed  
relative to the Digital Outputs by programming the mode  
control registers.  
Channel 1 appears when CLKOUT is high.  
DOUBLE DATA RATE LVDS OUTPUT MODE  
D1_0 to D1_13 (Pins 45, 46, 47, 48, 49, 50, 51, 52, 53,  
54, 55, 56, 57, 58): Channel 1 Digital Outputs. D1_13 is  
the MSB.  
All Pins Below Have LVDS Output Levels. The Output  
Current Level Is Programmable. There Is an Optional  
Internal 100Ω Termination Resistor Between the Pins  
of Each LVDS Output Pair.  
OF2 (Pin 59): Channel 2 Over/Underflow Digital Output.  
OF2 is high when an overflow or underflow has occurred.  
+
+
D2_0_1 /D2_0_1 toD2_12_13 /D2_12_13 (Pins25/26,  
27/28, 29/30, 31/32, 33/34, 35/36, 37/38): Channel  
2 Double Data Rate Digital Outputs. Two data bits are  
multiplexed onto each differential output pair. The even  
data bits (D0, D2, D4, D6, D8, D10, D12) appear when  
OF1 (Pin 60): Channel 1 Over/Underflow Digital Output.  
OF1 is high when an overflow or underflow has occurred.  
DOUBLE DATA RATE CMOS OUTPUT MODE  
All Pins Below Have CMOS Output Levels  
+
CLKOUT is low. The odd data bits (D1, D3, D5, D7, D9,  
+
D11, D13) appear when CLKOUT is high.  
(OGND to OV )  
+
DD  
CLKOUT /CLKOUT (Pins 39/40): Data Output Clock.  
D2_0_1 to D2_12_13 (Pins 26, 28, 30, 32, 34, 36, 38):  
Channel 2 Double Data Rate Digital Outputs. Two data bits  
are multiplexed onto each output pin. The even data bits  
The digital outputs normally transition at the same time  
+
as the falling and rising edges of CLKOUT . The phase of  
+
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
+
(D0, D2, D4, D6, D8, D10, D12) appear when CLKOUT  
by programming the mode control registers.  
21454314fa  
15  
LTC2145-14/  
LTC2144-14/LTC2143-14  
PIN FUNCTIONS  
DNC (Pins 23, 24, 43, 44): Do not connect these pins.  
+
+
OF2_1 /OF2_1 (Pins 59/60): Over/Underflow Digital  
Output. OF2_1 is high when an overflow or underflow  
has occurred. The over/under flow for both channels  
are multiplexed onto this pin. Channel 2 appears when  
CLKOUT is low, and Channel 1 appears when CLKOUT  
is high.  
+
+
D1_0_1 /D1_0_1 to D1_12_13 /D1_12_13 (Pins  
45/46, 47/48, 49/50, 51/52, 53/54, 55/56, 57/58):  
Channel 1 Double Data Rate Digital Outputs. Two data  
bits are multiplexed onto each differential output pair.  
The even data bits (D0, D2, D4, D6, D8, D10, D12) ap-  
+
+
+
pear when CLKOUT is low. The odd data bits (D1, D3,  
+
D5, D7, D9, D11, D13) appear when CLKOUT is high.  
FUNCTIONAL BLOCK DIAGRAM  
OV  
DD  
CH 1  
ANALOG  
INPUT  
OF1  
14-BIT  
ADC CORE  
S/H  
OF2  
CORRECTION  
LOGIC  
D1_13  
t
t
t
CH 2  
ANALOG  
INPUT  
D1_0  
14-BIT  
ADC CORE  
S/H  
OUTPUT  
DRIVERS  
+
CLKOUT  
CLKOUT  
D2_13  
V
REF  
1.25V  
REFERENCE  
t
t
t
2.2μF  
D2_0  
RANGE  
SELECT  
OGND  
REFH  
REFL INTERNAL CLOCK SIGNALS  
REF  
BUF  
V
DD  
SENSE  
DIFF  
REF  
AMP  
CLOCK/DUTY  
CYCLE  
CONTROL  
MODE  
CONTROL  
REGISTERS  
V
CM1  
V
DD  
/2  
0.1μF  
V
CM2  
0.1μF  
+
GND  
REFH  
REFL  
ENC  
ENC  
PAR/SER CS SCK SDI SDO  
21454314 F01  
2.2μF  
0.1μF  
0.1μF  
Figure 1. Functional Block Diagram  
21454314fa  
16  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TIMING DIAGRAMS  
Full Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
CH 1  
ANALOG  
INPUT  
A + 4  
B + 4  
A + 2  
B + 2  
A
B
A + 3  
B + 3  
t
A + 1  
B + 1  
AP  
CH 2  
ANALOG  
INPUT  
t
H
t
L
ENC  
+
ENC  
t
t
D
A – 6  
A – 5  
B – 5  
A – 4  
B – 4  
A – 3  
B – 3  
A – 2  
B – 2  
D1_0 - D1_13, OF1  
D2_0 - D2_13, OF2  
B – 6  
C
+
CLKOUT  
CLKOUT  
21454314 TD01  
21454314fa  
17  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TIMING DIAGRAMS  
Double Data Rate CMOS Output Mode Timing  
All Outputs Are Single-Ended and Have CMOS Levels  
t
AP  
AP  
CH 1  
ANALOG  
INPUT  
A + 4  
B + 4  
A + 2  
B + 2  
A
B
A + 3  
B + 3  
t
A + 1  
B + 1  
CH 2  
ANALOG  
INPUT  
t
H
t
L
ENC  
+
ENC  
t
t
D
D
BIT 0  
A-6  
BIT 1  
A-6  
BIT 0  
A-5  
BIT 1  
A-5  
BIT 0  
A-4  
BIT 1  
A-4  
BIT 0  
A-3  
BIT 1  
A-3  
BIT 0  
A-2  
D1_0_1  
t
t
t
BIT 12  
A-6  
BIT 13 BIT 12  
BIT 13  
A-5  
BIT 12  
A-4  
BIT 13  
A-4  
BIT 12  
A-3  
BIT 13  
A-3  
BIT 12  
A-2  
D1_12_13  
A-6  
A-5  
BIT 0  
B-6  
BIT 1  
B-6  
BIT 0  
B-5  
BIT 1  
B-5  
BIT 0  
B-4  
BIT 1  
B-4  
BIT 0  
B-3  
BIT 1  
B-3  
BIT 0  
B-2  
D2_0_1  
t
t
t
BIT 12  
B-6  
BIT 13 BIT 12  
BIT 13  
B-5  
BIT 12  
B-4  
BIT 13  
B-4  
BIT 12  
B-3  
BIT 13  
B-3  
BIT 12  
B-2  
D2_12_13  
B-6  
B-5  
OF  
B-6  
OF  
A-6  
OF  
B-5  
OF  
A-5  
OF  
B-4  
OF  
A-4  
OF  
B-3  
OF  
A-3  
OF  
B-2  
OF2_1  
t
t
C
C
+
CLKOUT  
CLKOUT  
21454314 TD02  
21454314fa  
18  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TIMING DIAGRAMS  
Double Data Rate LVDS Output Mode Timing  
All Outputs Are Differential and Have LVDS Levels  
t
AP  
CH 1  
ANALOG  
INPUT  
A + 4  
B + 4  
A + 2  
B + 2  
A
B
A + 3  
B + 3  
t
AP  
A + 1  
B + 1  
CH 2  
ANALOG  
INPUT  
t
H
t
L
ENC  
+
ENC  
t
D
t
D
+
D1_0_1  
BIT 0  
A-6  
BIT 1  
A-6  
BIT 0  
A-5  
BIT 1  
A-5  
BIT 0  
A-4  
BIT 1  
BIT 0  
A-3  
BIT 1  
BIT 0  
A-2  
A-4  
A-3  
D1_0_1  
t
t
t
+
D1_12_13  
BIT 12  
A-6  
BIT 13 BIT 12  
A-6  
BIT 13  
A-5  
BIT 12  
A-4  
BIT 13  
A-4  
BIT 12  
A-3  
BIT 13  
A-3  
BIT 12  
A-2  
A-5  
D1_12_13  
+
D2_0_1  
BIT 0  
B-6  
BIT 1  
B-6  
BIT 0  
B-5  
BIT 1  
B-5  
BIT 0  
B-4  
BIT 1  
B-4  
BIT 0  
B-3  
BIT 1  
B-3  
BIT 0  
B-2  
D2_0_1  
t
t
t
+
D2_12_13  
BIT 12  
B-6  
BIT 13 BIT 12  
B-6  
BIT 13  
B-5  
BIT 12  
B-4  
BIT 13  
B-4  
BIT 12  
B-3  
BIT 13  
B-3  
BIT 12  
B-2  
B-5  
D2_12_13  
+
OF2_1  
OF  
B-6  
OF  
A-6  
OF  
B-5  
OF  
A-5  
OF  
B-4  
OF  
A-4  
OF  
B-3  
OF  
A-3  
OF  
B-2  
OF2_1  
t
C
t
C
+
CLKOUT  
CLKOUT  
21454314 TD03  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
21454314 TD04  
HIGH IMPEDANCE  
21454314fa  
19  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
to V + 0.5V. There should be 180° phase difference  
CM  
between the inputs.  
The LTC2145-14/LTC2144-14/LTC2143-14 are low power,  
two-channel, 14-bit, 125Msps/105Msps/80Msps A/D  
converters that are powered by a single 1.8V supply. The  
analog inputs should be driven differentially. The encode  
input can be driven differentially, or single ended for lower  
power consumption. The digital outputs can be CMOS,  
double data rate CMOS (to halve the number of output  
lines), or double data rate LVDS (to reduce digital noise  
in the system.) Many additional features can be chosen  
by programming the mode control registers through a  
serial SPI port.  
Thetwochannelsaresimultaneouslysampledbyashared  
encode circuit (Figure 2).  
Single-Ended Input  
For applications less sensitive to harmonic distortion, the  
+
A
input can be driven single-ended with a 1V signal  
IN  
P-P  
centered around V . The A input should be connected  
CM  
IN  
to V and the V bypass capacitor should be increased  
CM  
CM  
to2.2μF.Withasingle-endedinput,theharmonicdistortion  
and INL will degrade, but the noise and DNL will remain  
unchanged.  
ANALOG INPUT  
INPUT DRIVE CIRCUITS  
Input Filtering  
The analog inputs are differential CMOS sample-and-hold  
circuits (Figure 2). The inputs should be driven differen-  
tially around a common mode voltage set by the V  
or  
CM1  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitry from the A/D sample-and-hold switching, and  
alsolimitswidebandnoisefromthedrivecircuitry.Figure 3  
shows an example of an input RC filter. The RC component  
values should be chosen based on the application’s input  
frequency.  
V
output pins, which are nominally V /2. For the 2V  
CM2  
DD  
input range, the inputs should swing from V – 0.5V  
CM  
LTC2145-14  
V
DD  
C
C
SAMPLE  
5pF  
R
ON  
10Ω  
10ꢀ  
15Ω  
+
A
A
IN  
C
PARASITIC  
1.8pF  
V
DD  
Transformer Coupled Circuits  
SAMPLE  
5pF  
R
ON  
15Ω  
Figure 3 shows the analog input being driven by an RF  
transformer with a center-tapped secondary. The center  
IN  
C
1.8pF  
PARASITIC  
tap is biased with V , setting the A/D input at its optimal  
CM  
V
DD  
DC level. At higher input frequencies a transmission line  
baluntransformer(Figure4toFigure6)hasbetterbalance,  
resulting in lower A/D distortion.  
1.2V  
10k  
50Ω  
V
CM  
+
ENC  
0.1μF  
0.1μF  
T1  
1:1  
ENC  
+
25Ω  
A
IN  
ANALOG  
INPUT  
10k  
LTC2145-14  
0.1μF  
25Ω  
25Ω  
1.2V  
12pF  
21454314 F02  
25Ω  
A
IN  
Figure 2. Equivalent Input Circuit. Only One of the Two  
Analog Channels Is Shown  
T1: MA/COM MABAES0060  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
21454314 F03  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
21454314fa  
20  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
Amplifier Circuits  
Reference  
TheLTC2145-14/LTC2144-14/LTC2143-14hasaninternal  
1.25V voltage reference. For a 2V input range using the  
Figure 7 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
internal reference, connect SENSE to V . For a 1V input  
DD  
range using the internal reference, connect SENSE to  
ground. For a 2V input range with an external reference,  
apply a 1.25V reference voltage to SENSE (Figure 9).  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
block is single-ended, then a transformer circuit (Figure 4  
to Figure 6) should convert the signal to differential before  
driving the A/D.  
The input range can be adjusted by applying a voltage to  
SENSE that is between 0.625V and 1.30V. The input range  
will then be 1.6 • V  
.
SENSE  
The V , REFH and REFL pins should be bypassed as  
REF  
50Ω  
V
CM  
shown in Figure 8. A low inductance 2.2μF interdigitated  
capacitor is recommended for the bypass between REFH  
and REFL. This type of capacitor is available at a low cost  
from multiple suppliers.  
0.1μF  
0.1μF  
0.1μF  
+
12Ω  
A
ANALOG  
INPUT  
IN  
T2  
LTC2145-14  
T1  
0.1μF  
25Ω  
25Ω  
8.2pF  
12Ω  
50Ω  
V
A
IN  
CM  
0.1μF  
21454314 F04  
0.1μF  
4.7nH  
0.1μF  
+
A
IN  
IN  
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1TL  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
ANALOG  
INPUT  
LTC2145-14  
T1  
25Ω  
25Ω  
0.1μF  
Figure 4. Recommended Front-End Circuit for Input  
Frequencies from 5MHz to 150MHz  
4.7nH  
A
T1: MA/COM ETC1-1-13  
RESISTORS, CAPACITORS  
ARE 0402 PACKAGE SIZE  
21454314 F06  
50Ω  
V
CM  
Figure 6. Recommended Front-End Circuit for Input  
Frequencies Above 250MHz  
0.1μF  
0.1μF  
0.1μF  
+
A
ANALOG  
INPUT  
IN  
T2  
LTC2145-14  
T1  
0.1μF  
25Ω  
25Ω  
1.8pF  
V
CM  
HIGH SPEED  
DIFFERENTIAL  
AMPLIFIER  
A
IN  
0.1μF  
200Ω 200Ω  
25Ω  
0.1μF  
0.1μF  
+
A
IN  
21454314 F05  
LTC2145-14  
ANALOG  
INPUT  
12pF  
+
+
T1: MA/COM MABA-007159-000000  
T2: COILCRAFT WBC1-1TL  
RESISTORS, CAPACITORS ARE 0402 PACKAGE SIZE  
25Ω  
A
IN  
Figure 5. Recommended Front-End Circuit for Input  
Frequencies from 150MHz to 250MHz  
12pF  
21454314 F07  
Figure 7. Front-End Circuit Using a High Speed  
Differential Amplifier  
21454314fa  
21  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
in some vendors’ capacitors. In Figure 8d the REFH and  
REFL pins are connected by short jumpers in an internal  
layer. To minimize the inductance of these jumpers they  
can be placed in a small hole in the GND plane on the  
second board layer.  
LTC2145-14  
5Ω  
V
REF  
1.25V BANDGAP  
REFERENCE  
1.25V  
2.2μF  
0.625V  
RANGE  
DETECT  
AND  
CONTROL  
TIE TO V FOR 2V RANGE;  
DD  
SENSE  
TIE TO GND FOR 1V RANGE;  
3"/(&ꢀꢁꢀꢂꢃꢄꢀtꢀ7  
FOR  
SENSE  
BUFFER  
0.625V < V  
< 1.300V  
SENSE  
INTERNAL ADC  
HIGH REFERENCE  
REFH  
REFL  
C2  
+
0.1μF  
Figure 8c. Recommended Layout for the REFH/REFL  
Bypass Circuit in Figure 8a  
+
0.8x  
DIFF AMP  
C1  
REFH  
REFL  
+
+
C3  
0.1μF  
INTERNAL ADC  
LOW REFERENCE  
C1: 2.2μF LOW INDUCTANCE  
INTERDIGITATED CAPACITOR  
TDK CLLE1AX7S0G225M  
MURATA LLA219C70G225M  
AVX W2L14Z225M  
21454314 F08a  
Figure 8d. Recommended Layout for the REFH/REFL  
Bypass Circuit in Figure 8b  
OR EQUIVALENT  
Figure 8a. Reference Circuit  
V
REF  
Alternatively, C1 can be replaced by a standard 2.2μF  
capacitor between REFH and REFL (see Figure 8b). The  
capacitors should be as close to the pins as possible (not  
on the back side of the circuit board).  
2.2μF  
LTC2145-14  
1.25V  
EXTERNAL  
REFERENCE  
SENSE  
1μF  
21454314 F09  
Figure 8c and Figure 8d show the recommended circuit  
board layout for the REFH/REFL bypass capacitors. Note  
that in Figure 8c, every pin of the interdigitated capacitor  
(C1)isconnectedsincethepinsarenotinternallyconnected  
Figure 9. Using an External 1.25V Reference  
Encode Input  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals – do not route them next to  
digital traces on the circuit board. There are two modes  
of operation for the encode inputs: the differential encode  
mode (Figure 10), and the single-ended encode mode  
(Figure 11).  
LTC2145-14  
REFH  
REFL  
C3  
0.1μF  
C1  
2.2μF  
REFH  
C2  
0.1μF  
REFL  
21454314 F08b  
CAPACITORS ARE 0402 PACKAGE SIZE  
The differential encode mode is recommended for si-  
nusoidal, PECL, or LVDS encode inputs (Figure 12 and  
Figure 13). The encode inputs are internally biased to 1.2V  
Figure 8b. Alternative REFH/REFL Bypass Circuit  
21454314fa  
22  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
LTC2145-14  
through 10kꢀ equivalent resistance. The encode inputs  
V
DD  
can be taken above V (up to 3.6V), and the common  
DD  
DIFFERENTIAL  
COMPARATOR  
mode range is from 1.1V to 1.6V. In the differential encode  
V
DD  
mode, ENC should stay at least 200mV above ground to  
avoid falsely triggering the single ended encode mode.  
15k  
30k  
+
+
For good jitter performance ENC and ENC should have  
fast rise and fall times.  
ENC  
ENC  
Thesingle-endedencodemodeshouldbeusedwithCMOS  
encode inputs. To select this mode, ENC is connected to  
+
groundandENC isdrivenwithasquarewaveencodeinput.  
21454314 F10  
+
ENC can be taken above V (up to 3.6V) so 1.8V to 3.3V  
DD  
Figure 10. Equivalent Encode Input Circuit  
for Differential Encode Mode  
+
CMOSlogiclevelscanbeused.TheENC thresholdis0.9V.  
For good jitter performance ENC should have fast rise  
+
and fall times. If the encode signal is turned off or drops  
below approximately 500kHz, the A/D enters nap mode.  
LTC2145-14  
+
1.8V TO 3.3V  
0V  
ENC  
Clock Duty Cycle Stabilizer  
30k  
ENC  
CMOS LOGIC  
BUFFER  
For good performance the encode signal should have a  
50% ( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintain a constant 50% internal duty cycle. If the encode  
signal changes frequency, the duty cycle stabilizer circuit  
requires one hundred clock cycles to lock onto the input  
clock. The duty cycle stabilizer is enabled by mode control  
register A2 (serial programming mode), or by CS (parallel  
programming mode).  
21454314 F11  
Figure 11. Equivalent Encode Input Circuit  
for Single-Ended Encode Mode  
0.1μF  
0.1μF  
+
ENC  
50ꢀ  
50ꢀ  
T1  
100ꢀ  
LTC2145-14  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
the duty cycle stabilizer is disabled, care should be taken  
to make the sampling clock have a 50% ( 5%) duty cycle.  
The duty cycle stabilizer should not be used below 5Msps.  
ENC  
0.1μF  
21454314 F12  
T1 = MA/COM ETC1-1-13  
RESISTORS AND CAPACITORS  
ARE 0402 PACKAGE SIZE  
Figure 12. Sinusoidal Encode Drive  
DIGITAL OUTPUTS  
Digital Output Modes  
0.1μF  
+
ENC  
The LTC2145-14/LTC2144-14/LTC2143-14 can operate in  
three digital output modes: full rate CMOS, double data  
rateCMOS(tohalvethenumberofoutputlines), ordouble  
data rate LVDS (to reduce digital noise in the system.) The  
output mode is set by mode control register A3 (serial  
programming mode), or by SCK (parallel programming  
PECL OR  
LTC2145-14  
LVDS  
CLOCK  
0.1μF  
ENC  
21454314 F13  
Figure 13. PECL or LVDS Encode Drive  
21454314fa  
23  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
mode).NotethatdoubledatarateCMOScannotbeselected  
in the parallel programming mode.  
+
+
+
D1_0_1 through D1_12_13 /D1_12_13 and D2_0_1 /  
D2_0_1 through D2_12_13 /D2_12_13 ) for the digital  
+
output data. Overflow (OF2_1 /OF2_1 ) and the data  
+
Full Rate CMOS Mode  
output clock (CLKOUT /CLKOUT ) each have an LVDS  
output pair. Note that the overflow for both ADC channels  
In full rate CMOS mode the data outputs (D1_0 to D1_13  
and D2_0 to D2_13), overflow (OF2, OF1), and the data  
+
is multiplexed onto the OF2_1 /OF2_1 output pair.  
+
output clocks (CLKOUT , CLKOUT ) have CMOS output  
levels. TheoutputsarepoweredbyOV andOGNDwhich  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100ꢀ differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
DD  
are isolated from the A/D core power and ground. OV  
can range from 1.1V to 1.9V, allowing 1.2V through 1.8V  
DD  
CMOS logic outputs.  
For good performance the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
The outputs are powered by OV and OGND which are  
DD  
isolated from the A/D core power and ground. In LVDS  
mode, OV must be 1.8V.  
DD  
Double Data Rate CMOS Mode  
Programmable LVDS Output Current  
In double data rate CMOS mode, two data bits are  
multiplexed and output on each data pin. This reduces  
the number of digital lines by fifteen, simplifying board  
routing and reducing the number of input pins needed  
to receive the data. The data outputs (D1_0_1, D1_2_3,  
D1_4_5,D1_6_7,D1_8_9,D1_10_11,D1_12_13,D2_0_1,  
D2_2_3, D2_4_5, D2_6_7, D2_8_9, D2_10_11,  
D2_12_13), overflow (OF2_1), and the data output clocks  
In LVDS mode, the default output driver current is 3.5mA.  
Thiscurrentcanbeadjustedbyseriallyprogrammingmode  
control register A3. Available current levels are 1.75mA,  
2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
Optional LVDS Driver Internal Termination  
In most cases using just an external 100ꢀ termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100ꢀ termination resistor can  
be enabled by serially programming mode control register  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is doubled to maintain the same output voltage swing.  
+
(CLKOUT , CLKOUT ) have CMOS output levels. The out-  
puts are powered by OV and OGND which are isolated  
DD  
from the A/D core power and ground. OV can range  
DD  
from 1.1V to 1.9V, allowing 1.2V through 1.8V CMOS logic  
outputs. Note that the overflow for both ADC channels is  
multiplexed onto the OF2_1 pin.  
For good performance the digital outputs should drive  
minimal capacitive loads. If the load capacitance is larger  
than 10pF a digital buffer should be used.  
Overflow Bit  
Theoverflowoutputbitoutputsalogichighwhentheanalog  
input is either overranged or underranged. The overflow  
bit has the same pipeline latency as the data bits. In full  
rate CMOS mode each ADC channel has its own overflow  
pin (OF1 for channel 1, OF2 for channel 2). In DDR CMOS  
or DDR LVDS mode the overflow for both ADC channels  
is multiplexed onto the OF2_1 output.  
When using double data rate CMOS at sample rates above  
100Msps the SNR may degrade slightly, about 0.1dB to  
0.3dB depending on load capacitance and board layout.  
Double Data Rate LVDS Mode  
In double data rate LVDS mode, two data bits are multi-  
plexed and output on each differential output pair. There  
+
are seven LVDS output pairs per ADC channel (D1_0_1 /  
21454314fa  
24  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
Phase Shifting the Output Clock  
DATA FORMAT  
In full rate CMOS mode the data output bits normally  
Table 1 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
+
change at the same time as the falling edge of CLKOUT ,  
+
so the rising edge of CLKOUT can be used to latch the  
output data. In double data rate CMOS and LVDS modes  
the data output bits normally change at the same time as  
+
thefallingandrisingedgesofCLKOUT .Toallowadequate  
Table 1. Output Codes vs Input Voltage  
+
set-up and hold time when latching the data, the CLKOUT  
+
A
– A  
D13-D0  
D13-D0  
IN  
IN  
signal may need to be phase shifted relative to the data  
outputbits. MostFPGAshavethisfeature;thisisgenerally  
the best place to adjust the timing.  
(2V Range)  
>1.000000V  
+0.999878V  
+0.999756V  
+0.000122V  
+0.000000V  
–0.000122V  
–0.000244V  
–0.999878V  
–1.000000V  
≤–1.000000V  
OF (OFFSET BINARY)  
(2s COMPLEMENT)  
1
0
0
0
0
0
0
0
0
1
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
TheLTC2145-14/LTC2144-14/LTC2143-14canalsophase  
+
shift the CLKOUT /CLKOUT signals by serially program-  
ming mode control register A2. The output clock can be  
shifted by 0°, 45°, 90°, or 135°. To use the phase shift-  
ing feature the clock duty cycle stabilizer must be turned  
on. Another control register bit can invert the polarity of  
+
CLKOUT and CLKOUT , independently of the phase shift.  
Thecombinationofthesetwofeaturesenablesphaseshifts  
of 45° up to 315° (Figure 14).  
+
ENC  
D0-D13, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
CLKPHASE1 CLKPHASE0  
0°  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
135°  
180°  
225°  
270°  
+
CLKOUT  
315°  
21454314 F14  
Figure 14. Phase Shifting CLKOUT  
21454314fa  
25  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
Digital Output Randomizer  
CLKOUT  
CLKOUT  
OF  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
OF  
D13  
D13/D0  
D12/D0  
D12  
D2  
t
t
t
D2/D0  
D1/D0  
The digital output is randomized by applying an exclusive-  
OR logic operation between the LSB and all other data  
output bits. To decode, the reverse operation is applied;  
an exclusive-OR operation is applied between the LSB  
and all other bits. The LSB, OF and CLKOUT outputs are  
not affected. The output randomizer is enabled by serially  
programming mode control register A4.  
RANDOMIZER  
ON  
D1  
D0  
D0  
21454314 F15  
Figure 15. Functional Equivalent of Digital Output Randomizer  
Alternate Bit Polarity  
Anotherfeaturethatreducesdigitalfeedbackonthecircuit  
board is the alternate bit polarity mode. When this mode  
is enabled, all of the odd bits (D1, D3, D5, D7, D9, D11,  
D13) are inverted before the output buffers. The even bits  
(D0, D2, D4, D6, D8, D10, D12), OF and CLKOUT are not  
affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
PC BOARD  
FPGA  
CLKOUT  
OF  
D13/D0  
D13  
D12  
When there is a very small signal at the input of the A/D  
thatiscenteredaroundmid-scale,thedigitaloutputstoggle  
between mostly 1’s and mostly 0’s. This simultaneous  
switchingofmostofthebitswillcauselargecurrentsinthe  
ground plane. By inverting every other bit, the alternate bit  
polarity mode makes half of the bits transition high while  
half of the bits transition low. This cancels current flow in  
the ground plane, reducing the digital noise.  
D12/D0  
LTC2145-14  
t
t
t
D2/D0  
D1/D0  
D2  
D1  
D0  
D0  
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11, D13). The alternate  
bit polarity mode is independent of the digital output ran-  
domizer – either, both or neither function can be on at the  
same time. The alternate bit polarity mode is enabled by  
serially programming mode control register A4.  
21454314 F16  
Figure 16. Unrandomizing a Randomized Digital  
Output Signal  
21454314fa  
26  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
Digital Output Test Patterns  
allowedsotheon-chipreferencescansettlefromtheslight  
temperature shift caused by the change in supply current  
astheA/Dleavesnapmode. Eitherchannel2orbothchan-  
nels can be placed in nap mode; it is not possible to have  
channel 1 in nap mode and channel 2 operating normally.  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force the A/D data  
outputs (OF, D13-D0) to known values:  
All 1s: All outputs are 1  
All 0s: All outputs are 0  
Sleep mode and nap mode are enabled by mode control  
register A1 (serial programming mode), or by SDI and  
SDO (parallel programming mode).  
Alternating: Outputs change from all 1s to all 0s on  
alternating samples.  
DEVICE PROGRAMMING MODES  
Checkerboard: Outputs change from  
101010101010101 to 010101010101010 on alternat-  
ing samples.  
The operating modes of the LTC2145-14/LTC2144-14/  
LTC2143-14 can be programmed by either a parallel in-  
terface or a simple serial interface. The serial interface has  
more flexibility and can program all available modes. The  
parallel interface is more limited and can only program  
some of the more commonly used modes.  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the Test Patterns override all other formatting modes: 2’s  
complement, randomizer, alternate bit polarity.  
Parallel Programming Mode  
Output Disable  
To use the parallel programming mode, PAR/SER should  
The digital outputs may be disabled by serially program-  
mingmodecontrolregisterA3.Alldigitaloutputsincluding  
OFandCLKOUTaredisabled.Thehigh-impedancedisabled  
state is intended for in-circuit testing or long periods of  
inactivity – it is too slow to multiplex a data bus between  
multiple converters at full speed. When the outputs are  
disabled both channels should be put into either sleep or  
nap mode.  
be tied to V . The CS, SCK, SDI and SDO pins are binary  
DD  
logic inputs that set certain operating modes. These pins  
can be tied to V or ground, or driven by 1.8V, 2.5V, or  
DD  
3.3V CMOS logic. When used as an input, SDO should  
be driven through a 1k series resistor. Table 2 shows the  
modes set by CS, SCK, SDI and SDO.  
Table 2. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
Sleep and Nap Modes  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
Digital Output Mode Control Bit  
0 = Full Rate CMOS Output Mode  
The A/D may be placed in sleep or nap modes to conserve  
power. In sleep mode the entire device is powered down,  
resultingin1mWpowerconsumption.Theamountoftime  
required to recover from sleep mode depends on the size  
of the bypass capacitors on V , REFH, and REFL. For the  
suggested values in Fig. 8, the A/D will stabilize after 2ms.  
SCK  
1 = Double Data Rate LVDS Output Mode  
REF  
(3.5mA LVDS Current, Internal Termination Off)  
SDI/SDO Power Down Control Bit  
InnapmodetheA/Dcoreispowereddownwhiletheinternal  
reference circuits stay active, allowing faster wakeup than  
from sleep mode. Recovering from nap mode requires at  
least 100 clock cycles. If the application demands very  
accurate DC settling then an additional 50μs should be  
00 = Normal Operation  
01 = Channel 1 in Normal Operation, Channel 2 in Nap Mode  
10 = Channel 1 and Channel 2 in Nap Mode  
11 = Sleep Mode (Entire Device Powered Down)  
21454314fa  
27  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
Serial Programming Mode  
GROUNDING AND BYPASSING  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become a  
serialinterfacethatprogramtheA/Dmodecontrolregisters.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
The LTC2145-14/LTC2144-14/LTC2143-14 requires a  
printed circuit board with a clean unbroken ground plane.  
A multilayer board with an internal ground plane in the  
first layer beneath the ADC is recommended. Layout for  
the printed circuit board should ensure that digital and  
analog signal lines are separated as much as possible. In  
particular, care should be taken not to run any digital track  
alongside an analog signal track or underneath the ADC.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first 16 rising edges of  
SCK. Any SCK rising edges after the first 16 are ignored.  
The data transfer ends when CS is taken high again.  
High quality ceramic bypass capacitors should be used at  
the V , OV , V , V , REFH and REFL pins. Bypass  
DD  
DD CM REF  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
capacitors must be located as close to the pins as pos-  
sible.Size0402ceramiccapacitorsarerecommended.The  
traces connecting the pins and bypass capacitors must  
be kept short and should be made as wide as possible.  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the timing  
diagrams). During a read back command the register is  
not updated and data on SDI is ignored.  
Of particular importance is the capacitor between REFH  
and REFL. This capacitor should be on the same side of  
the circuit board as the A/D, and as close to the device  
as possible.  
The analog inputs, encode signals, and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
The SDO pin is an open drain output that pulls to ground  
with a 200ꢀ impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required. If  
serialdataisonlywrittenandreadbackisnotneeded, then  
SDO can be left floating and no pull-up resistor is needed.  
HEAT TRANSFER  
Table 3 shows a map of the mode control registers.  
Most of the heat generated by the LTC2145-14/LTC2144-  
14/LTC2143-14 is transferred from the die through the  
bottom-side exposed pad and package leads onto the  
printed circuit board. For good electrical and thermal  
performance, the exposed pad must be soldered to a large  
grounded pad on the PC board. This pad should be con-  
nected to the internal ground planes by an array of vias.  
Software Reset  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset, bit D7 in the  
reset register is written with a logic 1. After the reset SPI  
write command is complete, bit D7 is automatically set  
back to zero.  
21454314fa  
28  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
Table 3. Serial Programming Mode Register Map (PAR/SER = GND)  
REGISTER A0: RESET REGISTER (ADDRESS 00h)  
D7  
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All Mode Control Registers Are Reset to 00h. The ADC is momentarily placed in SLEEP mode. This bit is  
automatically set back to zero at the end of the SPI write command. The reset register is write only. Data read back from the reset  
register will be random.  
Bits 6-0  
Unused, Don’t Care Bits.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D0  
PWROFF1  
PWROFF0  
Bits 7-2  
Bits 1-0  
Unused, Don’t Care Bits.  
PWROFF1:PWROFF0  
Power Down Control Bits  
00 = Normal Operation  
01 = Channel 1 in Normal Operation, Channel 2 in Nap Mode  
10 = Channel 1 and Channel 2 in Nap Mode  
11 = Sleep Mode  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
D0  
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, Don’t Care Bits.  
Bit 3  
CLKINV  
Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (As Shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (As Shown in the Timing Diagrams)  
+
01 = CLKOUT /CLKOUT Delayed by 45° (Clock Period • 1/8)  
+
10 = CLKOUT /CLKOUT Delayed by 90° (Clock Period • 1/4)  
+
11 = CLKOUT /CLKOUT Delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT Phase Delay Feature Is Used, the Clock Duty Cycle Stabilizer Must Also Be Turned On  
DCS Clock Duty Cycle Stabilizer Bit  
Bit 0  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
21454314fa  
29  
LTC2145-14/  
LTC2144-14/LTC2143-14  
APPLICATIONS INFORMATION  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
OUTMODE1  
OUTMODE0  
Bit 7  
Unused, Don’t Care Bit.  
Bits 6-4  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 3  
Bit 2  
TERMON  
LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS Output Driver Current is 2× the Current Set by ILVDS2:ILVDS0  
OUTOFF  
0 = Digital Outputs Are Enabled  
Output Disable Bit  
1 = Digital Outputs Are Disabled and Have High Output Impedance  
Note: If the Digital Outputs Are Disabled the Part Should Also Be Put in Sleep or Nap Mode (Both Channels).  
Bits 1-0  
OUTMODE1:OUTMODE0  
Digital Output Mode Control Bits  
00 = Full Rate CMOS Output Mode  
01 = Double Data Rate LVDS Output Mode  
10 = Double Data Rate CMOS Output Mode  
11 = Not Used  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
X
D6  
X
D5  
D4  
D3  
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
RAND  
TWOSCOMP  
Bit 7-6  
Unused, Don’t Care Bits.  
Bits 5-3  
OUTTEST2:OUTTEST0  
Digital Output Test Pattern Bits  
000 = Digital Output Test Patterns Off  
001 = All Digital Outputs = 0  
011 = All Digital Outputs = 1  
101 = Checkerboard Output Pattern. OF, D13-D0 Alternate Between 1 01 0101 0101 0101 and 0 10 1010 1010 1010  
111 = Alternating Output Pattern. OF, D13-D0 Alternate Between 0 00 0000 0000 0000 and 1 11 1111 1111 1111  
Note: Other Bit Combinations Are not Used  
Bit 2  
Bit 1  
Bit 0  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On. Forces the Output Format to Be Offset Binary  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP  
Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
21454314fa  
30  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL APPLICATIONS  
Silkscreen Top  
Top Side  
21454314fa  
31  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL APPLICATIONS  
Inner Layer 2 GND  
Inner Layer 3  
21454314fa  
32  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL APPLICATIONS  
Inner Layer 4  
Inner Layer 5 Power  
21454314fa  
33  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL APPLICATIONS  
Bottom Side  
21454314fa  
34  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL APPLICATIONS  
LTC2145-14 Schematic  
SDO  
C23  
2.2μF  
SENSE  
C17  
1μF  
V
DD  
C19  
0.1μF  
C20  
0.1μF  
DIGITAL  
OUTPUTS  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
+
+
V
V
D1_2_3  
D1_2_3  
D1_0_1  
D1_0_1  
DD  
CM1  
3
GND  
4
+
+
A
A
A
A
IN1  
IN1  
IN1  
IN1  
5
DNC  
DNC  
6
GND  
C15  
7
0.1μF  
REFH  
REFL  
REFH  
REFL  
OV  
DD  
OV  
DD  
+
+
C37  
0.1μF  
8
OGND  
LTC2145-14  
9
+
CLKOUT  
CN1  
10  
11  
12  
13  
14  
15  
16  
CLKOUT  
+
+
+
PAR/SER  
D2_12_13  
C21  
0.1μF  
+
A
D2_12_13  
IN2  
+
A
D2_10_11  
IN2  
GND  
D2_10_11  
DIGITAL  
OUTPUTS  
+
V
V
D2_8_9  
CM2  
DD  
D2_8_9  
PAR/SER  
65  
PAD  
+
A
A
IN2  
IN2  
V
DD  
C67  
0.1μF  
C18  
0.1μF  
C78  
0.1μF  
C79  
0.1μF  
R51  
100Ω  
ENCODE  
CLOCK  
SPI BUS  
21454314 TA02  
21454314fa  
35  
LTC2145-14/  
LTC2144-14/LTC2143-14  
PACKAGE DESCRIPTION  
UP Package  
64-Lead Plastic QFN (9mm w 9mm)  
(Reference LTC DWG # 05-08-1705 Rev C)  
0.70 0.05  
7.ꢀ5 0.05  
7.50 REF  
8.ꢀ0 0.05 9.50 0.05  
(4 SIDES)  
7.ꢀ5 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀ0  
TYP  
R = 0.ꢀꢀ5  
TYP  
9 .00 0.ꢀ0  
(4 SIDES)  
63 64  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 5)  
2
PIN ꢀ  
CHAMFER  
C = 0.35  
7.ꢀ5 0.ꢀ0  
7.50 REF  
(4-SIDES)  
7.ꢀ5 0.ꢀ0  
(UP64) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
21454314fa  
36  
LTC2145-14/  
LTC2144-14/LTC2143-14  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
07/12 Corrected Channel 1 Data Bus (D1_*) Pin Description to state “Channel 1”  
16  
21454314fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
37  
LTC2145-14/  
LTC2144-14/LTC2143-14  
TYPICAL APPLICATIONS  
64k Point 2-Tone FFT, fIN = 69MHz,  
70MHz, –1dBFS, 125Msps  
1.8V  
1.8V  
OV  
V
DD  
DD  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
CH 1  
ANALOG  
INPUT  
14-BIT  
D1_13  
S/H  
S/H  
t
t
t
ADC CORE  
CMOS,  
D1_0  
DDR CMOS  
OR DDR LVDS  
OUTPUTS  
D2_13  
t
t
t
OUTPUT  
DRIVERS  
CH 2  
ANALOG  
INPUT  
14-BIT  
ADC CORE  
D2_0  
–80  
–90  
–100  
–110  
–120  
125MHz  
CLOCK  
CLOCK  
CONTROL  
0
20  
30  
40  
50  
60  
10  
FREQUENCY (MHz)  
21454314 TA03a  
21454314 TA03b  
GND  
OGND  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2259-14/LTC2260-14/ 14-Bit, 80Msps/105Msps/125Msps  
89mW/106mW/127mW, 73.4dB SNR, 85dB SFDR, DDR LVDS/DDR CMOS/CMOS  
Outputs, 6mm × 6mm QFN-40  
LTC2261-14  
1.8V ADCs, Ultralow Power  
LTC2262-14  
14-Bit, 150Msps 1.8V ADC, Ultralow  
Power  
149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
6mm × 6mm QFN-40  
LTC2266-14/LTC2267-14/ 14-Bit, 80Msps/105Msps/125Msps  
LTC2268-14 1.8V Dual ADCs, Ultralow Power  
216mW/250mW/293mW, 73.4dB SNR, 85dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2266-12/LTC2267-12/ 12-Bit, 80Msps/105Msps/125Msps  
216mW/250mW/293mW, 70.5dB SNR, 85dB SFDR, Serial LVDS Outputs,  
6mm × 6mm QFN-40  
LTC2268-12  
1.8V Dual ADCs, Ultralow Power  
LTC2183/LTC2184/  
LTC2185  
16-Bit, 80Msps/105Msps/125Msps  
1.8V Dual ADCs, Ultralow Power  
370mW/308mW/200mW, 76.8dB SNR, 90dV SFDR, DDR LVDS/DDR CMOS/  
CMOS Outputs, Pin Compatible with LTC2145 Family, 9mm × 9mm QFN-64  
RF Mixers/Demodulators  
LTC5517  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LTC5557  
LTC5575  
400MHz to 3.8GHz High Linearity  
Downconverting Mixer  
23.7dBm IIP3 at 2.6GHz, 23.5dBm IIP3 at 3.5GHz, NF = 13.2dB, 3.3V Supply  
Operation, Integrated Transformer  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator, Integrated RF  
and LO Transformer  
Amplifiers/Filters  
LTC6412  
800MHz, 31dB Range, Analog-Controlled Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz, 10dB Noise Figure,  
Variable Gain Amplifier  
4mm × 4mm QFN-24  
LTC6605-7/LTC6605-10/ Dual Matched 7MHz/10MHz/14MHz  
Dual Matched 2nd Order Lowpass Filters with Differential Drivers,  
Pin-Programmable Gain, 6mm × 3mm DFN-22  
LTC6605-14  
Filters with ADC Drivers  
Signal Chain Receivers  
LTM9002  
14-Bit Dual Channel IF/Baseband  
Receiver Subsystem  
Integrated High Speed ADC, Passive Filters and Fixed Gain Differential Amplifiers  
21454314fa  
LT 0712 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
38  
© LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2145CUP-12#PBF

LTC2145-12 - 12-Bit, 125Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2145CUP-14#PBF

LTC2145-14 - 14-Bit, 125Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2145IUP-12#PBF

LTC2145-12 - 12-Bit, 125Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2145IUP-14#PBF

LTC2145-14 - 14-Bit, 125Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2145IUP-14#TRPBF

LTC2145-14 - 14-Bit, 125Msps Low Power Dual ADCs; Package: QFN; Pins: 64; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2150-12_15

Single 12-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2150-14

300MHz Digital Predistortion Receiver
Linear

LTC2150-14_15

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2150CUJ-12#PBF

LTC2150-12 - Single 12-Bit 170Msps ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2150CUJ-14#PBF

LTC2150-14 - Single 14-Bit 170Msps ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2150CUP-14PBF

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2150IUP-14PBF

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear