LTC2150-12_15 [Linear]

Single 12-Bit 250Msps/ 210Msps/170Msps ADCs;
LTC2150-12_15
型号: LTC2150-12_15
厂家: Linear    Linear
描述:

Single 12-Bit 250Msps/ 210Msps/170Msps ADCs

文件: 总30页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2152-12/  
LTC2151-12/LTC2150-12  
Single 12-Bit 250Msps/  
210Msps/170Msps ADCs  
FEATURES  
DESCRIPTION  
The LTC®2152-12/LTC2151-12/LTC2150-12 are a family  
of 250Msps/210Msps/170Msps 12-bit A/D converters  
designedfordigitizinghighfrequency,widedynamicrange  
signals. They are perfect for demanding communications  
applications with AC performance that includes 68.5dB  
SNR and 90dB spurious free dynamic range (SFDR). The  
1.25GHz input bandwidth allows the ADC to undersample  
highinputfrequencieswithgoodperformance.Thelatency  
is only six clock cycles.  
n
68.5dB SNR  
n
90dB SFDR  
Low Power: 347mW/333mW/306mW Total  
Single 1.8V Supply  
DDR LVDS Outputs  
n
n
n
n
Easy-to-Drive 1.5V Input Range  
P-P  
n
n
n
n
n
n
1.25GHz Full Power Bandwidth S/H  
Optional Clock Duty Cycle Stabilizer  
Low Power Sleep and Nap Modes  
Serial SPI Port for Configuration  
Pin-Compatible 14-Bit Versions  
40-Lead (6mm × 6mm) QFN Package  
DCspecsinclude 0.26LSBINL(typ), 0.16LSBDNL(typ)  
and no missing codes over temperature. The transition  
noise is 0.54LSB  
.
RMS  
The digital outputs are double-data rate (DDR) LVDS.  
APPLICATIONS  
+
n
n
n
n
n
n
The ENC and ENC inputs can be driven differentially with  
asinewave,PECL,LVDS,TTL,orCMOSinputs.Anoptional  
clock duty cycle stabilizer allows high performance at full  
speed for a wide range of clock duty cycles.  
Communications  
Cellular Basestations  
Software Defined Radios  
Medical Imaging  
High Definition Video  
Testing and Measurement Instruments  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LTC2152-12: 32K Point 2-Tone FFT,  
fIN = 71MHz and 69MHz, 250Msps  
V
DD  
OV  
0
–20  
DD  
D10_11  
12-BIT  
PIPELINED  
ADC  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
DDR  
LVDS  
S/H  
–40  
D0_1  
–60  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
–80  
CLOCK  
–100  
–120  
21521012 TA01a  
GND  
0
40  
60  
80  
100 120  
20  
FREQUENCY (MHz)  
21521012 TA01b  
21521012fa  
1
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
Supply Voltage  
V , OV ................................................ –0.3V to 2V  
DD  
DD  
Analog Input Voltage  
+
A
, A , PAR/SER,  
40 39 38 37 36 35 34 33 32 31  
IN  
IN  
SENSE (Note 3)........................ –0.3V to (V + 0.2V)  
V
V
1
2
3
4
5
6
7
8
9
30  
29  
28  
OV  
DD  
DD  
+
DD  
D6_7  
D6_7  
Digital Input Voltage  
DD  
+
GND  
+
ENC , ENC (Note 3)................ –0.3V to (V + 0.3V)  
DD  
+
A
27 CLKOUT  
IN  
CS, SDI, SCK (Note 4)........................... –0.3V to 3.9V  
A
26 CLKOUT  
+
IN  
GND  
41  
SDO (Note 4)............................................. –0.3V to 3.9V  
GND  
SENSE  
VREF  
25  
D4_5  
Digital Output Voltage................ –0.3V to (OV + 0.3V)  
+
DD  
24 D4_5  
23  
Operating Temperature Range  
D2_3  
22 D2_3  
LTC2152C, LTC2151C, LTC2150C............. 0°C to 70°C  
LTC2152I, LTC2151I, LTC2150I ............–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
VCM  
GND 10  
21  
OGND  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
JMAX  
= 150°C, θ = 33°C/W  
JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC2152CUJ-12#PBF  
LTC2152IUJ-12#PBF  
LTC2151CUJ-12#PBF  
LTC2151IUJ-12#PBF  
LTC2150CUJ-12#PBF  
LTC2150IUJ-12#PBF  
TAPE AND REEL  
LTC2152CUJ-12#TRPBF LTC2152UJ-12  
LTC2152IUJ-12#TRPBF LTC2152UJ-12  
LTC2151CUJ-12#TRPBF LTC2151UJ-12  
LTC2151IUJ-12#TRPBF LTC2151UJ-12  
LTC2150CUJ-12#TRPBF LTC2150UJ-12  
LTC2150IUJ-12#TRPBF LTC2150UJ-12  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
40-Lead (6mm × 6mm) Plastic QFN  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
21521012fa  
2
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2152-12  
TYP  
LTC2151-12  
TYP  
LTC2150-12  
PARAMETER  
CONDITIONS  
MIN  
12  
MAX  
MIN  
12  
MAX  
MIN  
TYP MAX  
UNITS  
Bits  
l
l
l
l
l
Resolution (No Missing Codes)  
Integral Linearity Error  
Differential Linearity Error  
Offset Error  
12  
–1.2  
–0.6  
–13  
–4  
Differential Analog Input (Note 6)  
Differential Analog Input  
(Note 7)  
–1.2  
–0.6  
–13  
–4  
0.26  
0.16  
5
1.2  
0.6  
13  
3
–1.2  
–0.6  
–13  
–4  
0.30  
0.16  
5
1.2  
0.6  
13  
3
0.30 1.2  
0.16 0.6  
LSB  
LSB  
5
1
13  
3
mV  
Gain Error  
External Reference  
1
1
%FS  
µV/°C  
Offset Drift  
20  
20  
20  
Full-Scale Drift  
Internal Reference  
External Reference  
30  
10  
30  
10  
30  
10  
ppm/°C  
ppm/°C  
Transition Noise  
0.54  
0.54  
0.54  
LSB  
RMS  
ANALOG INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
1.7V < V < 1.9V  
MIN  
TYP  
MAX  
UNITS  
+
l
l
l
l
l
l
V
V
V
Analog Input Range (A – A  
)
1.5  
V
P-P  
IN  
IN  
IN  
DD  
+
Analog Input Common Mode (A + A )/2 Differential Analog Input (Note 8)  
V
– 20mV  
V
CM  
V + 20mV  
CM  
V
IN(CM)  
SENSE  
IN  
IN  
CM  
External Reference Mode  
External Reference Mode  
1.200  
–1  
1.250  
1.300  
V
µA  
µA  
µA  
ns  
+
I
I
I
t
t
Analog Input Leakage Current  
SENSE Input Leakage Current  
0 < A , A < V , No Encode  
1
1
1
IN1  
IN  
IN  
DD  
1.2V < SENSE < 1.3V  
0 < PAR/SER < V  
–1  
IN2  
PAR/SER Input Leakage Current  
–1  
IN3  
DD  
Sample-and-Hold Acquisition Delay Time  
Sample-and-Hold Acquisition Delay Jitter  
Analog Input Common Mode Rejection Ratio  
Full-Power Bandwidth  
1
AP  
0.15  
75  
ps  
RMS  
JITTER  
CMRR  
BW-3B  
dB  
1250  
MHz  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. AIN = –1dBFS. (Note 5)  
LTC2152-12  
TYP  
LTC2151-12  
TYP  
LTC2150-12  
TYP MAX UNITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
67.1  
72  
MAX  
MIN  
67.1  
74  
MAX  
MIN  
67.3  
76  
SNR  
Signal-to-Noise Ratio  
15MHz Input  
70MHz Input  
140MHz Input  
68.5  
68.4  
68.0  
68.5  
68.3  
67.9  
68.5  
68.3  
67.8  
dBFS  
dBFS  
dBFS  
l
l
l
l
SFDR  
Spurious Free Dynamic Range 15MHz Input  
2nd or 3rd Harmonic  
90.6  
88  
80  
90.1  
89  
81  
90  
88  
80  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
Spurious Free Dynamic Range 15MHz Input  
4th Harmonic or Higher  
98  
95  
85  
98  
95  
85  
98  
95  
84  
dBFS  
dBFS  
dBFS  
70MHz Input  
140MHz Input  
81  
82  
83  
S/(N+D)  
Signal-to-Noise Plus  
Distortion Ratio  
15MHz Input  
70MHz Input  
140MHz Input  
68.5  
68.4  
67.7  
68.4  
68.3  
67.7  
68.4  
68.3  
67.7  
dBFS  
dBFS  
dBFS  
66.5  
66.6  
66.7  
Crosstalk  
Crosstalk Between Channels  
Up to 315MHz Input  
–95  
–95  
–95  
dB  
21521012fa  
3
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
INTERNAL REFERENCE CHARACTERISTICS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
PARAMETER  
CONDITIONS  
= 0  
MIN  
TYP  
MAX  
UNITS  
V
CM  
Output Voltage  
I
0.439 •  
– 18mV  
0.439 •  
0.439 •  
V
OUT  
V
V
DD  
V
+ 18mV  
DD  
DD  
V
V
V
V
V
V
Output Temperature Drift  
Output Resistance  
Output Voltage  
37  
4
ppm/°C  
Ω
CM  
–1mA < I  
< 1mA  
CM  
OUT  
I
= 0  
1.225  
1.250  
30  
1.275  
V
REF  
REF  
REF  
REF  
OUT  
Output Temperature Drift  
Output Resistance  
Line Regulation  
ppm/°C  
Ω
–400µA < I  
< 1mA  
7
OUT  
1.7V < V < 1.9V  
0.6  
mV/V  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2152-12  
TYP  
LTC2151-12  
TYP  
LTC2150-12  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
(Note 9)  
MIN  
1.7  
MAX  
1.9  
MIN  
1.7  
MAX  
1.9  
l
l
l
V
Analog Supply Voltage  
Output Supply Voltage  
Analog Supply Current  
Digital Supply Current  
1.8  
1.8  
1.8  
1.8  
1.7  
1.7  
1.8  
1.8  
1.9  
1.9  
V
V
DD  
OV  
LVDS Mode (Note 9)  
1.7  
1.9  
1.7  
1.9  
DD  
I
I
166  
185  
158  
175  
145  
159  
mA  
VDD  
OVDD  
1.75mA LVDS Mode  
3.5mA LVDS Mode  
27  
45  
32  
50  
27  
44  
31  
50  
25  
43  
30  
48  
mA  
mA  
l
l
P
DISS  
Power Dissipation  
1.75mA LVDS Mode  
3.5mA LVDS Mode  
347  
380  
391  
423  
333  
364  
371  
405  
306  
338  
340  
373  
mW  
mW  
P
P
Nap Mode Power  
Sleep Mode Power  
Clocked at f  
Clocked at f  
105  
<2  
99  
<2  
93  
<2  
mW  
mW  
NAP  
S(MAX)  
S(MAX)  
SLEEP  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
ENCODE INPUTS (ENC , ENC )  
l
V
V
Differential Input Voltage  
(Note 8)  
0.2  
1
1.9  
V
ID  
Common Mode Input Voltage  
Internally Set  
Externally Set (Note 8)  
1.2  
V
V
ICM  
l
l
1.1  
0.2  
1.5  
1.9  
+
V
IN  
Input Voltage Range  
Input Resistance  
Input Capacitance  
ENC , ENC to GND  
(See Figure 2)  
(Note 8)  
V
kΩ  
pF  
R
10  
2
IN  
IN  
C
DIGITAL INPUTS (CS, SDI, SCK)  
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
IH  
IL  
DD  
DD  
IN  
= 1.8V  
0.6  
10  
I
IN  
= 0V to 1.8V  
–10  
µA  
pF  
C
IN  
Input Capacitance  
(Note 8)  
3
200  
4
SDO OUTPUT (Open-Drain Output. Requires 2k Pull-Up Resistor if SDO Is Used)  
R
Logic Low Output Resistance to GND  
Logic High Output Leakage Current  
Output Capacitance  
V
= 1.8V, SDO = 0V  
DD  
Ω
µA  
OL  
l
I
SDO = 0V to 3.6V  
(Note 8)  
–10  
10  
OH  
C
OUT  
pF  
21521012fa  
4
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
DIGITAL INPUTS AND OUTPUTS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
SYMBOL PARAMETER  
DIGITAL DATA OUTPUTS  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
350  
175  
454  
250  
mV  
mV  
OD  
l
l
V
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.250  
1.250  
100  
1.375  
1.375  
V
V
Ω
OS  
R
Termination Enabled, OV = 1.8V  
TERM  
DD  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC2152-12  
TYP  
LTC2151-12  
TYP  
LTC2150-12  
MIN TYP MAX UNITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
MIN  
MAX  
l
f
S
t
L
Sampling Frequency  
(Note 9)  
10  
250  
10  
210  
10  
170  
MHz  
l
l
ENC Low Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
1.9  
1.5  
2
2
50  
50  
2.26  
1.5  
2.38  
2.38  
50  
50  
2.79  
1.5  
2.94  
2.94  
50  
50  
ns  
ns  
l
l
t
H
ENC High Time (Note 8) Duty Cycle Stabilizer Off  
Duty Cycle Stabilizer On  
1.9  
1.5  
2
2
50  
50  
2.26  
1.5  
2.38  
2.38  
50  
50  
2.79  
1.5  
2.94  
2.94  
50  
50  
ns  
ns  
DIGITAL DATA OUTPUTS  
SYMBOL PARAMETER  
LTC215X-12  
TYP  
CONDITIONS  
C = 5pF  
MIN  
1.7  
1.3  
0.3  
6
MAX  
UNITS  
ns  
l
l
l
t
t
t
ENC to Data Delay  
ENC to CLKOUT Delay  
DATA to CLKOUT Skew  
Pipeline Latency  
2
2.3  
2
D
L
C = 5pF  
L
1.6  
0.4  
ns  
C
t – t  
D C  
0.55  
6
ns  
SKEW  
Cycles  
SPI Port Timing (Note 8)  
t
SCK Period  
Write Mode, C  
= 20pF  
SDO  
40  
ns  
ns  
SCK  
Readback Mode R  
= 2k, C  
= 2k, C  
= 20pF  
= 20pF  
250  
PULLUP  
SDO  
l
l
l
l
l
t
t
t
t
t
CS to SCK Set-Up Time  
SCK to CS Hold Time  
SDI Set-Up Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode R  
125  
PULLUP  
SDO  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: V = OV = 1.8V, f  
= 250MHz (LTC2152),  
DD  
DD  
SAMPLE  
210MHz (LTC2151), or 170MHz (LTC2150), LVDS outputs, differential  
+
ENC /ENC = 2V sine wave, input range = 1.5V with differential  
P-P  
P-P  
drive, unless otherwise noted.  
Note 2: All voltage values are with respect to GND with GND and OGND  
Note 6: Integral nonlinearity is defined as the deviation of a code from a  
best fit straight line to the transfer curve. The deviation is measured from  
the center of the quantization band.  
Note 7: Offset error is the offset voltage measured from –0.5LSB when the  
output code flickers between 0000 0000 0000 and 1111 1111 1111 in 2’s  
complement output mode.  
shorted (unless otherwise noted).  
Note 3: When these pin voltages are taken below GND or above V , they  
DD  
will be clamped by internal diodes. This product can handle input currents  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
DD  
Note 8: Guaranteed by design, not subject to test.  
Note 9: Recommended operating conditions.  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
21521012fa  
5
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2152-12: Integral Nonlinearity  
(INL)  
LTC2152-12: Differential  
Nonlinearity (DNL)  
LTC2152-12: 32K Point FFT,  
fIN = 15MHz, –1dBFS, 250Msps  
0
–20  
2.0  
1.5  
0.50  
0.25  
0
1.0  
–40  
0.5  
0
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–0.25  
–0.50  
–100  
–120  
0
40  
60  
80  
100 120  
0
4095  
20  
0
4095  
FREQUENCY (MHz)  
OUTPUT CODE  
OUTPUT CODE  
21521012 G01  
21521012 G02  
21521012 G03  
LTC2152-12: 32K Point FFT,  
fIN = 70MHz, –1dBFS, 250Msps  
LTC2152-12: 32K Point FFT,  
fIN = 122MHz, –1dBFS, 250Msps  
LTC2152-12: 32K Point FFT,  
fIN = 171MHz, –1dBFS, 250Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
40  
60  
80  
100 120  
0
40  
60  
80  
100 120  
0
40  
60  
80  
100 120  
20  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21521012 G04  
21521012 G05  
21521012 G06  
LTC2152-12: 32K Point FFT,  
LTC2152-12: 32K Point FFT,  
fIN = 380MHz, –1dBFS, 250Msps  
LTC2152-12: 32K Point FFT,  
fIN = 420MHz, –1dBFS, 250Msps  
f
IN = 229MHz, –1dBFS, 250Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
40  
60  
80  
100 120  
21521012 G09  
0
40  
60  
80  
100 120  
0
40  
60  
80  
100 120  
20  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21521012 G07  
21521012 G08  
21521012fa  
6
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2152-12: 32K Point FFT,  
fIN = 907MHz, –1dBFS, 250Msps  
LTC2152-12: 32K Point 2-Tone FFT,  
fIN = 71MHz and 69MHz, 250Msps  
LTC2152-12: 32K Point FFT,  
fIN = 567MHz, –1dBFS, 250Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
40  
60  
80  
100 120  
0
40  
60  
80  
100 120  
0
40  
60  
80  
100 120  
20  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
215210 G10  
21521012 G11  
21521012 G12  
LTC2152-12: Shorted Input  
Histogram  
LTC2152-12: IOVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
LTC2152-12: IVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
50  
45  
40  
35  
30  
25  
20  
15  
170  
160  
150  
140  
130  
120  
110  
LVDS CURRENT 3.5mA  
LVDS CURRENT 1.75mA  
2048  
2052  
2056  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
OUTPUT CODE  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
21521012 G13  
21521012 G14  
21521012 G15  
LTC2152-12: SFDR vs Input  
Frequency, –1dBFS, 1.5V Range,  
250Msps  
LTC2152-12: SNR vs Input Level,  
fIN = 70MHz, 1.5V Range, 250Msps  
LTC2152-12: SFDR vs Input Level,  
fIN = 70MHz, 1.5V Range, 250Msps  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
dBFS  
dBFS  
dBc  
dBc  
0
100 200 300 400 500 600 700 800 9001000  
INPUT FREQUENCY (MHz)  
21521012 G18  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
–90 –80 –70 –60 –50 –40 –30 –20 –10  
AMPLITUDE (dBFS)  
0
21521012 G17  
21521012 G16  
21521012fa  
7
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2152-12: SNR vs Input  
Frequency, –1dBFS, 1.5V Range,  
250Msps  
LTC2152-12: Frequency Response  
75  
70  
65  
60  
55  
50  
45  
40  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
100 200 300 400 500 600 700 800 9001000  
INPUT FREQUENCY (MHz)  
100  
1000  
INPUT FREQUENCY (MHz)  
21521012 G19  
21521012 G20  
LTC2151-12: Integral Nonlinearity  
INL  
LTC2151-12: Differential Nonlinearity  
DNL  
LTC2151-12: 32K Point FFT,  
fIN = 15MHz, –1dBFS, 210Msps  
0.50  
0.25  
0
2.0  
1.5  
0
–20  
1.0  
–40  
0.5  
0
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–0.25  
–0.50  
–100  
–120  
0
0
4095  
4095  
0
40  
60  
80  
100  
20  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (MHz)  
21521012 G22  
21521012 G21  
21521012 G23  
LTC2151-12: 32K Point FFT,  
LTC2151-12: 32K Point FFT,  
fIN = 171MHz, –1dBFS, 210Msps  
LTC2151-12: 32K Point FFT,  
f
IN = 71MHz, –1dBFS, 210Msps  
f
IN = 101MHz, –1dBFS, 210Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
40  
60  
80  
100  
0
40  
60  
80  
100  
0
40  
60  
80  
100  
20  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21521012 G24  
21521012 G25  
21521012 G26  
21521012fa  
8
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2151-12: 32K Point FFT,  
fIN = 227MHz, –1dBFS, 210Msps  
LTC2151-12: 32K Point FFT,  
fIN = 379MHz, –1dBFS, 210Msps  
LTC2151-12: 32K Point FFT,  
f
IN = 417MHz, –1dBFS, 210Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
40  
60  
80  
100  
20  
0
40  
60  
80  
100  
0
40  
60  
80  
100  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21521012 G28  
21521012 G27  
21521012 G29  
LTC2151-12: 32K Point FFT,  
fIN = 567MHz, –1dBFS, 210Msps  
LTC2151-12: 32K Point FFT,  
fIN = 907MHz, –1dBFS, 210Msps  
LTC2151-12: 32K Point 2-Tone FFT,  
IN = 71MHz and 69MHz, 210Msps  
f
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
40  
60  
80  
100  
0
40  
60  
80  
100  
0
40  
60  
80  
100  
20  
20  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
21521012 G30  
21521012 G31  
21521012 G32  
LTC2151-12: IOVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
LTC2151-12: IVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
LTC2151-12: Shorted Input  
Histogram  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
50  
45  
40  
35  
30  
25  
20  
15  
160  
150  
140  
130  
120  
110  
LVDS CURRENT 3.5mA  
LVDS CURRENT 1.75mA  
2044  
2048  
2052  
2056  
0
42  
84  
126  
168  
210  
0
42  
84  
128  
168  
210  
OUTPUT CODE  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
21521012 G33  
21521012 G35  
21521012 G34  
21521012fa  
9
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2151-12: SFDR vs Input  
Level, –1dBFS, 1.5V Range,  
210Msps  
LTC2151-12: SFDR vs Input Level,  
fIN = 70MHz, 1.5V Range, 210Msps  
LTC2151-12: SNR vs Input Level,  
f
IN = 70MHz, 1.5V Range, 210Msps  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
dBFS  
dBFS  
dBc  
dBc  
0
100 200 300 400 500 600 700 800 9001000  
INPUT FREQUENCY (MHz)  
21521012 G38  
–80 –70 –60 –50 –40 –30 –20 –10  
AMPLITUDE (dBFS)  
0
10  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
–70  
21521012 G37  
21521012 G36  
LTC2151-12: SNR vs Input Level,  
–1dBFS, 1.5V Range, 210Msps  
LTC2151-12: Frequency Response  
75  
70  
65  
60  
55  
50  
45  
40  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
100 200 300 400 500 600 700 800 9001000  
INPUT FREQUENCY (MHz)  
21521012 G39  
100  
1000  
INPUT FREQUENCY (MHz)  
21521012 G40  
LTC2150-12: Differential  
Nonlinearity DNL  
LTC2150-12: 32K Point FFT,  
fIN = 15MHz, –1dBFS, 170Msps  
LTC2150-12: Integral Nonlinearity INL  
2.0  
1.5  
0
–20  
0.50  
0.25  
0
1.0  
–40  
0.5  
0
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–80  
–0.25  
–100  
–120  
–0.50  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
10 20  
0
4095  
0
4095  
OUTPUT CODE  
OUTPUT CODE  
21521012 G41  
21521012 G42  
21521012 G43  
21521012fa  
10  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2150-12: 32K Point FFT,  
fIN = 70MHz, –1dBFS, 170Msps  
LTC2150-12: 32K Point FFT,  
fIN = 121MHz, –1dBFS, 170Msps  
LTC2150-12: 32K Point FFT,  
f
IN = 176MHz, –1dBFS, 170Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
10 20  
10 20  
10 20  
21521012 G44  
21521012 G45  
21521012 G46  
LTC2150-12: 32K Point FFT,  
fIN = 225MHz, –1dBFS, 170Msps  
LTC2150-12: 32K Point FFT,  
fIN = 380MHz, –1dBFS, 170Msps  
LTC2150-12: 32K Point FFT,  
IN = 420MHz, –1dBFS, 170Msps  
f
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
10 20  
10 20  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
10 20  
21521012 G47  
21521012 G49  
21521012 G48  
LTC2150-12: 32K Point FFT,  
LTC2150-12: 32K Point FFT,  
fIN = 907MHz, –1dBFS, 170Msps  
LTC2150-12: 32K Point 2-Tone FFT,  
fIN = 71MHz and 69MHz, 170Msps  
f
IN = 567MHz, –1dBFS, 170Msps  
0
–20  
0
–20  
0
–20  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–100  
–120  
–100  
–120  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
0
30 40 50 60 70 80  
FREQUENCY (MHz)  
0
40 50 60 70 80  
10 20 30  
FREQUENCY (MHz)  
10 20  
10 20  
21521012 G50  
21521012 G51  
21521012 G52  
21521012fa  
11  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL PERFORMANCE CHARACTERISTICS  
LTC2150-12: IOVDD vs Sample  
Rate, 15MHz Sine Wave Input,  
–1dBFS  
LTC2150-12: Shorted Input  
Histogram  
LTC2150-12: IVDD vs Sample Rate,  
15MHz Sine Wave Input, –1dBFS  
60  
55  
50  
45  
40  
35  
30  
25  
20  
140  
135  
130  
125  
120  
115  
110  
105  
100  
20000  
18000  
16000  
14000  
12000  
10000  
8000  
6000  
4000  
2000  
0
LVDS CURRENT 3.5mA  
LVDS CURRENT 1.75mA  
15  
2056  
2060  
2064  
0
34  
68  
102  
136  
170  
0
136  
170  
34  
68  
102  
OUTPUT CODE  
SAMPLE RATE (Msps)  
SAMPLE RATE (Msps)  
21521012 G53  
21521012 G55  
21521012 G54  
LTC2150-12: SFDR vs Input  
Frequency, –1dBFS, 1.5V Range,  
170Msps  
LTC2150-12: SFDR vs Input Level,  
LTC2150-12: SNR vs Input Level,  
fIN = 70MHz, 1.5V Range, 170Msps  
f
IN = 70MHz, 1.5V Range, 170Msps  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
dBFS  
dBFS  
dBc  
dBc  
–60 –50 –40 –30 –20 –10  
INPUT LEVEL (dBFS)  
0
0
100 200 300 400 500 600 700 800 9001000  
INPUT FREQUENCY (MHz)  
21521012 G58  
–70  
–80 –70 –60 –50 –40 –30 –20 –10  
AMPLITUDE (dBFS)  
0
10  
21521012 G57  
21521012 G56  
LTC2150-12: SNR vs Input  
Frequency, –1dBFS, 1.5V Range,  
170Msps  
LTC2150-12: Frequency Response  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
75  
70  
65  
60  
55  
50  
45  
40  
–5.0  
100  
1000  
0
100 200 300 400 500 600 700 800 9001000  
INPUT FREQUENCY (MHz)  
21521012 G59  
INPUT FREQUENCY (MHz)  
21521012 G60  
21521012fa  
12  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
PIN FUNCTIONS  
SDO (Pin 36): In serial programming mode, (PAR/SER =  
0V), SDO is the optional serial interface data output. Data  
on SDO is read back from the mode control registers and  
can be latched on the falling edge of SCK. SDO is an open-  
drain N-channel MOSFET output that requires an external  
2k pull-up resistor from 1.8V to 3.3V. If readback from the  
mode control registers is not needed, the pull-up resistor  
is not necessary and SDO can be left unconnected.  
V
(Pins 1, 2): 1.8V Analog Power Supply. Bypass to  
DD  
ground with 0.1µF ceramic capacitor. Pins 1, 2 can share  
a bypass capacitor.  
GND (Pins 3, 6, 10, 13, 35, Exposed Pad Pin 41): ADC  
Power Ground. The exposed pad must be soldered to the  
PCB ground.  
+
A
IN  
A
IN  
(Pin 4): Positive Differential Analog Input.  
(Pin 5): Negative Differential Analog Input.  
SDI (Pin 37): In serial programming mode, (PAR/SER  
= 0V), SDI is the serial interface data input. Data on SDI  
is clocked into the mode control registers on the rising  
edge of SCK. In parallel programming mode (PAR/SER =  
SENSE (Pin 7): Reference Programming Pin. Connecting  
SENSE to V selects the internal reference and a 0.75V  
DD  
input range. An external reference between 1.2V and 1.3V  
V ), SDI selects 3.5mA or 1.75mA LVDS output current  
DD  
applied to SENSE selects an input range of 0.6 • V  
.
SENSE  
(see Table 2).  
V
(Pin 8): Reference Voltage Output. Bypass to ground  
REF  
SCK (Pin 38): In serial programming mode, (PAR/SER  
with a 2.2µF ceramic capacitor. Nominally 1.25V.  
= 0V), SCK is the serial interface clock input. In parallel  
V
(Pin 9): Common Mode Bias Output; nominally equal  
CM  
programming mode (PAR/SER = V ), SCK controls the  
DD  
to 0.439 • V . V should be used to bias the common  
DD CM  
sleep mode (see Table 2).  
mode of the analog inputs. Bypass to ground with a 0.1µF  
ceramic capacitor.  
CS (Pin 39): In serial programming mode, (PAR/SER =  
0V), CS is the serial interface chip select input. When CS  
is low, SCK is enabled for shifting data on SDI into the  
mode control registers. In parallel programming mode  
+
ENC (Pin 11): Encode Input. Conversion starts on the  
rising edge.  
(PAR/SER = V ), CS controls the clock duty cycle stabi-  
ENC (Pin 12): Encode Complement Input. Conversion  
DD  
lizer (see Table 2).  
starts on the falling edge.  
PAR/SER (Pin 40): Programming Mode Selection Pin.  
Connect to ground to enable the serial programming  
mode. CS, SCK, SDI and SDO become a serial interface  
NC (Pins 16, 17): No Connection.  
OV (Pins 20, 30): 1.8V Output Driver Supply. Bypass  
DD  
eachpintogroundwithseparate0.1µFceramiccapacitors.  
that control the A/D operating modes. Connect to V to  
DD  
enabletheparallelprogrammingmodewhereCS,SCKand  
SDI become parallel logic inputs that control a reduced  
set of the A/D operating modes. PAR/SER should be con-  
OGND (Pin 21): LVDS Driver Ground.  
nected directly to ground or the V of the part and not  
DD  
be driven by a logic signal.  
21521012fa  
13  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
PIN FUNCTIONS  
LVDS Outputs (DDR LVDS)  
+
CLKOUT /CLKOUT (Pins 26/27): Data Output Clock.  
The digital outputs normally transition at the same time  
The following pins are differential LVDS outputs. The  
output current level is programmable. There is an optional  
internal 100Ω termination resistor between the pins of  
each LVDS output pair.  
+
as the falling and rising edges of CLKOUT . The phase of  
+
CLKOUT canalsobedelayedrelativetothedigitaloutputs  
by programming the mode control registers.  
+
+
+
+
OF /OF (Pins 14/15): Over/Underflow Digital Output.  
D
0_1  
/D  
0_1  
toD  
/D  
10_11  
(Pins18/19,22/23,24/25,  
10_11  
OF is high when an overflow or underflow has occurred.  
28/29, 31/32, 33/34): Double-Data Rate Digital Outputs.  
Two data bits are multiplexed onto each differential output  
pair. The even data bits (D0, D2, D4, D6, D8, D10) appear  
+
This underflow is valid only when CLKOUT is low. In the  
second half clock cycle, the overflow is set to 0.  
+
when CLKOUT is low. The odd data bits (D1, D3, D5, D7,  
+
D9, D11) appear when CLKOUT is high.  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
OV  
DD  
D10_11  
12-BIT  
PIPELINED  
ADC  
CORRECTION  
LOGIC  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
DDR  
LVDS  
S/H  
D0_1  
V
CM  
V
CM  
0.1µF  
OGND  
BUFFER  
BUFFER  
GND  
CLOCK  
CS  
CLOCK/DUTY  
CYCLE CONTROL  
SCK  
SDI  
SPI  
SDO  
PAR/SER  
V
REF  
2.2µF  
1.25V  
REFERENCE  
GND  
GND  
RANGE  
SELECT  
SENSE  
21521012 F01  
Figure 1. Functional Block Diagram  
21521012fa  
14  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TIMING DIAGRAMS  
Double-Data Rate Output Timing, All Outputs Are Differential LVDS  
t
AP  
N
N + 3  
N + 2  
N + 1  
t
t
L
H
+
ENC  
ENC  
+
CLKOUT  
CLKOUT  
t
C
+
D0_1  
D0_1  
D0  
N-6  
D1  
N-6  
D0  
N-5  
D1  
D0  
D1  
N-4  
N-5  
N-4  
t
D
+
D10_11  
D10_11  
D10  
D11  
D10  
D11  
D10  
D11  
N-4  
N-6  
N-6  
N-5  
N-5  
N-4  
N-4  
+
OF  
OF  
OF  
N-6  
INVALID OF  
INVALID OF  
INVALID  
N-5  
21521012 TD01  
t
SKEW  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
21521012 TD02  
21521012fa  
15  
HIGH IMPEDANCE  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
CONVERTER OPERATION  
INPUT DRIVE CIRCUITS  
Input Filtering  
The LTC2152-12/LTC2151-12/LTC2150-12 are 12-  
bit 250Msps/210Msps/170Msps A/D converters that  
are powered by a single 1.8V supply. The analog  
inputs must be driven differentially. The encode in-  
puts should be driven differentially for optimal per-  
formance. The digital outputs are double-data rate  
LVDS. Additional features can be chosen by programming  
the mode control registers through a serial SPI port.  
If possible, there should be an RC lowpass filter right at  
the analog inputs. This lowpass filter isolates the drive  
circuitryfromtheA/Dsample-and-holdswitching,andalso  
limits wide band noise from the drive circuitry. Figure 3  
shows an example of an input RC filter. The RC compo-  
nent values should be chosen based on the application’s  
input frequency.  
ANALOG INPUT  
Transformer-Coupled Circuits  
The analog input is a differential CMOS sample-and-hold  
circuit (Figure 2). It must be driven differentially around a  
Figure 3 shows the analog input being driven by an RF  
transformer with the common mode supplied through a  
common mode voltage set by the V output pin, which  
CM  
pair of resistors via the V pin.  
CM  
is nominally 0.439 • V . The inputs should swing from  
DD  
At higher input frequencies a transmission line balun  
transformer(Figures4and5)hasbetterbalance,resulting  
in lower A/D distortion.  
V
– 0.375V to V + 0.375V. There should be a 180°  
phase difference between the inputs.  
CM  
CM  
LTC2152-12  
V
DD  
10Ω  
R
ON  
V
CM  
2pF  
2pF  
20Ω  
5Ω  
5Ω  
0.1µF  
10pF  
+
A
IN  
IN  
LTC2152-12  
+
0.1µF  
T1  
1:1  
2pF  
2pF  
4.7Ω  
IN  
V
A
A
DD  
IN  
IN  
R
20Ω  
25Ω  
25Ω  
ON  
A
0.1µF  
4.7Ω  
V
DD  
T1: MACOM ETC1-1T  
21521012 F03  
1.2V  
Figure 3. Analog Input Circuit Using a Transformer.  
Recommended for Input Frequencies from 5MHz to 70MHz  
10k  
+
ENC  
10Ω  
V
CM  
ENC  
0.1µF  
LTC2152-12  
0.1µF  
0.1µF  
T2  
WBC1-1L  
4.7Ω  
T1  
+
IN  
A
IN  
MABA  
007159-  
000000  
45Ω  
45Ω  
21521012 F02  
100Ω  
0.1µF  
4.7Ω  
Figure 2. Equivalent Input Circuit for Differential Input Clock  
A
IN  
21521012 F04  
Figure 4. Recommended Front-End Circuit for  
Input Frequencies from 15MHz to 150MHz  
21521012fa  
16  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
Amplifier Circuits  
V
CM  
Figure 6 shows the analog input being driven by a high  
speed differential amplifier. The output of the amplifier is  
AC-coupled to the A/D so the amplifier’s output common  
mode voltage can be optimally set to minimize distortion.  
0.1µF  
10Ω  
4.7Ω  
LTC2152-12  
0.1µF  
MABA  
007159-  
000000  
+
IN  
A
IN  
45Ω  
45Ω  
T1  
100Ω  
At very high frequencies an RF gain block will often have  
lower distortion than a differential amplifier. If the gain  
block is single-ended, then a transformer circuit (Figures  
3 and 5) should convert the signal to differential before  
driving the A/D. The A/D cannot be driven single-ended.  
0.1µF  
4.7Ω  
0.1µF  
A
IN  
21521012 F05  
T1: MACOM ETC1-1-13  
Figure 5. Recommended Front-End Circuit for  
Input Frequencies from 150MHz Up to 900MHz  
Reference  
TheLTC2152-12/LTC2151-12/LTC2150-12hasaninternal  
1.25V voltage reference. For a 1.5V input range with in-  
ternal reference, connect SENSE to V . For a 1.5V input  
DD  
range with an external reference, apply a 1.25V reference  
voltage to SENSE (Figure 7).  
V
CM  
0.1µF  
50Ω  
50Ω  
LTC2152-12  
3pF  
Encode Input  
0.1µF  
4.7Ω  
+
INPUT  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board.  
A
A
IN  
3pF  
3pF  
0.1µF  
4.7Ω  
IN  
21521012 F06  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance (Figure 8). If the common mode  
of the driver is within 1.1V to 1.5V, it is possible to drive  
Figure 6. Front-End Circuit Using a High  
Speed Differential Amplifier  
LTC2152-12  
V
DD  
5Ω  
1.25V  
2.2µF  
1.2V  
V
REF  
10k  
10k  
+
ENC  
SCALER/  
BUFFER  
ADC  
REFERENCE  
SENSE  
SENSE  
DETECTOR  
ENC  
21521012 F07  
21521012 F08  
Figure 8. Equivalent Encode Input Circuit  
Figure 7. Reference Circuit  
21521012fa  
17  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
the encode inputs directly. Otherwise, a transformer or  
coupling capacitors are needed (Figures 9 and 10). The  
maximum (peak) voltage of the input signal should never  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. If  
the duty cycle stabilizer is disabled, care should be taken  
to make the sampling clock have a 50% ( 5%) duty cycle.  
exceed V + 0.1V or go below –0.1V.  
DD  
Clock Duty Cycle Stabilizer  
DIGITAL OUTPUTS  
For good performance the encode signal should have a  
50% ( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintain a constant 50% internal duty cycle. If the encode  
signal changes frequency or is turned off, the duty cycle  
stabilizer circuit requires one hundred clock cycles to lock  
onto the input clock. The duty cycle stabilizer is enabled  
via SPI Register A2 (see SPI Control Register) or by CS  
in parallel programming mode.  
Thedigitaloutputsaredouble-datarateLVDSsignals.Two  
data bits are multiplexed and output on each differential  
+
output pair. There are six LVDS output pairs (D0_1 /  
+
+
+
D0_1 through D10_11 /D10_11 ). Overflow (OF /OF )  
and the data output clock (CLKOUT /CLKOUT ) each have  
an LVDS output pair.  
By default the outputs are standard LVDS levels: 3.5mA  
outputcurrentanda1.25Voutputcommonmodevoltage.  
LTC2152-12  
V
DD  
1.2V  
10k 10k  
0.1µF  
50Ω  
50Ω  
T1  
100Ω  
0.1µF  
0.1µF  
21521012 F09  
T1: MACOM ETC1-1-13  
Figure 9. Sinusoidal Encode Drive  
LTC2152-12  
V
DD  
1.2V  
10k 10k  
0.1µF  
+
ENC  
PECL OR  
LVDS INPUT  
100Ω  
0.1µF  
ENC  
21521012 F10  
Figure 10. PECL or LVDS Encode Drive  
21521012fa  
18  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
An external 100Ω differential termination resistor is re-  
quiredforeachLVDSoutputpair.Theterminationresistors  
shouldbelocatedascloseaspossibletotheLVDSreceiver.  
Overflow Bit  
The overflow output bit (OF) outputs a logic high when  
the analog input is either overranged or underranged.  
The overflow bit has the same pipeline latency as the  
data bits.  
The outputs are powered by OV and OGND, which are  
DD  
isolated from the A/D core power and ground.  
When CLKINV is set to 0 in the SPI register A2, OF signal  
Programmable LVDS Output Current  
+
is valid when CLKOUT is low as shown in the Timing  
The default output driver current is 3.5mA. This current  
can be adjusted by serially programming mode control  
register A3 (see Table 3). Available current levels are  
1.75mA, 2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
Diagram.  
Phase Shifting the Output Clock  
To allow adequate setup and hold time when latching the  
+
output data, the CLKOUT signal may need to be phase  
Optional LVDS Driver Internal Termination  
shiftedrelativetothedataoutputbits.MostFPGAshavethis  
feature; this is generally the best place to adjust the timing.  
In most cases, using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In ad-  
dition, an optional internal 100Ω termination resistor  
can be enabled by serially programming mode control  
register A3. The internal termination helps absorb any  
reflections caused by imperfect termination at the re-  
ceiver. When the internal termination is enabled, the  
output driver current is doubled to maintain the same  
output voltage swing.  
+
Alternatively, the ADC can also phase shift the CLKOUT /  
CLKOUT signals by serially programming mode control  
register A2. The output clock can be shifted by 0°, 45°,  
90°, or 135°. To use the phase shifting feature, the clock  
duty cycle stabilizer must be turned on. Another con-  
+
trol register bit can invert the polarity of CLKOUT and  
CLKOUT , independently of the phase shift. The combina-  
tion of these two features enables phase shifts of 45° up  
to 315° (Figure 11).  
21521012fa  
19  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
+
ENC  
D0-D11, OF  
MODE CONTROL BITS  
CLKINV CLKPHASE1 CLKPHASE0  
PHASE  
SHIFT  
0°  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
135°  
180°  
225°  
270°  
+
CLKOUT  
315°  
21521012 F11  
Figure 11. Phase-Shifting CLKOUT  
21521012fa  
20  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
DATA FORMAT  
CLKOUT  
CLKOUT  
OF  
Table 1 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
OF  
D11  
D11/D0  
D10/D0  
Table 1. Output Codes vs Input Voltage  
D10  
+
A
– A  
D11-D0  
D11-D0  
IN  
IN  
(1.5V Range)  
OF  
1
(OFFSET BINARY)  
(2’s COMPLEMENT)  
RANDOMIZER  
ON  
>0.75V  
1111 1111 1111  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
0000 0000 0000  
0111 1111 1111  
0111 1111 1111  
0111 1111 1110  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
1000 0000 0001  
1000 0000 0000  
1000 0000 0000  
D1  
D1/D0  
+0.75V  
0
+0.7496337V  
+0.0003662V  
+0.000000V  
–0.0003662V  
–0.0007324V  
–0.74963378V  
–0.75V  
0
0
D0  
D0  
0
21521012 F12  
0
0
Figure 12. Functional Equivalent of Digital Output Randomizer  
0
0
< –0.75V  
1
PC BOARD  
Digital Output Randomizer  
FPGA  
CLKOUT  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off-chip, these unwanted  
tones can be randomized, which reduces the unwanted  
tone amplitude.  
OF  
D11/D0  
LTC215X-12  
D11  
D10  
D10/D0  
D1/D0  
D0  
The digital output is randomized by applying an exclu-  
sive-OR logic operation between the LSB and all other  
data output bits. To decode, the reverse operation is  
applied—an exclusive-OR operation is applied between  
the LSB and all other bits. The LSB, OF and CLKOUT out-  
puts are not affected. The output randomizer is enabled  
by serially programming mode control register A4.  
D1  
D0  
21521012 F13  
Figure 13. Unrandomizing for Randomized  
Digital Output Signal  
21521012fa  
21  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
Alternate Bit Polarity  
Sleep Mode  
TheA/Dmaybeplacedinapower-downmodetoconserve  
power. In sleep mode, the entire A/D converter is powered  
down, resulting in < 2mW power consumption. If the en-  
code input signal is not disabled, the power consumption  
will be higher (up to 2mW at 250Msps). Sleep mode is  
enabled by mode control register A1 (serial programming  
mode), or by SCK (parallel programming mode).  
Another feature that may reduce digital feedback on the  
circuit board is the alternate bit polarity mode. When this  
mode is enabled, all of the odd bits (D1, D3, D5, D7, D9,  
D11) are inverted before the output buffers. The even  
bits (D0, D2, D4, D6, D8, D10), OF and CLKOUT are not  
affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
The amount of time required to recover from sleep mode  
depends on the size of the bypass capacitors on V  
.
REF  
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11). The alternate bit  
polaritymodeisindependentofthedigitaloutputrandom-  
izer—either both or neither function can be on at the same  
time. The alternate bit polarity mode is enabled by serially  
programming mode control register A4.  
For the suggested values in Figure 1, the A/D will stabi-  
lize after 0.1ms + 2500 • t where t is the period of the  
p
p
sampling clock.  
Nap Mode  
In nap mode the A/D core is powered down while the  
internal reference circuits stay active, allowing faster  
wakeup. Recovering from nap mode requires at least 100  
clock cycles. Wake-up time from nap mode is guaranteed  
only if the clock is kept running, otherwise sleep mode,  
wake-up time conditions apply. Nap mode is enabled by  
setting register A1 in the serial programming mode.  
Digital Output Test Patterns  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes (activate by setting  
DTESTON) that force the A/D data outputs (OF, D11 to  
D0) to known values:  
All 1s: All outputs are 1  
All 0s: All outputs are 0  
DEVICE PROGRAMMING MODES  
The operating modes of the LTC215X-12 can be pro-  
grammed by either a parallel interface or a simple serial  
interface. The serial interface has more flexibility and  
can program all available modes. The parallel interface  
is more limited and can only program some of the more  
commonly used modes.  
Alternating: Outputs change from all 1s to all 0s on  
alternating samples  
Checkerboard: Outputs change from 1010101010101  
to 0101010101010 on alternating samples.  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes:  
2’s complement, randomizer, alternate-bit polarity.  
Parallel Programming Mode  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK and SDI pins are binary logic  
DD  
Output Disable  
inputs that set certain operating modes. These pins can  
be tied to V or ground, or driven by 1.8V, 2.5V, or 3.3V  
The digital outputs may be disabled by serially program-  
ming mode control register A3. All digital outputs, includ-  
ing OF and CLKOUT, are disabled. The high impedance  
disabled state is intended for long periods of inactivity,  
it is not designed for multiplexing the data bus between  
multiple converters.  
DD  
CMOS logic. Table 2 shows the modes set by CS, SCK  
and SDI.  
21521012fa  
22  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
Table 2. Parallel Programming Mode Control Bits)  
Software Reset  
PIN  
DESCRIPTION  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset it is neces-  
sary to write 1 in register A0 (Bit D7). After the reset is  
complete, Bit D7 is automatically set back to zero. This  
register is WRITE-ONLY.  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
Power-Down Control Bit  
SCK  
SDI  
0 = Normal Operation  
1 = Sleep Mode (entire ADC is powered down)  
LVDS Current Selection Bit  
0 = 3.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
GROUNDING AND BYPASSING  
Serial Programming Mode  
The LTC215X-12 requires a printed circuit board with a  
clean unbroken ground plane in the first layer beneath the  
ADC. A multilayer board with an internal ground plane is  
recommended. Layoutforthe printed circuit board should  
ensure that digital and analog signal lines are separated as  
much as possible. In particular, care should be taken not  
to run any digital track alongside an analog signal track  
or underneath the ADC.  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that program the A/D control registers.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first sixteen rising edges  
of SCK. Any SCK rising edges after the first sixteen are  
ignored.ThedatatransferendswhenCSistakenhighagain.  
High quality ceramic bypass capacitors should be used  
at the V , OV , V and V  
pins. Bypass capacitors  
DD  
DD CM  
REF  
must be located as close to the pins as possible. Size  
0402 ceramic capacitors are recommended. The traces  
connecting the pins and bypass capacitors must be kept  
short and should be made as wide as possible.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the Timing  
Diagrams). During a readback command the register is  
not updated and data on SDI is ignored.  
The analog inputs, encode signals and digital outputs  
should not be routed next to each other. Ground fill and  
grounded vias should be used as barriers to isolate these  
signals from each other.  
HEAT TRANSFER  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required.  
If serial data is only written and readback is not needed,  
then SDO can be left floating and no pull-up resistor is  
needed.Table 3showsamapofthemodecontrolregisters.  
Most of the heat generated by the LTC215X-12 is trans-  
ferred from the die through the bottom-side exposed pad  
and package leads onto the printed circuit board. For good  
electricalandthermalperformance,theexposedpadmust  
be soldered to a large grounded pad on the PC board. This  
pad should be connected to the internal ground planes by  
an array of vias.  
21521012fa  
23  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
Table 3. Serial Programming Mode Register Map (PAR/SER = GND). An “X” indicates an unused bit.  
REGISTER A0: RESET REGISTER (ADDRESS 00h) WRITE-ONLY  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Not Used  
Software Reset Bit  
1 = Software Reset. All mode control registers are reset to 00h. This bit is automatically set back to zero after the reset is complete.  
Bits 6-0  
Unused bit.  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
0
D0  
0
SLEEP  
NAP  
Bits 7-4  
Unused, these bits are read back as 0.  
Bit 3  
SLEEP  
0 = Normal Operation  
1 = Power Down Entire ADC  
Bit 2  
NAP  
0 = Normal Mode  
1 = Low Power Mode  
Must be set to 0.  
Bit 1-0  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
D0  
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, these bits are read back as 0.  
CLKINV Output Clock Invert Bit  
Bit 3  
0 = Normal CLKOUT Polarity (as shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0  
Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (as shown in the Timing Diagrams)  
+
+
+
01 = CLKOUT /CLKOUT delayed by 45° (Clock Period • 1/8)  
10 = CLKOUT /CLKOUT delayed by 90° (Clock Period • 1/4)  
11 = CLKOUT /CLKOUT delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT phase delay feature is used, the clock duty cycle stabilizer must also be turned on.  
Bit 0  
DCS  
Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
21521012fa  
24  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
X
D5  
X
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
Bits 7-5  
Unused, these bits are read back as 0.  
Bits 4-2  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 1  
Bit 0  
TERMON  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS output driver current is 2× the current set by ILVDS2:ILVDS0  
LVDS Internal Termination Bit  
OUTOFF  
0 = LVDS DDR  
Digital Output Mode Control Bits  
1 = LVDS Tristate (High Impedance)  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
DTESTON  
RAND  
TWOSCOMP  
Bits 7-5  
OUTTEST2:OUTTEST0  
000 = All Digital Outputs = 0  
001 = All Digital Outputs = 1  
Digital Output Test Pattern Bits  
010 = Alternating Output Pattern. OF, D11-D0 alternate between 00000 0000 0000 and 11111 1111 1111  
100 = Checkerboard Output Pattern. OF, D11-D0 alternate between 01010 1010 1010 and 10101 0101 0101  
Bit 4  
ABP  
Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On  
Bit 3  
Bit 2  
Must be set to 0.  
DTESTON  
0 = Normal Mode  
1 = Enable the Digital Output Test Patterns  
Enable digital patterns (Bits 7-5)  
Bit 1  
Bit 0  
RAND  
Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
21521012fa  
25  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
APPLICATIONS INFORMATION  
215210 F15  
215210 F16  
215210 F14  
Silkscreen Top  
Inner Layer 1  
Inner Layer 2  
215210 F17  
215210 F18  
Inner Layer 3  
Inner Layer 4  
215210 F19  
215210 F20  
Inner Layer 5  
Bottom Layer  
21521012fa  
26  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL APPLICATIONS  
LTC2152-12 Schematic  
SDO  
SDI  
SCK  
CS  
PAR/SER  
V
DD  
0.2µF  
0.1µF  
TP3  
R9, 1k  
SENSE  
C13  
1
V
30  
DD  
2.2µF  
OV  
DD  
+
2
V
29  
28  
27  
26  
25  
24  
23  
22  
21  
DD  
+
D6_7  
D6_7  
D6_7  
D6_7  
R14  
10Ω  
3
GND  
+
+
+
4
5
+
+
A
A
A
INA  
INA  
INA  
+
CLKOUT  
CLKOUT  
D4_5  
CLKOUT  
CLKOUT  
R16  
100Ω  
LTC2152-12  
6
GND  
R19  
10Ω  
+
SENSE  
D4_5  
7
SENSE  
D4_5  
D4_5  
A
8
INA  
V
REF  
+
D2_3  
D2_3  
9
C16  
2.2µF  
V
CM  
D2_3  
D2_3  
10  
41  
GND  
GND  
10Ω  
OGND  
VCM  
C21  
0.1µF  
21521012 TA02  
0.1µF  
0.1µF  
100Ω  
0.1µF  
+
CLK  
CLK  
21521012fa  
27  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-1728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.10 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.115  
TYP  
6.00 0.10  
(4 SIDES)  
R = 0.10  
TYP  
39 40  
0.40 0.10  
PIN 1 TOP MARK  
(SEE NOTE 6)  
1
2
PIN 1 NOTCH  
R = 0.45 OR  
0.35 ¥ 45  
CHAMFER  
4.42 0.10  
4.50 REF  
(4-SIDES)  
4.42 0.10  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
21521012fa  
28  
For more information www.linear.com/LTC2152-12  
LTC2152-12/  
LTC2151-12/LTC2150-12  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
5 and 15  
A
12/14 Changed pipeline latency to 6  
Updated G17, G37 and G57  
7, 10 and 12  
21521012fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
29  
LTC2152-12/  
LTC2151-12/LTC2150-12  
TYPICAL APPLICATION  
LTC2152-12: 32K Point 2-Tone FFT,  
fIN = 71MHz and 69MHz, 250Msps  
V
DD  
OV  
DD  
0
D10_11  
–20  
12-BIT  
PIPELINED  
ADC  
CORRECTION  
LOGIC  
DDR  
LVDS  
ANALOG  
INPUT  
OUTPUT  
DRIVERS  
S/H  
–40  
–60  
D0_1  
OGND  
CLOCK/DUTY  
CYCLE  
CONTROL  
–80  
CLOCK  
–100  
–120  
21521012 TA03a  
GND  
0
40  
60  
80  
100 120  
20  
FREQUENCY (MHz)  
21521012 TA03b  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Lead QFN Package  
LTC2208  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
LTC2157-14/LTC2156-14/  
LTC2155-14  
14-Bit, 250Msps/210Msps/170Msps,  
1.8V Dual ADC, DDR LVDS Outputs  
650mW/616mW/567mW, 70dB SNR, 90dB SFDR, 64-Lead QFN Package  
LTC2152-14/LTC2151-14/  
LTC2150-14  
14-Bit, 250Msps/210Msps/170Msps,  
1.8V Dual ADC, DDR LVDS Outputs  
356mW/338mW/313mW, 70dB SNR, 90dB SFDR, 40-Lead QFN Package  
LTC2262-14  
14-Bit, 150Msps 1.8V ADC, Ultralow Power  
149mW, 72.8dB SNR, 88dB SFDR, DDR LVDS/DDR CMOS/CMOS Outputs,  
40-Lead QFN Package  
RF Mixers/Demodulators  
LT®5517  
40MHz to 900MHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LT5527  
LT5575  
400MHz to 3.7GHz High Linearity  
Downconverting Mixer  
24.5dBm IIP3 at 900MHz, 23.5dBm IIP3 at 3.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
800MHz to 2.7GHz Direct Conversion  
Quadrature Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator,  
Integrated RF and LO Transformer  
Amplifiers/Filters  
LTC6409  
10GHz GBW, 1.1nV/√Hz Differential Amplifier/ 88dB SFDR at 100MHz, Input Range Includes Ground 52mA Supply  
ADC Driver  
Current, 3mm × 2mm QFN Package  
LTC6412  
800MHz, 31dB Range, Analog-Controlled  
Variable Gain Amplifier  
Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz,  
10dB Noise Figure, 4mm × 4mm QFN-24 Package  
LTC6420-20  
1.8GHz Dual Low Noise, Low Distortion  
Differential ADC Drivers for 300MHz IF  
Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply Current per  
Amplifier, 3mm × 4mm QFN-20 Package  
Receiver Subsystems  
LTM®9002  
14-Bit Dual Channel IF/Baseband Receiver  
Subsystem  
Integrated High Speed ADC, Passive Filters and Fixed Gain Differential  
Amplifiers  
LTM9003  
12-Bit Digital Pre-Distortion Receiver  
Integrated 12-Bit ADC Down-Converter Mixer with 0.4GHz to 3.8GHz Input  
Frequency Range  
21521012fa  
LT1214 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
30  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2152-12  
LINEAR TECHNOLOGY CORPORATION 2011  

相关型号:

LTC2150-14

300MHz Digital Predistortion Receiver
Linear

LTC2150-14_15

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2150CUJ-12#PBF

LTC2150-12 - Single 12-Bit 170Msps ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2150CUJ-14#PBF

LTC2150-14 - Single 14-Bit 170Msps ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2150CUP-14PBF

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2150IUP-14PBF

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2151-12_15

Single 12-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2151-14

300MHz Digital Predistortion Receiver
Linear

LTC2151-14_15

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear

LTC2151CUJ-12#PBF

LTC2151-12 - Single 12-Bit 210Msps ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2151CUJ-14#PBF

LTC2151-14 - Single 14-Bit 210Msps ADCs; Package: QFN; Pins: 40; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2151CUP-14PBF

14-Bit 250Msps/ 210Msps/170Msps ADCs
Linear