HFA1212IB [INTERSIL]

Dual 350MHz, Low Power Closed Loop Buffer Amplifier; 350MHz的双通道,低功耗闭环缓冲放大器
HFA1212IB
型号: HFA1212IB
厂家: Intersil    Intersil
描述:

Dual 350MHz, Low Power Closed Loop Buffer Amplifier
350MHz的双通道,低功耗闭环缓冲放大器

缓冲放大器 光电二极管
文件: 总10页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1212  
September 1998  
File Number 3607.4  
Dual 350MHz, Low Power Closed Loop  
Buffer Amplifier  
Features  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 0.025%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
The HFA1212 is a dual closed loop Buffer featuring user  
programmable gain and high speed performance.  
Manufactured on Intersil’s proprietary complementary  
bipolar UHF-1 process, these devices offer wide -3dB  
bandwidth of 350MHz, very fast slew rate, excellent gain  
flatness and high output current.  
• Wide -3dB Bandwidth (A = +2). . . . . . . . . . . . . .350MHz  
V
• Very Fast Slew Rate (A = -1) . . . . . . . . . . . . . . 1100V/µs  
V
• Low Supply Current . . . . . . . . . . . . . . . . . . . . 6mA/Buffer  
• High Output Current . . . . . . . . . . . . . . . . . . . . . . . . .60mA  
• Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . . 0.99V/V  
A unique feature of the pinout allows the user to select a  
voltage gain of +1, -1, or +2, without the use of any external  
components. Gain selection is accomplished via  
connections to the inputs, as described in the “Application  
Information” section. The result is a more flexible product,  
fewer part types in inventory, and more efficient use of board  
space.  
• User Programmable For Closed-Loop Gains of +1, -1 or  
+2 Without Use of External Resistors  
• Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 8ns  
• Standard Operational Amplifier Pinout  
Compatibility with existing op amp pinouts provides flexibility  
to upgrade low gain amplifiers, while decreasing component  
count. Unlike most buffers, the standard pinout provides an  
upgrade path should a higher closed loop gain be needed at  
a future date. For Military product, refer to the HFA1212/883  
data sheet.  
Applications  
• High Resolution Monitors  
• Professional Video Processing  
• Medical Imaging  
• Video Digitizing Boards/Systems  
• RF/IF Processors  
Ordering Information  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
o
• Battery Powered Communications  
• Flash Converter Drivers  
• High Speed Pulse Amplifiers  
PACKAGE  
8 Ld PDIP  
8 Ld SOIC  
HFA1212IP  
-40 to 85  
E8.3  
M8.15  
HFA1212IB  
(H1212I)  
-40 to 85  
Pinout  
HFA1212  
(PDIP, SOIC)  
TOP VIEW  
OUT1  
-IN1  
+IN1  
V-  
1
2
3
4
8
7
6
5
V+  
-
+
-
OUT2  
-IN2  
+IN2  
+
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HFA1212  
Absolute Maximum Rating  
Thermal Information  
o
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Output Current (Note 1) . . . . . . . . . . . . . . . . .Short Circuit Protected  
Thermal Resistance (Typical, Note 2)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130  
160  
o
ESD Rating  
Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . .600V  
o
o
o
Operating Conditions  
(SOIC - Lead Tips Only)  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle)  
output current should not exceed 30mA for maximum reliability.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±5V, A = +1, R = 100Ω, Unless Otherwise Specified.  
SUPPLY  
V
L
(NOTE 3)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP  
( C)  
o
PARAMETER  
INPUT CHARACTERISTICS  
Output Offset Voltage  
MIN  
TYP  
MAX  
UNITS  
A
A
B
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
C
C
A
A
B
B
25  
Full  
Full  
25  
-
2
3
10  
15  
70  
15  
30  
-
mV  
mV  
-
o
Average Output Offset Voltage Drift  
-
22  
-
µV/ C  
Channel-to-Channel Output Offset  
Voltage Mismatch  
-
-
mV  
mV  
dB  
dB  
dB  
dB  
dB  
dB  
µA  
µA  
Full  
25  
-
Common-Mode Rejection Ratio  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
42  
40  
40  
45  
43  
43  
-
45  
44  
45  
49  
48  
48  
1
CM  
CM  
CM  
85  
-
-40  
25  
-
Power Supply Rejection Ratio  
V = ±1.8V  
PS  
-
V = ±1.8V  
PS  
85  
-
V = ±1.2V  
PS  
-40  
25  
-
Input Bias Current  
15  
25  
80  
15  
25  
1
Full  
Full  
25  
-
3
o
Input Bias Current Drift  
-
30  
-
nA/ C  
Channel-to-Channel Input Bias Current  
Mismatch  
-
µA  
µA  
Full  
25  
-
-
Input Bias Current Power Supply Sensitivity  
Input Resistance  
V = ±1.25V  
PS  
-
0.5  
-
µA/V  
µA/V  
MΩ  
MΩ  
MΩ  
Full  
25  
-
3
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
0.8  
0.5  
0.5  
-
1.1  
1.4  
1.3  
350  
2
-
CM  
CM  
CM  
85  
-
-40  
25  
-
Inverting Input Resistance  
Input Capacitance  
-
25  
-
-
pF  
Input Voltage Common Mode Range  
(Implied by V CMRR and +R tests)  
IO IN  
25, 85  
-40  
25  
±1.8  
±1.2  
-
±2.4  
±1.7  
7
-
V
-
V
Input Noise Voltage Density (Note 4)  
Input Noise Current Density (Note 4)  
f = 100kHz  
f = 100kHz  
-
nV/Hz  
pA/Hz  
25  
-
3.6  
-
2
HFA1212  
Electrical Specifications  
V
= ±5V, A = +1, R = 100Ω, Unless Otherwise Specified. (Continued)  
SUPPLY  
V
L
(NOTE 3)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP  
( C)  
o
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
TRANSFER CHARACTERISTICS  
Gain (V = -1V to +1V)  
IN  
A
= -1  
= +1  
= +2  
= -1  
= +1  
= +2  
A
A
A
A
A
A
A
A
A
A
A
A
25  
Full  
25  
-0.98  
0.996  
-1.02  
-1.025  
1.02  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V/V  
V
0.975  
1.000  
A
0.98  
0.992  
V
Full  
25  
0.975  
0.993  
1.025  
2.04  
A
1.96  
1.988  
V
Full  
25  
1.95  
1.990  
2.05  
Channel-to-Channel Gain Mismatch  
A
-
-
-
-
-
-
-
-
-
-
-
-
±0.02  
±0.025  
±0.025  
±0.025  
±0.04  
±0.05  
V
Full  
25  
A
V
Full  
25  
A
V
Full  
AC CHARACTERISTICS  
-3dB Bandwidth  
A
= -1  
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
300  
240  
350  
165  
150  
125  
±0.03  
±0.04  
-65  
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
V
(V  
OUT  
= 0.2V  
, Note 4)  
P-P  
A
= +1, +R = 620Ω  
V
S
A
= +2  
= -1  
V
Full Power Bandwidth  
A
V
(V  
= 5V  
= 4V  
at A = +2 or -1,  
at A = +1, Note 4)  
V
OUT  
P-P  
P-P  
V
A
= +1, +R = 620Ω  
V
S
V
OUT  
A
= +2  
V
Gain Flatness  
(V = 0.2V , Note 4)  
A
= +2, To 25MHz  
= +2, To 50MHz  
V
OUT P-P  
A
dB  
V
Crosstalk  
(All Channels Hostile, Note 4)  
5MHz  
dB  
10MHz  
-60  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
(Note 4)  
A
= -1  
A
A
A
A
B
B
B
B
B
B
B
25  
Full  
25, 85  
-40  
25  
±3.0  
±3.2  
±3.0  
55  
-
-
-
-
-
-
-
-
-
-
-
V
V
±2.8  
V
Output Current  
(Note 4)  
A
= -1, R = 50Ω  
50  
28  
-
mA  
mA  
mA  
V
L
42  
Output Short Circuit Current  
DC Closed Loop Output Impedance  
Second Harmonic Distortion  
100  
0.2  
-60  
-50  
-60  
-50  
-65  
A
= +2  
25  
-
V
10MHz  
20MHz  
10MHz  
20MHz  
25  
-
dBc  
dBc  
dBc  
dBc  
dB  
(A = +2, V  
= 2V  
OUT  
, Note 4)  
P-P  
V
25  
-
Third Harmonic Distortion  
(A = +2, V = 2V , Note 4)  
25  
-
V
OUT  
P-P  
25  
-
Reverse Isolation (S , Note 4)  
12  
30MHz, A = +2  
25  
-
V
TRANSIENT RESPONSE A = +2, Unless Otherwise Specified  
V
Rise and Fall Times  
(V = 0.5V  
Rise Time  
Fall Time  
B
B
25  
25  
-
-
1.0  
1.1  
-
-
ns  
ns  
)
P-P  
OUT  
3
HFA1212  
Electrical Specifications  
V
= ±5V, A = +1, R = 100Ω, Unless Otherwise Specified. (Continued)  
SUPPLY  
V
L
(NOTE 3)  
TEST  
LEVEL  
TEST  
CONDITIONS  
TEMP  
( C)  
o
PARAMETER  
MIN  
TYP  
4
MAX  
UNITS  
%
Overshoot  
+OS  
-OS  
B
B
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
(V  
OUT  
= 0.5V  
, V = 1ns, Note 5)  
t
P-P IN RISE  
13  
%
Slew Rate  
A
= -1  
+SR  
-SR  
+SR  
-SR  
+SR  
-SR  
2000  
1150  
1100  
850  
1300  
900  
24  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
V
(V  
= 5V  
at A = +2 or -1,  
V
OUT  
P-P  
P-P  
V
= 4V  
at A = +1)  
OUT  
V
A
= +1,  
V
+R = 620Ω  
S
A
= +2  
V
Settling Time  
(V = +2V to 0V Step, Note 4)  
To 0.1%  
To 0.05%  
To 0.02%  
OUT  
37  
ns  
60  
ns  
Overdrive Recovery Time  
V
= ±2V  
8.5  
ns  
IN  
VIDEO CHARACTERISTICS  
Differential Gain (f = 3.58MHz, A = +2)  
R
R
= 150Ω  
= 150Ω  
B
B
25  
25  
-
-
0.025  
0.03  
-
-
%
V
L
Differential Phase (f = 3.58MHz, A = +2)  
V
Degrees  
L
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
±4.5  
-
±5.5  
6.1  
V
Power Supply Current  
-
-
5.9  
6.1  
mA/Op Amp  
mA/Op Amp  
Full  
6.3  
NOTES:  
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
4. See Typical Performance Curves for more information.  
5. Negative overshoot dominates for output signal swings below GND (e.g. 0.5V  
), yielding a higher overshoot limit compared to the  
P-P  
V
= 0V to 0.5V condition. See the “Application Information” section for details.  
OUT  
+2 or -1 (see “Unity Gain Considerations” for discussion of  
parasitic impact on unity gain performance).  
Application Information  
HFA1212 Advantages  
The HFA1212’s closed loop gain implementation provides  
better gain accuracy, lower offset and output impedance,  
and better distortion compared with open loop buffers.  
The HFA1212 features a novel design which allows the user  
to select from three closed loop gains, without any external  
components. The result is a more flexible product, fewer part  
types in inventory, and more efficient use of board space.  
Implementing a dual, gain of 2, cable driver with this IC  
eliminates the four gain setting resistors, which frees up  
board space for termination resistors.  
Closed Loop Gain Selection  
This “buffer” operates in closed loop gains of -1, +1, or +2, with  
gain selection accomplished via connections to the inputs.  
Applying the input signal to +IN and floating -IN selects a gain  
of +1 (see next section for layout caveats), while grounding -IN  
selects a gain of +2. A gain of -1 is obtained by applying the  
input signal to -IN with +IN grounded through a 50resistor.  
Like most newer high performance amplifiers, the HFA1212 is a  
current feedback amplifier (CFA). CFAs offer high bandwidth  
and slew rate at low supply currents, but can be difficult to use  
because of their sensitivity to feedback capacitance and  
parasitics on the inverting input (summing node). The HFA1212  
eliminates these concerns by bringing the gain setting resistors  
on-chip. This yields the optimum placement and value of the  
feedback resistor, while minimizing feedback and summing  
node parasitics. Because there is no access to the summing  
node, the PCB parasitics do not impact performance at gains of  
The table below summarizes these connections:  
CONNECTIONS  
GAIN  
(A  
CL  
)
+INPUT  
50to GND  
Input  
-INPUT  
Input  
-1  
+1  
+2  
NC (Floating)  
GND  
Input  
4
HFA1212  
An example of a good high frequency layout is the  
Unity Gain Considerations  
Evaluation Board shown in Figure 3.  
Unity gain selection is accomplished by floating the -Input of  
the HFA1212. Anything that tends to short the -Input to GND,  
such as stray capacitance at high frequencies, will cause the  
amplifier gain to increase toward a gain of +2. The result is  
excessive high frequency peaking, and possible instability.  
Even the minimal amount of capacitance associated with  
attaching the -Input lead to the PCB results in approximately  
6dB of gain peaking. At a minimum this requires due care to  
ensure the minimum capacitance at the -Input connection.  
Driving Capacitive Loads  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
avoided by placing a resistor (R ) in series with the output  
S
prior to the capacitance.  
Table 1 lists five alternate methods for configuring the HFA1212  
as a unity gain buffer, and the corresponding performance. The  
implementations vary in complexity and involve performance  
trade-offs. The easiest approach to implement is simply  
shorting the two input pins together, and applying the input  
signal to this common node. The amplifier bandwidth  
decreases from 430MHz to 280MHz, but excellent gain flatness  
is the benefit. A drawback to this approach is that the amplifier  
input noise voltage and input offset voltage terms see a gain of  
+2, resulting in higher noise and output offset voltages.  
Alternately, a 100pF capacitor between the inputs shorts them  
only at high frequencies, which prevents the increased output  
offset voltage but delivers less gain flatness.  
Figure 1 details starting points for the selection of this  
resistor. The points on the curve indicate the R and C  
S
L
combinations for the optimum bandwidth, stability, and  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
R
and C form a low pass network at the output, thus  
L
S
limiting system bandwidth well below the amplifier bandwidth  
of 350MHz. By decreasing R as C increases (as  
S
L
illustrated in the curves), the maximum bandwidth is  
obtained without sacrificing stability. In spite of this,  
bandwidth decreases as the load capacitance increases.  
Another straightforward approach is to add a 620resistor  
in series with the amplifier’s positive input. This resistor and  
the HFA1212 input capacitance form a low pass filter which  
rolls off the signal bandwidth before gain peaking occurs.  
This configuration was employed to obtain the data sheet AC  
and transient parameters for a gain of +1.  
TABLE 1. UNITY GAIN PERFORMANCE FOR VARIOUS  
IMPLEMENTATIONS  
PEAKING  
(dB)  
BW  
±0.1dB GAIN  
APPROACH  
(MHz) FLATNESS (MHz)  
Remove -IN Pin  
4.5  
0
430  
220  
215  
21  
27  
15  
+R = 620Ω  
S
Pulse Overshoot  
+R = 620and  
0.5  
S
The HFA1212 utilizes a quasi-complementary output stage to  
achieve high output current while minimizing quiescent supply  
current. In this approach, a composite device replaces the  
traditional PNP pulldown transistor. The composite device  
switches modes after crossing 0V, resulting in added distortion  
for signals swinging below ground, and an increased overshoot  
on the negative portion of the output waveform (see Figure 6,  
Figure 9, and Figure 12). This overshoot isn’t present for small  
bipolar signals (see Figure 4, Figure 7, and Figure 10) or large  
positive signals (see Figure 5, Figure 8 and Figure 11).  
Remove -IN Pin  
Short +IN to -IN (e.g.,  
Pins 2 and 3)  
0.6  
0.7  
280  
290  
70  
40  
100pF Capacitor  
Between +IN and -IN  
50  
40  
30  
20  
10  
0
PC Board Layout  
This amplifier’s frequency response depends greatly on the  
care taken in designing the PC board (PCB). The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
A
= +1  
V
A
= +2  
150  
V
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
0
100  
200  
300  
400  
50  
250  
350  
LOAD CAPACITANCE (pF)  
Terminated microstrip signal lines are recommended at the  
input and output of the device. Capacitance directly on the  
output must be minimized, or isolated as discussed in the  
next section.  
FIGURE 1. RECOMMENDED SERIES RESISTOR vs LOAD  
CAPACITANCE  
5
HFA1212  
Evaluation Board  
The performance of the HFA1212 may be evaluated using  
the HA5023 Evaluation Board, slightly modified as follows:  
1. Remove the two feedback resistors, and leave the con-  
nections open.  
2. a. For A = +1 evaluation, remove the gain setting  
V
resistors (R ), and leave pins 2 and 6 floating.  
1
b. For A = +2, replace the gain setting resistors (R ) with  
V
1
0resistors to GND.  
3. Replace the 0series output resistors with 50.  
The modified schematic for amplifier 1, and the board layout  
are shown in Figures 2 and 3.  
FIGURE 3A. TOP LAYOUT  
To order evaluation boards (part number HA5023EVAL),  
please contact your local sales office.  
50Ω  
OUT  
1
2
3
4
8
7
6
5
+5V  
10µF  
R
(NOTE)  
1
0.1µF  
+
IN  
50Ω  
GND  
GND  
5V  
10µF  
(A = +1)  
=
NOTE: R  
V
1
or 0(A = +2)  
0.1µF  
V
FIGURE 2. MODIFIED EVALUATION BOARD SCHEMATIC  
FIGURE 3B. BOTTOM LAYOUT  
FIGURE 3. EVALUATION BOARD LAYOUT  
o
Typical Performance Curves  
V
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified  
SUPPLY A L  
200  
2.0  
1.5  
1.0  
0.5  
A
= +2  
V
A = +2  
V
150  
100  
50  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 4. SMALL SIGNAL PULSE RESPONSE  
FIGURE 5. LARGE SIGNAL POSITIVE PULSE RESPONSE  
6
HFA1212  
o
Typical Performance Curves (Continued) V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified  
SUPPLY  
A
L
2.0  
200  
150  
100  
50  
A
= +1  
V
A
= +2  
V
1.5  
1.0  
0.5  
0
0
-50  
-100  
-150  
-0.5  
-1.0  
-1.5  
-200  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 6. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 7. SMALL SIGNAL PULSE RESPONSE  
2.0  
2.0  
1.5  
1.0  
0.5  
0
A
= +1  
A
= +1  
V
V
1.5  
1.0  
0.5  
0
-0.5  
-0.5  
-1.0  
-1.5  
-2.0  
-1.0  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 8. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 9. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
200  
2.0  
A
= 1  
A
= -1  
V
V
150  
1.5  
1.0  
0.5  
0
100  
50  
0
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-100  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 10. SMALL SIGNAL PULSE RESPONSE  
FIGURE 11. LARGE SIGNAL POSITIVE PULSE RESPONSE  
7
HFA1212  
o
Typical Performance Curves (Continued) V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified  
A L  
SUPPLY  
2.0  
6
3
A
= -1  
V
1.5  
1.0  
0.5  
0
A
= +2  
V
GAIN  
0
-3  
-6  
-9  
A
= +1  
V
A
= -1  
V
PHASE  
0
-90  
-180  
-0.5  
-1.0  
-1.5  
A
= +1  
V
V
= 200mV  
OUT  
P-P  
-270  
-360  
A
= +2  
V
+R = 620(+1)  
S
+R = 0(-1, +2)  
S
1
10  
FREQUENCY (MHz)  
100  
600  
-2.0  
TIME (5ns/DIV.)  
FIGURE 12. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 13. FREQUENCY RESPONSE  
6
3
0.7  
V
= 200mV  
P-P  
OUT  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+R = 620(+1)  
S
+R = 0(-1, +2)  
0
S
-3  
-6  
A
= -1  
= +2  
= +1  
V
A
= +2  
-9  
V
A
V
A
V
V
= 4V  
= 5V  
(+1)  
OUT  
P-P  
-0.1  
-0.2  
-0.3  
V
(-1, +2)  
OUT  
P-P  
A
= -1  
A
= +1  
V
V
+R = 620(+1)  
S
1
10  
FREQUENCY (MHz)  
100  
1
10  
100  
300  
FREQUENCY (MHz)  
FIGURE 14. FULL POWER BANDWIDTH  
FIGURE 15. GAIN FLATNESS  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
A
= +2  
V
-20  
-30  
-40  
-50  
-60  
-70  
R
= ∞  
L
A
= -1  
V
R = 100Ω  
L
A
= +1  
V
-80  
-90  
-80  
-90  
A
= +2  
V
-100  
-100  
-110  
-110  
0.3  
1
10  
FREQUENCY (MHz)  
100  
0.3  
1
10  
100  
500  
FREQUENCY (MHz)  
FIGURE 16. REVERSE ISOLATION  
FIGURE 17. ALL HOSTILE CROSSTALK  
8
HFA1212  
o
Typical Performance Curves (Continued) V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified  
A L  
SUPPLY  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-40  
-45  
20MHz  
-50  
-55  
20MHz  
10MHz  
10MHz  
-60  
-65  
-70  
-10  
-5  
0
5
10  
15  
-10  
-5  
0
5
10  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 18. 2nd HARMONIC DISTORTION vs P  
OUT  
FIGURE 19. 3rd HARMONIC DISTORTION vs P  
OUT  
20  
16  
12  
8
20  
16  
12  
8
A
= +1  
0.10  
0.05  
0
V
-0.05  
-0.10  
E
NI  
4
4
I
NI  
0
0
13  
33  
53  
73  
93  
113 133 153 173  
0.1  
1
10  
100  
TIME (ns)  
FREQUENCY (kHz)  
FIGURE 20. SETTLING RESPONSE  
FIGURE 21. INPUT NOISE CHARACTERISTICS  
3.6  
A
= -1  
|-V | (R = 100Ω)  
OUT L  
V
3.5  
+V  
OUT  
(R = 100)  
L
3.4  
3.3  
3.2  
3.1  
|-V  
OUT  
| (R = 50)  
L
+V  
OUT  
(R = 50Ω)  
L
3.0  
2.9  
2.8  
2.7  
2.6  
-50  
-25  
0
25  
50  
75  
100  
125  
o
TEMPERATURE ( C)  
FIGURE 22. OUTPUT VOLTAGE vs TEMPERATURE  
9
HFA1212  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
69 mils x 92 mils x 19 mils  
Type: Nitride  
1750µm x 2330µm x 483µm  
Thickness: 4kÅ ±0.5kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AICu(2%)/TiW  
180  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
SUBSTRATE POTENTIAL (Powered Up):  
Floating (Recommend Connection to V-)  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
Metallization Mask Layout  
HFA1212  
OUT1  
-IN1  
NC  
V+  
NC  
OUT2  
+IN1  
NC  
NC  
-IN2  
NC  
V-  
+IN2  
NC  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
10  

相关型号:

HFA1212IP

Dual 350MHz, Low Power Closed Loop Buffer Amplifier
INTERSIL

HFA1212IP

DUAL BUFFER AMPLIFIER, PDIP8, PLASTIC, DIP-8
RENESAS

HFA1212MJ/883

Dual, High Speed, Low Power, Video Closed Loop Buffer
INTERSIL

HFA1212_04

Dual 350MHz, Low Power Closed Loop Buffer Amplifier
INTERSIL

HFA1245

Dual, 420MHz, Low Power, Video, Current Feedback Operational Amplifier with Disable
INTERSIL

HFA1245IB

DUAL OP-AMP, 8000 uV OFFSET-MAX, PDSO14
ROCHESTER

HFA1245IB

IC,OP-AMP,DUAL,BIPOLAR,SOP,14PIN,PLASTIC
RENESAS

HFA1245IP

Dual, 420MHz, Low Power, Video, Current Feedback Operational Amplifier with Disable
INTERSIL

HFA1245IP

VIDEO AMPLIFIER, PDIP14
ROCHESTER

HFA1245MJ/883

DUAL OP-AMP, 10000uV OFFSET-MAX, CDIP14
RENESAS

HFA1245MJ/883

DUAL OP-AMP, 10000 uV OFFSET-MAX, CDIP14
ROCHESTER

HFA1245_04

Dual, 420MHz, Low Power, Video, Current Feedback Operational Amplifier with Disable
INTERSIL