HFA1109IB [INTERSIL]

450MHz, Low Power, Current Feedback Video Operational Amplifier; 450MHz的低功耗,电流反馈视频运算放大器
HFA1109IB
型号: HFA1109IB
厂家: Intersil    Intersil
描述:

450MHz, Low Power, Current Feedback Video Operational Amplifier
450MHz的低功耗,电流反馈视频运算放大器

运算放大器
文件: 总12页 (文件大小:109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1109  
450MHz, Low Power, Current Feedback  
Video Operational Amplifier  
March 1997  
Features  
Description  
• Wide - 3dB Bandwidth (A = +2). . . . . . . . . . . . 450MHz The HFA1109 is a high speed, low power, current feedback  
V
amplifier built with Intersil’s proprietary complementary bipo-  
lar UHF-1 process. This amplifier features a unique combi-  
• Gain Flatness (To 250MHz) . . . . . . . . . . . . . . . . . . 0.8dB  
nation of power and performance specifically tailored for  
video applications.  
• Very Fast Slew Rate (A = +2). . . . . . . . . . . . . 1100V/µs  
V
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . 1.7MΩ  
• Differential Gain/Phase . . . . . . . . . 0.02%/0.02 Degrees  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . 10mA  
The HFA1109 is a standard pinout op amp. It is a higher  
performance, drop-in replacement (no feedback resistor  
change required) for the CLC409.  
If a comparably performing op amp with an output disable  
function (useful for video multiplexing) is required, please  
refer to the HFA1149 data sheet.  
Applications  
• Professional Video Processing  
• Video Switchers and Routers  
• Medical Imaging  
Ordering Information  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
o
PACKAGE  
8 Ld PDIP  
• PC Multimedia Systems  
• Video Distribution Amplifiers  
• Flash Converter Drivers  
• Radar/IF Processing  
HFA1109IP  
-40 to 85  
E8.3  
M8.15  
HFA1109IB (H1109)  
HFA11XXEVAL  
-40 to 85  
8 Ld SOIC  
DIP Evaluation Board for High Speed  
Op Amps  
Pinout  
HFA1109  
(PDIP, SOIC)  
TOP VIEW  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC  
V+  
-
+
OUT  
NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
File Number 4019.3  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
1
HFA1109  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V  
Output Current (Note 2) . . . . . . . . . . . . . . . . Short Circuit Protected  
30mA Continuous  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130  
170  
o
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . 175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . 300 C  
o
o
o
60mA 50% Duty Cycle  
o
ESD Rating  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 1400V  
Charged Device Model (Per EOS/ESD DS5.3, 4/14/93). . . 2000V  
Machine Model (Per EIAJ ED-4701Method C-111) . . . . . . . . 50V  
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
2. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle)  
output current must not exceed 30mA for maximum reliability.  
Electrical Specifications  
V
= ±5V, A = +2, R = 250, R = 100, Unless Otherwise Specified  
SUPPLY V F L  
(NOTE 3)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
INPUT CHARACTERISTICS  
Input Offset Voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
A
B
A
A
A
A
A
A
B
A
A
A
A
B
A
A
A
A
A
A
B
B
25  
Full  
Full  
25  
-
1
2
5
8
-
mV  
mV  
-
o
Average Input Offset Voltage Drift  
-
10  
50  
48  
53  
51  
4
µV/ C  
Input Offset Voltage  
Common-Mode Rejection Ratio  
V  
V  
= ±2V  
= ±2V  
47  
-
dB  
dB  
dB  
dB  
µA  
µA  
CM  
Full  
25  
45  
-
CM  
Input Offset Voltage  
Power Supply Rejection Ratio  
V = ±1.25V  
PS  
50  
-
V = ±1.25V  
PS  
Full  
25  
47  
-
Non-Inverting Input Bias Current  
-
10  
15  
-
Full  
Full  
25  
-
5
o
Non-Inverting Input Bias Current Drift  
-
30  
0.5  
0.5  
2
nA/ C  
Non-Inverting Input Bias Current  
Power Supply Sensitivity  
V = ±1.25V  
PS  
-
1
3
10  
15  
-
µA/V  
µA/V  
µA  
V = ±1.25V  
PS  
Full  
25  
-
Inverting Input Bias Current  
-
Full  
Full  
25  
-
3
µA  
o
Inverting Input Bias Current Drift  
-
40  
3
nA/ C  
Inverting Input Bias Current  
Common-Mode Sensitivity  
V  
V  
= ±2V  
= ±2V  
-
6
8
5
8
-
µA/V  
µA/V  
µA/V  
µA/V  
MΩ  
MΩ  
CM  
Full  
25  
-
3
CM  
Inverting Input Bias Current  
Power Supply Sensitivity  
V = ±1.25V  
PS  
-
-
1.6  
1.6  
1.7  
1.4  
60  
1.6  
V = ±1.25V  
PS  
Full  
25, 85  
-40  
25  
Non-Inverting Input Resistance  
V  
= ±2V  
= ±2V  
0.8  
0.5  
-
CM  
CM  
V  
-
Inverting Input Resistance  
Input Capacitance  
-
25  
-
-
pF  
2
HFA1109  
Electrical Specifications  
V
= ±5V, A = +2, R = 250, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Common Mode Range  
A
Full  
±2  
±2.5  
-
V
(Implied by V CMRR, +R , and -I  
IO IN BIAS  
CMS tests)  
Input Noise Voltage Density (Note 4)  
f = 100kHz  
B
B
25  
25  
-
-
4
-
-
nV/Hz  
pA/Hz  
Non-Inverting Input Noise Current Density  
(Note 4)  
f = 100kHz  
2.4  
Inverting Input Noise Current Density  
(Note 4)  
f = 100kHz  
B
25  
-
40  
-
pA/Hz  
TRANSFER CHARACTERISTICS  
Open Loop Transimpedance Gain (Note 4)  
Minimum Stable Gain  
B
B
25  
-
-
500  
1
-
-
kΩ  
Full  
V/V  
AC CHARACTERISTICS  
-3dB Bandwidth  
A
A
= -1, R = 200Ω  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
25  
Full  
25  
300  
290  
280  
260  
390  
350  
-
375  
360  
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
V
V
F
(V  
OUT  
= 0.2V  
, Note 4)  
P-P  
-
= +1, +R = 550(PDIP),  
330  
-
S
+R = 700(SOIC)  
S
Full  
25  
320  
-
A
A
= +2  
450  
-
V
V
Full  
25  
410  
-
Gain Peaking  
Gain Flatness  
= +2, V  
= 0.2V  
0
0.2  
OUT  
P-P  
Full  
25  
-
0
0.5  
dB  
To 125MHz  
To 200MHz  
To 250MHz  
To 125MHz  
To 200MHz  
To 250MHz  
-1.0  
-1.1  
-1.6  
-1.7  
-1.9  
-2.2  
±0.3  
±0.4  
±0.8  
±0.9  
±1.3  
±1.4  
-0.45  
-0.45  
-0.75  
-0.75  
-0.85  
-0.85  
±0.1  
±0.1  
±0.35  
±0.35  
±0.6  
±0.6  
-
-
-
-
-
-
-
-
-
-
-
-
dB  
(A = +2, V  
= 0.2V , Note 4)  
OUT P-P  
V
Full  
25  
dB  
dB  
Full  
25  
dB  
dB  
Full  
25  
dB  
Gain Flatness  
(A = +1, +R = 550(PDIP),  
dB  
V
S
Full  
25  
dB  
+R = 700(SOIC), V  
= 0.2V ,  
P-P  
S
OUT  
Note 4)  
dB  
Full  
25  
dB  
dB  
Full  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing, Unloaded  
(Note 4)  
A
A
A
= -1, R = ∞  
A
A
A
A
B
B
B
B
25  
Full  
25, 85  
-40  
25  
±3  
±3.2  
±3  
-
-
-
-
-
-
-
-
V
V
V
V
L
±2.8  
V
Output Current  
(Note 4)  
= -1, R = 75Ω  
±33  
±36  
±33  
120  
0.05  
-55  
mA  
mA  
mA  
L
±30  
Output Short Circuit Current  
= -1  
-
-
-
-
Closed Loop Output Resistance (Note 4)  
Second Harmonic Distortion  
DC, A = +1  
V
25  
20MHz  
60MHz  
25  
dBc  
dBc  
(V  
OUT  
= 2V , Note 4)  
P-P  
25  
-57  
3
HFA1109  
Electrical Specifications  
V
= ±5V, A = +2, R = 250, R = 100, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
20MHz  
MIN  
TYP  
-68  
-60  
-65  
MAX  
UNITS  
dBc  
Third Harmonic Distortion  
B
B
B
25  
25  
25  
-
-
-
-
-
-
(V  
= 2V , Note 4)  
P-P  
OUT  
60MHz  
30MHz  
dBc  
Reverse Isolation (S  
12  
)
dB  
TRANSIENT CHARACTERISTICS  
Rise and Fall Times  
V
V
= 0.5V  
= 0.5V  
B
B
B
B
B
B
B
B
25  
Full  
25  
-
-
1.1  
1.1  
1.3  
ns  
ns  
OUT  
OUT  
P-P  
1.4  
Overshoot  
Slew Rate  
-
0
2
5
-
%
P-P  
Full  
25  
-
0.5  
%
A
V
= -1, R = 200Ω  
2300  
2200  
475  
430  
2600  
2500  
550  
500  
V/µs  
V/µs  
V/µs  
V/µs  
V
F
= 5V  
OUT  
P-P  
Full  
25  
-
A
= +1, V  
= 4V  
,
-
V
OUT  
P-P  
+R = 550(PDIP),  
+R = 700(SOIC)  
S
Full  
-
S
A
= +2, V  
OUT  
= 5V  
B
B
B
B
B
B
25  
Full  
25  
940  
1100  
950  
19  
-
-
-
-
-
-
V/µs  
V/µs  
ns  
V
P-P  
800  
Settling Time  
To 0.1%  
To 0.05%  
To 0.01%  
-
-
-
-
(V  
OUT  
= +2V to 0V step, Note 4)  
25  
23  
ns  
25  
36  
ns  
Overdrive Recovery Time  
V
= ±2V  
= 150Ω  
= 75Ω  
= 150Ω  
= 75Ω  
25  
5
ns  
IN  
VIDEO CHARACTERISTICS  
Differential Gain  
(f = 3.58MHz)  
R
R
R
R
B
B
B
B
B
B
B
B
25  
Full  
25  
-
-
-
-
-
-
-
-
0.02  
0.03  
0.04  
0.05  
0.02  
0.02  
0.05  
0.06  
0.06  
0.09  
0.09  
0.12  
%
%
%
%
L
L
L
L
Full  
25  
Differential Phase  
(f = 3.58MHz)  
0.06 Degrees  
0.06 Degrees  
0.09 Degrees  
0.13 Degrees  
Full  
25  
Full  
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
±4.5  
-
±5.5  
10  
V
Power Supply Current (Note 4)  
-
-
9.6  
10  
mA  
mA  
Full  
11  
NOTES:  
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
4. See Typical Performance Curves for more information.  
4
HFA1109  
ble oscillations. In most cases, the oscillation can be avoided  
Application Information  
Optimum Feedback Resistor  
by placing a resistor (R ) in series with the output prior to  
S
the capacitance.  
Although a current feedback amplifier’s bandwidth depen-  
dency on closed loop gain isn’t as severe as that of a voltage  
feedback amplifier, there can be an appreciable decrease in  
bandwidth at higher gains. This decrease may be minimized  
by taking advantage of the current feedback amplifier’s  
R
and C form a low pass network at the output, thus limit-  
L
S
ing system bandwidth well below the amplifier bandwidth. By  
decreasing R as C increases, the maximum bandwidth is  
obtained without sacrificing stability. In spite of this, band-  
width still decreases as the load capacitance increases.  
S
L
unique relationship between bandwidth and R . All current  
F
feedback amplifiers require a feedback resistor, even for  
Evaluation Board  
unity gain applications, and R , in conjunction with the inter-  
F
nal compensation capacitor, sets the dominant pole of the  
frequency response. Thus, the amplifier’s bandwidth is  
The performance of the HFA1109 may be evaluated using  
the  
HFA11XX  
evaluation  
board  
(part  
number  
inversely proportional to R . The HFA1109 design is opti-  
F
HFA11XXEVAL). Please contact your local sales office for  
information. When evaluating this amplifier, the two 510Ω  
gain setting resistors on the evaluation board should be  
changed to 250Ω.  
mized for a 250R at a gain of +2. Decreasing R  
F
F
decreases stability, resulting in excessive peaking and over-  
shoot (Note: Capacitive feedback will cause the same prob-  
lems due to the feedback impedance decrease at higher  
frequencies). At higher gains the amplifier is more stable, so  
The layout and schematic of the board are shown in Figure 1.  
R can be decreased in a trade-off of stability for bandwidth.  
F
.
BOARD SCHEMATIC  
TABLE 1. OPTIMUM FEEDBACK RESISTOR  
GAIN (A  
)
R
()  
F
BANDWIDTH (MHz)  
CL  
510Ω  
510Ω  
50Ω  
V
-1  
200  
400  
350  
H
+1  
250 (+R = 550) PDIP  
S
1
2
3
4
8
7
6
5
0.1µF  
50Ω  
10µF  
+5V  
250 (+R = 700) SOIC  
S
+2  
+5  
250  
100  
90  
450  
160  
70  
IN  
OUT  
V
L
+10  
10µF  
0.1µF  
GND  
GND  
Table 1 lists recommended R values, and the expected  
F
-5V  
bandwidth, for various closed loop gains. For a gain of +1, a  
resistor (+R ) in series with +IN is required to reduce gain  
peaking and increase stability  
S
TOP LAYOUT  
PC Board Layout  
V
H
The frequency response of this amplifier depends greatly on  
the care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid ground  
plane is a must! Attention should be given to decoupling the  
power supplies. A large value (10µF) tantalum in parallel with a  
small value (0.1µF) chip capacitor works well in most cases.  
1
+IN  
OUT  
V-  
V+  
V
L
GND  
Terminated microstrip signal lines are recommended at the  
input and output of the device. Capacitance directly on the  
output must be minimized, or isolated as discussed in the  
next section.  
BOTTOM LAYOUT  
Care must also be taken to minimize the capacitance to ground  
seen by the amplifier’s inverting input (-IN). The larger this  
capacitance, the worse the gain peaking, resulting in pulse  
overshoot and possible instability. Thus it is recommended that  
the ground plane be removed under traces connected to -IN,  
and connections to -IN should be kept as short as possible.  
Driving Capacitive Loads  
Capacitive loads, such as an A/D input, or an improperly ter-  
minated transmission line will degrade the amplifier’s phase  
margin resulting in frequency response peaking and possi-  
FIGURE 1. EVALUATION BOARD SCHEMATIC AND LAYOUT  
5
HFA1109  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = Value From the Optimum Feedback Resistor Table,  
SUPPLY  
A
F
R
= 100, Unless Otherwise Specified  
L
200  
150  
100  
50  
2.0  
A
= +2  
A = +2  
V
V
1.5  
1.0  
0.5  
0
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 2. SMALL SIGNAL PULSE RESPONSE  
FIGURE 3. LARGE SIGNAL PULSE RESPONSE  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0
A
= +1  
A = +1  
V
V
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 4. SMALL SIGNAL PULSE RESPONSE  
FIGURE 5. LARGE SIGNAL PULSE RESPONSE  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0
A
= -1  
A = -1  
V
V
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
FIGURE 7. LARGE SIGNAL PULSE RESPONSE  
6
HFA1109  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = Value From the Optimum Feedback Resistor Table,  
SUPPLY  
A
F
R
= 100, Unless Otherwise Specified (Continued)  
L
2.0  
200  
150  
100  
50  
1.5  
A
= +5  
A
= +5  
V
V
1.0  
0.5  
0
A
= +10  
A
= +10  
V
A
= +10  
V
V
0
A
= +10  
V
-0.5  
-1.0  
-50  
-100  
A
= +5  
V
A
= +5  
V
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 9. LARGE SIGNAL PULSE RESPONSE  
FIGURE 8. SMALL SIGNAL PULSE RESPONSE  
V
= 200mV  
P-P  
V
= 200mV  
P-P  
OUT  
OUT  
3
3
0
A
= +2  
V
GAIN  
A
= +1  
GAIN  
V
0
A
= +10  
-3  
-3  
V
A
= +5  
V
A
= +1  
V
A
= +2  
PHASE  
V
PHASE  
A
V
= -1  
0
0
90  
90  
A
= +1  
A
= +10  
V
V
180  
270  
180  
270  
A
= +5  
V
A
= -1  
V
0.3  
1
10  
FREQUENCY (MHz)  
100  
700  
0.3  
1
10  
FREQUENCY (MHz)  
100  
700  
FIGURE 10. FREQUENCY RESPONSE  
FIGURE 11. FREQUENCY RESPONSE  
116  
106  
96  
86  
76  
66  
56  
46  
36  
26  
V
= 200mV  
P-P  
OUT  
0.1  
0
A
= +1  
V
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
0
45  
90  
135  
180  
A
= +2  
V
0.01  
0.1  
0.3  
1
3
6 10 30 100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FREQUENCY (MHz)  
FIGURE 12. GAIN FLATNESS  
FIGURE 13. OPEN LOOP TRANSIMPEDANCE  
7
HFA1109  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = Value From the Optimum Feedback Resistor Table,  
SUPPLY  
A
F
R
= 100, Unless Otherwise Specified (Continued)  
L
-30  
-40  
-50  
-20  
A
= +1  
A
= +1  
V
V
100MHz  
-30  
-40  
100MHz  
-50  
50MHz  
50MHz  
-60  
-70  
-80  
-90  
-60  
20MHz  
10MHz  
-70  
20MHz  
10MHz  
-80  
-90  
-100  
-6  
-3  
0
3
6
9
12  
-6  
-3  
0
3
6
9
12  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 14. 2nd HARMONIC DISTORTION vs P  
FIGURE 15. 3rd HARMONIC DISTORTION vs P  
OUT  
OUT  
-30  
-40  
-50  
-30  
-40  
-50  
A
= +2  
A
= +2  
V
V
100MHz  
100MHz  
50MHz  
10MHz  
50MHz  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
20MHz  
20MHz  
10MHz  
-6  
-3  
0
3
6
9
12  
15  
-6  
-3  
0
3
6
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 16. 2nd HARMONIC DISTORTION vs P  
FIGURE 17. 3rd HARMONIC DISTORTION vs P  
OUT  
OUT  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
V
= 2V  
P-P  
V
= 2V  
P-P  
OUT  
OUT  
A
= +1  
= -1  
V
A
V
A
= +2  
V
A
= +2, -1  
V
A
= +1  
V
A
= +1  
20  
V
0
10  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 18. 2nd HARMONIC DISTORTION vs FREQUENCY  
FIGURE 19. 3rd HARMONIC DISTORTION vs FREQUENCY  
8
HFA1109  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = Value From the Optimum Feedback Resistor Table,  
SUPPLY  
A
F
R
= 100, Unless Otherwise Specified (Continued)  
L
3.6  
A
= +2  
V
+V  
OUT  
(R = 100)  
L
3.4  
3.2  
3.0  
|-V  
OUT  
| (R = 100)  
L
1K  
100  
10  
+V  
OUT  
(R = 50)  
L
+V  
OUT  
(R = 50)  
L
2.8  
2.6  
1
|-V  
OUT  
| (R = 100)  
L
0.1  
0.01  
2.4  
2.2  
|-V  
OUT  
| (R = 50)  
L
2.0  
1.8  
1.6  
0.3  
1
10  
100  
1000  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
FIGURE 20. CLOSED LOOP OUTPUT RESISTANCE  
FIGURE 21. OUTPUT VOLTAGE vs TEMPERATURE  
14  
17  
16  
15  
14  
13  
12  
11  
10  
9
13.5  
13  
V
= ±8V  
12.5  
12  
S
11.5  
11  
V
= ±5V  
S
10.5  
10  
8
7
9.5  
9
V
= ±4V  
S
6
5
8.5  
4
-75  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
-50  
-25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
FIGURE 22. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 23. SUPPLY CURRENT vs TEMPERATURE  
100  
100  
A
= +2  
V
V
= 2V  
OUT  
0.1  
I
NI-  
0.05  
I
NI+  
0.025  
0
10  
10  
-0.025  
-0.05  
E
NI  
I
-0.1  
NI+  
1
100  
1
0.1  
10  
20 30 40 50  
60  
70 80  
90 100  
1
10  
TIME (ns)  
FREQUENCY (kHz)  
FIGURE 24. INPUT NOISE CHARACTERISTICS  
FIGURE 25. SETTLING RESPONSE  
9
HFA1109  
Die Characteristics  
DIE DIMENSIONS:  
GLASSIVATION:  
59 mils x 80 mils x 19 mils  
Type: Nitride  
1500µm x 2020µm x 483µm  
Thickness: 4kÅ ±0.5kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AICu(2%)/TiW  
130  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
SUBSTRATE POTENTIAL (Powered Up):  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ 0.8kÅ  
Floating (Recommend Connection to V-)  
Metallization Mask Layout  
HFA1109  
NC  
NC  
NC  
NC  
V+  
-IN  
OUT  
NC  
NC  
+IN  
V-  
NC  
NC  
10  
HFA1109  
Dual-In-Line Plastic Packages (PDIP)  
E8.3 (JEDEC MS-001-BA ISSUE D)  
8 LEAD DUAL-IN-LINE PLASTIC PACKAGE  
N
E1  
INCHES MILLIMETERS  
INDEX  
AREA  
1 2  
3
N/2  
SYMBOL  
MIN  
MAX  
0.210  
-
MIN  
-
MAX  
5.33  
-
NOTES  
A
A1  
A2  
B
-
4
-B-  
-C-  
-A-  
0.015  
0.115  
0.014  
0.045  
0.008  
0.355  
0.005  
0.300  
0.240  
0.39  
2.93  
0.356  
1.15  
0.204  
9.01  
0.13  
7.62  
6.10  
4
D
E
0.195  
0.022  
0.070  
0.014  
0.400  
-
4.95  
0.558  
1.77  
0.355  
10.16  
-
-
BASE  
PLANE  
-
A2  
A
SEATING  
PLANE  
B1  
C
8, 10  
L
C
L
-
D1  
B1  
eA  
A1  
A
D1  
D
5
e
C
eC  
D1  
E
5
B
eB  
0.010 (0.25)  
C
B
S
M
0.325  
0.280  
8.25  
7.11  
6
E1  
e
5
NOTES:  
0.100 BSC  
0.300 BSC  
2.54 BSC  
7.62 BSC  
-
1. Controlling Dimensions: INCH. In case of conflict between  
English and Metric dimensions, the inch dimensions control.  
e
e
6
A
-
0.430  
0.150  
-
10.92  
3.81  
7
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
B
L
0.115  
2.93  
4
9
3. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication No. 95.  
N
8
8
4. Dimensions A, A1 and L are measured with the package seated  
Rev. 0 12/93  
in JEDEC seating plane gauge GS-3.  
5. D, D1, and E1 dimensions do not include mold flash or protru-  
sions. Mold flash or protrusions shall not exceed 0.010 inch  
(0.25mm).  
e
6. E and  
pendicular to datum  
7. e and e are measured at the lead tips with the leads uncon-  
are measured with the leads constrained to be per-  
A
-C-  
.
B
C
strained. e must be zero or greater.  
C
8. B1 maximum dimensions do not include dambar protrusions.  
Dambar protrusions shall not exceed 0.010 inch (0.25mm).  
9. N is the maximum number of terminal positions.  
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3,  
E28.3, E42.6 will have a B1 dimension of 0.030 - 0.045 inch  
(0.76 - 1.14mm).  
11  
HFA1109  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
M
M
B
0.25(0.010)  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
o
D
h x 45  
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
M
M
S
B
0.25(0.010)  
C
A
N
α
8
8
7
o
o
o
o
0
8
0
8
-
NOTES:  
Rev. 0 12/93  
1. Symbols are defined in the “MO Series Symbol List” in Section  
2.2 of Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. In-  
terlead flash and protrusions shall not exceed 0.25mm (0.010  
inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual  
index feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are not necessarily exact.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate  
and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which  
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
Taiwan Limited  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
12  

相关型号:

HFA1109IBZ

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IBZ96

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IP

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109_04

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109_07

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1110

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110/883

750MHz, Low Distortion 750MHz, Low Distortion
INTERSIL

HFA1110883

750MHz, Low Distortion 750MHz, Low Distortion
INTERSIL

HFA1110EVAL

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110IB

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110IBZ

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110IJ

IC,VOLT FOLLOWER,SINGLE,BIPOLAR,DIP,8PIN,CERAMIC
RENESAS