HFA1109IBZ [INTERSIL]

450MHz, Low Power, Current Feedback Video Operational Amplifier; 450MHz的低功耗,电流反馈视频运算放大器
HFA1109IBZ
型号: HFA1109IBZ
厂家: Intersil    Intersil
描述:

450MHz, Low Power, Current Feedback Video Operational Amplifier
450MHz的低功耗,电流反馈视频运算放大器

运算放大器
文件: 总12页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1109  
®
Data Sheet  
April 23, 2007  
FN4019.5  
450MHz, Low Power, Current Feedback  
Video Operational Amplifier  
Features  
• Wide - 3dB Bandwidth (A = +2) . . . . . . . . . . . . . 450MHz  
V
The HFA1109 is a high speed, low power, current feedback  
amplifier built with Intersil’s proprietary complementary  
bipolar UHF-1 process. This amplifier features a unique  
combination of power and performance specifically tailored  
for video applications.  
• Gain Flatness (To 250MHz) . . . . . . . . . . . . . . . . . . . 0.8dB  
• Very Fast Slew Rate (A = +2). . . . . . . . . . . . . . 1100V/μs  
V
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . 1.7MΩ  
• Differential Gain/Phase . . . . . . . . . . . . . . . . . 0.02%/0.02°  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . 10mA  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
The HFA1109 is a standard pinout op amp. It is a higher  
performance, drop-in replacement (no feedback resistor  
change required) for the CLC409.  
If a comparably performing op amp with an output disable  
function (useful for video multiplexing) is required, please  
refer to the HFA1149 data sheet..  
Applications  
• Professional Video Processing  
• Video Switchers and Routers  
• Medical Imaging  
Ordering Information  
TEMP.  
PART  
NUMBER  
PART  
MARKING  
RANGE  
(°C)  
PKG.  
DWG. #  
• PC Multimedia Systems  
• Video Distribution Amplifiers  
• Flash Converter Drivers  
• Radar/IF Processing  
PACKAGE  
HFA1109IB  
1109IB  
-40 to +85 8 Ld SOIC (150MIL) M8.15  
HFA1109IBZ  
(Note 1)  
HFA1109  
IBZ  
-40 to +85 8 Ld SOIC (150MIL) M8.15  
(Pb-free)  
HFA1109IBZ96 HFA1109  
(Note 1) IBZ  
-40 to +85 8 Ld SOIC (150MIL) M8.15  
(Pb-free)  
Pinout  
HFA11XXEVAL DIP Evaluation Board for High Speed Op Amps  
(Note 2)  
HFA1109  
(8 LD SOIC)  
TOP VIEW  
NOTES:  
1. Intersil Pb-free plus anneal products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which are RoHS compliant and compatible  
with both SnPb and Pb-free soldering operations. Intersil Pb-free  
products are MSL classified at Pb-free peak reflow temperatures that  
meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC  
V+  
-
+
OUT  
NC  
2. Requires a SOIC-to-DIP adapter. See “Evaluation Board” section  
inside.  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright Intersil Americas Inc. 1999, 2004, 2007. All Rights Reserved  
1
All other trademarks mentioned are the property of their respective owners.  
HFA1109  
Absolute Maximum Ratings  
Thermal Information  
Voltage Between V+ and V-. . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Thermal Resistance (Typical, Note 3)  
θ
(°C/W)  
170  
JA  
SUPPLY  
8 Lead SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8V  
Output Current (Note 4) . . . . . . . . . . . . . . . . .Short Circuit Protected  
30mA Continuous  
60mA 50% Duty Cycle  
ESD Rating  
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . +175°C  
Maximum Junction Temperature (Plastic Package) . . . . . . . +150°C  
Maximum Storage Temperature Range. . . . . . . . . -65°C to +150°C  
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below  
http://www.intersil.com/pbfree/Pb-FreeReflow.asp  
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . .1400V  
Charged Device Model (Per EOS/ESD DS5.3, 4/14/93) . . . .2000V  
Machine Model (Per EIAJ ED-4701Method C-111) . . . . . . . . . .50V  
Operating Conditions  
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
3. θ is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See  
JA  
Tech Brief TB379.  
4. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output  
current must not exceed 30mA for maximum reliability.  
Electrical Specifications  
V
= ±5V, A = +2, R = 250Ω, R = 100Ω, Unless Otherwise Specified.  
SUPPLY V F L  
(NOTE 5)  
TEST  
PARAMETER  
INPUT CHARACTERISTICS  
Input Offset Voltage  
TEST CONDITIONS  
LEVEL  
TEMP. (°C)  
MIN  
TYP  
MAX  
UNITS  
A
A
B
A
A
A
A
A
A
B
A
A
A
A
B
A
A
A
A
A
A
B
25  
Full  
Full  
25  
-
1
2
5
8
-
mV  
mV  
-
Average Input Offset Voltage Drift  
-
10  
50  
48  
53  
51  
4
μV/°C  
dB  
Input Offset Voltage  
Common-Mode Rejection Ratio  
DV  
= ±2V  
47  
-
CM  
Full  
25  
45  
-
dB  
Input Offset Voltage  
Power Supply Rejection Ratio  
DV = ±1.25V  
PS  
50  
-
dB  
Full  
25  
47  
-
dB  
Non-Inverting Input Bias Current  
-
10  
15  
-
μA  
Full  
Full  
25  
-
5
μA  
Non-Inverting Input Bias Current Drift  
-
30  
0.5  
0.5  
2
nA/°C  
μA/V  
μA/V  
μA  
Non-Inverting Input Bias Current  
Power Supply Sensitivity  
DV = ±1.25V  
PS  
-
1
3
10  
15  
-
Full  
25  
-
Inverting Input Bias Current  
-
Full  
Full  
25  
-
3
μA  
Inverting Input Bias Current Drift  
-
40  
3
nA/°C  
μA/V  
μA/V  
μA/V  
μA/V  
MΩ  
MΩ  
Ω
Inverting Input Bias Current  
Common-Mode Sensitivity  
DV  
= ±2V  
-
6
8
5
8
-
CM  
Full  
25  
-
-
3
Inverting Input Bias Current  
Power Supply Sensitivity  
DV = ±1.25V  
PS  
1.6  
1.6  
1.7  
1.4  
60  
Full  
25, 85  
-40  
25  
-
Non-Inverting Input Resistance  
DV  
= ±2V  
0.8  
0.5  
-
CM  
-
Inverting Input Resistance  
-
FN4019.5  
April 23, 2007  
2
HFA1109  
Electrical Specifications  
V
= ±5V, A = +2, R = 250Ω, R = 100Ω, Unless Otherwise Specified. (Continued)  
SUPPLY  
V
F
L
(NOTE 5)  
TEST  
PARAMETER  
TEST CONDITIONS  
LEVEL  
TEMP. (°C)  
MIN  
-
TYP  
1.6  
MAX  
UNITS  
pF  
Input Capacitance  
B
A
25  
-
-
Input Voltage Common Mode Range  
Full  
±2  
±2.5  
V
(Implied by V CMRR, +R , and -I  
CMS  
IO IN  
BIAS  
tests)  
Input Noise Voltage Density (Note 6)  
f = 100kHz  
B
B
25  
25  
-
-
4
-
-
nV/Hz  
pA/Hz  
Non-Inverting Input Noise Current Density  
(Note 4)  
2.4  
Inverting Input Noise Current Density  
(Note 4)  
f = 100kHz  
B
25  
-
40  
-
pA/Hz  
TRANSFER CHARACTERISTICS  
Open Loop Transimpedance Gain (Note 6)  
Minimum Stable Gain  
B
B
25  
-
-
500  
1
-
-
kΩ  
Full  
V/V  
AC CHARACTERISTICS  
-3dB Bandwidth  
A
= -1, R = 200Ω  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
25  
Full  
25  
300  
290  
280  
260  
390  
350  
-
375  
360  
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
V
F
(V  
= 0.2V , Note 6)  
P-P  
OUT  
-
A
= +1, +R = 550Ω (PDIP),  
330  
-
V
S
+R = 700Ω (SOIC)  
S
Full  
25  
320  
-
A
= +2  
450  
-
V
Full  
25  
410  
-
Gain Peaking  
Gain Flatness  
A
= +2, V  
= 0.2V  
P-P  
0
0.2  
V
OUT  
Full  
25  
-
0
0.5  
dB  
To 125MHz  
To 200MHz  
To 250MHz  
To 125MHz  
To 200MHz  
To 250MHz  
-1.0  
-1.1  
-1.6  
-1.7  
-1.9  
-2.2  
±0.3  
±0.4  
±0.8  
±0.9  
±1.3  
±1.4  
-0.45  
-0.45  
-0.75  
-0.75  
-0.85  
-0.85  
±0.1  
±0.1  
±0.35  
±0.35  
±0.6  
±0.6  
-
-
-
-
-
-
-
-
-
-
-
-
dB  
(A = +2, V  
= 0.2V , Note 6)  
V
OUT P-P  
Full  
25  
dB  
dB  
Full  
25  
dB  
dB  
Full  
25  
dB  
Gain Flatness  
(A = +1, +R = 550Ω (PDIP),  
dB  
V
S
Full  
25  
dB  
+R = 700Ω (SOIC), V  
= 0.2V  
,
P-P  
S
OUT  
(Note 6)  
dB  
Full  
25  
dB  
dB  
Full  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing, Unloaded  
(Note 6)  
A
= -1, R = Infinity  
A
A
A
A
B
B
25  
Full  
25, 85  
-40  
±3  
±2.8  
±33  
±30  
-
±3.2  
±3  
-
-
-
-
-
-
V
V
L
V
Output Current  
(Note 6)  
A
= -1, R = 75Ω  
±36  
±33  
120  
0.05  
mA  
mA  
mA  
W
V
L
Output Short Circuit Current  
A
= -1  
25  
V
Closed Loop Output Resistance (Note 6)  
DC, A = +1  
25  
-
V
FN4019.5  
April 23, 2007  
3
HFA1109  
Electrical Specifications  
V
= ±5V, A = +2, R = 250Ω, R = 100Ω, Unless Otherwise Specified. (Continued)  
SUPPLY  
V
F
L
(NOTE 5)  
TEST  
PARAMETER  
TEST CONDITIONS  
20MHz  
LEVEL  
TEMP. (°C)  
MIN  
TYP  
-55  
-57  
-68  
-60  
-65  
MAX  
UNITS  
dBc  
dBc  
dBc  
dBc  
dB  
Second Harmonic Distortion  
B
B
B
B
B
25  
25  
25  
25  
25  
-
-
-
-
-
-
-
-
-
-
(V  
= 2V , Note 6)  
P-P  
OUT  
60MHz  
20MHz  
60MHz  
30MHz  
Third Harmonic Distortion  
(V = 2V , Note 6)  
OUT  
P-P  
Reverse Isolation (S  
)
12  
TRANSIENT CHARACTERISTICS  
Rise and Fall Times  
V
V
= 0.5V  
= 0.5V  
B
B
B
B
B
B
B
B
25  
Full  
25  
-
-
1.1  
1.1  
1.3  
ns  
ns  
OUT  
OUT  
P-P  
P-P  
1.4  
Overshoot  
Slew Rate  
-
0
2
5
-
%
Full  
25  
-
0.5  
%
A
= -1, R = 200Ω  
2300  
2200  
475  
430  
2600  
2500  
550  
500  
V/μs  
V/μs  
V/μs  
V/μs  
V
F
V
= 5V  
OUT  
P-P  
Full  
25  
-
A
= +1, V  
= 4V ,  
P-P  
-
V
OUT  
+R = 550Ω (PDIP),  
+R = 700Ω (SOIC)  
S
Full  
-
S
A
= +2, V  
= 5V  
P-P  
B
B
B
B
B
B
25  
Full  
25  
940  
1100  
950  
19  
-
-
-
-
-
-
V/μs  
V/μs  
ns  
V
OUT  
800  
Settling Time  
To 0.1%  
-
-
-
-
(V  
= +2V to 0V step, Note 6)  
OUT  
To 0.05%  
To 0.01%  
25  
23  
ns  
25  
36  
ns  
Overdrive Recovery Time  
V
= ±2V  
= 150Ω  
= 75Ω  
= 150Ω  
= 75Ω  
25  
5
ns  
IN  
VIDEO CHARACTERISTICS  
Differential Gain  
(f = 3.58MHz)  
R
R
R
R
B
B
B
B
B
B
B
B
25  
Full  
25  
-
-
-
-
-
-
-
-
0.02  
0.03  
0.04  
0.05  
0.02  
0.02  
0.05  
0.06  
0.06  
0.09  
0.09  
0.12  
0.06  
0.06  
0.09  
0.13  
%
%
%
%
°
L
L
L
L
Full  
25  
Differential Phase  
(f = 3.58MHz)  
Full  
25  
°
°
Full  
°
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
±4.5  
-
±5.5  
10  
V
Power Supply Current (Note 6)  
-
-
9.6  
10  
mA  
mA  
Full  
11  
NOTES:  
5. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
6. See Typical Performance Curves for more information.  
FN4019.5  
April 23, 2007  
4
HFA1109  
ground plane is a must! Attention should be given to  
Application Information  
decoupling the power supplies. A large value (10μF)  
tantalum in parallel with a small value (0.1μF) chip capacitor  
works well in most cases.  
Optimum Feedback Resistor  
Although a current feedback amplifier’s bandwidth  
dependency on closed loop gain isn’t as severe as that of a  
voltage feedback amplifier, there can be an appreciable  
decrease in bandwidth at higher gains. This decrease may  
be minimized by taking advantage of the current feedback  
Terminated microstrip signal lines are recommended at the  
input and output of the device. Capacitance directly on the  
output must be minimized, or isolated as discussed in the  
next section.  
amplifier’s unique relationship between bandwidth and R .  
F
All current feedback amplifiers require a feedback resistor,  
Care must also be taken to minimize the capacitance to ground  
seen by the amplifier’s inverting input (-IN). The larger this  
capacitance, the worse the gain peaking, resulting in pulse  
overshoot and possible instability. Thus it is recommended that  
the ground plane be removed under traces connected to -IN,  
and connections to -IN should be kept as short as possible.  
even for unity gain applications, and R , in conjunction with  
F
the internal compensation capacitor, sets the dominant pole  
of the frequency response. Thus, the amplifier’s bandwidth is  
inversely proportional to R . The HFA1109 design is  
F
optimized for a 250Ω R at a gain of +2. Decreasing R  
F
F
decreases stability, resulting in excessive peaking and  
overshoot (Note: Capacitive feedback will cause the same  
problems due to the feedback impedance decrease at higher  
frequencies). At higher gains the amplifier is more stable, so  
Driving Capacitive Loads  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
R can be decreased in a trade-off of stability for bandwidth.  
F
TABLE 1. OPTIMUM FEEDBACK RESISTOR  
avoided by placing a resistor (R ) in series with the output  
GAIN (A  
)
R
(W)  
F
BANDWIDTH (MHz)  
S
CL  
prior to the capacitance.  
R
and C form a low pass network at the output, thus  
L
-1  
200  
400  
350  
S
limiting system bandwidth well below the amplifier  
bandwidth. By decreasing R as C increases, the  
+1  
250 (+R = 550W) PDIP  
S
250 (+R = 700W) SOIC  
S
S
L
maximum bandwidth is obtained without sacrificing stability.  
In spite of this, bandwidth still decreases as the load  
capacitance increases.  
+2  
+5  
250  
100  
90  
450  
160  
70  
+10  
Evaluation Board  
Table 1 lists recommended R values, and the expected  
F
bandwidth, for various closed loop gains. For a gain of +1, a  
The performance of the HFA1105 may be evaluated using  
the HFA11XX Evaluation Board and a SOIC to DIP adaptor  
like the Aries Electronics Part Number 14-350000-10. The  
layout and schematic of the board are shown in Figure 1.  
resistor (+R ) in series with +IN is required to reduce gain  
S
peaking and increase stability  
PC Board Layout  
Please contact your local sales office for information. When  
evaluating this amplifier, the two 510Ω gain setting resistors  
on the evaluation board should be changed to 250Ω..  
The frequency response of this amplifier depends greatly on  
the care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
510Ω  
510Ω  
50Ω  
V
H
V
H
1
2
3
4
8
7
6
5
0.1µF  
50Ω  
10µF  
+5V  
1
IN  
+IN  
OUT  
OUT  
V-  
V+  
V
L
V
L
10µF  
0.1µF  
GND  
GND  
GND  
-5V  
FIGURE 1B. TOP LAYOUT  
FIGURE 1. EVALUATION BOARD SCHEMATICS AND LAYOUT  
FIGURE 1C. BOTTOM LAYOUT  
FIGURE 1A. BOARD SCHEMATIC  
FN4019.5  
April 23, 2007  
5
HFA1109  
Typical Performance Curves V  
= ±5V, T = +25°C, R = Value From the Optimum Feedback Resistor Table, R = 100Ω,  
SUPPLY  
A
F
L
Unless Otherwise Specified  
200  
2.0  
1.5  
1.0  
0.5  
0
A
= +2  
A = +2  
V
V
150  
100  
50  
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV)  
TIME (5ns/DIV)  
FIGURE 2. SMALL SIGNAL PULSE RESPONSE  
FIGURE 3. LARGE SIGNAL PULSE RESPONSE  
200  
150  
100  
50  
2.0  
1.5  
1.0  
0.5  
0
A
= +1  
A
= +1  
V
V
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV)  
TIME (5ns/DIV)  
FIGURE 4. SMALL SIGNAL PULSE RESPONSE  
FIGURE 5. LARGE SIGNAL PULSE RESPONSE  
FN4019.5  
April 23, 2007  
6
HFA1109  
Typical Performance Curves V  
= ±5V, T = +25°C, R = Value From the Optimum Feedback Resistor Table, R = 100Ω,  
SUPPLY  
A
F
L
Unless Otherwise Specified (Continued)  
2.0  
200  
A
V
= -1  
A
= -1  
V
1.5  
1.0  
0.5  
0
150  
100  
50  
0
-0.5  
-1.0  
-50  
-100  
-1.5  
-2.0  
-150  
-200  
TIME (5ns/DIV)  
TIME (5ns/DIV)  
FIGURE 7. LARGE SIGNAL PULSE RESPONSE  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
200  
150  
100  
50  
A
= +5  
A
= +5  
V
V
A
= +10  
A
= +10  
V
V
A
= +10  
V
0
A
= +10  
V
-50  
-100  
-0.5  
-1.0  
A
= +5  
V
A
= +5  
V
-150  
-200  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 8. SMALL SIGNAL PULSE RESPONSE  
FIGURE 9. LARGE SIGNAL PULSE RESPONSE  
V
= 200mV  
V
= 200mV  
P-P  
OUT  
P-P  
OUT  
3
3
0
A
= +2  
V
GAIN  
A
= +1  
GAIN  
V
0
A
= +10  
-3  
-3  
V
A
= +5  
V
A
= +1  
V
A
= +2  
PHASE  
V
PHASE  
A
V
= -1  
0
0
90  
90  
A
= +1  
A
= +10  
V
V
180  
270  
180  
270  
A
= +5  
V
A
= -1  
V
0.3M  
1M  
10M  
FREQUENCY (Hz)  
100M  
700M  
0.3M  
1M  
10M  
FREQUENCY (Hz)  
100M  
700M  
FIGURE 10. FREQUENCY RESPONSE  
FIGURE 11. FREQUENCY RESPONSE  
FN4019.5  
April 23, 2007  
7
HFA1109  
Typical Performance Curves V  
= ±5V, T = +25°C, R = Value From the Optimum Feedback Resistor Table, R = 100Ω,  
SUPPLY  
A
F
L
Unless Otherwise Specified (Continued)  
116  
106  
V
= 200mV  
P-P  
OUT  
0.1  
0
A
= +1  
V
96  
86  
76  
66  
56  
46  
36  
26  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
0
45  
90  
A
= +2  
V
135  
180  
0.01M  
0.1M 0.3M 1M 3M 6M10M30M 100M 500M  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
100M  
500M  
FIGURE 13. OPEN LOOP TRANSIMPEDANCE  
FIGURE 12. GAIN FLATNESS  
-30  
-40  
-50  
-20  
A
= +1  
A
= +1  
V
V
100MHz  
-30  
-40  
100MHz  
-50  
50MHz  
50MHz  
-60  
-70  
-80  
-90  
-60  
20MHz  
10MHz  
-70  
20MHz  
10MHz  
-80  
-90  
-100  
-6  
-3  
0
3
6
9
12  
-6  
-3  
0
3
6
9
12  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 14. 2nd HARMONIC DISTORTION vs P  
FIGURE 15. 3rd HARMONIC DISTORTION vs P  
OUT  
OUT  
-30  
-40  
-50  
-30  
-40  
-50  
A
= +2  
A
= +2  
V
V
100MHz  
100MHz  
50MHz  
10MHz  
50MHz  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
20MHz  
20MHz  
10MHz  
-6  
-3  
0
3
6
9
12  
15  
-6  
-3  
0
3
6
9
12  
15  
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
FIGURE 16. 2nd HARMONIC DISTORTION vs P  
FIGURE 17. 3rd HARMONIC DISTORTION vs P  
OUT  
OUT  
FN4019.5  
April 23, 2007  
8
HFA1109  
Typical Performance Curves V  
= ±5V, T = +25°C, R = Value From the Optimum Feedback Resistor Table, R = 100Ω,  
SUPPLY  
A
F
L
Unless Otherwise Specified (Continued)  
-20  
-20  
V
= 2V  
P-P  
V
= 2V  
P-P  
OUT  
OUT  
-30  
-40  
-50  
-60  
-70  
-80  
-30  
-40  
-50  
A
= +1  
= -1  
V
A
V
A
= +2  
V
A
= +2, -1  
V
-60  
A
= +1  
V
-70  
-80  
A
= +1  
V
0M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M  
FREQUENCY (Hz)  
0M 10M 20M 30M 40M 50M 60M 70M 80M 90M 100M  
FREQUENCY (Hz)  
FIGURE 18. 2nd HARMONIC DISTORTION vs FREQUENCY  
FIGURE 19. 3rd HARMONIC DISTORTION vs FREQUENCY  
3.6  
A
= +2  
V
+V  
(R = 100Ω)  
L
3.4  
3.2  
3.0  
OUT  
|-V  
| (R = 100Ω)  
L
OUT  
1k  
100  
10  
+V  
(R = 50Ω)  
L
OUT  
+V  
OUT  
(R = 50Ω)  
L
2.8  
2.6  
1
|-V  
| (R = 100Ω)  
L
OUT  
0.1  
0.01  
2.4  
2.2  
|-V  
| (R = 50Ω)  
OUT  
L
2.0  
1.8  
1.6  
0.3  
1M  
10M  
100M  
1000M  
-75  
-50  
-25  
0
25  
50  
75  
100  
125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
FIGURE 21. OUTPUT VOLTAGE vs TEMPERATURE  
FIGURE 20. CLOSED LOOP OUTPUT RESISTANCE  
14.0  
17  
16  
15  
14  
13  
12  
11  
10  
9
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.50  
9.00  
8.50  
V
= ±8V  
S
V
= ±5V  
S
8
7
V
= ±4V  
S
6
5
4
-75  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
-50  
-25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
FIGURE 22. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 23. SUPPLY CURRENT vs TEMPERATURE  
FN4019.5  
April 23, 2007  
9
HFA1109  
Typical Performance Curves V  
= ±5V, T = +25°C, R = Value From the Optimum Feedback Resistor Table, R = 100Ω,  
SUPPLY  
A
F
L
Unless Otherwise Specified (Continued)  
100  
100  
A
= +2  
V
V
= 2V  
OUT  
0.1  
I
NI-  
0.05  
0.025  
0
I
NI+  
10  
10  
-0.025  
-0.05  
E
NI  
I
NI+  
-0.1  
1
100k  
1
0.1k  
1k  
10k  
10  
20  
30  
40 50  
60  
70 80  
90 100  
FREQUENCY (Hz)  
TIME (ns)  
FIGURE 24. INPUT NOISE CHARACTERISTICS  
FIGURE 25. SETTLING RESPONSE  
FN4019.5  
April 23, 2007  
10  
HFA1109  
GLASSIVATION:  
Die Characteristics  
Type: Nitride  
Thickness: 4kÅ ±0.5kÅ  
DIE DIMENSIONS:  
59milsx80milsx19mils  
TRANSISTOR COUNT:  
1500μmx2020μmx483μm  
130  
METALLIZATION:  
SUBSTRATE POTENTIAL (POWERED UP):  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Floating (Recommend Connection to V-)  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
Metallization Mask Layout  
HFA1109  
NC  
NC  
NC  
NC  
V+  
-IN  
OUT  
NC  
NC  
+IN  
V-  
NC  
NC  
FN4019.5  
April 23, 2007  
11  
HFA1109  
Small Outline Plastic Packages (SOIC)  
M8.15 (JEDEC MS-012-AA ISSUE C)  
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE  
N
INDEX  
AREA  
0.25(0.010)  
M
B M  
H
INCHES MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0532  
0.0040  
0.013  
0.0688  
0.0098  
0.020  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0075  
0.1890  
0.1497  
0.0098  
0.1968  
0.1574  
-
-A-  
3
h x 45°  
D
4
-C-  
0.050 BSC  
1.27 BSC  
-
α
H
h
0.2284  
0.0099  
0.016  
0.2440  
0.0196  
0.050  
5.80  
0.25  
0.40  
6.20  
0.50  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
6
0.25(0.010) M  
C
A M B S  
N
α
8
8
7
NOTES:  
0°  
8°  
0°  
8°  
-
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of  
Publication Number 95.  
Rev. 1 6/05  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate burrs.  
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006  
inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. Inter-  
lead flash and protrusions shall not exceed 0.25mm (0.010 inch) per  
side.  
5. The chamfer on the body is optional. If it is not present, a visual index  
feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch).  
10. Controlling dimension: MILLIMETER. Converted inch dimensions  
are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN4019.5  
April 23, 2007  
12  

相关型号:

HFA1109IBZ96

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IP

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109_04

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109_07

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1110

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110/883

750MHz, Low Distortion 750MHz, Low Distortion
INTERSIL

HFA1110883

750MHz, Low Distortion 750MHz, Low Distortion
INTERSIL

HFA1110EVAL

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110IB

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110IBZ

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL

HFA1110IJ

IC,VOLT FOLLOWER,SINGLE,BIPOLAR,DIP,8PIN,CERAMIC
RENESAS

HFA1110IJ

BUFFER AMPLIFIER, CDIP8
ROCHESTER