HFA1106IB [INTERSIL]

315MHz, Low Power, Video Operational Amplifier with Compensation Pin; 315MHz的低功耗,视频与补偿引脚运算放大器
HFA1106IB
型号: HFA1106IB
厂家: Intersil    Intersil
描述:

315MHz, Low Power, Video Operational Amplifier with Compensation Pin
315MHz的低功耗,视频与补偿引脚运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
HFA1106  
315MHz, Low Power, Video Operational  
Amplifier with Compensation Pin  
September 1998  
Features  
Description  
• Compensation Pin for Bandwidth Limiting  
The HFA1106 is a high speed, low power current feedback  
operational amplifier built with Intersil’s proprietary comple-  
mentary bipolar UHF-1 process. This amplifier features a  
compensation pin connected to the internal high impedance  
node, which allows for implementation of external clamping  
or bandwidth limiting.  
• Lower Lot-to-Lot Variability With External  
Compensation  
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1MΩ  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02%  
• Differential Phase . . . . . . . . . . . . . . . . . . 0.05 Degrees  
• Wide -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . 315MHz  
• Very Fast Slew Rate. . . . . . . . . . . . . . . . . . . . . . 700V/µs  
• Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . 5.8mA  
• Gain Flatness (to 100MHz) . . . . . . . . . . . . . . . . . ±0.1dB  
Bandwidth limiting is accomplished by connecting a capaci-  
tor (C  
) and series damping resistor (R  
) from pin  
COMP  
8 to ground. Amplifier performance for various values of  
is documented in the Electrical Specifications.  
COMP  
C
COMP  
The HFA1106 is ideal for noise critical wideband applica-  
tions. Not only can the bandwidth be limited to minimize  
broadband noise, the HFA1106 is optimized for lower feed-  
back resistors (R = 100for A = +2) than most current  
F
V
feedback amplifiers. The low feedback resistor reduces the  
inverting input noise current contribution to total output  
noise, while reducing DC errors as well. Please see the  
“Application Information” section for details.  
Applications  
• Noise Critical Applications  
• Professional Video Processing  
• Medical Imaging  
Part Number Information  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
PKG.  
NO.  
• Video Digitizing Boards/Systems  
• Radar/IF Processing  
o
PACKAGE  
8 Ld PDIP  
8 Ld SOIC  
HFA1106IP  
-40 to 85  
E8.3  
M8.15  
• Hand Held and Miniaturized RF Equipment  
• Battery Powered Communications  
• Flash A/D Drivers  
HFA1106IB  
(H1106I)  
-40 to 85  
HFA11XXEVAL  
DIP Evaluation Board for High Speed  
Op Amps  
• Oscilloscopes and Analyzers  
Pinout  
HFA1106  
(PDIP, SOIC)  
TOP VIEW  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
COMP  
V+  
-
+
OUT  
NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
File Number 3922.2  
Copyright © Intersil Americas Inc. 2002. All Rights Reserved  
3-28  
HFA1106  
Absolute Maximum Ratings  
Thermal Information  
o
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V  
Output Current (Note 1) . . . . . . . . . . . . . . . . Short Circuit Protected  
30mA Continuous  
Thermal Resistance (Typical, Note 2)  
θ
( C/W)  
JA  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130  
170  
o
Maximum Junction Temperature (Die Only) . . . . . . . . . . . . . . . 175 C  
o
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150 C  
Maximum Storage Temperature Range . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s). . . . . . . . . . . . 300 C  
o
o
o
60mA 50% Duty Cycle  
ESD Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >600V  
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation  
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability; however, continuous (100% duty cycle)  
output current must not exceed 30mA for maximum reliability.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications  
V
= ±5V, A = +1, R = 510, C  
= 0pF, R = 100, Unless Otherwise Specified  
SUPPLY  
V
F
COMP  
L
(NOTE 3)  
TEST LEVEL  
TEMP.  
o
PARAMETER  
INPUT CHARACTERISTICS  
Input Offset Voltage  
TEST CONDITIONS  
( C)  
MIN  
TYP  
MAX  
UNITS  
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
25  
Full  
Full  
25  
-
2
3
5
8
mV  
mV  
-
-
o
Average Input Offset Voltage Drift  
1
10  
-
µV/ C  
Input Offset Voltage Common-Mode  
Rejection Ratio  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
47  
45  
45  
50  
47  
47  
-
50  
48  
48  
54  
50  
50  
6
dB  
dB  
dB  
dB  
dB  
dB  
µA  
µA  
CM  
CM  
CM  
V  
V  
85  
-
-40  
25  
-
Input Offset Voltage Power Supply  
Rejection Ratio  
V = ±1.8V  
PS  
-
V = ±1.8V  
PS  
85  
-
V = ±1.2V  
PS  
-40  
25  
-
Non-Inverting Input Bias Current  
15  
25  
60  
1
Full  
Full  
25  
-
10  
5
o
Non-Inverting Input Bias Current Drift  
-
nA/ C  
Non-Inverting Input Bias Current  
Power Supply Sensitivity  
V = ±1.8V  
PS  
-
0.5  
0.8  
0.8  
1.2  
0.8  
0.8  
2
µA/V  
µA/V  
µA/V  
MΩ  
MΩ  
MΩ  
µA  
V = ±1.8V  
PS  
85  
-
3
V = ±1.2V  
PS  
-40  
25  
-
3
Non-Inverting Input Resistance  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
0.8  
0.5  
0.5  
-
-
CM  
CM  
CM  
85  
-
-40  
25  
-
Inverting Input Bias Current  
7.5  
15  
200  
6
Full  
Full  
25  
-
5
µA  
o
Inverting Input Bias Current Drift  
-
60  
3
nA/ C  
Inverting Input Bias Current  
Common-Mode Sensitivity  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
-
µA/V  
µA/V  
µA/V  
µA/V  
µA/V  
µA/V  
CM  
CM  
CM  
85  
-
4
8
-40  
25  
-
4
8
Inverting Input Bias Current Power  
Supply Sensitivity  
V = ±1.8V  
PS  
-
2
5
V = ±1.8V  
PS  
85  
-
4
8
V = ±1.2V  
PS  
-40  
-
4
8
3-29  
HFA1106  
Electrical Specifications  
V
= ±5V, A = +1, R = 510, C  
= 0pF, R = 100, Unless Otherwise Specified (Contin-  
SUPPLY  
V
F
COMP  
L
(NOTE 3)  
TEST LEVEL  
TEMP.  
o
PARAMETER  
Inverting Input Resistance  
Input Capacitance  
TEST CONDITIONS  
( C)  
25  
MIN  
-
TYP  
60  
MAX  
UNITS  
C
C
A
A
-
-
-
-
pF  
V
25  
-
1.6  
Input Voltage Common Mode Range  
25, 85  
-40  
±1.8  
±1.2  
±2.4  
±1.7  
(Implied by V CMRR, +R , and -I  
IO IN BIAS  
V
CMS Tests)  
Input Noise Voltage Density  
f = 100kHz  
B
B
B
25  
25  
25  
-
-
-
3.5  
2.5  
20  
-
-
-
nV/Hz  
pA/Hz  
pA/Hz  
Non-Inverting Input Noise Current Density f = 100kHz  
Inverting Input Noise Current Density  
TRANSFER CHARACTERISTICS  
Open Loop Transimpedance Gain  
f = 100kHz  
A
= -1  
C
25  
-
500  
-
kΩ  
V
AC CHARACTERISTICS  
A
= +2, R = 100Ω, R  
= 51, Unless Otherwise Specified  
V
F
COMP  
-3dB Bandwidth  
C
C
C
C
C
C
C
C
C
C
C
C
= 0pF  
B
B
B
B
B
B
B
B
B
B
B
B
A
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
Full  
250  
140  
65  
315  
170  
80  
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
V/V  
C
C
C
C
C
C
C
C
C
C
C
C
(A = +1, R = 150, V  
OUT  
= 0.2V )  
P-P  
V
F
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
-3dB Bandwidth  
(A = +2, V  
185  
110  
55  
245  
140  
70  
= 0.2V  
)
V
OUT P-P  
±0.1dB Flat Bandwidth  
(A = +1, R = 150, V  
45  
65  
= 0.2V  
)
V
F
OUT  
P-P  
25  
40  
13  
17  
±0.1dB Flat Bandwidth  
(A = +2, V = 0.2V )  
P-P  
60  
100  
30  
V
OUT  
15  
11  
14  
Minimum Stable Gain  
1
-
OUTPUT CHARACTERISTICS  
A
= +2, R = 100, R  
= 51, Unless Otherwise Specified  
V
F
COMP  
Output Voltage Swing  
A
= -1, R = 510Ω  
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
B
25  
Full  
25, 85  
-40  
25  
±3  
±2.8  
50  
±3.4  
±3  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
V
F
V
Output Current  
A
= -1, R = 50Ω,  
60  
mA  
mA  
V
L
R
= 510Ω  
F
28  
42  
Closed Loop Output Impedance  
Output Short Circuit Current  
Second Harmonic Distortion  
DC  
-
0.07  
90  
A
= -1  
25  
-
mA  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
V
C
C
C
C
C
C
C
C
C
C
C
C
= 0pF  
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
25  
-45  
-42  
-38  
-50  
-48  
-48  
-42  
-38  
-34  
-46  
-52  
-50  
-53  
-48  
-44  
-57  
-56  
-56  
-46  
-42  
-38  
-57  
-57  
-57  
C
C
C
C
C
C
C
C
C
C
C
C
(10MHz, V  
OUT  
= 2V )  
P-P  
25  
25  
Third Harmonic Distortion  
(10MHz, V = 2V  
25  
)
OUT P-P  
25  
25  
Second Harmonic Distortion  
(20MHz, V = 2V  
25  
)
OUT P-P  
25  
25  
Third Harmonic Distortion  
(20MHz, V = 2V  
25  
)
OUT P-P  
25  
25  
3-30  
HFA1106  
Electrical Specifications  
V
= ±5V, A = +1, R = 510, C  
= 0pF, R = 100, Unless Otherwise Specified (Contin-  
SUPPLY  
V
F
COMP  
L
(NOTE 3)  
TEST LEVEL  
TEMP.  
o
PARAMETER  
TEST CONDITIONS  
= +2, R = 100, R  
( C)  
MIN  
TYP  
MAX  
UNITS  
TRANSIENT CHARACTERISTICS  
A
= 51, Unless Otherwise Specified  
COMP  
V
F
Rise and Fall Times  
C
C
C
C
C
C
= 0pF  
= 2pF  
= 5pF  
= 0pF  
= 2pF  
= 5pF  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
-
2.6  
3.7  
5.2  
2.7  
3.9  
5.9  
1.5  
6
2.9  
4.2  
6.2  
3.2  
4.4  
6.9  
4
ns  
ns  
C
C
C
C
C
C
(V  
OUT  
= 0.5V  
, A = +1, R = 150)  
P-P  
V
F
-
-
ns  
Rise and Fall Times  
(V = 0.5V , A = +2)  
-
ns  
OUT P-P  
V
-
-
ns  
ns  
Overshoot (Note 4)  
(A = +1, R = 150, V t = 2.5ns)  
IN RISE  
V
V
V
V
V
V
= 250mV  
-
%
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
P-P  
V
F
= 2V  
-
10  
7.5  
5
%
P-P  
= 0V to 2V  
= 250mV  
-
4
%
Overshoot (Note 4)  
-
2
%
P-P  
(A = +2, V  
V
t
= 2.5ns)  
IN RISE  
= 2V  
-
6.5  
2.5  
680  
545  
530  
410  
365  
300  
910  
720  
730  
520  
485  
375  
26  
12  
7.5  
-
%
P-P  
= 0V to 2V  
-
%
Slew Rate  
+SR, C = 0pF  
580  
400  
470  
300  
320  
200  
750  
500  
550  
350  
380  
250  
-
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
C
(V  
= 4V  
, A = +1, R = 150)  
P-P  
OUT  
V
F
-SR, C = 0pF  
-
C
+SR, C = 2pF  
-
C
-SR, C = 2pF  
-
C
+SR, C = 5pF  
-
C
-SR, C = 5pF  
-
C
Slew Rate  
(V = 5V  
+SR, C = 0pF  
-
C
, A = +2)  
P-P  
OUT  
V
-SR, C = 0pF  
-
C
+SR, C = 2pF  
-
C
-SR, C = 2pF  
-
C
+SR, C = 5pF  
-
C
-SR, C = 5pF  
C
-
Settling Time  
(V = +2V to 0V Step,  
To 0.1%  
35  
43  
75  
-
OUT  
= 0pF to 5pF)  
To 0.05%  
To 0.02%  
-
33  
ns  
C
C
-
49  
ns  
Overdrive Recovery Time  
VIDEO CHARACTERISTICS A = +2, R = 100, R = 51Ω, Unless Otherwise Specified  
COMP  
V
= ±2V  
-
8.5  
ns  
IN  
V
F
Differential Gain  
C
= 0pF  
= 5pF  
= 0pF  
= 5pF  
B
B
B
B
25  
25  
25  
25  
-
-
-
-
0.02  
0.02  
0.05  
0.07  
-
-
-
-
%
C
C
C
C
(f = 3.58MHz, R = 150)  
L
C
C
C
%
Differential Phase  
Degrees  
Degrees  
(f = 3.58MHz, R = 150)  
L
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
±4.5  
-
±5.5  
6.1  
V
Power Supply Current  
-
-
5.8  
5.9  
mA  
mA  
Full  
6.3  
NOTES:  
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
4. Undershoot dominates for output signal swings below GND (e.g. 2V ) yielding a higher overshoot limit compared to the V  
P-P  
= 0V to  
OUT  
2V condition.  
3-31  
HFA1106  
Application Information  
Optimum Feedback Resistor  
All current feedback amplifiers (CFAs) require a feedback  
resistor (R ) even for unity gain applications, and R in  
F
F
conjunction with the internal compensation capacitor sets  
the dominant pole of the frequency response. Thus the  
amplifier’s bandwidth is inversely proportional to R . The  
F
HFA1106 design is optimized for R = 150at a gain of +1.  
F
Decreasing R decreases stability resulting in excessive  
F
peaking and overshoot - Note: Capacitive feedback causes  
the same problems due to the feedback impedance  
decrease at higher frequencies. At higher gains, however,  
E
= 456µ V  
RMS  
N
the amplifier is more stable, so R can be decreased in a  
F
trade-off of stability for bandwidth (e.g., R = 100for  
F
A
= +2).  
V
FIGURE 1. HFA1105 NOISE PERFORMANCE, A = +2,  
V
Why Use Externally Compensated Amplifiers?  
R
= 510Ω  
F
Externally compensated op amps were originally developed  
to allow operation at gains below the amplifier’s minimum  
stable gain. This enabled development of non-unity gain sta-  
ble op amps with very high bandwidth and slew rates. Users  
needing lower closed loop gains could stabilize the amplifier  
with external compensation if the associated performance  
decrease was tolerable.  
With the advent of CFAs, unity gain stability and high perfor-  
mance are no longer mutually exclusive, so why offer unity  
gain stable op amps with compensation pins?  
The main reason for external compensation is to allow users  
to tailor the amplifier’s performance to their specific system  
needs. Bandwidth can be limited to the exact value required,  
thereby eliminating excess bandwidth and its associated  
noise. A compensated op amp is also more predictable;  
lower lot-to-lot variation requires less system overdesign to  
cover process variability. Finally, access to the internal high  
impedance node allows users to implement external output  
limiting or allows for stabilizing the amplifier when driving  
large capacitive loads.  
E
= 350µ V  
RMS  
N
FIGURE 2. HFA1106 NOISE PERFORMANCE,  
UNCOMPENSATED, A = +2, R = 100Ω  
V
F
Offset Advantage  
An added advantage of the lower value R is a smaller DC  
output offset. The op amp’s inverting input bias current (I  
flows through the feedback resistor and generates an offset  
F
)
BI  
Noise Advantages - Uncompensated  
voltage error defined by:  
The HFA1106 delivers lower broadband noise even without  
an external compensation capacitor. Package capacitance  
present at the Comp pin stabilizes the op amp, so lower  
V
= I x R ; and V  
BI  
= A V ) ± V  
IO E  
E
F
OS  
V
Reducing R reduces these errors.  
F
value feedback resistors can be used. A smaller value R  
F
Bandwidth Limiting  
minimizes the noise voltage contribution of the amplifier’s  
The HFA1106 bandwidth may be limited by connecting a  
resistor, R (required to damp the interaction between  
inverting input noise current - I x R , usually a large con-  
tributor on CFAs - and minimizes the resistor’s thermal noise  
contribution (4KTR ). Figure 1 details the HFA1105 broad-  
F
band noise performance in its recommended configuration  
NI  
F
COMP  
the compensation capacitor and the package parasitics),  
and capacitor, C , in series from pin 8 to GND. Typical  
COMP  
performance characteristics for various C  
values are  
of A = +2, and R = 510. Adding a Comp pin to the  
COMP  
V
F
listed in the specification table. The HFA1106 is already  
unity gain stable, so the main reason for limiting the band-  
width is to reduce the broadband noise.  
HFA1105 (thereby creating the HFA1106) yields the 23%  
noise reduction shown in Figure 2. In both cases, the scope  
bandwidth, 100MHz, limits the measurement range to pre-  
vent amplifier bandwidth differences from affecting the  
results.  
Noise Advantages - Compensated  
System noise reduction is maximized by limiting the op amp to  
the bandwidth required for the application. Noise increases as  
the square root of the bandwidth increase (4x bandwidth  
increase yields 2x noise increase), so eliminating excess  
3-32  
HFA1106  
bandwidth significantly reduces system noise. Figure 3 illustrates enough, instability. To reduce this capacitance, the designer  
the noise performance of the HFA1106 with its bandwidth limited should remove the ground plane under traces connected to  
to 40MHz by a 10pF C  
. As expected the noise decreases -IN, and keep connections to -IN as short as possible.  
COMP  
by approximately 37% (100% x (1-40MHz/100MHz)) compared  
with Figure 2. The decrease is an even more dramatic 48%  
versus the HFA1105 noise level in Figure 1.  
An example of a good high frequency layout is the Evaluation  
Board shown in Figure 4.  
Evaluation Board  
The performance of the HFA1106 may be evaluated using  
the HFA11XX Evaluation Board.  
Figure 4 details the evaluation board layout and schematic.  
Connecting R  
and C  
in series from socket pin 8  
COMP  
COMP  
to the GND plane compensates the op amp. Cutting the  
trace from pin 8 to the V connector removes the stray par-  
H
allel capacitance, which would otherwise affect the evalua-  
tion. Additionally, the 500feedback and gain setting  
resistors should be changed to the proper value for the gain  
being evaluated.  
E
= 236µ V  
RMS  
N
To order evaluation boards (part number HFA11XXEVAL),  
please contact your local sales office.  
FIGURE 3. HFA1106 NOISE PERFORMANCE,  
COMPENSATED, A = +2, R = 100, C = 10 F  
V
F
C
P
Additionally, compensating the HFA1106 allows the use of a  
lower value R for a given gain. The decreased bandwidth  
F
V
H
due to C  
keeps the amplifier stable by offsetting the  
COMP  
increased bandwidth from the lower R . As noted previ-  
F
ously, a lower value R provides the double benefit of  
F
1
reduced DC errors and lower total noise.  
+IN  
Less Lot-to-Lot Variability  
OUT  
V-  
V+  
External compensation provides another advantage by  
allowing designers to set the op amp’s performance with a  
precision external component. On-chip compensation  
capacitors can vary by 10-20% over the process extremes.  
A precise external capacitor dominates the on-chip compen-  
sation for consistent lot-to-lot performance and more robust  
designs. Compensating high frequency amplifiers to lower  
bandwidths can simplify design tasks and ensure long term  
manufacturability.  
V
L
GND  
TOP LAYOUT  
PC Board Layout  
This amplifier’s frequency response depends greatly on the  
care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
BOTTOM LAYOUT  
510  
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
510  
V
H
R
1
Terminated microstrip signal lines are recommended at the  
device’s input and output connections. Capacitance, para-  
sitic or planned, connected to the output must be minimized,  
1
2
3
4
8
7
6
5
10µF  
+5V  
0.1µF  
50Ω  
50Ω  
compensated for by increasing C  
series output resistor.  
, or isolated by a  
COMP  
IN  
OUT  
V
L
GND  
0.1µF  
10µF  
Care must also be taken to minimize the capacitance to  
ground at the amplifier’s inverting input (-IN), as this capaci-  
tance causes gain peaking, pulse overshoot, and if large  
-5V  
GND  
FIGURE 4. EVALUATION BOARD SCHEMATIC AND LAYOUT  
3-33  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified  
SUPPLY  
A
L
A
C
= +1  
A
C
= +2  
V
C
V
C
= 0pF, R = 150Ω  
120  
80  
F
120  
80  
40  
0
= 0pF, R = 100Ω  
F
40  
0
-40  
-80  
-120  
-40  
-80  
-120  
TIME (10ns/DIV.)  
FIGURE 5. SMALL SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
A
C
= +2  
A
C
= +1  
V
C
V
C
= 0pF, R = 100Ω  
1.2  
0.8  
1.2  
0.8  
0.4  
0
= 0pF, R = 150Ω  
F
F
0.4  
0
-0.4  
-0.8  
-1.2  
-0.4  
-0.8  
-1.2  
TIME (10ns/DIV.)  
FIGURE 7. LARGE SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 8. LARGE SIGNAL PULSE RESPONSE  
A
C
= +2  
A
C
= +1  
V
C
V
C
= 0pF, R = 100Ω  
3
2
3
2
= 0pF, R = 150Ω  
F
F
1
1
0
0
-1  
-2  
-3  
-1  
-2  
-3  
TIME (10ns/DIV.)  
FIGURE 9. LARGE SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 10. LARGE SIGNAL PULSE RESPONSE  
3-34  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
C
V
= 0pF  
C
V
= 0pF  
C
C
A
= +1  
V
= 200mV  
P-P  
0.1  
0
3
0
= 200mV  
P-P  
OUT  
OUT  
A
= +1  
V
GAIN  
A
= +2  
A
= +2  
V
-3  
-6  
-0.1  
-0.2  
-0.3  
V
0
PHASE  
A
= +1  
V
45  
90  
135  
A
= +2  
V
180  
225  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 11. FREQUENCY RESPONSE  
FIGURE 12. GAIN FLATNESS  
A
C
= +1  
A
C
= +1  
V
C
V
C
= 0pF, R = 150Ω  
= 200mV  
= 0pF, R = 150Ω  
= 200mV  
F
3
0
F
0.1  
V
V
OUT  
P-P  
OUT  
P-P  
0
-0.1  
-0.2  
-0.3  
GAIN  
-3  
-6  
0
PHASE  
45  
90  
135  
180  
225  
500  
1
10  
100  
500  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FIGURE 13. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)  
FIGURE 14. GAIN FLATNESS (12 UNITS, 4 RUNS)  
3-35  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
0.2  
0.1  
0
A
C
V
= +2  
A
C
= +2  
V
C
V
C
= 0pF, R = 100Ω  
= 0pF, R = 100Ω  
= 200mV  
F
3
0
F
= 200mV  
V
OUT  
P-P  
OUT  
P-P  
GAIN  
-0.1  
-0.2  
-0.3  
-3  
-6  
0
PHASE  
45  
90  
135  
180  
225  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 15. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)  
FIGURE 16. GAIN FLATNESS (12 UNITS, 4 RUNS)  
A
C
= +2  
A
C
= +1  
V
C
V
C
= 2pF, R = 100Ω  
= 2pF, R = 150Ω  
120  
80  
120  
80  
F
F
40  
0
40  
0
-40  
-40  
-80  
-80  
-120  
-120  
TIME (10ns/DIV.)  
FIGURE 17. SMALL SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 18. SMALL SIGNAL PULSE RESPONSE  
A
C
= +1  
A
C
= +2  
V
C
V
C
= 2pF, R = 150Ω  
1.2  
0.8  
0.4  
0
= 2pF, R = 100Ω  
1.2  
0.8  
0.4  
0
F
F
-0.4  
-0.8  
-1.2  
-0.4  
-0.8  
-1.2  
TIME (10ns/DIV.)  
FIGURE 19. LARGE SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 20. LARGE SIGNAL OUTPUT VOLTAGE  
3-36  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
A
C
= +1  
A
C
= +2  
V
C
V
C
= 2pF, R = 150Ω  
= 2pF, R = 100Ω  
3
3
2
1
0
F
F
2
1
0
-1  
-2  
-1  
-2  
-3  
-3  
TIME (10ns/DIV.)  
FIGURE 21. LARGE SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 22. LARGE SIGNAL PULSE RESPONSE  
C
V
= 2pF  
C
V
= 2pF  
C
C
= 200mV  
P-P  
3
= 200mV  
P-P  
0.1  
OUT  
OUT  
0
-3  
-6  
0
-0.1  
-0.2  
-0.3  
GAIN  
A
= +1  
V
A
= +1  
V
A
A
= +2  
= +1  
V
V
A
= +2  
V
0
PHASE  
45  
90  
A
= +2  
V
135  
180  
225  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 23. FREQUENCY RESPONSE  
FIGURE 24. GAIN FLATNESS  
A
V
= +1, C = 2pF, R = 150Ω  
A
V
= +1, C = 2pF, R = 150Ω  
C
F
V
C
F
0.1  
3
V
= 200mV  
= 200mV  
OUT  
P-P  
OUT  
P-P  
0
0
-0.1  
-0.2  
-0.3  
-3  
-6  
-9  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 25. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)  
FIGURE 26. GAIN FLATNESS (12 UNITS, 4 RUNS)  
3-37  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
A
V
= +2, C = 2pF, R = 100Ω  
A
V
= +2, C = 2pF, R = 100Ω  
V
C
F
V
C
F
3
0
0.1  
0
= 200mV  
= 200mV  
OUT  
P-P  
OUT  
P-P  
GAIN  
-3  
-6  
-0.1  
-0.2  
-0.3  
0
PHASE  
45  
90  
135  
180  
225  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 27. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)  
FIGURE 28. GAIN FLATNESS (12 UNITS, 4 RUNS)  
A
C
= +1  
A
C
= +2  
V
C
V
C
= 5pF, R = 150Ω  
120  
80  
120  
80  
40  
0
= 5pF, R = 100Ω  
F
F
40  
0
-40  
-40  
-80  
-80  
-120  
-120  
TIME (10ns/DIV.)  
FIGURE 29. SMALL SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 30. SMALL SIGNAL PULSE RESPONSE  
A
C
= +1  
A
C
= +2  
V
C
V
C
1.2  
0.8  
0.4  
0
= 5pF, R = 150Ω  
1.2  
0.8  
= 5pF, R = 100Ω  
F
F
0.4  
0
-0.4  
-0.8  
-1.2  
-0.4  
-0.8  
-1.2  
TIME (10ns/DIV.)  
FIGURE 31. LARGE SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 32. LARGE SIGNAL PULSE RESPONSE  
3-38  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
A
C
= +1  
A
C
= +2  
V
C
V
C
3
2
= 5pF, R = 150Ω  
= 5pF, R = 100Ω  
3
F
F
2
1
0
1
0
-1  
-2  
-3  
-1  
-2  
-3  
TIME (10ns/DIV.)  
FIGURE 33. LARGE SIGNAL PULSE RESPONSE  
TIME (10ns/DIV.)  
FIGURE 34. LARGE SIGNAL PULSE RESPONSE  
C
= 5pF  
= 200mV  
P-P  
C
C = 5pF  
C
0.1  
3
0
V
OUT  
V = 200mV  
OUT P-P  
0
-0.1  
-0.2  
-0.3  
GAIN  
-3  
-6  
A = +1  
V
A
= +1  
V
A
= +2  
V
A
= +2  
V
0
PHASE  
A
= +1  
V
45  
90  
A
= +2  
V
135  
180  
225  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 35. FREQUENCY RESPONSE  
FIGURE 36. GAIN FLATNESS  
A
C
= +1  
A
C
= +1  
V
C
V
C
= 5pF, R = 150Ω  
= 200mV  
3
= 5pF, R = 150Ω  
= 200mV  
F
0.1  
0
F
V
V
OUT  
P-P  
OUT  
P-P  
0
-3  
-6  
-0.1  
-0.2  
-0.3  
0
45  
90  
135  
180  
225  
1
1
10  
100  
500  
10  
FREQUENCY (MHz)  
500  
100  
FREQUENCY (MHz)  
FIGURE 37. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)  
FIGURE 38. GAIN FLATNESS (12 UNITS, 4 RUNS)  
3-39  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
A
= +2, C = 5pF, R = 100Ω  
V
C
F
A
V
= +2, C = 5pF, R = 100Ω  
V
C
F
3
0
0.1  
0
V
= 200mV  
OUT  
P-P  
= 200mV  
OUT  
P-P  
-3  
-6  
-0.1  
-0.2  
-0.3  
0
45  
90  
135  
180  
225  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
FREQUENCY (MHz)  
100  
500  
FIGURE 39. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)  
FIGURE 40. GAIN FLATNESS (12 UNITS, 4 RUNS)  
4.0  
3.5  
3.0  
A
= -1  
A
R
V
= +2  
= 100Ω  
V
V
F
C
= 2pF  
C
= 2V  
OUT  
0.15  
0.1  
|-V  
+V  
|
|
R
= 100Ω  
= 50Ω  
OUT  
L
OUT  
R
L
0.05  
0
|-V  
OUT  
OUT  
C
= 0pF  
C
+V  
-0.05  
-0.1  
2.5  
2
0
10  
20 30  
40  
50  
60  
70  
80  
90 100  
-100  
-50  
0
50  
100  
150  
o
TIME (ns)  
TEMPERATURE ( C)  
FIGURE 41. SETTLING RESPONSE  
FIGURE 42. OUTPUT VOLTAGE vs TEMPERATURE  
3-40  
HFA1106  
o
Typical Performance Curves V  
= ±5V, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
A
L
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
SUPPLY VOLTAGE (±V)  
FIGURE 43. SUPPLY CURRENT vs SUPPLY VOLTAGE  
Die Characteristics  
DIE DIMENSIONS:  
59 mils x 58.2 mils x 19 mils  
1500µm x 1480µm x 483µm  
METALLIZATION:  
Type: Metal 1: AICu(2%)/TiW  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
PASSIVATION:  
Type: Nitride  
Thickness: 4kÅ ±0.5kÅ  
TRANSISTOR COUNT:  
75  
SUBSTRATE POTENTIAL (Powered Up):  
Floating  
(Recommend Connection to V-)  
Metallization Mask Layout  
HFA1106  
-IN  
COMP  
3-41  
3-42  
3-43  

相关型号:

HFA1106IJ

VIDEO AMPLIFIER, CDIP8
RENESAS

HFA1106IP

315MHz, Low Power, Video Operational Amplifier with Compensation Pin
INTERSIL

HFA1106IP

315MHz, Low Power Video Operational Amplifier with Compensation Pin
HARRIS

HFA1109

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109EVAL

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IB

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IBZ

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IBZ96

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IP

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109_04

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109_07

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1110

750MHz, Low Distortion Unity Gain, Closed Loop Buffer
INTERSIL