HFA1105IP [INTERSIL]

330MHz, Low Power, Current Feedback Video Operational Amplifier; 330MHz的低功耗,电流反馈型视频运算放大器
HFA1105IP
型号: HFA1105IP
厂家: Intersil    Intersil
描述:

330MHz, Low Power, Current Feedback Video Operational Amplifier
330MHz的低功耗,电流反馈型视频运算放大器

运算放大器 光电二极管
文件: 总11页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HFA1105  
September 1998  
File Number 3395.6  
330MHz, Low Power, Current Feedback  
Video Operational Amplifier  
Features  
• Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 5.8mA  
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1MΩ  
• Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . . 330MHz  
• Very Fast Slew Rate. . . . . . . . . . . . . . . . . . . . . . 1000V/µs  
• Gain Flatness (to 75MHz) . . . . . . . . . . . . . . . . . . . . 0.1dB  
• Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02%  
• Differential Phase . . . . . . . . . . . . . . . . . . . . 0.03 Degrees  
• Pin Compatible Upgrade for CLC406  
The HFA1105 is a high speed, low power current feedback  
amplifier built with Intersil’s proprietary complementary  
bipolar UHF-1 process.  
This amplifier features an excellent combination of low  
power dissipation (58mW) and high performance. The slew  
rate, bandwidth, and low output impedance (0.08) make  
this amplifier a good choice for driving Flash ADCs.  
Component and composite video systems also benefit from  
this op amp’s excellent gain flatness, and good differential  
gain and phase specifications. The HFA1105 is ideal for  
interfacing to Intersil’s line of video crosspoint switches  
(HA4201, HA4600, HA4314, HA4404, HA4344), to create  
high performance, low power switchers and routers.  
Applications  
• Flash A/D Drivers  
• Video Switching and Routing  
• Professional Video Processing  
• Video Digitizing Boards/Systems  
• Multimedia Systems  
The HFA1105 is a low power, high performance upgrade for  
the CLC406. For a comparable amplifier with output disable  
or output limiting functions, please see the data sheets for  
the HFA1145 and HFA1135 respectively.  
For Military grade product, please refer to the HFA1145/883  
data sheet.  
• RGB Preamps  
• Medical Imaging  
Ordering Information  
• Hand Held and Miniaturized RF Equipment  
• Battery Powered Communications  
PART NUMBER  
(BRAND)  
TEMP.  
RANGE ( C)  
o
PACKAGE  
8 Ld PDIP  
8 Ld SOIC  
PKG. NO.  
E8.3  
HFA1105IP  
-40 to 85  
Pinout  
HFA1105IB  
(H1105I)  
-40 to 85  
M8.15  
HFA1105  
(PDIP, SOIC)  
TOP VIEW  
HFA11XXEVAL  
DIP Evaluation Board for High Speed  
Op Amps  
NC  
-IN  
+IN  
V-  
1
2
3
4
8
7
6
5
NC  
V+  
-
+
OUT  
NC  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HFA1105  
Absolute Maximum Ratings  
Thermal Information  
o
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V  
Output Current (Note 1) . . . . . . . . . . . . . . . . .Short Circuit Protected  
30mA Continuous  
Thermal Resistance (Typical, Note 2)  
θJA ( C/W)  
SUPPLY  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130  
170  
o
Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175 C  
Maximum Junction Temperature (Plastic Package) . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300 C  
o
o
o
60mA 50% Duty Cycle  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . >600V  
o
(SOIC - Lead Tips Only)  
Operating Conditions  
o
o
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTES:  
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100% duty cycle) output  
current must not exceed 30mA for maximum reliability.  
2. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications V  
= ±5V, A = +1, R = 510, R = 100Ω, Unless Otherwise Specified  
V F L  
SUPPLY  
(NOTE 3)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
INPUT CHARACTERISTICS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage  
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
25  
Full  
Full  
25  
-
-
2
3
5
8
mV  
mV  
o
Average Input Offset Voltage Drift  
-
1
10  
-
µV/ C  
Input Offset Voltage  
Common-Mode Rejection Ratio  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
47  
45  
45  
50  
47  
47  
-
50  
48  
48  
54  
50  
50  
6
dB  
dB  
dB  
dB  
dB  
dB  
µA  
µA  
CM  
CM  
CM  
85  
-
-40  
25  
-
Input Offset Voltage  
Power Supply Rejection Ratio  
V = ±1.8V  
PS  
-
V = ±1.8V  
PS  
85  
-
V = ±1.2V  
PS  
-40  
25  
-
Non-Inverting Input Bias Current  
15  
25  
60  
1
Full  
Full  
25  
-
10  
5
o
Non-Inverting Input Bias Current Drift  
-
nA/ C  
Non-Inverting Input Bias Current  
Power Supply Sensitivity  
V = ±1.8V  
PS  
-
0.5  
0.8  
0.8  
1.2  
0.8  
0.8  
2
µA/V  
µA/V  
µA/V  
MΩ  
MΩ  
MΩ  
µA  
V = ±1.8V  
PS  
85  
-
3
V = ±1.2V  
PS  
-40  
25  
-
3
Non-Inverting Input Resistance  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
0.8  
0.5  
0.5  
-
-
CM  
CM  
CM  
85  
-
-40  
25  
-
Inverting Input Bias Current  
7.5  
15  
200  
6
Full  
Full  
25  
-
5
µA  
o
Inverting Input Bias Current Drift  
-
60  
3
nA/ C  
Inverting Input Bias Current  
Common-Mode Sensitivity  
V  
V  
V  
= ±1.8V  
= ±1.8V  
= ±1.2V  
-
µA/V  
µA/V  
µA/V  
µA/V  
µA/V  
µA/V  
CM  
CM  
CM  
85  
-
4
8
-40  
25  
-
4
8
Inverting Input Bias Current  
Power Supply Sensitivity  
V = ±1.8V  
PS  
-
2
5
V = ±1.8V  
PS  
85  
-
4
8
V = ±1.2V  
PS  
-40  
-
4
8
2
HFA1105  
Electrical Specifications V  
= ±5V, A = +1, R = 510, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
Inverting Input Resistance  
TEST CONDITIONS  
MIN  
TYP  
60  
MAX  
UNITS  
C
C
A
A
B
B
B
25  
25  
-
-
-
-
-
-
-
-
Input Capacitance  
-
1.6  
±2.4  
±1.7  
3.5  
2.5  
20  
pF  
Input Voltage Common Mode Range  
(Implied by V CMRR, +R , and -I  
IO IN BIAS  
25, 85  
-40  
25  
±1.8  
V
CMS Tests)  
±1.2  
V
Input Noise Voltage Density (Note 6)  
f = 100kHz  
f = 100kHz  
f = 100kHz  
-
-
-
nV/Hz  
pA/Hz  
pA/Hz  
Non-Inverting Input Noise Current Density (Note 6)  
Inverting Input Noise Current Density (Note 6)  
TRANSFER CHARACTERISTICS  
25  
25  
Open Loop Transimpedance Gain  
A
= -1  
C
25  
-
500  
-
kΩ  
V
AC CHARACTERISTICS  
R = 510, Unless Otherwise Specified  
F
-3dB Bandwidth  
A
= +1, +R = 510Ω  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
A
25  
Full  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
270  
240  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
V
S
(V  
= 0.2V  
, Note 6)  
P-P  
OUT  
A
A
= -1, R = 425Ω  
300  
V
F
= +2  
25  
330  
V
Full  
25  
260  
A
= +10, R = 180Ω  
130  
V
F
Full  
25  
90  
Full Power Bandwidth  
(V = 5V at A = +2/-1,  
A
A
A
= +1, +R = 510Ω  
135  
V
V
V
S
OUT  
4V  
P-P  
V
= -1  
25  
140  
at A = +1, Note 6)  
P-P  
V
= +2  
25  
115  
Gain Flatness  
(A = +2, V  
To 25MHz  
25  
±0.03  
±0.04  
±0.11  
±0.22  
±0.03  
±0.09  
1
= 0.2V , Note 6)  
OUT P-P  
V
Full  
25  
dB  
To 75MHz  
dB  
Full  
25  
dB  
Gain Flatness  
(A = +1, +R = 510, V = 0.2V  
OUT  
To 25MHz  
To 75MHz  
dB  
, Note 6)  
P-P  
V
S
25  
dB  
Minimum Stable gain  
Full  
V/V  
OUTPUT CHARACTERISTICS  
A = +2, R = 510Ω, Unless Otherwise Specified  
V F  
Output Voltage Swing (Note 6)  
A
= -1, R = 100Ω  
A
A
A
A
B
B
B
B
B
B
B
25  
Full  
25, 85  
-40  
25  
±3  
±3.4  
±3  
-
-
-
-
-
-
-
-
-
-
-
V
V
L
±2.8  
V
Output Current (Note 6)  
A
= -1, R = 50Ω  
50  
28  
-
60  
mA  
mA  
mA  
V
L
42  
Output Short Circuit Current  
90  
Closed Loop Output Impedance (Note 6)  
Second Harmonic Distortion  
DC  
25  
-
0.08  
-48  
-44  
-50  
-45  
-55  
10MHz  
20MHz  
10MHz  
20MHz  
30MHz  
25  
-
dBc  
dBc  
dBc  
dBc  
dB  
(V  
= 2V , Note 6)  
P-P  
OUT  
25  
-
Third Harmonic Distortion  
(V = 2V , Note 6)  
25  
-
OUT P-P  
25  
-
Reverse Isolation (S , Note 6)  
12  
25  
-
TRANSIENT CHARACTERISTICS  
A = +2, R = 510, Unless Otherwise Specified  
V F  
Rise and Fall Times  
V
= 0.5V  
B
B
25  
-
-
1.1  
1.4  
-
-
ns  
ns  
OUT  
P-P  
Full  
3
HFA1105  
Electrical Specifications V  
= ±5V, A = +1, R = 510, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
V
F
L
(NOTE 3)  
TEST  
LEVEL  
TEMP.  
( C)  
o
PARAMETER  
TEST CONDITIONS  
+OS  
MIN  
TYP  
3
MAX  
UNITS  
%
Overshoot (Note 4)  
(V = 0 to 0.5V, V  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
25  
25  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
t
IN RISE  
= 1ns)  
= 1ns)  
OUT  
-OS  
+OS  
-OS  
+SR  
5
%
Overshoot (Note 4)  
(V = 0.5V , V  
25  
3
%
t
P-P IN RISE  
OUT  
25  
11  
%
Slew Rate  
(V = 4V  
25  
1000  
975  
650  
580  
1400  
1200  
800  
700  
2100  
1900  
1000  
900  
15  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
V/µs  
ns  
, A = +1, +R = 510)  
OUT  
P-P  
V
S
Full  
25  
-SR (Note 5)  
+SR  
Full  
25  
Slew Rate  
(V = 5V  
, A = +2)  
OUT  
P-P  
V
Full  
25  
-SR (Note 5)  
+SR  
Full  
25  
Slew Rate  
(V = 5V  
, A = -1)  
OUT  
P-P  
V
Full  
25  
-SR (Note 5)  
Full  
25  
Settling Time  
(V = +2V to 0V step, Note 6)  
To 0.1%  
To 0.05%  
To 0.02%  
OUT  
25  
23  
ns  
25  
30  
ns  
Overdrive Recovery Time  
V
= ±2V  
25  
8.5  
ns  
IN  
A = +2, R = 510Ω, Unless Otherwise Specified  
V
VIDEO CHARACTERISTICS  
F
Differential Gain  
(f = 3.58MHz)  
R
R
R
R
= 150Ω  
= 75Ω  
B
B
B
B
25  
25  
25  
25  
-
-
-
-
0.02  
0.03  
0.03  
0.05  
-
-
-
-
%
L
L
L
L
%
Differential Phase  
(f = 3.58MHz)  
= 150Ω  
= 75Ω  
Degrees  
Degrees  
POWER SUPPLY CHARACTERISTICS  
Power Supply Range  
C
A
A
25  
25  
±4.5  
-
±5.5  
6.1  
V
Power Supply Current (Note 6)  
-
-
5.8  
5.9  
mA  
mA  
Full  
6.3  
NOTES:  
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.  
4. Undershoot dominates for output signal swings below GND (e.g., 0.5V ), yielding a higher overshoot limit compared to the V  
P-P  
= 0 to 0.5V  
OUT  
condition. See the “Application Information” section for details.  
5. Slew rates are asymmetrical if the output swings below GND (e.g. a bipolar signal). Positive unipolar output signals have symmetric positive and  
negative slew rates comparable to the +SR specification. See the “Application Information” section, and the pulse response graphs for details.  
6. See Typical Performance Curves for more information.  
amplifier’s unique relationship between bandwidth and R .  
All current feedback amplifiers require a feedback resistor,  
Application Information  
F
Optimum Feedback Resistor  
even for unity gain applications, and R , in conjunction with  
F
Although a current feedback amplifier’s bandwidth  
the internal compensation capacitor, sets the dominant pole  
of the frequency response. Thus, the amplifier’s bandwidth is  
dependency on closed loop gain isn’t as severe as that of a  
voltage feedback amplifier, there can be an appreciable  
decrease in bandwidth at higher gains. This decrease may  
be minimized by taking advantage of the current feedback  
inversely proportional to R . The HFA1105 design is  
F
optimized for R = 510at a gain of +2. Decreasing R  
F
F
decreases stability, resulting in excessive peaking and  
4
HFA1105  
overshoot (Note: Capacitive feedback will cause the same  
problems due to the feedback impedance decrease at higher  
frequencies). At higher gains, however, the amplifier is more  
Terminated microstrip signal lines are recommended at the  
device’s input and output connections. Capacitance,  
parasitic or planned, connected to the output must be  
minimized, or isolated as discussed in the next section.  
stable so R can be decreased in a trade-off of stability for  
F
bandwidth.  
Care must also be taken to minimize the capacitance to  
ground at the amplifier’s inverting input (-IN), as this  
capacitance causes gain peaking, pulse overshoot, and if  
large enough, instability. To reduce this capacitance, the  
designer should remove the ground plane under traces  
connected to  
The table below lists recommended R values for various  
F
gains, and the expected bandwidth. For a gain of +1, a  
resistor (+R ) in series with +IN is required to reduce gain  
peaking and increase stability.  
S
-IN, and keep connections to -IN as short as possible.  
An example of a good high frequency layout is the  
Evaluation Board shown in Figure 2.  
GAIN  
(A  
BANDWIDTH  
(MHz)  
)
R ()  
F
CL  
-1  
+1  
425  
300  
270  
330  
300  
130  
Driving Capacitive Loads  
510 (+R = 510)  
Capacitive loads, such as an A/D input, or an improperly  
terminated transmission line will degrade the amplifier’s  
phase margin resulting in frequency response peaking and  
possible oscillations. In most cases, the oscillation can be  
S
+2  
510  
200  
180  
+5  
+10  
avoided by placing a resistor (R ) in series with the output  
S
prior to the capacitance.  
Non-Inverting Input Source Impedance  
For best operation, the DC source impedance seen by the  
non-inverting input should be 50Ω. This is especially  
important in inverting gain configurations where the non-  
inverting input would normally be connected directly to GND.  
Figure 1 details starting points for the selection of this  
resistor. The points on the curve indicate the R and C  
S
L
combinations for the optimum bandwidth, stability, and  
settling time, but experimental fine tuning is recommended.  
Picking a point above or to the right of the curve yields an  
overdamped response, while points below or left of the curve  
indicate areas of underdamped performance.  
Pulse Undershoot and Asymmetrical Slew Rates  
The HFA1105 utilizes a quasi-complementary output stage to  
achieve high output current while minimizing quiescent supply  
current. In this approach, a composite device replaces the  
traditional PNP pulldown transistor. The composite device  
switches modes after crossing 0V, resulting in added  
distortion for signals swinging below ground, and an  
increased undershoot on the negative portion of the output  
waveform (See Figures 5, 8, and 11). This undershoot isn’t  
present for small bipolar signals, or large positive signals.  
Another artifact of the composite device is asymmetrical slew  
rates for output signals with a negative voltage component.  
The slew rate degrades as the output signal crosses through  
0V (See Figures 5, 8, and 11), resulting in a slower overall  
negative slew rate. Positive only signals have symmetrical  
slew rates as illustrated in the large signal positive pulse  
response graphs (See Figures 4, 7, and 10).  
R and C form a low pass network at the output, thus limiting  
S
L
system bandwidth well below the amplifier bandwidth of  
270MHz (for A = +1). By decreasing R as C increases (as  
V
S
L
illustrated in the curves), the maximum bandwidth is obtained  
without sacrificing stability. In spite of this, the bandwidth  
decreases as the load capacitance increases. For example, at  
A = +1, R = 62, C = 40pF, the overall bandwidth is limited  
V
S
L
to 180MHz, and bandwidth drops to 75MHz at A = +1,  
V
R = 8, C = 400pF.  
S
L
PC Board Layout  
The amplifier’s frequency response depends greatly on the  
care taken in designing the PC board. The use of low  
inductance components such as chip resistors and chip  
capacitors is strongly recommended, while a solid  
ground plane is a must!  
Attention should be given to decoupling the power supplies.  
A large value (10µF) tantalum in parallel with a small value  
(0.1µF) chip capacitor works well in most cases.  
5
HFA1105  
50  
40  
30  
20  
10  
0
510  
510  
V
H
R
1
1
2
3
4
8
7
6
5
10µF  
+5V  
0.1µF  
50Ω  
50Ω  
IN  
OUT  
V
L
GND  
0.1µF  
10µF  
-5V  
GND  
A
= +1  
V
A
= +2  
150  
FIGURE 2C. SCHEMATIC  
FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT  
V
0
100  
200  
300  
400  
50  
250  
350  
LOAD CAPACITANCE (pF)  
FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs  
LOAD CAPACITANCE  
Evaluation Board  
The performance of the HFA1105 may be evaluated using  
the HFA11XX Evaluation Board.  
The layout and schematic of the board are shown in Figure  
2. To order evaluation boards (part number HFA11XXEVAL),  
please contact your local sales office.  
V
H
1
+IN  
OUT  
V-  
V+  
V
L
GND  
FIGURE 2A. TOP LAYOUT  
FIGURE 2B. BOTTOM LAYOUT  
6
HFA1105  
o
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25 C, R = 100Ω, Unless Otherwise Specified  
F A L  
SUPPLY  
200  
3.0  
A
= +1  
A
= +1  
V
V
+R = 510Ω  
+R = 510Ω  
S
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
S
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 3. SMALL SIGNAL PULSE RESPONSE  
FIGURE 4. LARGE SIGNAL POSITIVE PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
200  
A
= +1  
A
= +2  
V
V
+R = 510Ω  
S
150  
100  
50  
0
-0.5  
-1.0  
-50  
-100  
-1.5  
-2.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 5. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 6. SMALL SIGNAL PULSE RESPONSE  
3.0  
2.0  
1.5  
1.0  
0.5  
0
A
= +2  
A = +2  
V
V
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-0.5  
-1.0  
-1.5  
-2.0  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE  
FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
7
HFA1105  
o
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
F A L  
SUPPLY  
200  
3.0  
A
= +10  
V
A
= +10  
V
R
= 180Ω  
F
R
= 180Ω  
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
F
0
-50  
-100  
-0.5  
-1.0  
-150  
-200  
TIME (5ns/DIV.)  
TIME (5ns/DIV.)  
FIGURE 9. SMALL SIGNAL PULSE RESPONSE  
FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE  
2.0  
1.5  
1.0  
0.5  
0
V
= 200mV  
P-P  
OUT  
+R = 510(+1)  
S
A
= +10  
V
3
0
S
A
= +1  
= -1  
V
R
= 180Ω  
F
+R = 0(-1)  
A
V
-3  
0
A
= -1  
-0.5  
-1.0  
V
90  
180  
270  
-1.5  
-2.0  
A
= +1  
V
0.3  
1
10  
100  
500  
TIME (5ns/DIV.)  
FREQUENCY (MHz)  
FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE  
FIGURE 12. FREQUENCY RESPONSE  
A
= +2  
V
V
= 200mV  
P-P  
OUT  
3
3
0
A
= +2  
V
0
A
= +10  
V
= 1.5V  
V
-3  
-3  
OUT  
P-P  
A
= +5  
V
V
= 5V  
OUT  
P-P  
A
= +2  
V
= 200mV  
P-P  
V
OUT  
P-P  
0
0
90  
90  
A
= +5  
V
= 200mV  
P-P  
V
OUT  
V = 1.5V  
OUT  
180  
270  
180  
270  
R
R
R
= 510(+2)  
= 200(+5)  
= 180(+10)  
F
F
F
A
= +10  
100  
V
V
= 5V  
P-P  
OUT  
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
0.3  
1
10  
FREQUENCY (MHz)  
500  
FIGURE 13. FREQUENCY RESPONSE  
FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT  
VOLTAGES  
8
HFA1105  
o
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
F A L  
SUPPLY  
V
= 200mV  
P-P  
OUT  
= +2  
R
= 1kΩ  
L
R
= 500Ω  
3
L
A
V
3
0
A
= -1  
V
0
R
= 50Ω  
L
V
= 4V  
= 5V  
(+1)  
(-1, +2)  
-3  
OUT  
P-P  
-3  
R
= 100Ω  
V
A
= +1  
L
OUT  
P-P  
V
+R = 510(+1)  
S
A
= +2  
V
R
= 50Ω  
L
= 100Ω  
R
0
L
90  
R
= 1kΩ  
L
R
= 500Ω  
180  
270  
L
0.3  
1
10  
FREQUENCY (MHz)  
100  
500  
1
10  
100  
200  
FREQUENCY (MHz)  
FIGURE 15. FULL POWER BANDWIDTH  
FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS LOAD  
RESISTORS  
500  
400  
300  
200  
100  
0
V
= 200mV  
P-P  
OUT  
+R = 510(+1)  
A
= +2  
V
= 200mV  
P-P  
V
OUT  
= 180(+10)  
S
R
F
0.25  
0.20  
0.15  
0.10  
0.05  
0
+R = 510(+1)  
S
A
= +1  
V
A
= +2  
V
A
= +10  
V
A
= +1  
V
-0.05  
-0.10  
-100  
-50  
0
50  
100  
150  
1
10  
75  
o
FREQUENCY (MHz)  
TEMPERATURE ( C)  
FIGURE 18. GAIN FLATNESS  
FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE  
-40  
A = +2  
V
V
= 2V  
P-P  
OUT  
A
= +1, +2  
-50  
-60  
-70  
-80  
-90  
V
1K  
A
= -1  
V
100  
10  
1
0.1  
0.01  
0.3  
1
10  
FREQUENCY (MHz)  
100  
0.3  
1
10  
100  
1000  
FREQUENCY (MHz)  
FIGURE 19. REVERSE ISOLATION  
FIGURE 20. OUTPUT IMPEDANCE  
9
HFA1105  
o
Typical Performance Curves V  
= ±5V, R = 510Ω, T = 25 C, R = 100Ω, Unless Otherwise Specified (Continued)  
SUPPLY  
F
A
L
-30  
-40  
-50  
-60  
-70  
A
= +2  
V
A
= +2  
V
0.8  
0.6  
0.4  
V
= 2V  
OUT  
10MHz  
0.2  
0.1  
0
20MHz  
-0.2  
-0.4  
-0.6  
-0.8  
-5  
0
5
10  
15  
3
8
13  
18  
23  
28  
33  
38  
43  
48  
OUTPUT POWER (dBm)  
TIME (ns)  
FIGURE 21. SETTLING RESPONSE  
FIGURE 22. SECOND HARMONIC DISTORTION vs P  
OUT  
-30  
-40  
-50  
-60  
-70  
3.6  
A
= -1  
|-V | (R = 100Ω)  
OUT L  
V
A
= +2  
V
3.5  
+V  
OUT  
(R = 100Ω)  
L
3.4  
3.3  
3.2  
3.1  
+V  
OUT  
(R = 50Ω)  
L
3.0  
2.9  
2.8  
|-V  
OUT  
| (R = 50Ω)  
L
2.7  
2.6  
-50  
-25  
0
25  
50  
75  
100  
125  
-5  
0
5
10  
15  
o
OUTPUT POWER (dBm)  
TEMPERATURE ( C)  
FIGURE 23. THIRD HARMONIC DISTORTION vs P  
OUT  
FIGURE 24. OUTPUT VOLTAGE vs TEMPERATURE  
100  
100  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
I
NI-  
10  
10  
E
NI  
I
NI+  
1
0.1  
1
100  
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
1
10  
POWER SUPPLY VOLTAGE (±V)  
FREQUENCY (kHz)  
FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE  
FIGURE 25. INPUT NOISE CHARACTERISTICS  
10  
HFA1105  
Die Characteristics  
DIE DIMENSIONS:  
PASSIVATION:  
59 mils x 59 mils x 19 mils  
Type: Nitride  
1500µm x 1500µm x 483µm  
Thickness: 4kÅ ±0.5kÅ  
METALLIZATION:  
TRANSISTOR COUNT:  
Type: Metal 1: AICu(2%)/TiW  
75  
Thickness: Metal 1: 8kÅ ±0.4kÅ  
SUBSTRATE POTENTIAL (Powered Up):  
Type: Metal 2: AICu(2%)  
Thickness: Metal 2: 16kÅ ±0.8kÅ  
Floating  
(Recommend Connection to V-)  
Metallization Mask Layout  
HFA1105  
NC  
V+  
-IN  
OUT  
+IN  
V-  
NC  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
11  

相关型号:

HFA1105_06

330MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1106

315MHz, Low Power, Video Operational Amplifier with Compensation Pin
INTERSIL

HFA1106

315MHz, Low Power Video Operational Amplifier with Compensation Pin
HARRIS

HFA1106IB

315MHz, Low Power, Video Operational Amplifier with Compensation Pin
INTERSIL

HFA1106IB

315MHz, Low Power Video Operational Amplifier with Compensation Pin
HARRIS

HFA1106IJ

VIDEO AMPLIFIER, CDIP8
RENESAS

HFA1106IP

315MHz, Low Power, Video Operational Amplifier with Compensation Pin
INTERSIL

HFA1106IP

315MHz, Low Power Video Operational Amplifier with Compensation Pin
HARRIS

HFA1109

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109EVAL

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IB

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL

HFA1109IBZ

450MHz, Low Power, Current Feedback Video Operational Amplifier
INTERSIL