HC55151 [INTERSIL]

Low Power Universal SLIC Family; 低功耗通用SLIC家庭
HC55151
型号: HC55151
厂家: Intersil    Intersil
描述:

Low Power Universal SLIC Family
低功耗通用SLIC家庭

文件: 总35页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HC55120, HC55121, HC55130, HC55131, HC55140,  
HC55141, HC55142, HC55143, HC55150, HC55151  
TM  
Data Sheet  
June 2000  
File Number 4659.5  
Low Power Universal SLIC Family  
Features  
The UniSLIC14 is a family of Ultra Low Power SLICs. The  
feature set and common pinouts of the UniSLIC14 family  
positions it as a universal solution for: Plain Old Telephone  
Service (POTS), PBX, Central Office, Loop Carrier, Fiber in the  
Loop, ISDN-TA and NT1+, Pairgain and Wireless Local Loop.  
• Ultra Low Active Power (OHT) < 60mW  
• Single/Dual Battery Operation  
• Automatic Silent Battery Selection  
• Power Management/Shutdown  
• Battery Tracking Anti Clipping  
The UniSLIC14 family achieves its ultra low power operation  
through: Its automatic single and dual battery selection  
(based on line length) and battery tracking anti clipping to  
ensure the maximum loop coverage on the lowest battery  
voltage. This architecture is ideal for power critical  
applications such as ISDN NT1+, Pairgain and Wireless  
local loop products.  
• Single 5V Supply with 3V Compatible Logic  
• Zero Crossing Ring Control  
- Zero Voltage On/Zero Current Off  
• Tip/Ring Disconnect  
• Pulse Metering Capability  
• 4 Wire Loopback  
• Programmable Current Feed  
• Programmable Resistive Feed  
• Programmable Loop Detect Threshold  
• Programmable On-Hook and Off-Hook Overheads  
• Programmable Overhead for Pulse Metering  
• Programmable Polarity Reversal Time  
• Selectable Transmit Gain 0dB/-6dB  
• 2 Wire Impedance Set by Single Network  
• Loop and Ground Key Detectors  
• On-Hook Transmission  
The UniSLIC14 family has many user programmable  
features. This family of SLICs delivers a low noise, low  
component count solution for Central Office and Loop  
Carrier universal voice grade designs. The product family  
integrates advanced pulse metering, test and signaling  
capabilities, and zero crossing ring control.  
The UniSLIC14 family is designed in the Intersil “Latch” free  
Bonded Wafer process. This process dielectrically isolates  
the active circuitry to eliminate any leakage paths as found in  
our competition’s JI process. This makes the UniSLIC14  
family compliant with “hot plug” requirements and operation  
in harsh outdoor environments.  
• Common Pinout  
• HC55121  
- Polarity Reversal  
Block Diagram  
• HC55130  
- -63dB Longitudinal Balance  
RRLY  
STATE  
DECODER  
AND  
C1  
RING AND TEST  
RELAY DRIVERS  
C2  
C3  
TRLY1  
TRLY2  
• HC55140  
- Polarity Reversal  
- Ground Start  
- Line Voltage Measurement  
- 2 Wire Loopback  
- -63dB Longitudinal Balance  
DETECTOR  
C4  
C5  
LOGIC  
ZERO CURRENT  
CROSSING  
RING TRIP  
DETECTOR  
DT  
DR  
LOOP CURRENT  
DETECTOR  
SHD  
GKD/LOOP LENGTH  
DETECTOR  
GKD_LVM  
• HC55142  
- Polarity Reversal  
- Ground Start  
CRT_REV_LVM  
POLARITY  
REVERSAL  
ILIM  
- Line Voltage Measurement  
RSYNC_REV  
ROH  
CDC  
RDC_RAC  
RD  
LINE FEED  
CONTROL  
TIP  
- 2.2V  
Pulse Metering  
2-WIRE  
RMS  
- 2 Wire Loopback  
RING  
INTERFACE  
• HC55150  
- Polarity Reversal  
- Line Voltage Measurement  
BGND  
AGND  
V
TX  
4-WIRE INTERFACE  
VF SIGNAL PATH  
V
RX  
- 2.2V  
Pulse Metering  
RMS  
PTG  
- 2 Wire Loopback  
V
BATTERY  
SELECTION  
AND  
BIAS  
NETWORK  
BH  
ZT  
C
H
V
V
BL  
Applications  
PULSE METERING  
SIGNAL PATH  
CC  
• Related Literature  
- AN9871, User’s Guide for UniSLIC14 Eval Board  
SPM  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
4-1  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Ordering Information  
LINE  
VOLTAGE  
MEASUREMENT  
2 WIRE  
LOOP-  
BACK  
MAX  
LOOP  
CURRENT POLARITY  
(mA)  
2 TEST  
RELAY  
METERING DRIVERS  
TEMP  
PART  
NUMBER  
GND  
GND  
PULSE  
LONGITUDINAL RANGE  
PKG.  
NO.  
o
REVERSAL START KEY  
BALANCE  
( C)  
HC55120CB  
HC55120CM  
HC55121IB  
HC55121IM  
HC55130IB  
HC55130IM  
HC55131IM  
HC55140IB  
HC55140IM  
HC55141IM  
HC55142IB  
HC55142IM  
HC55143IM  
HC55150CB  
HC55150CM  
HC55151CM  
30  
53dB  
0 to 70 M28.3  
SOIC  
30  
30  
30  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
45  
53dB  
53dB  
53dB  
63dB  
63dB  
63dB  
63dB  
63dB  
63dB  
63dB  
63dB  
63dB  
55dB  
55dB  
55dB  
0 to 70 N28.45  
PLCC  
-40 to M28.3  
85  
-40 to N28.45  
85 PLCC  
-40 to M28.3  
85 SOIC  
-40 to N28.45  
85 PLCC  
-40 to N32.45x55  
85 PLCC  
-40 to M28.3  
85 SOIC  
-40 to N28.45  
85 PLCC  
-40 to N32.45x55  
85 PLCC  
-40 to M28.3  
85 SOIC  
-40 to N28.45  
85 PLCC  
-40 to N32.45x55  
85 PLCC  
SOIC  
0 to 70 M28.3  
SOIC  
0 to 70 N28.45  
PLCC  
0 to 70 N32.45x55  
PLCC  
HC5514XEVAL1 Evaluation board  
Available by placing SLIC in Test mode.  
Device Operating Modes  
C3  
C2  
C1  
DESCRIPTION  
HC55120  
HC55121  
HC55130/1  
HC55140/1  
HC55142/3  
HC55150/1  
0
0
0
Open Circuit  
4-Wire Loopback  
Ringing  
0
0
0
0
1
1
1
0
1
Forward Active  
Test Forward Active  
2 Wire Loopback and  
Line Voltage Measurement  
1
1
1
1
0
0
1
1
0
1
0
1
Tip Open Ground Start  
Reserved  
Reverse Active  
Test Reverse Active  
Line Voltage Measurement  
4-2  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
Temperature, Humidity  
Storage Temperature Range . . . . . . . . . . . . . . . . -65 C to 150 C  
Operating Temperature Range. . . . . . . . . . . . . . . -40 C to 110 C  
Thermal Resistance (Typical, Note 1)  
θ
JA  
o
o
o
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . .  
28 Lead SOIC Package . . . . . . . . . . . . . . . . . . . . . .  
52 C/W  
o
o
o
45 C/W  
o
o
o
Operating Junction Temperature Range. . . . . . . . -40 C to 150 C  
32 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . 66.2 C/W  
o
o
o
Power Supply (-40 C T 85 C)  
A
Continuous Power Dissipation at 85 C  
Supply Voltage V  
to GND . . . . . . . . . . . . . . . . . . . .-0.4V to 7V  
CC  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5W  
28 Lead SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.0W  
32 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.4W  
Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . . . . . . . . . . . 300 C  
(PLCC, SOIC - Lead Tips Only)  
Supply Voltage V to GND . . . . . . . . . . . . . . . . . . . .-V  
BL  
to 0.4V  
BH  
to GND, Continuous. . . . . . . . . .-75V to 0.4V  
to GND, 10ms . . . . . . . . . . . . . .-80V to 0.4V  
Supply Voltage V  
Supply Voltage V  
Relay Driver  
BH  
BH  
o
o
Derate above 70 C  
Ring Relay Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 0V to 14V  
Ring Relay Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA  
Digital Inputs, Outputs (C1, C2, C3, C4, C5, SHD, GKD_LVM)  
Tip and Ring Terminals  
Tipx or Ringx, Current, Pulse < 10ms, T  
Tipx or Ringx, Current, Pulse < 1ms, T  
Tipx or Ringx, Current, Pulse < 10µs, T  
Tipx or Ringx, Current, Pulse < 1µs, T  
> 10s . . . . . . . . . .2A  
> 10s . . . . . . . . . . .5A  
> 10s . . . . . . . . .15A  
REP  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to V  
Output Voltage (SHD, GKD_LVM Not Active). . . . . . -0.4V to V  
REP  
CC  
REP  
CC  
Output Current (SHD, GKD_LVM) . . . . . . . . . . . . . . . . . . . . . 5mA  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .500V  
Gate Count. . . . . . . . . . . . . . . . . . . . . . . .543 Transistors, 51 Diodes  
> 10s . . . . . . . . . .20A  
REP  
> 10s  
Tipx or Ringx, Pulse < 250ns, T  
REP  
20A  
o
o
Tipx and Ringx Terminals (-40 C T 85 C)  
A
Tipx or Ringx Current . . . . . . . . . . . . . . . . . . . . -100mA to 100mA  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Typical Operating Conditions  
These represent the conditions under which the device was developed and are suggested as guidelines.  
PARAMETER  
Ambient Temperature  
CONDITIONS  
HC55120, HC55150/1  
MIN  
0
TYP  
MAX  
70  
UNITS  
o
-
-
C
o
HC55121, HC55130/1, HC55140/1,  
HC55142/3  
-40  
85  
C
V
V
V
with Respect to GND  
-58  
-
-
-
-8  
0
V
V
V
BH  
BL  
with Respect to GND  
with Respect to GND  
V
BH  
4.75  
5.25  
CC  
4-3  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
to the part. (NA) symbol used to indicate the test does not apply to the part.  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
2-WIRE PORT  
Overload Level, Off Hook  
Forward and Reverse  
1% THD, I  
DCMET  
(Note 2, Figure 1)  
18mA  
3.2  
1.3  
-
-
-
-
V
Forward  
Only  
Forward  
Only  
PEAK  
Overload Level, On Hook  
Forward and Reverse  
1% THD, IDCMET 5mA  
(Note 3, Figure 1)  
V
Forward  
Only  
Forward  
Only  
PEAK  
Input Impedance (Into Tip and Ring)  
-
-
Z /200  
T
-
-
Longitudinal Impedance (Tip, Ring) 0 < f < 100Hz (Note 4, Figure 2)  
Forward and Reverse  
0
/Wire  
Forward  
Only  
Forward  
Only  
LONGITUDINAL CURRENT LIMIT (TIP, RING)  
On-Hook, Off-Hook (Active),  
= 736Ω  
Forward and Reverse  
No False Detections, (Loop  
Current), LB > 45dB (Notes 5, 6,  
Figures 3A, 3B)  
28  
-
-
mA  
Wire Forward  
Only  
Forward  
Only  
/
RMS  
R
L
A
T
TIP  
V
TX  
1V  
RMS  
V
TX  
TIP  
0 < f < 100Hz  
V
T
300Ω  
300Ω  
E
L
C
V
TR  
R
L
I
DCMET  
V
R
E
RX  
RING  
A
VRX  
R
RING  
VRX  
LZ = V /A  
LZ = V /A  
R R  
T
T
T
R
FIGURE 1. OVERLOAD LEVEL (OFF HOOK, ON HOOK)  
FIGURE 2. LONGITUDINAL IMPEDANCE  
368Ω  
368Ω  
V
TIP  
TIP  
V
TX  
TX  
A
A
A
A
V
10µF  
10µF  
C
TX  
C
E
E
L
L
C
RING  
RING  
VRX  
VRX  
368Ω  
368Ω  
SHD  
SHD  
FIGURE 3A. LONGITUDINAL CURRENT LIMIT ON-HOOK (ACTIVE)  
FIGURE 3B. LONGITUDINAL CURRENT LIMIT OFF-HOOK (ACTIVE)  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
OFF-HOOK LONGITUDINAL BALANCE  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
Longitudinal to Metallic (Note 7)  
Forward and Reverse  
IEEE 455 - 1985, R , R = 368Ω  
Normal Polarity:  
Forward  
Only  
Forward  
Only  
LR LT  
o
o
0.2kHz < f < 1.0kHz, 0 C to 70 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
53  
53  
NA  
NA  
53  
53  
53  
NA  
NA  
63  
NA  
NA  
63  
58  
58  
NA  
NA  
63  
58  
58  
55  
55  
o
o
1.0kHz < f < 3.4kHz, 0 C to 70 C  
o
o
0.2kHz < f < 1.0kHz, -40 C to 85 C  
NA  
NA  
NA  
NA  
NA  
55  
o
o
1.0kHz < f < 3.4kHz, -40 C to 85 C  
58  
Reverse Polarity 0.2kHz < f < 3.4kHz,  
(Figure 4)  
NA  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
Longitudinal to Metallic (Note 7)  
Forward and Reverse  
R
, R = 300,  
Forward  
Only  
Forward  
Only  
LR LT  
Normal Polarity:  
o
o
0.2kHz < f < 1.0kHz, 0 C to 70 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
53  
53  
NA  
NA  
53  
53  
53  
NA  
NA  
63  
NA  
NA  
63  
58  
58  
NA  
NA  
63  
58  
58  
55  
55  
o
o
1.0kHz < f < 3.4kHz, 0 C to 70 C  
o
o
0.2kHz < f < 1.0kHz, -40 C to 85 C  
NA  
NA  
NA  
NA  
NA  
55  
o
o
1.0kHz < f < 3.4kHz, -40 C to 85 C  
58  
Reverse Polarity 0.2kHz < f < 3.4kHz,  
(Figure 4)  
NA  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
Longitudinal to 4-Wire (Note 9)  
(Forward and Reverse)  
Normal Polarity:  
Forward  
Only  
Forward  
Only  
o
o
0.2kHz < f < 1.0kHz, 0 C to 70 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
53  
53  
NA  
NA  
53  
53  
53  
NA  
NA  
63  
NA  
NA  
63  
58  
58  
NA  
NA  
63  
58  
58  
61  
61  
o
o
1.0kHz < f < 3.4kHz, 0 C to 70 C  
o
o
0.2kHz < f < 1.0kHz, -40 C to 85 C  
NA  
NA  
NA  
NA  
NA  
61  
o
o
1.0kHz < f < 3.4kHz, -40 C to 85 C  
58  
Reverse Polarity 0.2kHz < f < 3.4kHz,  
(Figure 4)  
NA  
Metallic to Longitudinal (Note 10)  
Forward and Reverse  
FCC Part 68, Para 68.310 (Note 8)  
0.2kHz < f < 3.4kHz, (Figure 5)  
40  
40  
50  
-
-
-
dB  
dB  
Forward  
Only  
Forward  
Only  
4-Wire to Longitudinal (Note 11)  
Forward and Reverse  
0.2kHz < f < 3.4kHz, (Figure 5)  
Forward  
Only  
Forward  
Only  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
R
LT  
R
LT  
V
TIP  
TX  
TIP  
V
TX  
300Ω  
V
TX  
E
2.16µF  
L
E
C
TR  
V
TR  
E
RX  
C
L
2.16µF  
V
R
VRX  
LR  
VRX  
RING  
RING  
R
LR  
300Ω  
FIGURE 5. METALLIC TO LONGITUDINAL AND 4-WIRE TO LONGITUDINAL  
BALANCE  
FIGURE 4. LONGITUDINAL TO METALLIC AND LONGITUDINAL TO 4-WIRE BALANCE  
2-Wire Return Loss  
Forward and Reverse  
0.2kHz to 1.0kHz (Note 12, Figure 6)  
1.0kHz to 3kHz (Note 12, Figure 6)  
3kHz to 3.4kHz (Note 12, Figure 6)  
30  
23  
21  
35  
25  
23  
-
-
-
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
TIP IDLE VOLTAGE (User Programmable)  
TIPX Idle Voltage  
Active, I < 5mA  
-2.6  
-2.2  
-1.8  
V
Forward  
Only  
Forward  
Only  
L
Forward and Reverse  
RING IDLE VOLTAGE (User Programmable)  
RINGX Idle Voltage  
Forward and Reverse  
Active, I < 5mA  
-46.4  
-46.4  
41  
-45.3  
-45.3  
43.1  
-44.2  
-44.2  
45  
V
V
V
Forward  
Only  
Forward  
Only  
L
Tip open, I < 5mA  
L
V
Active, I < 5mA  
Forward  
Only  
Forward  
Only  
TR  
Forward and Reverse  
L
V
Pulse Metering  
Active, I 8.5mA, R  
OH  
= 50kΩ  
36  
38.1  
-
V
NA  
NA  
NA  
TR(ROH)  
Forward and Reverse  
L
Z
D
TIP  
V
TX  
TIP  
V
TX  
V
V
TX  
TR  
R
R
V
M
Z
L
E
G
R
600Ω  
L
V
S
Z
IN  
VRX  
VRX  
RING  
RING  
R
LR  
FIGURE 6. TWO-WIRE RETURN LOSS  
FIGURE 7. OVERLOAD LEVEL (4-WIRE TRANSMIT PORT), OUTPUT OFFSET  
VOLTAGE AND HARMONIC DISTORTION  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
4-WIRE TRANSMIT PORT (V  
)
TX  
Overload Level, Off Hook (I 18mA) (Z > 20k, IL 1% THD) (Note 13,  
Forward  
Only  
Forward  
Only  
L
L
o
o
Forward and Reverse  
Figure 7) T = 0 C to 85 C  
3.2  
3.0  
-
-
-
-
V
A
PEAK  
PEAK  
o
o
T = -40 C to 0 C  
A
V
V
Overload Level, On Hook (I 5mA) (Z > 20k, 1% THD)  
1.3  
-200  
-
-
-
-
200  
1
Forward  
Only  
Forward  
Only  
L
L
PEAK  
mV  
Forward and Reverse  
(Note 14, Figure 7)  
V
Output Offset Voltage  
E
= 0, Z = , (Note 15, Figure 7)  
Forward  
Only  
Forward  
Only  
TX  
G
L
Forward and Reverse  
Output Impedance  
(Guaranteed by Design)  
0.2kHz < f < 03.4kHz  
0.2kHz < f < 3.4kHz  
0.1  
4-WIRE RECEIVE PORT (VRX)  
VRX Input Impedance  
(Guaranteed by Design)  
-
500  
600  
kΩ  
FREQUENCY RESPONSE (OFF-HOOK)  
2-Wire to 4-Wire  
Relative to 0dBm at 1.0kHz, E = 0V  
RX  
Forward  
Only  
Forward  
Only  
Forward and Reverse  
0.3kHz < f < 3.4kHz  
-0.15  
-
0.15  
0.5  
1.0  
1.5  
dB  
dB  
dB  
dB  
f = 8.0kHz (Note 16, Figure 8)  
f = 12kHz (Note 16, Figure 8)  
f = 16kHz (Note 16, Figure 8)  
-
-
-
0.24  
0.58  
1.0  
4-Wire to 2-Wire  
Forward and Reverse  
Relative to 0dBm at 1.0kHz, E = 0V  
G
0.3kHz < f < 3.4kHz  
Forward  
Only  
Forward  
Only  
-0.15  
-0.5  
-1.0  
-1.5  
-
0.15  
dB  
dB  
dB  
dB  
f = 8kHz (Note 17, Figure 8)  
f = 12kHz (Note 17, Figure 8)  
f = 16kHz (Note 17, Figure 8)  
0.24  
0.58  
1.0  
-
-
-
4-Wire to 4-Wire  
Forward and Reverse  
Relative to 0dBm at 1.0kHz, E = 0V  
Forward  
Only  
Forward  
Only  
G
0.3kHz < f < 3.4kHz (Note 18, Figure 8) -0.15  
8kHz, 12kHz, 16kHz (Note 18, Figure 8) -0.5  
-
0.15  
0.5  
dB  
dB  
0
V
V
TIP  
TX  
TIP  
TX  
V
V
TX  
TX  
R
L
600Ω  
OPEN  
R
600Ω  
L
E
G
V
TR  
V
PTG  
VRX  
TR  
E
RX  
RING VRX  
RING  
FIGURE 8. FREQUENCY RESPONSE, INSERTION LOSS, GAIN TRACKING  
AND HARMONIC DISTORTION  
FIGURE 9. IDLE CHANNEL NOISE  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
INSERTION LOSS  
2-Wire to 4-Wire  
0dBm, 1kHz  
Forward and Reverse  
PTG = Open (Note 19, Figure 8)  
PTG = GND (Note 20, Figure 8)  
0dBm, 1kHz (Note 21, Figure 8)  
-0.2  
-6.22  
-0.2  
-
-6.02  
-
0.2  
-5.82  
0.2  
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
4-Wire to 2-Wire  
Forward and Reverse  
Forward  
Only  
Forward  
Only  
GAIN TRACKING (Ref = -10dBm, at 1.0kHz)  
2-Wire to 4-Wire  
Forward and Reverse  
-40dBm to +3dBm (Note 22, Figure 8)  
-0.1  
-
-
-
-
0.1  
0.2  
0.1  
0.2  
dB  
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
-55dBm to -40dBm (Note 22, Figure 8) -0.2  
4-Wire to 2-Wire  
Forward and Reverse  
-40dBm to +3dBm (Note 23, Figure 8)  
-0.1  
Forward  
Only  
Forward  
Only  
-55dBm to -40dBm (Note 23, Figure 8) -0.2  
NOISE  
Idle Channel Noise at 2-Wire  
Forward and Reverse  
C-Message Weighting  
-
-
10.5  
13  
dBrnC  
dBmp  
Forward  
Only  
Forward  
Only  
Psophometric Weighting (Note 24,  
Note 30, Figure 9)  
-79.5  
-77  
Idle Channel Noise at 4-Wire  
Forward and Reverse  
C-Message Weighting  
-
-
10.5  
13  
dBrnC  
dBmp  
Forward  
Only  
Forward  
Only  
Psophometrical Weighting  
(Note 25, Note 30, Figure 9)  
-79.5  
-77  
HARMONIC DISTORTION  
2-Wire to 4-Wire  
Forward and Reverse  
0dBm, 0.3kHz to 3.4kHz  
(Note 26, Figure 7)  
-
-
-67  
-67  
-50  
-50  
dB  
dB  
Forward  
Only  
Forward  
Only  
4-Wire to 2-Wire  
Forward and Reverse  
0dBm, 0.3kHz to 3.4kHz  
(Note 27, Figure 8)  
Forward  
Only  
Forward  
Only  
7kΩ  
V
V
TX  
TIP  
V
BH  
TIP  
TX  
S
R
LIM  
R
L
R
LIM  
38.3kΩ  
V
TR  
600Ω  
I
R1  
R
1
RING  
VRX  
VRX  
RING  
FIGURE 10. CONSTANT LOOP CURRENT TOLERANCE  
FIGURE 11. TIPX VOLTAGE  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
BATTERY FEED CHARACTERISTICS  
Constant Loop Current Tolerance  
= 26.5mA, R = 38.3kΩ  
Forward and Reverse  
18mA IL 45mA,  
(Note 27, Figure 10)  
Forward  
Only  
Forward  
Only  
I
0.92I  
-
I
1.08I  
L
mA  
L
LIM  
L
L
Tip Open State TIPX Leakage  
Current  
S = Closed (Figure 11)  
-
-200  
µA  
Tip Open State RINGX Current  
R = 0, V  
BH  
= -48V, R  
= 38.3kΩ  
= -48V (Figure 11)  
22.6  
15.5  
-
26.8  
17.1  
42.8  
31  
18.2  
-
mA  
mA  
V
1
LIM  
R
= 2.5k, V  
1
BH  
Tip Open State RINGX Voltage  
Tip Voltage (Ground Start)  
5mA < I < 26mA (Figure 11)  
R1  
NA  
NA  
NA  
NA  
Active State, (S Open) R = 150Ω  
(Figure 11)  
-5.3  
-4.8  
-4.3  
V
1
Tip Voltage (Ground Start)  
Active State, (S Closed) Tip Lead to  
-48V Through 7k, Ring Lead to  
Ground Through 150(Figure 11)  
-5.3  
-20  
-4.8  
0
-4.3  
20  
V
NA  
NA  
NA  
NA  
Open Circuit State Loop Current  
(Active) R = 0Ω  
µA  
L
LOOP CURRENT DETECTOR  
Programmable Threshold  
Forward and Reverse  
I
I
= (500/ R ) 5mA,  
0.9I  
LTh  
I
1.1I  
LTh  
mA  
Forward  
Only  
Forward  
Only  
LTh  
LTh  
D
LTh  
= 8.5mA  
R
= 58.8kΩ  
D
GROUND KEY DETECTOR  
Ground Key Detector Threshold  
Tip/Ring Current Difference  
Tip Open  
5
8
11  
mA  
mA  
NA  
NA  
NA  
Active (Note 29, R1 = 2.5k, Figure 12) 12.5  
20  
27.5  
LINE VOLTAGE MEASUREMENT  
Pulse Width (GKD_LVM)  
Pulse Width = (20)(C  
/I  
)
0.32  
0.36  
0.4  
ms/V  
NA  
NA  
REV... LIM  
RING TRIP DETECTOR (DT, DR)  
Ring Trip Comparator Current  
Source Res = 2MΩ  
Source Res = 2MΩ  
-
-
2
-
-
µA  
Input Common-Mode Range  
±200  
V
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
RING RELAY DRIVER  
V
V
at 30mA  
at 40mA  
I
I
= 30mA  
-
-
-
0.2  
0.52  
0.1  
0.5  
0.8  
10  
V
V
SAT  
SAT  
OL  
OL  
= 40mA  
Off State Leakage Current  
V
= 13.2V  
µA  
OH  
TEST RELAY DRIVER (TRLY1, TRLY2)  
V
V
at 30mA  
at 40mA  
I
I
= 30mA  
= 40mA  
= 13.2V  
-
-
-
0.3  
0.62  
-
0.5  
0.9  
10  
V
V
NA  
NA  
NA  
NA  
NA  
NA  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
NA/•  
SAT  
SAT  
OL  
OL  
Off State Leakage Current  
V
µA  
OH  
TIP  
V
TX  
VRX  
SHD  
RING  
2.5kΩ  
FIGURE 12. GROUND KEY DETECT  
DIGITAL INPUTS (C1, C2, C3)  
Input Low Voltage, V  
IL  
0
2.0  
-
-
-
0.8  
V
V
Input High Voltage, V  
V
CC  
IH  
Input Low Current, I  
V
V
= 0.4V  
= 2.5V  
-
-10  
µA  
µA  
IL  
IL  
Input High Current, I  
-
25  
50  
IH  
IH  
DETECTOR OUTPUTS (SHD, GKD_LVM)  
SHD Output Low Voltage, V  
Forward, Reverse  
I
I
I
= 1mA  
-
2.7  
-
-
-
0.5  
V
V
Forward  
Only  
Forward  
Only  
OL  
OL  
OH  
OL  
SHD Output High Voltage, V  
Forward, Reverse  
= 100µA  
-
0.5  
-
Forward  
Only  
Forward  
Only  
OH  
GKD_LVM Output Low Voltage,  
Forward and Tip Open  
= 1mA  
= 2.5k(Figure 11)  
-
V
GKD  
GKD  
NA  
GKD_  
LVM  
GKD_  
LVM  
LVM  
V
R
OL  
GKD_LVM Output High Voltage,  
Forward and Tip Open  
1
I
= 100µA  
2.7  
-
-
V
GKD  
GKD  
NA  
GKD_  
LVM  
GKD_  
LVM  
LVM  
OH  
V
OH  
Internal Pull-Up Resistor  
15  
-
kΩ  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = -24V, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 50k, RDC_RAC = 20k,  
A
R
CC  
BH  
= 4.7µF, C  
BL  
P1  
P2  
T
LIM  
D
= 40k, C = 0.1µF, C  
= 0.47µF, GND = 0V, RL = 600. Unless Otherwise Specified.  
Symbol used to indicate the test applies  
OH  
H
DC  
RT/REV  
(•)  
to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
POWER DISSIPATION (V  
Open Circuit State  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
= -48V, V = -24V)  
BH  
BL  
C1, C2, C3 = 0, 0, 0  
-
25  
-
mW  
Forward  
Only  
Forward  
Only  
On-Hook, Active  
C1, C2, C3 = 0, 1, 0  
C1, C2, C3 = 1, 1, 0  
Forward and Reverse  
I = 0mA, Longitudinal  
L
Current = 0mA  
-
52  
-
mW  
Forward  
Only  
Forward  
Only  
POWER SUPPLY CURRENTS (V  
BH  
= -48V, V = -24V)  
BL  
V
V
V
V
Current, I  
Open Circuit State  
-
-
-
-
-
-
2.25  
0.3  
3.0  
0.45  
0.035  
3.6  
mA  
mA  
mA  
mA  
mA  
mA  
Forward  
Only  
Forward  
Only  
CC  
BH  
BL  
CC  
BH  
BL  
Current, I  
Forward  
Only  
Forward  
Only  
Current, I  
0.022  
2.7  
Forward  
Only  
Forward  
Only  
Current, I  
Active State  
Forward  
Only  
Forward  
Only  
CC  
CC  
Forward and Reverse  
I = 0mA, Longitudinal  
L
Current = 0mA  
V
Current, I  
0.8  
1.06  
0.01  
Forward  
Only  
Forward  
Only  
BH  
BH  
Forward and Reverse  
V
Current, I  
-
Forward  
Only  
Forward  
Only  
BL  
BL  
Forward and Reverse  
POWER SUPPLY REJECTION RATIOS  
to 2 or 4 Wire Port Active State R = 600Ω  
V
-
-
-
40  
40  
40  
-
-
-
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
CC  
Forward and Reverse  
L
50Hz < f < 3400Hz, V =100mV  
IN  
V
to 2 or 4 Wire Port  
Forward  
Only  
Forward  
Only  
BH  
Forward and Reverse  
V
to 2 or 4 Wire Port  
Forward  
Only  
Forward  
Only  
BL  
Forward and Reverse  
TEMPERATURE GUARD  
Junction Threshold Temperature  
o
-
175  
-
C
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
14. Overload Level (4-Wire Port On-Hook) - The overload level is  
Notes  
specified at the 4-wire transmit port (V ) with the signal source  
TX  
2. Overload Level (Two-Wire Port, Off Hook) - The overload  
level is specified at the 2-wire port (V ) with the signal source at  
(E ) at the 2-wire port, Z = 20kΩ, R = (Reference Figure 7).  
G
L
L
TR  
Increase the amplitude of E until 1% THD is measured at V  
.
G
TX  
the 4-wire receive port (E ). R = 600, I  
Increase the amplitude of E until 1% THD is measured at V  
Reference Figure 1.  
18mA.  
RX DCMET  
L
Note the PTG pin is open, and the gain from the 2-wire port to  
the 4-wire port is equal to 1.  
.
RX  
TR  
15. Output Offset Voltage - The output offset voltage is specified  
with the following conditions: E = 0, R = 600, Z = and is  
3. Overload Level (Two-Wire Port, On Hook) - The overload  
G
L
L
level is specified at the 2-wire port (V ) with the signal source at  
the 4-wire receive port (E ). R = , I  
RX DCMET  
the amplitude of E until 1% THD is measured at V  
Reference Figure 1.  
TR  
measured at V . E , R , V and Z are defined in Figure 7.  
TX TX  
G
L
L
= 0mA. Increase  
L
16. Two-Wire to Four-Wire Frequency Response - The 2-wire to  
.
RX  
TR  
4-wire frequency response is measured with respect to  
E
= 0dBm at 1.0kHz, E = 0V (VRX input floating), R = 600.  
G
RX  
L
4. LongitudinalImpedance - The longitudinal impedance is  
The frequency response is computed using the following equation:  
computed using the following equations, where TIP and RING  
voltages are referenced to ground. L , L , V , V , A and A  
are defined in Figure 2.  
(TIP) L = V /A  
F
= 20 log (V /V ), vary frequency from 300Hz to 3.4kHz  
2-4  
TX TR  
ZT ZR T  
T
R
R
and compare to 1kHz reading.  
V
, V , R and E are defined in Figure 8.  
TX TR  
L
G
ZT  
T
T
(RING) L = V /A  
ZR  
R
R
17. Four-Wire to Two-Wire Frequency Response - The 4-wire to 2-  
where: E = 1V  
(0Hz to 100Hz)  
L
RMS  
wire frequency response is measured with respect to E = 0dBm  
RX  
at 1.0kHz, E source removed from circuit, R = 600. The  
frequency response is computed using the following equation:  
5. Longitudinal Current Limit (On-Hook Active) - On-Hook  
longitudinal current limit is determined by increasing the (60Hz)  
amplitude of E (Figure 3A) until the 2-wire longitudinal current  
G
L
L
F
= 20 log (V /E ), vary frequency from 300Hz to 3.4kHz  
4-2  
TR RX  
and compare to 1kHz reading.  
is greater than 28mA  
remains low (no false detection) and the 2-wire to 4-wire  
longitudinal balance is verified to be greater than 45dB  
/Wire. Under this condition, SHD pin  
RMS  
V
, R and E are defined in Figure 8.  
TR  
L
RX  
18. Four-Wire to Four-Wire Frequency Response - The 4-wire  
(LB  
= 20log VTX/E ).  
L
2-4  
to 4-wire frequency response is measured with respect to  
6. Longitudinal Current Limit (Off-Hook Active) - Off-Hook  
E
= 0dBm at 1.0kHz, E source removed from circuit,  
RX  
G
longitudinal current limit is determined by increasing the (60Hz)  
R
= 600. The frequency response is computed using the  
L
amplitude of E (Figure 3B) until the 2-wire longitudinal current  
L
following equation:  
is greater than 28mA  
remains high (no false detection) and the 2-wire to 4-wire  
longitudinal balance is verified to be greater than 45dB  
/Wire. Under this condition, SHD pin  
RMS  
F
= 20 log (V /E ), vary frequency from 300Hz to 3.4kHz  
4-4  
TX RX  
and compare to 1kHz reading.  
(LB  
= 20log VTX/E ).  
L
V
R and E are defined in Figure 8.  
2-4  
TX ,  
L
RX  
7. Longitudinal to Metallic Balance - The longitudinal to  
19. Two-Wire to Four-Wire Insertion Loss (PTG = Open) - The  
metallic balance is computed using the following equation:  
2-wire to 4-wire insertion loss is measured with respect to  
E
= 0dBm at 1.0kHz input signal, E = 0 (VRX input floating),  
BLME = 20 log (E /V ), where: E and V are defined in  
TR TR  
Figure 4.  
G RX  
L
L
R = 600and is computed using the following equation:  
L
L
= 20 log (V /V )  
TX TR  
8. Metallic to Longitudinal FCC Part 68, Para 68.310 - The  
2-4  
metallic to longitudinal balance is defined in this spec.  
where: V , V , R and E are defined in Figure 8. (Note:  
TX TR  
L
G
The fuse resistors, R , impact the insertion loss. The specified  
9. Longitudinal to Four-Wire Balance - The longitudinal to 4-wire  
F
insertion loss is for R = R = 0).  
balance is computed using the following equation:  
F1 F2  
20. Two-Wire to Four-Wire Insertion Loss (PTG = AGND) - The  
2-wire to 4-wire insertion loss is measured with respect to E  
BLFE = 20 log (E /V ), E and V are defined in Figure 4.  
TX TX  
L
L
=
G
10. Metallic to Longitudinal Balance - The metallic to longitudinal  
0dBm at 1.0kHz input signal, E = 0 (VRX input floating), R =  
RX  
L
balance is computed using the following equation:  
600and is computed using the following equation:  
BMLE = 20 log (E /V ), E  
= 0  
TR  
V and E  
L
RX  
are defined in Figure 5.  
L
= 20 log (V /V )  
TX TR  
2-4  
where: E  
TR,  
L
RX  
where: V , V , R and E are defined in Figure 8. (Note:  
TX TR  
L
G
11. Four-Wire to Longitudinal Balance - The 4-wire to longitudinal  
The fuse resistors, R , impact the insertion loss. The specified  
F
balance is computed using the following equation:  
insertion loss is for R = R = 0).  
F1 F2  
BFLE = 20 log (E /V ), E = source is removed.  
RX TR  
L
21. Four-Wire to Two-Wire Insertion Loss - The 4-wire to 2-wire  
insertion loss is measured based upon E = 0dBm, 1.0kHz  
where: E  
V and E are defined in Figure 5.  
TR  
RX  
RX,  
L
input signal, E source removed from circuit, R = 600and is  
G
L
12. Two-Wire Return Loss - The 2-wire return loss is computed  
using the following equation:  
computed using the following equation:  
L
= 20 log (V /E  
)
r = -20 log (2V /V ) where: Z = The desired impedance; e.g.,  
the characteristic impedance of the line, nominally 600Ω.  
(Reference Figure 6).  
4-2  
where: V , R and E  
TR RX  
M
S
D
are defined in Figure 8.  
TR  
L
RX  
22. Two-Wire to Four-Wire Gain Tracking - The 2-wire to 4-wire  
13. Overload Level (4-Wire Port Off-Hook) - The overload level  
gain tracking is referenced to measurements taken for  
E
R = 600and is computed using the following equation.  
is specified at the 4-wire transmit port (V ) with the signal  
TX  
= -10dBm, 1.0kHz signal, E  
= 0 (VRX output floating),  
G
RX  
source (E ) at the 2-wire port, Z = 20kΩ, R = 600Ω  
G
L
L
L
(Reference Figure 7). Increase the amplitude of E until 1%  
G
G
= 20 log (V /V ) vary amplitude -40dBm to +3dBm, or  
TX TR  
2-4  
THD is measured at V . Note the PTG pin is open, and the  
TX  
-55dBm to -40dBm and compare to -10dBm reading.  
gain from the 2-wire port to the 4-wire port is equal to 1.  
V
, R and V are defined in Figure 8.  
L
TX TR  
4-12  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
23. Four-Wire to Two-Wire Gain Tracking - The 4-wire to 2-wire  
26. Harmonic Distortion (2-Wire to 4-Wire) - The harmonic  
gain tracking is referenced to measurements taken for  
distortion is measured within the voice band with the following  
E
= -10dBm, 1.0kHz signal, E source removed from circuit,  
conditions. E = 0dBm at 1kHz, R = 600. Measurement  
RX  
G
G L  
R = 600and is computed using the following equation:  
taken at V . (Reference Figure 7).  
TX  
L
G
= 20 log (V /E ) vary amplitude -40dBm to +3dBm,  
TR RX  
27. Harmonic Distortion (4-Wire to 2-Wire) - The harmonic  
4-2  
or -55dBm to -40dBm and compare to -10dBm reading.  
distortion is measured within the voice band with the following  
conditions. E  
= 0dBm0. Vary frequency between 300Hz and  
RX  
V
, R and E are defined in Figure 8. The level is specified at  
L
TR RX  
3.4kHz, R = 600. Measurement taken at V . (Reference  
L
TR  
the 4-wire receive port and referenced to a 600impedance level.  
Figure 8).  
24. Two-Wire Idle Channel Noise - The 2-wire idle channel noise  
28. Constant Loop Current - The constant loop current is  
at V is specified with the 2-wire port terminated in 600(R )  
and with the 4-wire receive port (VTX) floating (Reference  
TR  
L
calculated using the following equation:  
Figure 9).  
I
= 1000/R  
LIM  
= V /600 (Reference Figure 10).  
TR  
L
25. Four-Wire Idle Channel Noise - The 4-wire idle channel noise  
29. Ground Key Detector - (TRIGGER) Ground the Ring pin  
through a 2.5kresistor and verify that GKD goes low.  
at V is specified with the 2-wire port terminated in 600(R ).  
TX  
L
The noise specification is with respect to a 600impedance  
(RESET) Disconnect the Ring pin and verify that GKD goes  
high.  
level at V . The 4-wire receive port (VTX) floating (Reference  
TX  
Figure 9).  
(Hysteresis) Compare difference between trigger and reset.  
o
30. ElectricalTest - Not tested in production at -40 C.  
Circuit Operation and Design Information  
.
The UniSLIC14 family of SLICs are voltage feed current  
sense Subscriber Line Interface Circuits (SLIC). For short  
loop applications, the voltage between the tip and ring  
terminals varies to maintain a constant loop current. For long  
loop applications, the voltage between the tip and ring  
terminals are relatively constant and the loop current varies  
in proportion to the load.  
35  
30  
25  
CONSTANT TIP TO RING  
VOLTAGE REGION  
CONSTANT  
20 LOOP CURRENT  
REGION  
15  
10  
5
The tip and ring voltages for various loop resistances are  
shown in Figure 13. The tip voltage remains relatively  
constant as the ring voltage moves to limit the loop current  
for short loops.  
VBH = -48V  
RD = 41.2kΩ  
ROH = 38.3kΩ  
RDC_RAC = 19.6kΩ  
RILim = 33.2kΩ  
The loop current for various loop resistances are shown in  
Figure 14. For short loops, the loop current is limited to the  
programmed current limit, set by RILIM. For long loop  
applications, the loop current varies in accordance with  
Ohms law for the given tip to ring voltage and the loop  
resistance.  
0
200 600 1K 1.4K 1.8K 2.2K 2.6K 3.0K 3.4K 3.8K  
LOOP RESISTANCE ()  
FIGURE 14. LOOP CURRENT vs LOOP RESISTANCE  
The following discussion separates the SLIC’s operation into  
its DC and AC paths, then follows up with additional circuit  
and design information.  
0
-2.5V  
TIP  
-5  
-10  
-15  
-20  
-25  
CONSTANT TIP TO RING  
VOLTAGE REGION  
DC Feed Curve  
RING  
VBH = -48V  
RD = 41.2kΩ  
ROH = 38.3kΩ  
RDC_RAC = 19.6kΩ  
RILim = 33.2kΩ  
The DC feed curve for the UniSLIC14 family is user  
programmable. The user defines the on hook and off hook  
overhead voltages (including the overhead voltage for off  
hook pulse metering if applicable), the maximum and  
minimum loop current limits, the switch hook detect  
threshold and the battery voltage. From these requirements,  
the DC feed curve is customized for optimum operation in  
any given application. An Excel spread sheet to calculate the  
external components can be downloaded off our web site  
www.intersil.com/telecom/unislic14.xls.  
-30  
-35  
CONSTANT  
LOOP CURRENT  
REGION  
-40  
-45  
-50  
-44.5V  
200 600 1000 1400 1800 2000 4K  
6K  
8K 10K  
LOOP RESISTANCE ()  
FIGURE 13. TIP AND RING VOLTAGES vs LOOP RESISTANCE  
4-13  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
VBH  
SLIC SELF PROGRAMMING  
2.5V†  
VOH(on) AT LOAD  
CONSTANT  
CURRENT  
REGION  
VOH(off) AT LOAD  
R
SAT  
60kSLOPE  
IOH  
ISH-  
I
ILOOP(min)  
LOOP CURRENT (mA)  
ILOOP(max)  
SHD  
Internal overhead voltage automatically generated by the SLIC.  
FIGURE 15. UniSLIC14 DC FEED CURVE  
To account for any process and temperature variations in the  
performance of the SLIC, 1.5V is added to the overhead  
voltage requirement for the on hook case in Equation 1 and  
2.0V for the off hook case in Equation 3. Note the 2.5V  
overhead is automatically generated in the SLIC and is not  
part of the external overhead programming.  
On Hook Overhead Voltage  
The on hook overhead voltage  
at the load (V (on) at Load)  
DC FEED CURVE  
BH  
V
OH  
is independent of the V  
BH  
2.5V  
battery voltage. Once set, the  
on hook voltage remains  
V
ON HOOK  
OVERHEAD  
OH(on)  
constant as the V  
BH  
battery  
REQUIRED  
EXTERNAL PROTECTION  
OVERHEAD VOLTAGE  
voltage changes. The on hook  
voltage also remains constant  
over temperature and line  
RESISTOR  
V
(ON, OFF)  
OH  
ISH-  
LOOP CURRENT  
(0.6)  
I
SHD  
UniSLIC14  
2R  
2R  
P
S
ISH- = I  
SHD  
TIP AND RING  
AMPLIFIERS  
V
leakages up to 0.6 times the  
ZL  
Switch Hook Detect threshold (I  
). The maximum loop  
SHD  
INTERNAL SENSE  
RESISTORS  
current for a constant on hook overhead voltage is defined  
as ISH-.  
Z
L
2R + 2R  
(LOAD)  
P
S
-----------------------------  
V
=
V
The on hook overhead voltage, required for a given signal  
level at the load, must take into account the AC voltage drop  
OH(ON, OFF)  
ZL  
Z
L
Where:  
is the required on hook or offhook  
across the 2 external protection resistors (R ) and the 2  
P
V
ZL  
transmission delivered to the load.  
internal sense resistors (R ) as shown in Figure 16. The AC  
S
on hook overload voltage is calculated using Equation 1.  
FIGURE 16. OVERHEAD VOLTAGE OF THE TIP AND RING  
AMPLIFIERS  
2R + 2R  
P
S
(EQ. 1)  
V
= V  
× 1 + ----------------------------- + 1.5V  
OH(on) at Load  
sp(on)  
Z
L
Off Hook Overhead Voltage  
where  
The off hook overhead  
DC FEED CURVE  
V
= On hook overhead voltage at load  
OH(on) at Load  
voltage V (off) at Load is  
V
OH  
also independent of the V  
BH  
BH  
SAT  
V
R
R
= Required on hook transmission for speech  
2.5V  
sp(on)  
V
battery voltage and remains  
constant over temperature.  
The required off hook  
OFF HOOK  
= Protection Resistors (Typically 30)  
= Internal Sense Resistors (40)  
P
S
OVER HEAD  
V
OH(off)  
overhead voltage is the sum  
of the AC and DC voltage  
drops across the internal  
Z = AC load impedance for (600)  
L
I
LOOP(min)  
LOOP CURRENT  
1.5V = Additional on hook overhead voltage requirement  
sense resistors (R , the  
S)  
4-14  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
protection resistors (R ), the required (peak) off hook  
Before using this R value, to calculate the RDC_RAC  
SAT  
P
voltage for speech (V  
) and the required (peak) off hook  
resistor, we need to verify that the on hook requirements will  
also be met.  
sp(off)  
voltage for the pulse metering (V  
), if applicable.  
pm(off)  
The off hook overhead voltage is defined in Equation 2 and  
calculated using Equation 3.  
DC FEED CURVE  
The on hook overhead voltage  
calculated with the off hook  
V
BH  
V
2.5V  
SAT  
R
(R ), is given in  
V
= V  
+ V  
+ V  
sp(off) pm(off)  
(EQ. 2)  
SAT SAT(off)  
OH(off) at Load  
OH(Rsense)  
Equation 5 and equals 3.0V.  
The on hook overhead  
V
OH(on)  
R
SAT  
where:  
calculated with Equation 1  
equals 2.85V for the given  
system requirements  
(recommended application  
circuit in back of data sheet):  
Switch Hook Detect threshold  
= 12mA, ISH- = (0.6)12mA =  
V
= Off hook overhead voltage at load  
OH(off) at Load  
ISH-(min)  
LOOP CURRENT  
V
(R ) = Required overhead for the DC voltage drop  
OH sense  
across sense resistors (2R x Iloop  
)
S
(max)  
V
R
OH(on) AT LOAD  
SAT  
V
V
= Required (peak) off hook AC voltage for speech  
sp(off)  
ISH-  
(min)  
= Required (peak) off hook AC voltage for pulse  
pm(off)  
7.2mA, V  
= 0.775V  
RMS  
metering  
sp(on)  
2.85V  
= ----------------- = 395Ω  
R
SAT(on)  
7.2mA  
Thus, the on hook overhead  
requirements of 2.85V will be  
value.  
2R + 2R  
P
S
V
= 80 × I  
+ V  
× 1 + -----------------------------  
OH(off) at Load  
LOOP(max)  
sp(off)  
Z
L
met if we use the R  
SAT(off)  
2R + 2R  
P
S
V
= (ISH-)(R  
)
SAT(off)  
(EQ. 5)  
+ V  
× 1 + ----------------------------- + 2.0V  
OH(on)  
OH(on)  
pm(off)  
Z
(EQ. 3)  
pm  
V
= 7.2mA × 417Ω  
= 3.0V  
where:  
V
OH(on)  
80 = 2R + 2R  
(reference Figure 17)  
= Pulse metering load impedance (typically 200).  
s
INT  
Z
pm  
If the on hook overhead requirement is not met, then we  
need to use the R value to determine the RDC_RAC  
SAT(on)  
resistor value. The external saturation guard resistor  
RDC_RAC is equal to 50 times R  
2.0V = Additional off hook overhead voltage requirement  
.
SAT  
R
Resistance Calculation  
SAT  
The R  
resistance of the DC feed curve is used to  
In the example above R  
SAT  
would equal 417and  
SAT  
determine the value of the RDC_RAC resistor (Equation 6).  
The value of this resistor has an effect on both the on hook  
and off hook overheads. In most applications the off hook  
condition will dominate the overhead requirements.  
RDC_RAC would then equal to 20.85k(closest standard  
value is 21k).  
(EQ. 6)  
RDC_RAC = 50 x R  
SAT  
Therefore, we’ll start by calculating the R  
hook conditions and then verify that the on hook conditions  
are also satisfied.  
value for the off  
SAT  
The Switch Hook Detect threshold current is set by resistor  
and is calculated using Equation 7. For the above  
R
D
example R is calculated to be 41.6k(500/12mA). The  
next closest standard value is 41.2kΩ.  
D
DC FEED CURVE  
When considering the Off  
V
hook condition, R  
is equal  
BH  
SAT  
divided by  
500  
(EQ. 7)  
------------  
R
=
D
to V  
I
2.5V  
OH(off) at Load  
V
SAT  
SHD  
Iloop  
(min)  
(Equation 4).  
R
SAT  
V
OH(off)  
The true value of ISH-, for the selected value of R is given  
D
For the given system  
by Equation 8:  
requirements (recommended  
application circuit in back of  
data sheet): Iloop (min) =  
20mA, Iloop (max) = 30mA,  
500  
I
(EQ. 8)  
LOOP(min)  
---------  
ISH- =  
(0.6)  
R
LOOP CURRENT  
D
For the example above, ISH- equals 7.28mA (500 x 0.6/ 41.2K).  
Verify that the value of ISH- is above the suspected line  
leakage of the application. The UniSLIC family will provide a  
constant on hook voltage level for leakage currents up to this  
value of line leakage.  
R
V
SAT  
OH(off) AT LOAD  
V
V
V
= 3.2V ,  
sp(off)  
PEAK  
= 0V  
,
spm(off)  
PEAK  
I
LOOP(min)  
= 8.34V the  
OH(off) at Load  
is equal to 417as calculated in Equation 4.  
value of R  
SAT(off)  
V
OH(off) at Load  
8.34V  
---------------------------------------  
R
=
= ---------------- = 417Ω  
20mA  
(EQ. 4)  
SAT(off)  
I
LOOP(min)  
4-15  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
DC FEED CURVE  
The R resistor, which  
OH  
Node Equation  
is used to set the offhook  
overhead voltage, is  
calculated using  
V
BH  
SAT  
OH(off)  
(EQ. 15)  
V
V
A
RX  
------------ ------------  
-
= I  
X
2.5V  
V
500k 500k  
OFF HOOK  
OVER HEAD  
V
Equations 9 and 10.  
Substitute Equation 14 into Equation 15  
I
OH  
I
I
is defined as the  
V
I
(Z  
2R )  
TR P  
OH  
difference between the  
and ISH-.  
RX  
M
------------ -----------------------------------------  
I
=
-
(EQ. 16)  
(EQ. 17)  
X
500k  
1000k  
ISH-  
LOOP(min)  
I
LOOP(min)  
Substituting Equation 8  
for ISH- into Equation 9 and solving for R defines R in  
LOOP CURRENT  
Loop Equation  
I 500k - V + I 500k = 0  
OH OH  
X
TX  
X
terms of I  
and R .  
D
LOOP(min)  
500  
500  
Substitute Equation 16 into Equation 17  
(EQ. 9)  
R
= --------- = --------------------------------------------  
OH  
I
I
- ISH-  
OH  
LOOP(min)  
(EQ. 18)  
(EQ. 19)  
V
= 2V  
I (Z  
2R )  
TR P  
TX  
RX  
M
Equation 10 can be used to determine the actual ISH- value  
resulting from the R resistor selected. The value of R  
should be the next standard value that is lower than that  
Loop Equation  
-I 2R + V = 0  
D
D
V
TR  
M
P
TX  
calculated. This will insure meeting the I  
requirement. ROH for the above example equals 39.1kΩ.  
LOOP(min)  
Substitute Equation 18 into Equation 19  
(EQ. 20)  
V
= I  
Z
2V  
TR RX  
R 500  
D
TR  
M
(EQ. 10)  
-----------------------------------------------------------  
=
R
OH  
R I  
- 500(.6)  
D
LOOP(min)  
Substituting -V /Z into Equation 20 for I and rearranging  
TR  
L
M
to solve for V results in Equation 21  
TR  
The current limit is set by a single resistor and is calculated  
using Equation 11.  
Z
TR  
(EQ. 21)  
V
1 + ---------- = 2V  
1000  
TR  
RX  
(EQ. 11)  
Z
L
-----------------------------  
R
=
LIM  
I
LOOP(max)  
where:  
= The input voltage at the VRX pin.  
DC FEED CURVE  
The maximum loop  
resistance is calculated  
using Equation 12. The  
resistance of the  
V
RX  
V
BH  
V = An internal node voltage that is a function of the loop  
A
current detector and the impedance matching networks.  
2.5V  
V
SAT  
V
OH(off)  
I
= Internal current in the SLIC that is the difference  
protection resistors  
X
between the input receive current and the feedback current.  
(2R ) is subtracted out  
P
to obtain the maximum  
loop length to meet the  
required off hook  
I
= The AC metallic current.  
M
I
LOOP(min)  
LOOP CURRENT  
R
= A protection resistor (typical 30).  
P
Z = An external resistor/network for matching the line  
T
overhead voltage. If R  
LOOP(MAX)  
meets the loop length  
impedance.  
requirements you are done. If the loop length needs to be  
longer, then consider adjusting one of the following: 1) the  
SHD threshold, 2) minimum loop current requirement or 3)  
the on and off hook signal levels.  
V ´= The tip to ring voltage at the output pins of the SLIC.  
TX  
V
= The tip to ring voltage including the voltage across the  
TR  
protection resistors.  
V
[V  
+ 2V + V  
]
OH(off)  
BH  
SAT  
I
-------------------------------------------------------------------------------  
R
=
-2R  
(EQ. 12)  
Z = The line impedance.  
L
LOOP(max)  
P
LOOP(min)  
Z
= The input impedance of the SLIC including the  
TR  
protection resistors.  
SLIC in the Active Mode  
Figure 17 shows a simplified AC transmission model. Circuit  
(AC) 4-Wire to 2-Wire Gain  
The 4-wire to 2-wire gain is equal to V /V  
.
analysis yields the following design equations:  
1
TR RX  
(EQ. 13)  
(EQ. 14)  
---------  
V
V
= I × 2R  
×
× 200(Z  
2R ) × 5  
TR P  
From Equation 21 and the relationship Z = 200(Z -2R ).  
T
TR  
P
(EQ. 22)  
o
A
M
S
80k  
V
Z
Z
TR  
L
L
----------  
-------------------------  
L
----------------------------------------------  
G
=
= -2  
= –2  
4-2  
V
Z
+ Z  
TR  
Z
T
200  
RX  
Z
+
--------- + 2R  
I
L
P
M
-------  
=
(Z  
2R )  
TR P  
A
2
Notice that the phase of the 4-wire to 2-wire signal is 180  
out of phase with the input signal.  
4-16  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
I
X
+
-
500K  
I
M
A = 1  
+
-
V
TIP  
R
R
TX  
S
INT  
-
-
+
+
2020Ω  
R
P
-
500K  
500K  
Z
+
TX  
-
TR  
V
I
M
Z
L
I
I
X
X
-
PTG  
+
UniSLIC14  
V
V
´
TR  
TX  
-
+
+
E
G
I
-
X
I
+
M
-
R
R
S
V
INT  
RX  
+
-
500K  
20Ω  
20Ω  
R
P
I
RING  
X
+
RX  
-
-
+
V
500K  
500K  
1/80K  
I
5
V
= I (Z -2R )  
A
M
2
TR  
P
Z
= 200 (Z - 2R )  
TR  
T
P
FIGURE 17. SIMPLIFIED AC TRANSMISSION CIRCUIT  
Notice that the phase of the 2-wire to 4-wire signal is in  
phase with the input signal.  
(AC) 2-Wire to 4-Wire Gain  
The 2-wire to 4-wire gain is equal to V /E with V  
TX  
= 0  
RX  
G
(AC) 4-Wire to 4-Wire Gain  
Loop Equation  
The 4-wire to 4-wire gain is equal to V /V , E = 0.  
(EQ. 23)  
(EQ. 24)  
E + Z I + 2R I V = 0  
TX RX  
G
G
L M  
P M  
TX  
From Equation 18.  
From Equation 18 with V  
= 0  
RX  
(EQ. 29)  
V
= –V  
= –2V  
+ I (Z  
2R )  
TR P  
V
= – I (Z  
2R )  
TR P  
TX  
TX  
RX  
M
TX  
M
Substituting Equation 24 into Equation 23 and simplifying.  
Substituting -V /Z into Equation 29 for I results in  
Equation 30.  
TR  
L
M
(EQ. 25)  
(EQ. 26)  
E
= I (Z + Z  
)
TR  
G
M
L
V
(Z  
2R )  
P
TR TR  
By design, VTX = -VTX´, therefore  
(EQ. 30)  
(EQ. 31)  
V
= –2V  
---------------------------------------------  
TX  
RX  
Z
L
V
I
(Z  
2R )  
(Z  
2R )  
P
)
TR  
TX  
M
TR P  
TR  
---------- ---------------------------------------  
= --------------------------------  
G
=
=
2-4  
E
I
(Z + Z  
)
TR  
(Z + Z  
G
M
L
L
Substituting Equation 21 for V in Equation 30 and  
TR  
simplifying results in Equation 31.  
A more useful form of the equation is rewritten in terms of  
V
/V . A voltage divider equation is written to convert  
Z + 2R  
V
TX TR  
from E to V as shown in Equation 27.  
L
P
TX  
------------------------  
G
= ----------- = 2  
4 4  
G
TR  
Z + Z  
L TR  
V
RX  
(EQ. 27)  
Z
TR  
+ Z  
L
-----------------------  
E
G
V
=
TR  
Z
TR  
(AC) 2-Wire Impedance  
The AC 2-wire impedance (Z ) is the impedance looking  
TR  
into the SLIC, including the fuse resistors. The formula to  
Rearranging Equation 27 in terms of E , and substituting  
G
into Equation 26 results in an equation for 2-wire to 4-wire  
gain that’s a function of the synthesized input impedance of  
calculate the proper Z for matching the 2-wire impedance is  
T
shown in Equation 32.  
the SLIC (Z ) and the protection resistors (R ).  
TR  
P
(EQ. 32)  
Z
= 200 • (Z  
2R )  
TR P  
T
(EQ. 28)  
V
Z
- 2R  
TR P  
Z
TR  
TX  
---------- -----------------------------  
G
=
=
2-4  
V
TR  
Equation 32 can now be used to match the SLIC’s  
impedance to any known line impedance (Z ).  
TR  
4-17  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
EXAMPLE:  
Off hook Ring Voltage in Current Limit  
Calculate Z to make Z = 600in series with 2.16µF.  
T
TR  
V
= V  
I R 0.2V  
LOOP(MAX) L  
(EQ. 37)  
RING(CL)  
TIP(offhook)  
R
= 30.  
P
1
Z
= 200 600 + ----------------------------------- – (2)(30)  
(EQ. 33)  
T
The off hook ring to ground voltage (not in current limit) is  
calculated using Equation 38. The 1.5V results from the  
6  
jω2.16X10  
SLIC self programming. I  
current allowed by the design and the value of R  
calculated in Equation 4.  
is the minimum loop  
LOOP(min)  
Z = 114kin series with 0.0108µF.  
T
is  
SAT(off)  
Note: Some impedance models, with a series capacitor, will  
cause the op-amp feedback to behave as an open circuit  
DC. A resistor with a value of about 10 times the reactance  
Off hook Ring Voltage not in Current Limit  
R
of the Z capacitor (2.16µF/200 = 10.8nF) at the low  
SAT(off)  
2
T
--------------------------  
V
= V  
+ 1.5V + (I  
)
(EQ. 38)  
RING(NCL)  
BH  
LOOP(min)  
frequency of interest (200Hz for example) can be placed in  
parallel with the capacitor in order to solve the problem  
(736kfor a 10.8nF capacitor).  
I  
× R  
P
LOOP(MIN)  
Layout Considerations  
Calculating Tip and Ring Voltages  
Systems with Dual Supplies (V  
and V  
)
BH  
BL  
supply, it is  
The on hook tip to ground voltage is calculated using  
Equation 34. The minus 1.0 volt results from the SLIC self  
programming. ISH- is the maximum loop current for a  
If the V supply is not derived from the V  
BL  
BH  
recommended that an additional diode be placed in series  
with the V supply. The orientation of this diode is anode  
BH  
constant on hook overhead voltage (ISH- = I  
(0.6)) and  
SHD  
on pin 8 of the device and cathode to the external supply.  
This external diode will inhibit large currents and potential  
the value of R  
SAT(off)  
is calculated in Equation 4.  
On hook Tip Voltage  
damage to the SLIC, in the event the V  
supply is shorted  
then this diode is not  
BH  
R
to GND. If V is derived from V  
BL  
BH  
SAToff  
2
----------------------  
= – 1.0V + – (ISH-)  
V
(EQ. 34)  
TIP(onhook)  
required.  
Floating the PTG Pin  
The off hook tip to ground voltage is calculated using  
Equation 35. I is the minimum loop current  
The PTG pin is a high impedance pin (500k) that is used to  
program the 2-wire to 4-wire gain to either 0dB or -6dB.  
LOOP(min)  
allowed by the design and the value of R  
is calculated  
SAT(off)  
in Equation 4.  
If 0dB is required, it is necessary to float the PTG pin. The  
PC board interconnect should be as short as possible to  
minimize stray capacitance on this pin. Stray capacitance on  
this pin forms a low pass filter and will cause the 2-wire to  
4-wire gain to roll off at the higher frequencies.  
Off hook Tip Voltage  
R
SAT(off)  
2
--------------------------  
)
LOOP(min)  
V
= – 1V (I  
(EQ. 35)  
TIP(offhook)  
I  
× R  
LOOP(MAX)  
P
If a 2-wire to 4-wire gain of -6dB is required, the PTG pin  
should be grounded as close to the device as possible.  
The on hook ring to ground voltage is calculated using  
Equation 36. The 1.5 volt results from the SLIC self  
programming. ISH- is the maximum loop current for a  
SPM Pin  
For optimum performance, the PC board interconnect the  
SPM pin should be as short as possible. If pulses metering  
is not being used, then this pin should be grounded as close  
to the device pin as possible.  
constant on hook overhead voltage (ISH- = I  
(0.6)) and  
SHD  
the value of R  
is calculated in Equation 4.  
On hook Ring Voltage  
SAT(off)  
R
SAT(off)  
2
--------------------------  
+ 1.5V + (ISH )  
BH  
V
= V  
(EQ. 36)  
RLIM Pin  
RING(onhook)  
The current limiting resistor R  
RLIM pin as possible.  
needs to be as close to the  
LIM  
The calculation of the ring voltage with respect to ground in  
the off hook condition is dependent upon whether the SLIC  
is in current limit or not.  
Layout of the 2-Wire Impedance Matching  
Resistor Z  
T
Proper connection to the ZT pin is to have the external Z  
network as close to the device pin as possible.  
The off hook ring to ground voltage (in current limit) is  
T
calculated using Equation 37. I  
is the programmed loop  
LIM  
current limit and R is the load resistance across tip and  
ring. The minus 0.2V is a correction factor for the 60kslope  
in Figure 15.  
L
The ZT pin is a high impedance pin that is used to set the  
proper feedback for matching the impedance of the 2-wire  
side. This will eliminate circuit board capacitance on this pin  
to maintain the 2-wire return loss across frequency.  
4-18  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
TABLE 1. DETECTOR STATES  
OUTPUT  
STATE  
C3  
0
C2  
0
C1  
0
SLIC OPERATING STATE  
Open Circuit State  
ACTIVE DETECTOR  
4 wire loopback test capability  
Ring Trip Detector  
SHD  
GKD_ LVM  
HIGH  
0
1
HIGH  
0
0
1
Ringing State  
HIGH  
(Previous State cannot be Reverse  
Active State)  
2
3
0
0
1
1
0
1
Forward Active State  
Loop Current Detector  
Ground Key Detector  
Test Active State  
On Hook Loopback Detector  
Ground Key Detector  
LOW  
LOW  
Requires previous state to be in the  
Forward Active state to determine the  
On hook or Off hook status of the line.  
HIGH  
N/A  
Off Hook Loop Current Detector  
Line Voltage Detector  
4
1
0
0
Tip Open - Ground Start State  
Ground Key Detector  
5
6
1
1
0
1
1
0
Reserved  
Reserved  
N/A  
Reverse Active State  
Loop Current Detector  
Ground Key Detector  
7
8
1
1
1
Test Reversal Active State  
On Hook Loop Current Detector  
HIGH  
LOW  
Requires previous state to be in the  
Reverse Active state to determine the  
On hook or Off hook status of the line.  
Off Hook Loop Current Detector  
LOW  
LOW  
Line Voltage Detector  
X
X
X
Thermal Shutdown  
(1) The RSYNC_REV pin is grounded through a resistor -  
This connection enables the RRLY pin to go low the instant  
the ringing state is invoked, without any regard for the ringing  
Digital Logic Inputs  
Table 1 is the logic truth table for the 3V to 5V logic input  
pins. A combination of the control pins C3, C2 and C1 select  
1 of the possible 6 operating states. The 8th state listed is  
Thermal Shutdown. Thermal Shutdown protection is invoked  
if a fault condition on the tip or ring causes the junction  
voltage (90V  
-120V ) across the relay contacts. The  
RMS  
RMS  
resistor (34.8kto 70k) is required to limit the current into  
the RSYNC_REV pin.  
o
temperature of the die to exceed 175 C. A description of  
each operating state and the control logic follows:  
(2) A ring sync pulse is applied to the RSYNC_REV pin -  
This connection enables the RRLY pin to go low at the  
command of a ring sync pulse. A ring sync pulse should go  
low at zero voltage crossing of the ring signal. This pulse  
should have a rise and fall time <400µs and a minimum  
pulse width of 2ms.  
Open Circuit State (C3 = 0, C2 = 0, C1 = 0)  
In this state, the tip and ring outputs are in a high impedance  
condition (>1M). No supervisory functions are available  
and SHD and GKD outputs are at a TTL high level.  
Zero ring current detection is performed automatically  
inside the SLIC. This feature de-energizes the ring relay  
slightly before zero current occurs to partially compensate  
for the delay in the opening of the relay.  
4-wire loopback testing can be performed in this state. With  
o
the PTG pin floating, the signal on the V output is 180 out  
TX  
of phase and approximately 2 times the V  
input signal. If  
RX  
the PTG pin is grounded, then the amplitude will be  
The SHD output will go low when the subscriber goes off  
hook. Once SHD is activated, an internal latch will prohibit  
the re-ringing of the line until the ringing code is removed  
and then reapplied.  
o
approximately the same as its input and 180 out of phase.  
Ringing State (C3 = 0, C2 = 0, C1 = 1)  
In this state, the output of the ring relay driver pin (RRLY)  
goes low (energizing the ring relay to connect the ringing  
signal to the phone) if either of the following two conditions  
are satisfied:  
The state prior to ringing the phone, can not be the Reverse  
Active State. In the reverse active state the polarity of the  
voltage on the CRT_REV_LVM capacitor, will make it appear  
as if the subscriber is off hook. This subsequently will  
activate an internal latch prohibiting the ringing of the line.  
4-19  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
The GKD_LVM output is disabled (TTL high level) during the  
ringing state. Reference the Section titled “Ringing the  
Phone” for more information.  
performs three different functions: Ring trip filtering, polarity  
reversal time and line voltage measurement. It is  
recommended that programming of the reversal time be  
accomplished by changing the value of RSYNC_REV resistor  
(see Figure 18). The value of RSYNC_REV resistor is limited  
between 34.8K (10ms) and 73.2k (21ms). Equation 39 gives  
the formula for programming the reversal time.  
Forward Active State (C3 = 0, C2 = 1, C1 = 0)  
In this state, the SLIC is fully functional. The tip voltage is more  
positive than the ring voltage. The tip and ring output voltages  
are an unbalanced DC feed, reference Figure 13. Both SHD  
and GKD supervisory functions are active. Reference the  
section titled “DC Feed Curve” for more information.  
RSYNC REV = 3.47kΩ × ReversalTime(ms)  
(EQ. 39)  
Both SHD and GKD supervisory functions are active.  
Reference the section titled “Polarity Reversal” for more  
information.  
Test Active State (C3 = 0, C2 = 1, C1 = 1)  
Proper operation of the Test Active State requires the  
previous state be the Forward Active state to determine the  
on hook or off hook status of the line. In this state, the SLIC  
can perform two different tests.  
Test Reversal Active State (C3 = 1, C2 = 1, C1 = 1)  
Proper operation of the Test Reversal Active State requires  
the previous state be the Reverse Active state to determine  
the on hook or off hook status of the line.  
If the subscriber is on hook when the state is entered, a  
loopback test is performed by switching an internal 600Ω  
resistor between tip and ring. The current flows through the  
internal 600is unidirectional via blocking diodes. (Cannot be  
used in reverse.) When the loopback current flows, the SHD  
output will go low and remain there until the state is exited. This  
is intended to be a short test since the ability to detect  
subscriber off hook is lost during loopback testing. Reference  
the section titled “Loopback Tests” for more information.  
If the subscriber is on hook when the state is entered, the  
SLIC’s tip and ring voltages are the same as the Reverse  
Active state. The SHD output will go low when the subscriber  
goes off hook and the GKD_LVM output is disabled (TTL  
level high). (Note: operation is the same as the Reverse  
Active state with the GKD_LVM output disabled.)  
If the subscriber is off hook when the state is entered, a  
Line Voltage Measurement test is performed.  
If the subscriber is off hook when the state is entered, a Line  
Voltage Measurement test is performed. The output of the  
GKD_LVM pin is a pulse train. The pulse width of the active low  
portion of the signal is proportional to the voltage across the tip  
and ring pins. If the loop length is such that the SLIC is  
operating in constant current, the tip to ring voltage can be used  
to determine the length of the line under test. The longer the  
line, the larger the tip to ring voltage and the wider the pulse.  
This relationship can determine the length of the line for setting  
gains in the system. Reference the section titled “Operation of  
Line Voltage Measurement” for more information.  
The output of the GKD_LVM pin is a pulse train. The pulse width  
of the active low portion of the signal is proportional to the voltage  
across the tip and ring pins. If the loop length is such that the  
SLIC is operating in constant current mode, the tip to ring voltage  
can be used to determine the length of the line under test. The  
longer the line, the larger the tip to ring voltage and the wider the  
pulse. This relationship can determine the length of the line for  
setting gains in the system. Reference the section titled  
“Operation of Line Voltage Measurement” for more information.  
Thermal Shutdown  
Tip Open State (C3 = 1, C2 = 0, C1 = 0)  
The UniSLIC14’s thermal shutdown protection is invoked if a  
fault condition causes the junction temperature of the die to  
exceed about 175 C. Once the thermal limit is exceeded,  
both detector outputs go low (SHD and GKD_LVM) and one  
of two things can happen.  
In this state, the tip output is in a high impedance state  
(>250kΩ) and the ring output is capable of full operation, i.e.  
has full longitudinal current capability. The Tip Open/Ground  
Start state is used to interface to a PBX incoming 2-wire  
trunk line. When a ground is applied through a resistor to the  
ring lead, this current is detected and presented as a TTL  
logic low on the SHD and GKD_LVM output pins.  
o
For marginal faults where loop current is flowing during the  
time of the over-temperature condition, foldback loop current  
limiting reduces the loop current by reducing the tip to ring  
voltage. An equilibrium condition will exist that maintains the  
Reserved (C3 = 1, C2 = 0, C1 = 1)  
This state is undefined and reserved for future use.  
o
junction temperature at about 175 C until the fault condition  
Reverse Active State (C3 = 1, C2 = 1, C1 = 0)  
is removed.  
In this state, the SLIC is fully functional. The ring voltage is  
more positive than the tip voltage. The tip and ring output  
voltages are an unbalanced DC feed, reference Figure 13.  
The polarity reversal time is determined by the RC time  
constant of the RSYNC_REV resistor and the  
For short circuit faults (tip or ring to ground, or to a supply,  
etc.) that result in an over-temperature condition, the  
foldback current limiting will try to maintain an equilibrium at  
o
about 175 C. If the junction temperature keeps rising, the  
device will thermally shutdown and disconnect tip and ring  
CRT_REV_LVM capacitor. Capacitor CRT_REV_LVM  
o
until the junction temperature falls to approximately 150 C.  
4-20  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
The RSYNC_REV pin is designed to allow the ring sync  
pulse to be present at all times. There is no need to gate the  
ring sync pulse on and off. The logic control for the  
Supervisory Functions  
Switch Hook Detect Threshold  
The Switch Hook Detect Threshold is programmed with a  
RSYNC_REV pin cannot be an open collector. It must be  
high (push-pull logic output stage / pull up resistor to VCC),  
low or being clocked by the ring sync pulse. When the  
RSYNC_REV pin is high the ring relay pin is disabled. When  
the RSYNC_REV pin is low the ring relay pin is activated the  
instant the logic code for ringing is applied.  
single external resistor (R ). The output of the SHD pin goes  
D
low when an off hook condition is detected.  
Ground Key Detect Threshold  
The Ground Key Detect Threshold is set internally and is not  
user programmable.  
OPENING THE RING RELAY AT ZERO CURRENT  
Ringing the Phone  
The ring relay is automatically opened at zero current by the  
SLIC. The SLIC logic requires zero ringing current in the  
loop and either a valid switch hook detect (SHD) or a change  
in the operating mode (cadence of the ringing signal) to  
release the ring relay.  
The UniSLIC14 family handles all the popular ringing  
formats with high or low side ring trip detection. High side  
detection is possible because of the high common mode  
range on the ring signal detect input pins (DT, DR). To  
minimize power drain from the ring generator, when the  
phone is not being rung, the sense resistors are typically  
2M. This reduces the current draw from the ring generator  
to just a few microamps.  
UniSLIC14  
INPUT FOR THE  
RING SYNC PULSE  
R
1
50kΩ  
24  
RSYNC_REV  
5V  
0V  
When the subscriber goes off hook during ringing, the  
UniSLIC14 family automatically releases the ring relay and  
DC feed is applied to the loop. The UniSLIC14 family has  
very low power dissipation in the on hook active mode. This  
enables the SLIC (during the ring cadence) to be powered  
up in the active state, avoiding unnecessary powering up  
and down of the SLIC. The control logic is designed to  
facilitate easy implementation of the ring cadence, requiring  
only one bit change to go from active to ringing and back  
again.  
FIGURE 18. REDUCING IMPULSE NOISE USING THE  
RSYNC_REV PIN AND SETTING THE POLARITY  
REVERSAL TIME  
If the subscriber goes off hook during ringing, the SHD  
output will go low. An internal latch will sense SHD is low and  
disable the ring relay at zero ringing current. This prevents  
the ring signal from being reapplied to the line. To ring the  
line again, the SLIC must toggle between logic states. (Note:  
The previous state can not be the Reverse Active State. In  
the reverse state, the voltage on the CRT_REV_LVM  
capacitor will activate an internal latch prohibiting the ringing  
of the line.  
DT, DR AND RRLY INPUTS  
Ring trip detection will occur when the DR pin goes more  
positive than DT by approximately 4V.  
The ring relay driver pin, RRLY, has an internal clamp  
between it’s output and ground. This eliminates the need to  
place an external snubber diode across the ring relay.  
Figure 19 shows the sequence of events from ringing the  
phone to ring trip. The ring relay turns on when both the  
ringing code and ring sync pulse are present (A). SHD is  
high at this point. When the subscriber goes off hook the  
SHD pin goes low and stays low until the ringing control  
code is removed (B). This prevents the SHD output from  
pulsing after ring trip occurs. At the next zero current  
crossing of the ring signal, ring trip occurs and the ring relay  
releases the line to allow loop current to flow in the loop (C).  
Reducing Impulse Noise During Ringing  
With an increase in digital data lines being installed next to  
analog lines, the threat from impulse noise on analog lines is  
increasing. Impulse noise can cause large blocks of high  
speed data to be lost, defeating most error correcting  
techniques. The UniSLIC14 family has the capability to  
reduce impulse noise by closing the ring relay at zero  
voltage and opening the ring relay at zero current.  
CLOSING THE RING RELAY AT ZERO VOLTAGE  
Closing the ring relay at zero voltage is accomplished by  
providing a ring sync pulse to the RSYNC_REV pin. The ring  
sync pulse is synchronized to go low at the zero voltage  
crossing of the ring signal. The resistor R1 in Figure 18 limits  
the current into the RSYNC_REV pin. If a particular polarity  
reversal time is required, then make R1 equal to the  
calculated value in Equation 39. If a specific polarity reversal  
time is not desired, R1 equal to 50kis suggested.  
4-21  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Polarity Reversal  
RINGING VOLTAGE  
Most of the SLICs in the UniSLIC14 family feature full  
polarity reversal. Full polarity reversal means that the SLIC  
can: transmit, determine the status of the line (on hook and  
off hook) and provide “silent” polarity reversal. The value of  
RSYNC_REV resistor is limited between 34.8k (10ms) and  
73.2k (21ms). Reference Equation 39 to program the polarity  
reversal time.  
RING SYNC  
PULSE  
(A)  
RINGING CODE  
APPLIED  
(B)  
SHD OUTPUT  
RINGING CURRENT  
IN LINE  
Transhybrid Balance  
If a low cost CODEC is chosen that does not have a transmit  
op-amp, the UniSLIC14 family of SLICs can solve this  
problem without the need for an additional op-amp. The  
solution is to use the Programmable Transmit Gain pin (PTG)  
(C)  
RELAY DRIVER  
OFF  
ON  
OFF  
as an input for the receive signal (V ). When the PTG pin is  
RX  
FIGURE 19. RINGING SEQUENCE  
connected to a divider network (R1 and R2 Figure 21) and the  
value of R1 and R2 is much less than the internal 500kΩ  
resistors, two things happen. First the transmit gain from V  
Operation of Line Voltage Measurement  
RX  
A few of the SLICs in the UniSLIC14 family feature Line  
Voltage Measurement (LVM) capability. This feature provides  
a pulse on the GKD_LVM output pin that is proportional to  
the loop voltage. Knowing the loop voltage and thus the loop  
length, other basic cable characteristics such as attenuation  
and capacitance can be inferred. Decisions can be made  
about gain switching in the CODEC to overcome line losses  
and verification of the 2-wire circuit integrity.  
to V is reduced by half. This is the result of shorting out the  
TX  
bottom 500kresistor with the much smaller external resistor.  
And second, the input signal from V is also decreased in  
half by resistors R1 and R2. Transhybrid balance occurs when  
these two, equal but opposite in phase, signals are cancelled  
at the input to the output buffer.  
RX  
V
-
TX  
+
The LVM function can only be activated in the off hook  
condition in either the forward or reverse operating states.  
The LVM uses the ring signal supplied to the SLIC as a  
timebase generator. The loop resistance is determined by  
monitoring the pulse width of the output signal on the  
GKD_LVM pin. The output signal on the GKD_LVM pin is a  
square wave for which the average duration of the low state  
is proportional to the average voltage between the tip and  
ring terminals. The loop resistance is determined by the tip  
to ring voltage and the constant loop current. Reference  
Figure 20.  
-
TX  
+
500K  
500K  
A = 1  
V
I
X
PTG  
R1  
R2  
I
X
500K  
V
RX  
+
RX  
-
500K  
V
5
UniSLIC14  
FIGURE 21. TRANSHYBRID BALANCE USING THE PTG PIN  
Although the logic state changes to the Test Active State  
when performing this test, the SLIC is still powered up in the  
active state (forward or reverse) and the subscriber is  
unaware the measurement is being taken.  
Loopback Tests  
4-Wire Loopback Test  
This feature can be very useful in the testing of line cards  
during the manufacturing process and in field use. The test  
is unobtrusive, allowing it to be used in live systems.  
Reference Figure 22.  
RING  
GEN  
FREQ  
UniSLIC14  
GKD_LVM  
TIP  
RING  
DR  
Most systems do not provide 4-wire loopback test  
capability because of costly relays needed to switch in  
external loads. All the SLICs in the UniSLIC14 family can  
easily provide this function when configured in the Open  
PULSE WIDTH  
PROPORTIONAL TO  
LOOP LENGTH  
DT  
RING  
GEN  
Circuit logic state. With the PTG pin floating, the signal on  
o
the V output is 180 out of phase and approximately 2  
TX  
times the V  
LOOP LENGTH  
input signal. If the PTG pin is grounded, then  
RX  
the amplitude will be approximately the same as the input  
signal and 180 out of phase.  
FIGURE 20. OPERATION OF THE LINE VOLTAGE  
MEASUREMENT CIRCUIT  
o
4-22  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
to 2-wire gain (V / SPM) is equal 4. Thereby lowering the  
TR  
input signal requirements of the pulse metering signal.  
V
UniSLIC14  
TX  
TIP  
-
+
Note: The automatic pulse metering 2-wire impedance  
matching is independent of the programmed 2-wire  
impedance matching at voiceband frequencies.  
PTG  
INTERNAL  
600Ω  
DUAL SUPPLY  
CODEC/FILTER  
RING  
V
RX  
Calculation of the pulse metering gain is achieved by  
replacing V /500k in Equation 15 with SPM/125k and  
following the same process through to Equation 21. The  
UniSLIC14 sets the 2-wire input impedance of the SLIC  
RX  
2-WIRE LOOPBACK  
4-WIRE LOOPBACK  
FIGURE 22. 4-WIRE AND 2-WIRE LOOPBACK TESTS  
(Z ), including the protection resistors, equal to 200. The  
results are shown in Equation 40.  
TR  
2-Wire Loopback Test  
Most of the SLICs in the UniSLIC14 family feature 2-Wire  
loopback testing. This loopback function is only activated  
when the subscriber is on hook and the logic command to  
the SLIC is in the Test Active State. (Note: if the subscriber is  
off hook and in the Test Active State, the function performed  
is the Line Voltage Measurement.)  
V
Z
L
Z + Z  
L TR  
200  
TR  
-------------  
-------------------------  
---------------------------  
200 + 200  
A
=
= 8  
= –8  
= –4  
(EQ. 40)  
4-2  
SPM  
Avoiding Clipping in the CODEC/Filter  
The amplitude of the returning pulse metering signal is often  
very large and could easily over drive the input to the  
CODEC/Filter. By using the same method discussed in  
section “Transhybrid Balance”, most if not all of the pulse  
metering signal can be canceled out before it reaches the  
input to the CODEC/Filter. This connection is shown in  
Figure 23.  
During the 2-wire loopback test, a 2kinternal resistor is  
switched across the tip and ring terminals of the SLIC. This  
allows the SHD function and the 4-wire to 4-wire AC  
transmission, right up to the subscriber loop, to be tested.  
Together with the 4-wire loopback test in the Open Circuit  
logic state, this 2-wire loopback test allows the complete  
network (including SLIC) to be tested up to the subscriber  
loop.  
Overload Levels and Silent Polarity Reversal  
The pulse metering signal and voice are simultaneously  
transmitted, and therefore require additional overhead to  
prevent distortion of the signal. Reference section “Off hook  
Overhead Voltage” to account for the additional pulse  
metering signal requirements.  
Pulse Metering  
The HC55121, HC55142 and the HC55150 are designed to  
support pulse metering. They offer solutions to the following  
pulse metering design issues:  
V
-
+
TX  
1) Providing adequate signal gain and current drive to the  
subscriber metering equipment to overcome the attenuation  
of this (12kHz, 16kHz) out of band signal.  
500K  
500K  
A = 1  
I
X
PTG  
R1  
2) Attenuating the pulse metering transhybrid signal without  
severely attenuating the voice band signal to avoid clipping  
in the CODEC/Filter.  
R2  
I
X
500K  
V
= 0  
RX  
3) Tailoring the overload levels in the SLIC to avoid clipping  
of the combined voiceband and pulse metering signal.  
125K  
SPM  
1/80K  
500K  
5
12/16kHz  
PULSE METERING  
INPUT SIGNAL  
4) Having the provision of silent polarity reversal as a backup  
in the case where the loop attenuates the out of band signal  
too much for it to be detected by the subscriber’s metering  
equipment.  
SETS 2-WIRE  
IMPEDANCE  
AT 12-16kHz  
EQUAL TO  
200Ω  
Z
T
Adequate Signal Gain  
UniSLIC14  
Adequate signal gain and current drive to the subscriber’s  
metering equipment is made easier by the network shown in  
Figure 23. The pulse metering signal is supplied to a  
FIGURE 23. PULSE METERING WITH TRANSHYBRID  
BALANCE  
dedicated high impedance input pin called SPM. The circuit  
in Figure 23 shows the connection of a network that sets the  
Most of the SLICs in the UniSLIC14 family feature full  
polarity reversal. Full polarity reversal means that the SLIC  
can: transmit, determine the status of the line (on hook and  
off hook) and provide “silent” polarity reversal. Reference  
Equation 39 to program the polarity reversal time.  
2-wire impedance (Z ), at the pulse metering frequencies,  
TR  
to be approximately 200. If the line impedance (Z ) is equal  
L
to 200at the pulse metering frequencies, then the 4-Wire  
4-23  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Power Sharing  
Interface to Dual and Single Supply  
Power sharing is a method of redistributing the power away  
CODECs  
from the SLIC in short loop applications. The total system  
Great care has been taken to minimize the number of external  
power is the same, but the die temperature of the SLIC is  
components required with the UniSLIC14 family while still  
much lower. Power sharing becomes important if the  
providing the maximum flexibility. Figures 24A, 24B) shows  
application has a single battery supply (-48V on hook  
the connection of the UniSLIC14 to both a dual supply  
requirements for faxes and modems) and the possibility of  
CODEC/Filter and a single supply DSP CODEC/Filter.  
high loop currents (reference Figure 25). This technique  
To eliminate the DC blocking capacitors between the SLIC  
and the CODEC/Filter when using a dual supply  
would prevent the SLIC from getting too hot and thermally  
shutting down on short loops.  
CODEC/Filter, both the receive and transmit leads of the  
SLIC are referenced to ground. This leads to a very simple  
SLIC to CODEC/Filter interface, as shown in Figure 24A.  
The power dissipation in the SLIC is the sum of the smaller  
quiescent supply power and the much larger power that  
results from the loop current. The power that results from the  
loop current is the loop current times the voltage across the  
When using a single supply DSP CODEC/Filter the output  
and input of the CODEC/Filter are no longer referenced to  
ground. To achieve maximum voltage swing with a single  
supply, both the output and input of the CODEC/Filter are  
SLIC. The power sharing resistor (R ) reduces the voltage  
PS  
across the SLIC, and thereby the on-chip power dissipation.  
The voltage across the SLIC is reduced by the voltage drop  
across R . This occurs because R is in series with the  
referenced to its own V /2 reference. Thus, DC blocking  
CC  
PS  
PS  
capacitors are once again required. By using the PTG pin of  
loop current and the negative supply.  
the UniSLIC14 and the externally supplied V /2 reference  
of the CODEC/Filter, one of the DC blocking capacitors can  
be eliminated (Figure 24B).  
CC  
A mathematical verification follows:  
Given: V = V = -48V, Loop current = 30mA, R (load  
BH BL  
L
across tip and ring) = 600, Quiescent battery power =  
(48V) (0.8mA) = 38.4mW, Quiescent VCC power = (5V)  
(2.7mA) = 13.5mW, Power sharing resistor = 600.  
V
TX  
-
1. Without power sharing, the on-chip power dissipation  
would be 952mW (Equation 41).  
-
+
+
A = 1  
2. With power sharing, the on-chip power dissipation is  
412mW (Equation 42). A power redistribution of 540mW.  
DUAL SUPPLY  
CODEC/FILTER  
5V  
V
V
OUT  
On-chip power dissipation without power sharing resistor.  
RX  
GND  
-5V  
2
UniSLIC14  
PD = (V )(30mA) + 38.4mW + 13.5mW (RL)(30mA)  
BH  
(EQ. 41)  
PD = 952mW  
FIGURE 24A.  
On-chip power dissipation with 600power sharing resistor.  
PD = (V )(30mA) + 38.4mW + 13.5mW  
BH  
V
V
2
2
TX  
-
+
IN  
(R )(30mA) (R )(30mA)  
L
PS  
500K  
A = 1  
(EQ. 42)  
PD = 412mW  
PTG  
V
V
SINGLE SUPPLY  
DSP  
CODEC/FILTER  
REF  
500K  
The design trade-off in using the power sharing resistor is  
loop length vs on-chip power dissipation.  
5V  
V
RX  
OUT  
GND  
UniSLIC14  
UniSLIC14  
TIP  
V
TX  
RX  
FIGURE 24B.  
RING  
FIGURE 24. INTERFACE TO DUAL AND SINGLE SUPPLY  
CODECs  
V
V
V
ON SHORT LOOPS, THE  
MAJORITY OF CURRENT  
FLOWS OUT THE V PIN  
BL  
BH  
BL  
Power Management  
R
PS  
The UniSLIC14 family provides two distinct power  
management capabilities:  
-48V  
-48V  
FIGURE 25. POWER SHARING (SINGLE SUPPLY SYSTEMS)  
Power Sharing and Battery Selection  
4-24  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Battery Selection  
40  
Battery selection is a technique, for a two battery supply  
system, where the SLIC automatically diverts the loop  
current to the most appropriate supply for a given loop  
length. This results in significant power savings and lowers  
the total power consumption on short loops. This technique  
is particularly useful if most of the lines are short, and the on  
hook condition requires a -48V battery. In Figure 26, it can  
be seen that for long loops the majority of the current comes  
35  
30  
25  
V
BL  
V
BH  
VBH = -48V  
VBL = -24V  
RILim = 33.2kΩ  
20  
15  
10  
from the high battery supply (V ) and for short loops from  
the low battery supply (V ).  
BL  
5
0
V
BL  
BH  
V
BH  
LOOP RESISTANCE ()  
FIGURE 26. BATTERY SELECTION (DUAL SUPPLY SYSTEMS)  
Pinouts - 28 Lead PLCC Packages  
HC55120  
(28 LEAD PLCC)  
TOP VIEW  
HC55121  
(28 LEAD PLCC)  
TOP VIEW  
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
AGND  
RSYNC  
ILIM  
5
6
7
8
9
25  
RING  
BGND  
TIP  
RING  
BGND  
TIP  
AGND  
5
6
7
8
9
25  
24  
23  
22  
21  
20  
24 RSYNC_REV  
ILIM  
ROH  
RD  
23  
22  
21  
20  
19  
ROH  
RD  
VBH  
VBL  
VBH  
VBL  
V
V
RDC_RAC 10  
RDC_RAC 10  
CRT 11  
CC  
CC  
CRT_REV  
11  
GKD  
19 GKD  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
HC55130  
(28 LEAD PLCC)  
TOP VIEW  
HC55140  
(28 LEAD PLCC)  
TOP VIEW  
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
RING  
5
AGND  
25  
AGND  
5
25  
24  
23  
22  
21  
20  
19  
RING  
BGND  
TIP  
BGND  
6
RSYNC  
ILIM  
6
7
8
9
24 RSYNC_REV  
TIP  
7
23  
22  
21  
20  
19  
ILIM  
ROH  
RD  
ROH  
RD  
VBH  
8
VBH  
VBL  
VBL  
9
V
RDC_RAC  
10  
CC  
10  
11  
RDC_RAC  
V
CC  
CRT_REV_  
LVM  
CRT  
11  
NC  
GKD_LVM  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
4-25  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pinouts - 28 Lead PLCC Packages (Continued)  
HC55142  
(28 LEAD PLCC)  
TOP VIEW  
HC55150  
(28 LEAD PLCC)  
TOP VIEW  
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
RING  
BGND  
TIP  
RING  
BGND  
TIP  
AGND  
RSYNC_REV  
ILIM  
5
6
25  
24  
23  
22  
21  
20  
5
6
25  
24  
23  
22  
21  
20  
19  
AGND  
RSYNC_REV  
ILIM  
7
7
ROH  
ROH  
8
VBH  
8
VBH  
RD  
RD  
9
9
VBL  
VBL  
V
V
10  
11  
10  
11  
RDC_RAC  
RDC_RAC  
CC  
CC  
CRT_REV_  
LVM  
LVM  
19 GKD_LVM  
CRT_REV_  
LVM  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
Pinouts - 32 Lead PLCC Packages  
HC55120  
(32 LEAD PLCC)  
TOP VIEW  
HC55121  
(32 LEAD PLCC)  
TOP VIEW  
4
3
2
1
32 31 30  
4
3
2
1
32 31 30  
NC  
29  
NC  
RING  
BGND  
TIP  
RING  
BGND  
29  
5
6
5
28 VRX  
28 VRX  
6
7
AGND  
27  
AGND  
TIP  
27  
26  
25  
24  
23  
22  
21  
7
RSYNC  
ILIM  
RSYNC_REV  
ILIM  
VBH  
26  
25  
24  
23  
22  
21  
VBH  
8
8
VBL  
VBL  
9
9
RDC_RAC  
ROH  
RD  
ROH  
RDC_RAC  
CRT_REV  
10  
10  
11  
RD  
CRT 11  
CDC  
V
V
12  
DT 13  
CDC 12  
DT 13  
CC  
CC  
GKD  
GKD  
14 15 16 17 18 19 20  
14 15 16 17 18 19 20  
4-26  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pinouts - 32 Lead PLCC Packages  
HC55130  
(32 LEAD PLCC)  
TOP VIEW  
HC55140  
(32 LEAD PLCC)  
TOP VIEW  
4
3
2
1
32 31 30  
4
3
2
1
32 31 30  
NC  
NC  
RING  
BGND  
TIP  
RING  
BGND  
29  
29  
5
6
5
6
28 VRX  
28 VRX  
AGND  
AGND  
TIP  
27  
26  
25  
24  
23  
22  
21  
27  
26  
25  
24  
23  
22  
21  
7
7
RSYNC  
ILIM  
RSYNC_REV  
ILIM  
VBH  
VBH  
8
8
VBL  
VBL  
9
9
ROH  
RD  
ROH  
RDC_RAC  
CRT  
RDC_RAC  
CRT_REV_LVM  
10  
11  
10  
11  
RD  
V
V
CDC 12  
DT 13  
CDC 12  
DT 13  
CC  
CC  
NC  
GKD_LVM  
14 15 16 17 18 19 20  
14 15 16 17 18 19 20  
HC55142  
(32 LEAD PLCC)  
TOP VIEW  
HC55150  
(32 LEAD PLCC)  
TOP VIEW  
4
3
2
1
32 31 30  
4
3
2
1
32 31 30  
SPM  
SPM  
RING  
5
29  
RING  
29  
5
6
BGND  
6
28 VRX  
BGND  
TIP  
28 VRX  
AGND  
AGND  
TIP  
7
8
27  
26  
25  
24  
23  
22  
21  
27  
26  
25  
24  
23  
22  
21  
7
RSYNC_REV  
ILIM  
RSYNC_REV  
ILIM  
VBH  
VBH  
8
VBL  
9
VBL  
9
RDC_RAC  
ROH  
RDC_RAC  
ROH  
10  
11  
12  
10  
11  
12  
CRT_REV_  
LVM  
CRT_REV_  
LVM  
RD  
RD  
V
V
CDC  
CC  
CDC  
CC  
LVM  
GKD_LVM  
DT 13  
DT 13  
14 15 16 17 18 19 20  
14 15 16 17 18 19 20  
4-27  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pinouts - 28 Lead SOIC Packages  
HC55120  
(28 LEAD SOIC)  
TOP VIEW  
HC55121  
(28 LEAD SOIC)  
TOP VIEW  
ZT  
PTG  
RRLY  
CH  
1
2
3
4
5
6
7
8
9
28 AGND  
27 VTX  
26 NC  
ZT  
PTG  
RRLY  
CH  
1
2
3
4
5
6
7
8
9
28 AGND  
27 VTX  
26 SPM  
25 VRX  
24 RSYNC  
23 ILIM  
22 ROH  
21 RD  
25 VRX  
RING  
BGND  
TIP  
RING  
BGND  
TIP  
24 RSYNC_REV  
23 ILIM  
22 ROH  
VBH  
VBL  
VBH  
VBL  
21 RD  
20  
20  
V
V
CC  
CC  
RDC_RAC 10  
CDC 11  
DT 12  
19 SHD  
18 C1  
RDC_RAC 10  
CDC 11  
19 SHD  
18 C1  
17 C2  
DT 12  
17 C2  
DR 13  
16 C3  
DR 13  
16 C3  
CRT 14  
15 GKD  
CRT_REV 14  
15 GKD  
HC55130  
(28 LEAD SOIC)  
TOP VIEW  
HC55140  
(28 LEAD SOIC)  
TOP VIEW  
ZT  
PTG  
RRLY  
CH  
1
2
3
4
5
6
7
8
9
28 AGND  
27 VTX  
26 NC  
ZT  
PTG  
RRLY  
CH  
1
2
3
4
5
6
7
8
9
28 AGND  
27 VTX  
26 NC  
25 VRX  
24 RSYNC  
23 ILIM  
22 ROH  
21 RD  
25 VRX  
RING  
BGND  
TIP  
RING  
BGND  
TIP  
24 RSYNC_REV  
23 ILIM  
22 ROH  
21 RD  
VBH  
VBL  
VBH  
VBL  
20  
20  
V
V
CC  
CC  
RDC_RAC 10  
CDC 11  
DT 12  
19 SHD  
18 C1  
17 C2  
16 C3  
15 NC  
RDC_RAC 10  
CDC 11  
19 SHD  
18 C1  
DT 12  
17 C2  
DR 13  
DR 13  
16 C3  
CRT 14  
CRT_REV_LVM 14  
15 GKD_LVM  
4-28  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pinouts - 28 Lead SOIC Packages (Continued)  
HC55142  
(28 LEAD SOIC)  
TOP VIEW  
HC55150  
(28 LEAD SOIC)  
TOP VIEW  
ZT  
PTG  
RRLY  
CH  
1
2
3
4
5
6
7
8
9
28 AGND  
27 VTX  
ZT  
PTG  
RRLY  
CH  
1
2
3
4
5
6
7
8
9
28 AGND  
27 VTX  
26 SPM  
26 SPM  
25 VRX  
25 VRX  
RING  
BGND  
TIP  
24 RSYNC_REV  
23 ILIM  
RING  
BGND  
TIP  
24 RSYNC_REV  
23 ILIM  
22 ROH  
22 ROH  
VBH  
VBL  
21 RD  
VBH  
VBL  
21 RD  
20  
20  
V
V
CC  
CC  
RDC_RAC 10  
CDC 11  
19 SHD  
18 C1  
RDC_RAC 10  
CDC 11  
19 SHD  
18 C1  
DT 12  
17 C2  
DT 12  
17 C2  
DR 13  
16 C3  
DR 13  
16 C3  
CRT_REV_LVM 14  
15 GKD_LVM  
CRT_REV_LVM 14  
15 LVM  
Pin Descriptions  
28  
32  
28  
PIN  
PIN  
PIN  
PLCC PLCC SOIC  
SYMBOL  
DESCRIPTION  
1
1
2
PTG  
Programmable Transmit Gain - The 2-wire to 4-wire transmission gain is 0dB if this pin is left floating  
and -6.02dB if tied to ground. The -6.02dB gain option is useful in systems where Pulse Metering is  
used. See Figure 23.  
2
3
2
3
3
4
RRLY  
CH  
Ring Relay Driver Output - The relay coil may be connected to a maximum of 14V.  
AC/DC Separation Capacitor - CH is required to properly process the AC current from the DC loop  
current. Recommended value 0.1µF.  
4
4
1
ZT  
2-Wire Impedance Matching Pin - Impedance matching of the 2-wire side is accomplished by placing  
an impedance between the ZT pin and ground. See Equation 32.  
5
6
5
6
5
6
RING  
BGND  
TIP  
Connects via protection resistor R to ring wire of subscriber pair.  
P
Battery ground.  
7
7
7
Connects via protection resistor R to tip wire of subscriber pair.  
P
8
8
8
V
High Battery Supply (negative with respect to GND).  
BH  
9
9
9
V
Low Battery Supply (negative with respect to GND, magnitude V ).  
BL  
BH  
10  
10  
10  
RDC_RAC  
Resistive Feed/Anti Clipping - Performs anti clipping function on constant current application and sets  
the slope of the resistive feed curve for constant voltage applications.  
11  
11  
14  
CRT_REV  
_LVM  
Ring Trip, Soft Polarity Reversal and Line Voltage Measurement - A capacitor when placed between the  
CRT_REV_LVM pin and +5V performs 3 mutually exclusive functions. When the SLIC is configured in the  
Ringing mode it provides filtering of the ringing signal to prevent false detect. When the SLIC is transitioning  
between the Forward Active State and Reverse Active State it provides Soft Polarity Reversal and performs  
charge storage in the Line Voltage Measurement State. Recommended value 0.47µF.  
12  
13  
12  
13  
11  
12  
CDC  
DT  
Filter Capacitor- The CDC Capacitor removes the VF signals from the battery feed control loop.  
Tip side of Ring Trip Detector - Ring trip detection is accomplished by connecting an external network  
to a detector in the SLIC with inputs DT and DR. Ring trip occurs when the voltage on DT is more  
negative than the voltage on DR.  
14  
-
14  
15  
13  
-
DR  
Ring Side of Ring Trip Detector - Ring trip detection is accomplished by connecting an external  
network to a detector in the SLIC with inputs DT and DR. Ring trip occurs when the voltage on DR is  
more positive than the voltage on DT.  
C5  
Activates Test Relay TRLY2.  
4-29  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pin Descriptions (Continued)  
28  
32  
28  
PIN  
PIN  
PIN  
PLCC PLCC SOIC  
SYMBOL  
C4  
DESCRIPTION  
-
16  
17  
-
Activates Test Relay TRLY1.  
15  
16  
C3  
TTL Compatible Logic Input. The logic states of C1, C2 and C3 determine the operating states of the  
SLIC. Reference Table 1 for details.  
16  
17  
18  
19  
17  
18  
C2  
C1  
TTL Compatible Logic Input. The logic states of C1, C2 and C3 determine the operating states of the  
SLIC. Reference Table 1 for details.  
TTL Compatible Logic Input. The logic states of C1, C2 and C3 determine the operating states of the  
SLIC. Reference Table 1 for details.  
18  
19  
20  
21  
20  
21  
22  
23  
19  
15  
20  
21  
SHD  
Switch Hook Detect - Active during off hook, ground key and loopback. Reference Table 1 for details.  
Ground Key Detector and Line Voltage Measurement - Reference Table 1 for details.  
5V Supply.  
GKD_LVM  
V
CC  
RD  
ROH  
ILIM  
Loop Current Threshold Programming Pin - A resistor between this pin and ground will determine the  
trigger level for the loop current detect circuit. See Equation 7.  
22  
23  
24  
24  
25  
26  
22  
23  
24  
Off Hook Overload Setting Resistor - Used to set combined overhead for voice and pulse metering  
signals. See Equation 10.  
Current Limit Programming Pin - A resistor between this pin and ground will determine the constant  
current limit of the feed curve. See Equation 11.  
RSYNC_REV Ring Synchronization Input and Reversal Time Setting. A resistor between this pin and GND  
determines the polarity reversal time. Synchronization of the closing of the relay at zero voltage is  
achieved via a ring sync pulse (5V to 0V) synchronized to the ring signal zero voltage crossing  
(Reference Figure 18).  
25  
26  
27  
27  
28  
29  
28  
25  
26  
AGND  
VRX  
Analog ground  
Receive Input - Ground referenced 4-wire side.  
SPM  
Pulse Metering Signal Input. If pulse metering is not used, then this pin should be grounded as close  
to the device pin as possible.  
28  
-
30  
31  
32  
27  
-
VTX  
Transmit Output - Ground referenced 4-wire side.  
Test Relay Driver 2.  
TRLY2  
TRLY1  
-
-
Test Relay Driver 1.  
4-30  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basic Application Circuit  
Voice Only 28 Lead PLCC Package  
R
11  
+5V  
C
††C10  
20  
R  
9
28  
V
U1  
+5V OR  
+12V  
CC  
V
TX  
1
2
3
RELAY  
RRLY  
CH  
1
PTG  
SPM  
27  
C
R  
10  
2
††C11  
RING  
TIP  
R
R
P
26  
5
6
V
RING  
RX  
C
U2  
8
25  
4
AGND  
ZT  
BGND  
CODEC/FILTER  
R
R
R
R
R
8
7
6
5
4
24  
23  
22  
PERFORM TRANSHYBRID BALANCE  
WHEN USING A NON-DSP CODEC.  
NOT REQUIRED FOR DSP CODEC.  
C
9
P
RSYNC_REV  
7
8
TIP  
D
1
ILIM  
ROH  
RD  
VBH  
-24V  
-48V  
OPTIONAL  
†† NOT REQUIRED FOR  
NON-DSP CODEC’s.  
C7  
9
VBL  
21  
18  
REQUIRED FOR DSP CODEC’s  
C
5
R
1
10  
12  
13  
RDC_RAC  
CDC  
SHD  
C
R
6
19  
17  
16  
GKD_LVM  
C1  
R
2
C
3
DT  
12  
14  
11  
C2  
DR  
15  
C3  
CRT_REV_LVM  
R
3
RING  
GENERATOR  
C
4
VBAT  
CONTROL LOGIC  
+5V  
FIGURE 27. UniSLIC14 VOICE ONLY BASIC APPLICATION CIRCUIT  
TABLE 2. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
RATING  
N/A  
U1 - SLIC  
N/A  
N/A  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
RP (Line Feed Resistors)  
Matched 1%  
1%  
2.0W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
2W  
R1 (RDC_RAC Resistor)  
21kΩ  
R2, R3  
2MΩ  
1%  
R4 (RD Resistor)  
41.2kΩ  
38.3kΩ  
33.2kΩ  
34.8kΩ  
107kΩ  
1%  
R5 (ROH Resistor)  
1%  
R6 (RILIM Resistor)  
1%  
R7 (RSYNC_REV Resistor)  
1%  
R8 (RZT Resistor)  
1%  
R9, R10, R11  
20kΩ  
1%  
R12  
400Ω  
5%  
C1 (Supply Decoupling), C2  
0.1µF  
20%  
20%  
20%  
20%  
20%  
20%  
-
10V  
C5 (Supply Decoupling)  
0.1µF  
50V  
C6 (Supply Decoupling)  
0.1µF  
100V  
10V  
C4, C7, C10, C11  
0.47µF  
4.7µF  
C3  
50V  
C8, C9  
2200pF  
1N4004  
100V  
-
D1, Recommended if the VBL supply is not derived from the VBH Supply  
Design Parameters: Maximum on hook voltage = 0.775V  
, Maximum Off hook Voice = 3.2V , Switch Hook Threshold = 12mA, Loop  
PEAK  
RMS  
Current Limit = 31mA, Synthesize Device Impedance = 540(600 - 60), with 30protection resistors, impedance across Tip and Ring terminals =  
600. Where applicable, these component values apply to the Basic Application Circuits for the HC55120, HC55121, HC55130/1, HC55140/1,  
HC55142/3 and HC55150/1. Pins not shown in the Basic Application Circuit are no connect (NC) pins.  
4-31  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basic Application Circuit  
Pulse Metering 28 Lead PLCC Package  
R
11  
+5V  
C
††C10  
20  
R  
9
28  
1
+5V OR  
+12V  
V
U1  
CC  
V
TX  
1
2
3
PTG  
RELAY  
RRLY  
CH  
27  
SPM  
VRX  
R  
10  
C
††C11  
2
RING  
TIP  
R
R
26  
25  
P
5
6
RING  
C
U2  
D
8
AGND  
CODEC/FILTER  
BGND  
R
R
R
R
R
8
7
6
5
4
4
ZT  
24  
23  
22  
C
P
9
RSYNC_REV  
ILIM  
7
8
12/16kHz  
PULSE METERING  
INPUT SIGNAL  
TIP  
-24V  
-48V  
1
VBH  
PERFORM TRANSHYBRID BALANCE  
WHEN USING A NON-DSP CODEC.  
NOT REQUIRED FOR DSP CODEC.  
OPTIONAL  
R
C
5
OH  
9
C7  
VBL  
21  
18  
RD  
C
6
R
1
10  
12  
RDC_RAC  
CDC  
SHD  
†† NOT REQUIRED FOR  
NON-DSP CODEC’s.  
19  
17  
16  
GKD_LVM  
C1  
R
2
C
3
13  
REQUIRED FOR DSP CODEC’s  
DT  
RING  
R
12  
14  
11  
GENERATOR  
C2  
DR  
15  
V
R
3
BAT  
C3  
CRT_REV_LVM  
C
CONTROL LOGIC  
4
+5V  
FIGURE 28. UniSLIC14 PULSE METERING BASIC APPLICATION CIRCUIT  
TABLE 3. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
RATING  
N/A  
U1 - SLIC  
N/A  
N/A  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
RP (Line Feed Resistors)  
Matched 1%  
1%  
2.0W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
2W  
R1 (RDC_RAC Resistor)  
26.1kΩ  
2MΩ  
R2, R3  
1%  
R4 (RD Resistor)  
41.2kΩ  
38.3kΩ  
33.2kΩ  
34.8kΩ  
107kΩ  
1%  
R5 (ROH Resistor)  
1%  
R6 (RILIM Resistor)  
1%  
R7 (RSYNC_REV Resistor)  
1%  
R8 (RZT Resistor)  
1%  
R9, R10, R11  
20kΩ  
1%  
R12  
400Ω  
5%  
C1 (Supply Decoupling), C2  
0.1µF  
20%  
20%  
20%  
20%  
20%  
20%  
-
10V  
C5 (Supply Decoupling)  
0.1µF  
50V  
C6 (Supply Decoupling)  
0.1µF  
100V  
10V  
C4, C7, C10, C11  
0.47µF  
4.7µF  
C3  
50V  
C8, C9  
2200pF  
1N4004  
100V  
-
D1, Recommended if the VBL supply is not derived from the VBH Supply  
Design Parameters: Maximum on hook voltage = 0.775V  
, Maximum off hook voice = 1.1V  
, Maximum simultaneous pulse metering  
PEAK  
RMS  
, Switch Hook Threshold = 12mA, Loop Current Limit = 31mA, Synthesize Device Impedance = 540(600 - 60), with 30Ω  
signal = 2.2V  
RMS  
protection resistors, impedance across Tip and Ring terminals = 600. Where applicable, these component values apply to the Basic Application  
Circuits for the HC55120, HC55121, HC55130/1, HC55140/1, HC55142/3 and HC55150/1. Pins not shown in the Basic Application Circuit are  
no connect (NC) pins.  
4-32  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basic Application Circuit  
Voice Only 28 Lead SOIC Package  
R
11  
+5V  
C
††C10  
20  
R  
9
27  
V
+5V OR  
+12V  
U1  
CC  
V
TX  
1
3
4
RELAY  
RRLY  
CH  
26  
25  
SPM  
C
R  
2
††C11  
10  
RING  
TIP  
R
R
P
5
6
V
RING  
RX  
C
U2  
8
28  
1
AGND  
ZT  
CODEC/FILTER  
BGND  
R
R
R
R
R
8
7
6
5
4
24  
23  
22  
21  
PERFORM TRANSHYBRID BALANCE  
WHEN USING A NON-DSP CODEC.  
NOT REQUIRED FOR DSP CODEC.  
C
P
9
RSYNC_REV  
ILIM  
7
8
TIP  
D
1
V
V
BH  
BL  
OPTIONAL  
-24V  
-48V  
R
†† NOT REQUIRED FOR  
NON-DSP CODEC’s.  
OH  
9
C7  
RD  
REQUIRED FOR DSP CODEC’s  
C
R
1
5
10  
11  
19  
RDC_RAC  
CDC  
SHD  
C
6
15  
18  
17  
GKD_LVM  
C1  
R
2
C
3
12  
13  
14  
DT  
R
12  
C2  
DR  
16  
R
RING  
C3  
3
CRT_REV_LVM  
GENERATOR  
C
4
V
BAT  
CONTROL LOGIC  
+5V  
FIGURE 29. UniSLIC14 VOICE ONLY BASIC APPLICATION CIRCUIT  
TABLE 4. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
RATING  
N/A  
U1 - SLIC  
N/A  
N/A  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
RP (Line Feed Resistors)  
Matched 1%  
1%  
2.0W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
2W  
R1 (RDC_RAC Resistor)  
21kΩ  
R2, R3  
2MΩ  
1%  
R4 (RD Resistor)  
41.2kΩ  
38.3kΩ  
33.2kΩ  
34.8kΩ  
107kΩ  
1%  
R5 (ROH Resistor)  
1%  
R6 (RILIM Resistor)  
1%  
R7 (RSYNC_REV Resistor)  
1%  
R8 (RZT Resistor)  
1%  
R9, R10, R11  
20kΩ  
1%  
R12  
400Ω  
5%  
C1 (Supply Decoupling), C2  
0.1µF  
20%  
20%  
20%  
20%  
20%  
20%  
-
10V  
C5 (Supply Decoupling)  
0.1µF  
50V  
C6 (Supply Decoupling)  
0.1µF  
100V  
10V  
C4, C7, C10, C11  
0.47µF  
4.7µF  
C3  
50V  
C8, C9  
2200pF  
1N4004  
100V  
-
D1, Recommended if the VBL supply is not derived from the VBH Supply  
Design Parameters: Maximum on hook voltage = 0.775V  
, Maximum Off hook Voice = 3.2V , Switch Hook Threshold = 12mA, Loop  
PEAK  
RMS  
Current Limit = 31mA, Synthesize Device Impedance = 540(600 - 60), with 30protection resistors, impedance across Tip and Ring terminals =  
600. Where applicable, these component values apply to the Basic Application Circuits for the HC55120, HC55121, HC55130/1, HC55140/1,  
HC55142/3 and HC55150/1. Pins not shown in the Basic Application Circuit are no connect (NC) pins.  
4-33  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basic Application Circuit  
Pulse Metering 28 Lead SOIC Package  
R
11  
+5V  
††C10  
††C11  
R  
9
20  
27  
2
V
V
U1  
+5V OR  
+12V  
TX  
CC  
C
1
3
4
PTG  
RELAY  
RRLY  
CH  
26  
SPM  
R  
10  
C
2
RING  
TIP  
25  
R
P
V
5
RX  
RING  
C
U2  
28  
1
8
6
CODEC/FILTER  
AGND  
ZT  
BGND  
R
R
R
R
R
8
7
6
5
4
12/16KHz  
PULSE METERING  
INPUT SIGNAL  
24  
23  
22  
21  
C
R
RSYNC_REV  
ILIM  
9
P
7
TIP  
-24V  
-48V  
D
1
8
V
BH  
PERFORM TRANSHYBRID BALANCE  
WHEN USING A NON-DSP CODEC.  
NOT REQUIRED FOR DSP CODEC.  
R
OPTIONAL  
OH  
C
5
C7  
9
V
BL  
RD  
C
R
6
R
1
10  
11  
12  
19  
RDC_RAC  
CDC  
†† NOT REQUIRED FOR  
NON-DSP CODEC’s.  
SHD  
15  
18  
17  
GKD_LVM  
C1  
R
2
REQUIRED FOR DSP CODEC’s  
C
3
DT  
DR  
RING  
13  
14  
12  
C2  
C3  
GENERATOR  
16  
R
3
VBAT  
CRT_REV_LVM  
CONTROL LOGIC  
C
4
+5V  
FIGURE 30. UniSLIC14 PULSE METERING BASIC APPLICATION CIRCUIT  
TABLE 5. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
RATING  
N/A  
U1 - SLIC  
N/A  
N/A  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
RP (Line Feed Resistors)  
Matched 1%  
1%  
2.0W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
1/16W  
2W  
R1 (RDC_RAC Resistor)  
26.1kΩ  
2MΩ  
R2, R3  
1%  
R4 (RD Resistor)  
41.2kΩ  
38.3kΩ  
33.2kΩ  
34.8kΩ  
107kΩ  
1%  
R5 (ROH Resistor)  
1%  
R6 (RILIM Resistor)  
1%  
R7 (RSYNC_REV Resistor)  
1%  
R8 (RZT Resistor)  
1%  
R9, R10, R11  
20kΩ  
1%  
R12  
400Ω  
5%  
C1 (Supply Decoupling), C2  
0.1µF  
20%  
20%  
20%  
20%  
20%  
20%  
-
10V  
C5 (Supply Decoupling)  
0.1µF  
50V  
C6 (Supply Decoupling)  
0.1µF  
100V  
10V  
C4, C7, C10, C11  
0.47µF  
4.7µF  
C3  
50V  
C8, C9  
2200pF  
1N4004  
100V  
-
D1, Recommended if the VBL supply is not derived from the VBH Supply  
Design Parameters: Maximum on hook voltage = 0.775V  
, Maximum off hook voice = 1.1V  
, Maximum simultaneous pulse metering signal  
PEAK  
RMS  
, Switch Hook Threshold = 12mA, Loop Current Limit = 31mA, Synthesize Device Impedance = 540(600 - 60), with 30protection  
= 2.2V  
RMS  
resistors, impedance across Tip and Ring terminals = 600. Where applicable, these component values apply to the Basic Application Circuits for  
the HC55120, HC55121, HC55130/1, HC55140/1, HC55142/3 and HC55150/1. Pins not shown in the Basic Application Circuit are no connect (NC)  
pins.  
4-34  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Intersil Ltd.  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
Mercure Center  
8F-2, 96, Sec. 1, Chien-kuo North,  
Taipei, Taiwan 104  
Republic of China  
TEL: 886-2-2515-8508  
FAX: 886-2-2515-8369  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
4-35  

相关型号:

HC55151CM

Low Power Universal SLIC Family
INTERSIL

HC55151CM

TELECOM-SLIC, PQCC32, PLASTIC, MS-016AE, LCC-32
RENESAS

HC5515CM

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515CM96

TELECOM-SLIC, PQCC28
RENESAS

HC5515CMZ

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515CP

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515ICM

TELECOM-SLIC, PQCC28, PLASTIC, LCC-28
RENESAS

HC5515IM

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515IM96

TELECOM-SLIC, PQCC28
RENESAS

HC5515IP

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515_06

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5517

3 REN Ringing SLIC For ISDN Modem/TA and WLL
INTERSIL