HC5515ICM [RENESAS]

TELECOM-SLIC, PQCC28, PLASTIC, LCC-28;
HC5515ICM
型号: HC5515ICM
厂家: RENESAS TECHNOLOGY CORP    RENESAS TECHNOLOGY CORP
描述:

TELECOM-SLIC, PQCC28, PLASTIC, LCC-28

电信 电信集成电路
文件: 总26页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HC55120, HC55121, HC55130, HC55131, HC55140,  
HC55141, HC55142, HC55143, HC55150, HC55151  
Data Sheet  
February 1999  
File Number 4659  
ADVANCE INFORMATION  
Low Power Universal SLIC Family  
Features  
The UniSLIC14 is a family of Ultra Low Power SLICs. The  
feature set and common pinouts of the UniSLIC14 family  
positions it as a universal solution for: Plain Old Telephone  
Service (POTS), PBX, Central Office, Loop Carrier, Fiber in  
the Loop, ISDN-TA and NT1+, Pairgain and Wireless Local  
• Ultra Low Active Power (OHT) < 60mW  
• Low Standby Power < 25mW  
• Single/Dual Battery Operation  
• Automatic Silent Battery Switching  
• Thermal Management/Shutdown  
• Battery Tracking Saturation Guard  
• Single 5V Supply  
[ /Title  
(HC55  
120,  
HC551 Loop.  
21,  
The UniSLIC14 family achieves it’s ultra low power operation  
HC551 through: It’s automatic single and dual battery operation  
• Zero Crossing Ring Control  
- Zero Voltage On/Zero Current Off  
• Tip/Ring Disconnect  
• Pulse Metering Capability  
• 4 Wire Loopback  
• Programmable Constant Current Feed  
• Programmable Resistive Feed  
• Programmable Loop Detect Threshold  
• Programmable On-Hook and Off-Hook Overheads  
• Programmable Overhead for Pulse Metering  
• Programmable Polarity Reversal Time  
• Selectable Transmit Gain 0dB/-6dB  
• 2 Wire Impedance Set by Single Network  
• Loop and Ground Key Detectors  
• On-Hook Transmission  
• Common Pinout  
• HC55121  
- Polarity Reversal  
• HC55130  
- -63dB Longitudinal Balance  
• HC55140  
- Polarity Reversal  
- Ground Start  
- Line Voltage Measurement  
- 2 Wire Loopback  
(based on line length), low power standby state and battery  
30,  
HC551  
31,  
HC551  
40,  
HC551  
41,  
HC551  
42,  
tracking saturation guard to ensure the maximum loop  
coverage on the lowest battery voltage. This architecture is  
ideal for power critical applications such as ISDN NT1+,  
Pairgain and Wireless local loop products.  
The UniSLIC14 family has many user programmable  
features. This family of SLICs delivers a low noise, low  
component count solution for Central Office and Loop  
Carrier universal voice grade designs. The product family  
integrates advanced pulse metering, test and signaling  
capabilities, and zero crossing ring control.  
HC551  
43,  
HC551  
50,  
HC551  
51)  
/Sub-  
ject  
(Low  
Power  
Uni-  
versal  
SLIC  
Fam-  
ily)  
The UniSLIC14 family is designed in the Intersil “Latch” free  
Bonded Wafer process. This process dielectrically isolates  
the active circuitry to eliminate any leakage paths as found in  
our competition’s JI process. This makes the UniSLIC14  
family compliant with “hot plug” requirements and operation  
in harsh outdoor environments.  
Block Diagram  
RRLY  
STATE  
DECODER  
AND  
C1  
RING AND TEST  
RELAY DRIVERS  
C2  
C3  
TRLY1  
TRLY2  
DETECTOR  
C4  
C5  
LOGIC  
ZERO CURRENT  
CROSSING  
DT  
DR  
LOOP CURRENT  
DETECTOR  
- -63dB Longitudinal Balance  
• HC55142  
- Polarity Reversal  
- Ground Start  
- Line Voltage Measurement  
SHD  
RING TRIP  
DETECTOR  
GKD/LOOP LENGTH  
DETECTOR  
GKD_LVM  
CRT_REV_LVM  
POLARITY  
REVERSAL  
/Autho  
r ()  
/Key-  
words  
(Inter-  
sil  
- 2.2V  
- 2 Wire Loopback  
• HC55150  
- Polarity Reversal  
- Line Voltage Measurement  
Pulse Metering  
ILIM  
RSYNC_REV  
ROH  
CDC  
RDC_RSG  
RD  
RMS  
LINE FEED  
CONTROL  
TIP  
2-WIRE  
RING  
GND  
INTERFACE  
- 2.2V  
Pulse Metering  
RMS  
V
V
TX  
RX  
- 2 Wire Loopback  
4-WIRE INTERFACE  
VF SIGNAL PATH  
Corpo-  
ration,  
PTG  
V
Related Literature  
• AN9832, User’s Guide for Development Board  
BATTERY  
SWITCH  
AND  
BH  
ZT  
C
H
V
BL  
BIAS  
NETWORK  
PULSE METERING  
SIGNAL PATH  
V
CC  
ZSPM  
SPM  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
1
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Ordering Information (PLCC Package Only)  
MAX LOOP  
LINE VOLTAGE  
MEASUREMENT  
2 WIRE  
LOOPBACK  
TEMP  
PART  
NUMBER  
CURRENT POLARITY GROUND GROUND  
(mA)  
PULSE  
METERING  
2 TEST  
RELAY DRIVERS  
LONGITUDINAL  
BALANCE  
RANGE  
PKG.  
NO.  
o
REVERSAL START  
KEY  
( C)  
HC55120CM  
HC55121IM  
HC55130IM  
HC55140IM  
HC55142IM  
HC55150CM  
HC5514XEVAL1  
30  
53dB  
53dB  
63dB  
63dB  
53dB  
55dB  
0 to 70  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
M28.3  
N28.45  
30  
45  
45  
45  
45  
M28.3  
N28.45  
HC55131IM  
HC5514IM  
M28.3  
N28.45  
M28.3  
N28.45  
M28.3  
N28.45  
HC55143IM  
HC5515ICM  
M28.3  
N28.45  
Evaluation board  
Available by placing SLIC in Test mode.  
Device Operating Modes  
C3  
C2  
C1  
DESCRIPTION  
HC55120  
HC55121  
HC55130/1  
HC55140/1  
HC55142/3  
HC55150/1  
0
0
0
Disconnect Tip and Ring.  
Ringing  
0
0
0
0
1
1
1
0
1
Forward Active  
Test Forward Active  
2 Wire Loopback and  
Line Voltage Measurement  
1
1
1
1
0
0
1
1
0
1
0
1
Tip Open Ground Start  
Low Power Standby  
Reverse Active  
Test Reverse Active  
Line Voltage Measurement  
2
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
o
Absolute Maximum Ratings T = 25 C  
Tip and Ring Terminals  
A
Temperature, Humidity  
Storage Temperature Range . . . . . . . . . . . . . . . . -65 C to 150 C  
Operating Temperature Range. . . . . . . . . . . . . . . -40 C to 110 C  
Tipx or Ringx, Current, Pulse < 10ms, T  
> 10s . . . . . . . . . .2A  
> 10s . . . . . . . . . . .5A  
> 10s . . . . . . . . .15A  
REP  
o
o
Tipx or Ringx, Current, Pulse < 1ms, T  
REP  
o
o
Tipx or Ringx, Current, Pulse < 10µs, T  
REP  
o
o
Operating Junction Temperature Range. . . . . . . . -40 C to 150 C  
Tipx or Ringx, Current, Pulse < 1µs, T  
> 10s . . . . . . . . . .20A  
REP  
> 10s . . . . . . . . . . . . . . .20A  
REP  
o
o
Power Supply (-40 C T +85 C)  
Tipx or Ringx, Pulse < 250ns, T  
A
Supply Voltage V  
to GND . . . . . . . . . . . . . . . . . . . .-.04V to 7V  
CC  
Supply Voltage V to GND . . . . . . . . . . . . . . . . . . . . -V to 0.4V  
BL  
BH  
BH  
BL  
Thermal Information  
Supply Voltage V  
Supply Voltage V  
Relay Driver  
to GND, Continuous. . . . . . . . . .-75V to 0.4V  
to GND, 10ms . . . . . . . . . . . . . .-80V to 0.4V  
Thermal Resistance  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . .  
28 Lead SOIC Package . . . . . . . . . . . . . . . . . . . . . . . TBD C/W  
32 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . TBD C/W  
Continuous Power Dissipation at +85 C  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5W  
28 Lead SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .TBDW  
32 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . .TBDW  
Peak Power Dissipation at 70 C, t<100ms, t  
θ
JA  
o
53 C/W  
o
Ring Relay Supply Voltage . . . . . . . . . . . . . . . . . . . . . . 0V to 14V  
Ring Relay Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA  
Digital Inputs, Outputs (C1, C2, C3, C4, C5, SHD, GKD_LVM)  
o
o
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.4V to V  
Output Voltage (SHD, GKD_LVM Not Active). . . . . . -0.4V to V  
CC  
CC  
Output Current (SHD, GKD_LVM) . . . . . . . . . . . . . . . . . . . . . 5mA  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .500V  
Gate Count. . . . . . . . . . . . . . . . . . . . . . . .543 Transistors, 51 Diodes  
o
>1 sec  
Rep  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . .TBDW  
28 Lead SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .TBDW  
32 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . .TBDW  
o
o
Tipx and Ringx Terminals (-40 C T 85 C)  
A
Tipx or Ringx Current . . . . . . . . . . . . . . . . . . . . -100mA to 100mA  
o
Lead Temperature (Soldering 10s, PLCC Lead Tips Only) . . . .300 C  
o
Derate above 70 C  
o
PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4mW/ C  
SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBDW/ C  
o
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Typical Operating Conditions  
These represent the conditions under which the part was developed and are suggested as guidelines.  
PARAMETER  
Ambient Temperature  
CONDITIONS  
HC55120, HC55150/1  
MIN  
0
TYP  
MAX  
70  
UNITS  
o
-
-
C
o
HC55121, HC55130/1, HC55140/1,  
HC55142/3  
-40  
85  
C
V
V
V
with Respect to GND  
-58  
-
-
-
-8  
-8  
V
V
V
BH  
BL  
with Respect to GND  
with Respect to GND  
V
BH  
4.75  
5.25  
CC  
3
o
o
     ,
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
2-WIRE PORT  
Overload Level, Off Hook  
Forward and Reverse  
1% THD, I  
≥ 18mA  
3.2  
1.3  
-
-
-
-
V
Forward  
Only  
Forward  
Only  
DCMET  
(Note 2, Figure 1)  
PEAK  
Overload Level, On Hook  
Forward and Reverse  
1% THD, IDCMET 5mA  
(Note 3, Figure 1)  
V
Forward  
Only  
Forward  
Only  
PEAK  
Input Impedance (Into Tip and Ring)  
-
-
Z /200  
T
-
-
4
Longitudinal Impedance (Tip, Ring) 0 < f < 100Hz (Note 4, Figure 2)  
Forward and Reverse  
0
/Wire  
Forward  
Only  
Forward  
Only  
LONGITUDINAL CURRENT LIMIT (TIP, RING)  
On-Hook, Off-Hook (Active),  
= 736Ω  
Forward and Reverse  
No False Detections, (Loop  
Current), LB > 45dB (Note 5,  
Figure 3A)  
28  
-
-
-
-
mA  
RMS  
Wire Forward  
Only  
Forward  
Only  
/
R
L
On-Hook (Low Power Standby),  
No False Detections (Loop  
Current) (Note 6, Figure 3B)  
8.5 mAPEAK/Wire  
R
= ∞, R = 58.8kΩ  
D
L
A
T
TIP  
V
TX  
1V  
RMS  
V
TX  
TIP  
0 < f < 100Hz  
V
T
300Ω  
300Ω  
E
L
C
V
TR  
R
L
I
DCMET  
V
R
E
RX  
RING  
A
VRX  
R
RING  
VRX  
LZ = V /A  
LZ = V /A  
R R R  
T
T
T
FIGURE 1. OVERLOAD LEVEL (OFF HOOK, ON HOOK)  
FIGURE 2. LONGITUDINAL IMPEDANCE  
368Ω  
368Ω  
V
TX  
TIP  
TIP  
V
A
A
A
TX  
V
10µF  
10µF  
C
TX  
C
E
E
L
L
C
RING  
A
RING  
VRX  
VRX  
368Ω  
368Ω  
SHD  
SHD  
FIGURE 3A. LONGITUDINAL CURRENT LIMIT OFF-HOOK (ACTIVE)  
FIGURE 3B. LONGITUDINAL CURRENT LIMIT ON-HOOK (STANDBY)  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
OFF-HOOK LONGITUDINAL BALANCE  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
Longitudinal to Metallic (Note 7)  
Forward and Reverse  
IEEE 455 - 1985, R , R = 368Ω  
Normal Polarity:  
Forward  
Only  
Forward  
Only  
LR LT  
o
o
0.2kHz < f < 1.0kHz, 0 C to 70 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
53  
53  
NA  
NA  
53  
53  
53  
NA  
NA  
63  
NA  
NA  
63  
58  
58  
NA  
NA  
53  
53  
53  
55  
55  
o
o
1.0kHz < f < 3.4kHz, 0 C to 70 C  
5
o
o
0.2kHz < f < 1.0kHz, -40 C to 85 C  
NA  
NA  
NA  
NA  
NA  
55  
o
o
1.0kHz < f < 3.4kHz, -40 C to 85 C  
58  
Reverse Polarity 0.2kHz < f <  
3.4kHz, (Figure 4)  
NA  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
Longitudinal to Metallic (Note 7)  
Forward and Reverse  
R
, R = 300,  
LR LT  
Forward  
Only  
Forward  
Only  
Normal Polarity:  
o
o
0.2kHz < f < 1.0kHz, 0 C to 70 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
53  
53  
NA  
NA  
53  
53  
53  
NA  
NA  
63  
NA  
NA  
63  
58  
58  
NA  
NA  
53  
53  
53  
55  
55  
o
o
1.0kHz < f < 3.4kHz, 0 C to 70 C  
o
o
0.2kHz < f < 1.0kHz, -40 C to 85 C  
NA  
NA  
NA  
NA  
NA  
55  
o
o
1.0kHz < f < 3.4kHz, -40 C to 85 C  
58  
Reverse Polarity 0.2kHz < f <  
3.4kHz, (Figure 4)  
NA  
MIN  
MIN  
MIN  
MIN  
MIN  
MIN  
Longitudinal to 4-Wire (Note 9)  
(Forward and Reverse)  
Forward  
Only  
Forward  
Only  
Normal Polarity:  
o
o
0.2kHz < f < 1.0kHz, 0 C to 70 C  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
53  
53  
NA  
NA  
53  
53  
53  
NA  
NA  
63  
NA  
NA  
63  
58  
58  
NA  
NA  
53  
53  
53  
61  
61  
o
o
1.0kHz < f < 3.4kHz,0 C to 70 C  
o
o
0.2kHz < f < 1.0kHz, -40 C to 85 C  
NA  
NA  
NA  
NA  
NA  
61  
o
o
1.0kHz < f < 3.4kHz, -40 C to 85 C  
58  
Reverse Polarity 0.2kHz < f <  
3.4kHz, (Figure 4)  
NA  
Metallic to Longitudinal (Note 10)  
Forward and Reverse  
FCC Part 68, Para 68.310 (Note 8)  
0.2kHz < f < 3.4kHz, (Figure 5)  
40  
40  
50  
-
-
-
dB  
dB  
Forward  
Only  
Forward  
Only  
4-Wire to Longitudinal (Note 11)  
Forward and Reverse  
0.2kHz < f < 3.4kHz, (Figure 5)  
Forward  
Only  
Forward  
Only  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
R
LT  
R
LT  
V
TIP  
TX  
TIP  
V
TX  
300Ω  
V
TX  
E
2.16µF  
L
E
C
TR  
V
TR  
E
RX  
C
2.16µF  
V
L
R
VRX  
6
LR  
VRX  
RING  
RING  
R
LR  
300Ω  
FIGURE 5. METALLIC TO LONGITUDINAL AND 4-WIRE TO LONGITUDINAL  
BALANCE  
FIGURE 4. LONGITUDINAL TO METALLIC AND LONGITUDINAL TO 4-WIRE BAL-  
ANCE  
2-Wire Return Loss  
Forward and Reverse  
0.2kHz to 1.0kHz (Note 12, Figure 6)  
1.0kHz to 3.4kHz (Note 12, Figure 6)  
30  
23  
35  
25  
-
-
dB  
dB  
Forward  
Only  
Forward  
Only  
TIP IDLE VOLTAGE (User Programmable)  
TIPX Idle Voltage  
Active, I < 5mA  
-
-2.0  
-
V
Forward  
Only  
Forward  
Only  
L
Forward and Reverse  
RING IDLE VOLTAGE (User Programmable)  
RINGX Idle Voltage  
Forward and Reverse  
Active, I < 5mA  
-
-
-
V
V
+2.5  
-
-
-
V
V
V
Forward  
Only  
Forward  
Only  
L
BH  
Tip open, I < 5mA  
+2.5  
L
BH  
V
Active, I < 5mA  
V
-4.5  
Forward  
Only  
Forward  
Only  
TR  
Forward and Reverse  
L
BH  
V
Pulse Metering  
Active, I > 8.5mA, R  
OH  
= 50kΩ  
-
V
-8.9  
-
V
NA  
NA  
NA  
TR(ROH)  
Forward and Reverse  
L
BH  
Z
D
TIP  
V
TX  
TIP  
V
TX  
2pF  
V
V
TX  
TR  
R
R
V
M
Z
L
E
R
G
600Ω  
L
V
S
Z
IN  
VRX  
VRX  
RING  
RING  
R
LR  
FIGURE 6. TWO-WIRE RETURN LOSS  
FIGURE 7. OVERLOAD LEVEL (4-WIRE TRANSMIT PORT), OUTPUT OFFSET  
VOLTAGE AND HARMONIC DISTORTION  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
4-WIRE TRANSMIT PORT (V  
)
TX  
Overload Level, Off Hook (I 18mA) (Z > 20k, IL 1% THD) (Note 13,  
3.2  
1.3  
-100  
-
-
-
-
-
V
Forward  
Only  
Forward  
Only  
L
L
PEAK  
Forward and Reverse  
Figure 7)  
Overload Level, On Hook (I 5mA) (Z > 20k, 1% THD)  
V
Forward  
Only  
Forward  
Only  
L
L
PEAK  
Forward and Reverse  
(Note 14, Figure 7)  
Output Offset Voltage  
Forward and Reverse  
E
= 0, Z = , (Note 15,  
-
100  
1
mV  
Forward  
Only  
Forward  
Only  
G
L
7
Figure 7)  
Output Impedance  
0.2kHz < f < 03.4kHz  
0.1  
(Guaranteed by Design)  
4-WIRE RECEIVE PORT (VRX)  
VRX Input Impedance  
(Guaranteed by Design)  
0.2kHz < f < 3.4kHz  
-
500  
600  
kΩ  
FREQUENCY RESPONSE (OFF-HOOK)  
2-Wire to 4-Wire  
Relative to 0dBm at 1.0kHz, E = 0V  
RX  
Forward  
Only  
Forward  
Only  
Forward and Reverse  
0.3kHz < f < 3.4kHz  
-0.2  
-1.0  
-
-
0.1  
0
dB  
dB  
f = 8.0kHz, 12kHz, 16kHz  
(Note 16, Figure 8)  
4-Wire to 2-Wire  
Forward and Reverse  
Relative to 0dBm at 1.0kHz, E = 0V  
G
Forward  
Only  
Forward  
Only  
0.3kHz < f < 3.4kHz  
-0.2  
-1.0  
-2.0  
-
-
-
0.1  
0
dB  
dB  
dB  
f = 8.0kHz, 12kHz  
f = 16kHz (Note 17, Figure 8)  
-
4-Wire to 4-Wire  
Forward and Reverse  
Relative to 0dBm at 1.0kHz, E = 0V  
Forward  
Only  
Forward  
Only  
G
0.3kHz < f < 3.4kHz (Note 18, Figure 8) -0.2  
-
0.1  
dB  
V
TIP  
TX  
V
TIP  
TX  
V
V
TX  
TX  
OPEN  
R
L
600Ω  
R
L
E
G
V
TR  
600Ω  
V
PTG  
VRX  
TR  
E
RX  
RING  
RING VRX  
FIGURE 8. FREQUENCY RESPONSE, INSERTION LOSS, GAIN TRACKING  
AND HARMONIC DISTORTION  
FIGURE 9. IDLE CHANNEL NOISE  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
INSERTION LOSS  
2-Wire to 4-Wire  
0dBm, 1kHz  
Forward and Reverse  
PTG = Open (Note 19, Figure 8)  
PTG = GND (Note 20, (Figure 8)  
0dBm, 1kHz (Note 21, Figure 8)  
-0.2  
-6.22  
-0.2  
-
-6.02  
-
0.2  
-5.82  
0.2  
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
4-Wire to 2-Wire  
Forward and Reverse  
Forward  
Only  
Forward  
Only  
8
GAIN TRACKING (Ref = -10dBm, at 1.0kHz)  
2-Wire to 4-Wire  
Forward and Reverse  
-40dBm to +3dBm (Note 22,  
Figure 8)  
-0.1  
-0.2  
-0.1  
-0.2  
-
-
0.1  
0.2  
0.1  
0.2  
dB  
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
-55dBm to -40dBm (Note 22,  
Figure 8)  
4-Wire to 2-Wire  
Forward and Reverse  
-40dBm to +3dBm (Note 23,  
Figure 8)  
Forward  
Only  
Forward  
Only  
-55dBm to -40dBm (Note 23,  
Figure 8)  
NOISE  
Idle Channel Noise at 2-Wire  
Forward and Reverse  
C-Message Weighting  
-
-
-
-
12  
dBrnC  
dBmp  
Forward  
Only  
Forward  
Only  
Psophometric Weighting (Note 24,  
Figure 9)  
-78  
Idle Channel Noise at 4-Wire  
Forward and Reverse  
C-Message Weighting  
-
-
-
-
12  
dBrnC  
dBmp  
Forward  
Only  
Forward  
Only  
Psophometrical Weighting  
(Note 25, Figure 9)  
-78  
HARMONIC DISTORTION  
2-Wire to 4-Wire  
Forward and Reverse  
0dBm, 0.3kHz to 3.4kHz  
(Note 26, Figure 7)  
-
-
-67  
-67  
-50  
-50  
dB  
dB  
Forward  
Only  
Forward  
Only  
4-Wire to 2-Wire  
Forward and Reverse  
0dBm, 0.3kHz to 3.4kHz  
(Note 27, Figure 8)  
Forward  
Only  
Forward  
Only  
7kΩ  
V
V
TX  
TIP  
V
BH  
TIP  
TX  
S
R
LIM  
R
L
R
LIM  
38.3kΩ  
V
TR  
600Ω  
I
R1  
R
1
RING  
VRX  
VRX  
RING  
FIGURE 10. CONSTANT LOOP CURRENT TOLERANCE  
FIGURE 11. TIPX VOLTAGE  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
BATTERY FEED CHARACTERISTICS  
Constant Loop Current Tolerance  
= 26.5mA, R = 38.3kΩ  
18mA IL 45mA,  
(Note 27, Figure 10)  
Forward  
Only  
Forward  
Only  
I
0.92I  
-
I
1.08I  
L
mA  
L
LIM  
L
L
Forward and Reverse  
Tip Open State TIPX Leakage  
Current  
S = Closed (Figure 11)  
-
-100  
µA  
9
Tip Open State RINGX Leakage  
Current  
R = 0, V  
= -48V  
= 2.5k, V = -48V (Figure 11)  
-
-
-
26.8  
17.6  
-
-
-
mA  
mA  
V
1
BH  
R
1
BH  
Tip Open State RINGX Voltage  
Tip Voltage (Ground Start)  
5mA<I < 26mA (Figure 11)  
V
+4.5  
R1  
BH  
NA  
NA  
NA  
NA  
Active State, (S Open) R = 150Ω  
(Figure 11)  
-5  
-4  
-
V
1
Tip Voltage (Ground Start)  
Active State, (S Closed) Tip Lead to  
-48V Through 7k, Ring Lead to  
Ground Through 150(Figure 11)  
-5  
-4  
0
-
V
NA  
NA  
NA  
NA  
Open Circuit State Loop Current  
(Active) R = 0Ω  
-100  
100  
µA  
L
LOOP CURRENT DETECTOR  
Programmable Threshold  
Forward and Reverse  
I
I
= (500/ R ) 5mA,  
0.9I  
I
1.1I  
LT  
mA  
Forward  
Only  
Forward  
Only  
LTh  
D
LT  
LTh  
= 8.5mA  
LTh  
Th  
Th  
R
= 58.8kΩ  
D
GROUND KEY DETECTOR  
Ground Key Detector Threshold  
Tip/Ring Current Difference  
Tip Open  
5
-
8
11  
-
mA  
mA  
NA  
NA  
NA  
Active (Note 29, R1 = 2.5k, Figure 12)  
20  
LINE VOLTAGE MEASUREMENT  
Pulse Width (GKD_LVM)  
-
0.36  
-
ms/V  
NA  
NA  
RING TRIP DETECTOR (DT, DR)  
Ring Trip Comparator Current  
Source Res = 2MΩ  
Source Res = 2MΩ  
-
-
2
-
-
µA  
Input Common-Mode Range  
±200  
V
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
RING RELAY DRIVER  
V
at 50mA  
I
= 50mA  
-
-
0.3  
-
0.5  
10  
V
SAT  
OL  
Off-State Leakage Current  
V
= 13.2V  
= 50mA  
µA  
OH  
TEST RELAY DRIVER (TRLY1, TRLY2)  
at 50mA  
0
V
I
-
-
0.3  
-
0.5  
10  
V
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
SAT  
OL  
Off-State Leakage Current  
V
= 13.2V  
µA  
OH  
TIP  
27  
V
TX  
VRX  
SHD  
RING  
28  
2.5kΩ  
FIGURE 12. GROUND KEY DETECT  
DIGITAL INPUTS (C1, C2, C3)  
Input Low Voltage, V  
IL  
0
2.0  
-
-
-
0.8  
V
V
Input High Voltage, V  
V
CC  
IH  
Input Low Current, I  
V
V
= 0.4V  
= 2.5V  
-
-50  
µA  
µA  
IL  
IL  
Input High Current, I  
-
25  
50  
IH  
IH  
DETECTOR OUTPUTS (SHD, GKD_LVM)  
SHD Output Low Voltage, V  
Forward, Reverse and Low Power  
Standby  
I
I
I
= 1mA  
-
-
-
0.5  
V
V
Forward  
Only  
Forward  
Only  
OL  
OL  
OH  
OL  
SHD Output High Voltage, V  
Forward, Reverse and Low Power  
Standby  
= 100µA  
2.7  
-
Forward  
Only  
Forward  
Only  
OH  
GKD_LVM Output Low Voltage,  
= 1mA  
= 2.5k(Figure 11)  
-
-
-
0.5  
V
V
GKD  
GKD  
GKD  
NA  
NA  
GKD_  
LVM  
GKD_  
LVM  
LVM  
LVM  
V
Forward and Tip Open  
R
OL  
GKD_LVM Output High Voltage,  
Forward and Tip Open  
1
I
= 100µA  
2.7  
-
-
GKD  
GKD_  
LVM  
GKD_  
LVM  
OH  
V
OH  
Internal Pull-Up Resistor  
15  
kΩ  
o
o
Electrical Specifications T = -40 C to 85 C, V = +5V ±5%, V = -48V, V = No connect, PTG = Open, R = R = 0Ω, Z = 120k, R  
= 38.3k, R = 58.8k, RDC_RSG  
D
    ,
A
CC  
BH  
= 1.0µF, C  
BL  
F1  
F2  
T
LIM  
= 20k, R  
= 50k, C = 0.47µF, C  
= 0.47µf, GND = 0V, RL = 600. Unless Otherwise Specified. () symbol used to indicate the  
OH  
H
DC  
RT/REV  
test applies to the part. (NA) symbol used to indicate the test does not apply to the part. (Continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HC55120  
HC55121 HC55130/1 HC55140/1 HC55142/3 HC55150/1  
POWER DISSIPATION (V  
= -48V, V = -24V)  
BL  
BH  
Open Circuit State  
Forward and Reverse  
C1, C2, C3 = 0, 0,0  
-
-
10  
15  
-
-
mW  
mW  
Forward  
Only  
Forward  
Only  
On-Hook, Low Power Standby  
Forward and Reverse  
C1, C2, C3 = 1, 0, 1  
C1, C2, C3 = 0, 1, 0  
Forward  
Only  
Forward  
Only  
1
On-Hook, Active  
Forward and Reverse  
I = 0mA, Longitudinal  
L
Current = 0mA  
-
52  
-
mW  
Forward  
Only  
Forward  
Only  
POWER SUPPLY CURRENTS (V  
= -48V, V = -24V)  
BL  
BH  
V
Current, I  
,
CC  
Open Circuit State  
-
-
-
-
-
-
-
-
-
0.95  
-0.1  
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Forward  
Only  
Forward  
Only  
CC  
Forward and Reverse  
V
Current, I  
Forward  
Only  
Forward  
Only  
BH  
BH  
Forward and Reverse  
V
Current, I  
-0.001  
0.95  
Forward  
Only  
Forward  
Only  
BL  
BL  
Forward and Reverse  
V
Current, I  
Low Power Standby State  
Forward  
Only  
Forward  
Only  
CC  
CC  
Forward and Reverse  
I = 0mA, Longitudinal  
L
Current = 0mA  
V
Current, I  
-0.1  
Forward  
Only  
Forward  
Only  
BH  
BH  
Forward and Reverse  
V
Current, I  
-0.001  
2.7  
Forward  
Only  
Forward  
Only  
BL  
BL  
Forward and Reverse  
V
Current, I  
Active State  
I = 0mA, Longitudinal  
L
Current = 0mA  
Forward  
Only  
Forward  
Only  
CC  
CC  
Forward and Reverse  
V
Current, I  
-0.8  
Forward  
Only  
Forward  
Only  
BH  
BH  
Forward and Reverse  
V
Current, I  
-0.001  
Forward  
Only  
Forward  
Only  
BL  
BL  
Forward and Reverse  
POWER SUPPLY REJECTION RATIOS  
to 2 or 4 Wire Port Active State R = 600Ω  
V
-
-
40  
40  
-
-
-
-
dB  
dB  
dB  
Forward  
Only  
Forward  
Only  
CC  
Forward and Reverse  
L
50Hz < f < 3400Hz, V =100mV  
IN  
V
to 2 or 4 Wire Port  
Forward  
Only  
Forward  
Only  
BH  
Forward and Reverse  
V
to 2 or 4 Wire Port  
40  
Forward  
Only  
Forward  
Only  
BL  
Forward and Reverse  
RFI Rejection  
Figure 13, 50kHzf 100MHz High  
-
-
TBD  
TEMPERATURE GUARD  
o
Junction Threshold Temperature  
160  
-
C
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
14. Overload Level (4-Wire port On-Hook) - The overload level is  
Notes  
specified at the 4-wire transmit port (V ) with the signal source  
TX  
2. Overload Level (Two-Wire Port, Off Hook) - The  
overload  
18mA.  
(E ) at the 2-wire port, Z = 20kΩ, R = (Reference Figure 7).  
G L L  
level is specified at the 2-wire port (V ) with the signal source at  
Increase the amplitude of E until 1% THD is measured at V  
.
TR  
G
TX  
the 4-wire receive port (E ). R = 600, I  
Note the PTG pin is open, and the gain from the 2-wire port to  
RX DCMET  
L
Increase the amplitude of E until 1% THD is measured at V  
.
the 4-wire port is equal to 1.  
RX  
TR  
Reference Figure 1.  
15. Output Offset Voltage - The output offset voltage is specified  
3. Overload Level (Two-Wire port, On Hook) - The  
overload  
with the following conditions: E = 0, R = 600, Z = and is  
G L L  
level is specified at the 2-wire port (V ) with the signal source at  
measured at V . E , R , V and Z are defined in Figure 7.  
TX TX  
TR  
G
L
L
the 4-wire receive port (E ). R = , I  
= 0mA. Increase  
RX DCMET  
L
16. Two-Wire to Four-Wire Frequency Response - The 2-wire to  
the amplitude of E  
until 1% THD is measured at V . Refer-  
RX  
TR  
4-wire frequency response is measured with respect to  
ence Figure 1.  
E
= 0dBm at 1.0kHz, E = 0V (VRX input floating), R = 600.  
G
RX  
L
4. LongitudinalImpedance - The longitudinal impedance is  
The frequency response is computed using the following equation:  
computed using the following equations, where TIP and RING  
F
= 20 log (V /V ), vary frequency from 300Hz to  
2-4  
TX TR  
voltages are referenced to ground. L , L , V , V , A and A  
ZT ZR T  
T
R
R
3.4kHz and compare to 1kHz reading.  
are defined in Figure 2.  
(TIP) L = V /A  
V
, V , R and E are defined in Figure 8.  
TX TR  
L
G
ZT  
T
T
(RING) L = V /A  
ZR  
where: E = 1V  
R
R
17. Four-Wire to Two-Wire Frequency Response - The 4-wire to  
(0Hz to 100Hz)  
L
RMS  
2-wire frequency response is measured with respect to  
E
= 0dBm at 1.0kHz, E source removed from circuit, R =  
RX  
G L  
5. Longitudinal Current Limit (On/Off-Hook Active) - Off-Hook  
600. The frequency response is computed using the following  
equation:  
longitudinal current limit is determined by increasing the (60Hz)  
amplitude of E (Figure 3A) until the 2-wire longitudinal current  
L
F
= 20 log (V /E ), vary frequency from 300Hz to  
TR RX  
is greater than 28mA  
/Wire. Under this condition, SHD pin  
4-2  
RMS  
remains low (no false detection) and the 2-wire to 4-wire longi-  
tudinal balance is verified to be greater than 45dB (LB  
3.4kHz and compare to 1kHz reading.  
V , R and E are defined in Figure 8.  
TR  
=
2-4  
L
RX  
20log VTX/E ).  
L
18. Four-Wire to Four-Wire Frequency Response - The 4-wire to  
6. Longitudinal Current Limit (On-Hook Standby) - On-Hook  
longitudinal current limit is determined by increasing the (60Hz)  
amplitude of E (Figure 3B) until the 2-wire longitudinal current  
4-wire frequency response is measured with respect to  
E
= 0dBm at 1.0kHz, E source removed from circuit, R =  
RX  
G L  
L
600. The frequency response is computed using the following  
equation:  
is greater than 8.5mA  
/Wire. Under this condition, SHD pin  
RMS  
remains high (no false detection).  
F
= 20 log (V /E ), vary frequency from 300Hz to  
TX RX  
4-4  
3.4kHz and compare to 1kHz reading.  
7. Longitudinal to Metallic Balance - The longitudinal to metal-  
lic balance is computed using the following equation:  
V
R and E are defined in Figure 8.  
TX ,  
19. Two-Wire to Four-Wire Insertion Loss (PTG = Open) - The  
2-wire to 4-wire insertion loss is measured with respect to E  
L
RX  
BLME = 20 log (E /V ), where: E and V  
TR TR  
are defined in  
L
L
Figure 4.  
=
G
0dBm at 1.0kHz input signal, E  
= 0 (VRX input floating), R =  
8. Metallic to Longitudinal FCC Part 68, Para 68.310 - The  
RX  
L
600and is computed using the following equation:  
= 20 log (V /V  
metallic to longitudinal balance is defined in this spec.  
L
)
TX TR  
2-4  
9. Longitudinal to Four-Wire Balance - The longitudinal to 4-wire  
where: V , V , R and E are defined in Figure 8. (Note:  
balance is computed using the following equation:  
TX TR  
L
G
The fuse resistors, R , impact the insertion loss. The specified  
F
BLFE = 20 log (E /V ),: E and V are defined in Figure 4.  
TX TX  
L
L
insertion loss is for R = R = 0).  
F1 F2  
10. Metallic to Longitudinal Balance - The metallic to longitudinal  
20. Two-Wire to Four-Wire Insertion Loss (PTG = AGND) - The  
2-wire to 4-wire insertion loss is measured with respect to E  
balance is computed using the following equation:  
=
G
BMLE = 20 log (E /V ), E  
TR RX  
= 0  
L
0dBm at 1.0kHz input signal, E = 0 (VRX input floating), R =  
RX L  
600and is computed using the following equation:  
= 20 log (V /V  
where: E  
V and E are defined in Figure 5.  
TR,  
L
RX  
L
)
TX TR  
2-4  
11. Four-Wire to Longitudinal Balance - The 4-wire to longitudinal  
where: V , V , R and E are defined in Figure 8. (Note:  
balance is computed using the following equation:  
TX TR  
L
G
The fuse resistors, R , impact the insertion loss. The specified  
F
BFLE = 20 log (E /V ), E = source is removed.  
RX TR  
L
insertion loss is for R = R = 0).  
F1 F2  
where: E  
V and E are defined in Figure 5.  
TR  
RX,  
L
21. Four-Wire to Two-Wire Insertion Loss - The 4-wire to 2-wire  
insertion loss is measured based upon E = 0dBm, 1.0kHz  
12. Two-Wire Return Loss - The 2-wire return loss is computed  
RX  
using the following equation:  
r = -20 log (2V /V )  
where: Z = The desired impedance; e.g., the characteristic  
impedance of the line, nominally 600Ω. (Reference Figure 6).  
input signal, E source removed from circuit, R = 600and is  
G
L
M
S
computed using the following equation:  
D
L
= 20 log (V /E )  
TR RX  
4-2  
where: V , R and E  
TR RX  
are defined in Figure 8.  
L
13. Overload Level (4-Wire port Off-Hook) - The overload level  
is specified at the 4-wire transmit port (V ) with the signal  
TX  
source (E ) at the 2-wire port, Z = 20kΩ, R = 600(Refer-  
G
L
L
ence Figure 7). Increase the amplitude of E until 1% THD is  
G
measured at V . Note the PTG pin is open, and the gain from  
TX  
the 2-wire port to the 4-wire port is equal to 1.  
12  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
22. Two-Wire to Four-Wire Gain Tracking - The 2-wire to 4-wire  
The noise specification is with respect to a 600impedance  
gain tracking is referenced to measurements taken for  
level at V . The 4-wire receive port (VTX) floating (Reference  
TX  
E
= -10dBm, 1.0kHz signal, E  
= 0 (VRX output floating), R  
Figure 9).  
G
RX  
L
= 600and is computed using the following equation.  
26. Harmonic Distortion (2-Wire to 4-Wire) - The harmonic dis-  
G
= 20 log (V /V ) vary amplitude -40dBm to +3dBm, or  
2-4  
TX TR  
tortion is measured with the following conditions. E = 0dBm at  
G
-55dBm to -40dBm and compare to -10dBm reading.  
1kHz, R = 600. Measurement taken at V . (Reference Fig-  
L
TX  
V
, R and V are defined in Figure 8.  
TX TR  
ure 7).  
L
23. Four-Wire to Two-Wire Gain Tracking - The 4-wire to 2-wire  
27. Harmonic Distortion (4-Wire to 2-Wire) - The harmonic dis-  
gain tracking is referenced to measurements taken for  
tortion is measured with the following conditions. E  
= 0dBm0.  
RX  
Vary frequency between 300Hz and 3.4kHz, R = 600. Mea-  
E
= -10dBm, 1.0kHz signal, E source removed from circuit, R  
G L  
RX  
= 600and is computed using the following equation:  
L
surement taken at V . (Reference Figure 8).  
TR  
G
= 20 log (V /E ) vary amplitude -40dBm to +3dBm,  
TR RX  
4-2  
28. Constant Loop Current - The constant loop current is calcu-  
or -55dBm to -40dBm and compare to -10dBm reading.  
lated using the following equation:  
V
, R and E are defined in Figure 8. The level is specified at  
TR RX  
L
I
= 1000/R  
LIM  
= V /600 (Reference Figure 10).  
TR  
L
the 4-wire receive port and referenced to a 600impedance level.  
29. Ground Key Detector - (TRIGGER) Ground the Ring pin  
through a 2.5kresistor and verify that GKD goes low.  
24. Two-Wire Idle Channel Noise - The 2-wire idle channel noise  
at V  
TR  
is specified with the 2-wire port terminated in 600(R )  
L
(RESET) Disconnect the Ring pin and verify that GKD goes  
high.  
and with the 4-wire receive port (VTX) floating (Reference Figure  
9).  
(Hysteresis) Compare difference between trigger and reset.  
25. Four-Wire Idle Channel Noise - The 4-wire idle channel noise  
at V is specified with the 2-wire port terminated in 600(R ).  
TX  
L
Circuit Operation and Design Information  
The UniSLIC14 family of SLIC’s operate as a voltage feed  
current sense subscriber line interface circuit on the 2-wire  
side, yet appear as a current feed voltage sense SLIC on the  
4-wire side. This architecture allows easy implementation of  
thermal management on the 2-wire side and easy  
connection to DSP CODEC’s on the 4-wire side. Thus, for  
long loop applications the SLIC provides a programmed  
constant voltage to the tip and ring terminals while sensing  
the tip to ring current.  
voltage, required for a given signal level, is calculated with  
Equation 1.  
2R + 50  
P
(EQ. 1)  
V
= V  
× 1 + ------------------------  
OH(on)  
sp(on)  
Z
O
where V  
V
= On hook overhead voltage  
OH(on)  
= Required OHT (Vpeak) on hook voltage  
= Protection Resistors (Typically 30)  
= Line impedance for (voice)  
sp(on)  
R
P
The following discussion separates the SLIC’s operation into  
it’s DC and AC paths, then follows up with additional circuit  
and design information.  
Z
O
Reference Figure 13 for R and Z  
P
O
The off hook overhead  
DC FEED CURVE  
DC Feed Curve  
voltage V (off) is also  
OH  
independent of the V  
V
BH  
SAT  
OH(off)  
The DC feed curve for the UniSLIC14 family is user  
programmable. The user has complete control over: The on  
hook and off hook overhead voltages, resistance of the feed  
curve, minimum open circuit voltage, the value of the current  
limit and the saturation guard.  
BH  
2.5V  
V
battery voltage and remains  
constant over temperature.  
The required off hook  
overhead voltage is the sum  
of the voltage drop across  
the internal sense resistors,  
the protection resistors, the  
speech signal and pulse  
OFF HOOK  
OVER HEAD  
V
The on hook overhead  
I
LOOP(min)  
DC FEED CURVE  
voltage V (on) is  
LOOP CURRENT  
OH  
V
BH  
independent of the V  
BH  
battery voltage. So once set,  
the on hook voltage remains  
2.5V  
ON HOOK  
V
SAT  
metering signal. The off hook overhead voltage is calculated  
V
OH(on)  
with Equations 2 and 3.  
(EQ. 2)  
OVERHEAD  
constant as the V  
BH  
battery  
V
= V  
+ V  
+ V  
OH(sp) OH(pm)  
voltage changes. V (on)  
OH  
OH(off)  
OH(Rsense)  
also remains constant over  
temperature and line  
leakages up to ISH-. ISH- is  
equal to 0.6 times the Switch  
where V  
V
= Off hook overhead voltage  
ISH-  
LOOP CURRENT  
OH(off)  
(R  
) = Required overhead for voltage drop  
OH sense  
across sense resistors as a result of the DC loop  
current (reference Figure 13).  
Hook Detect threshold current I  
. The on hook overhead  
SHD  
13  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
V
= Required (peak) off hook voltage for  
OH(sp)  
DC FEED CURVE  
For a constant current  
design, the R resistance  
speech.  
V
SAT  
of the DC feed curve is  
BH  
V
= Required (peak) off hook voltage for pulse  
OH(pm)  
2.5V  
V
SAT  
metering.  
equal to the V (off)  
OH  
OFF HOOK  
OVER HEAD  
V
OH(off)  
voltage divided by the  
minimum loop current  
requirement (Equation 4).  
2R + 50  
P
R
SAT  
V
= 50 × I  
+ V  
× 1 + ------------------------  
OH(off)  
LOOP(max)  
sp(off)  
Z
O
I
LOOP(min)  
2R + 50  
P
The external saturation  
guard resistor RDC_RSG  
can now be calculated and  
is given in Equation 5.  
LOOP CURRENT  
+ V  
× 1 + ------------------------  
pm(off)  
(EQ. 3)  
Z
pm  
R
V
SAT  
OH(off)  
where I  
= Desired loop current limit.  
LOOP(max)  
I
V
= Required (peak) off hook voltage for  
LOOP(min)  
sp(off)  
speech.  
V
= Required (peak) off hook voltage for pulse  
pm(off)  
metering.  
V
OH(off)  
(EQ. 4)  
---------------------------  
R
=
SAT  
I
LOOP(min)  
Z
= Line impedance (pulse metering, typically  
pm  
200).  
(EQ. 5)  
RDC_RGS = 50 x R  
SAT  
EXTERNAL PROTECTION  
The minimum ISH- is equal  
RESISTOR  
OVERHEAD VOLTAGE V (ON, OFF)  
OH  
DC FEED CURVE  
to V (on) divided by R  
OH  
SAT  
V
as shown in Equation 6.  
2R  
BH  
50Ω  
V
V
P
SP(on, off) OR  
PM(off)  
TIP OR RING  
AMPLIFIER  
2.5V  
V
V
SAT  
ISH- is used to find the  
minimum and maximum  
Switch Hook Detect  
ON HOOK  
OVER HEAD  
OH(on)  
INTERNAL SENSE  
RESISTOR  
LINE IMPEDANCE  
OR Z  
Z
thresholds (I  
for a  
O
PM  
SHD)  
given design. The minimum  
is established by  
ISH-(min)  
Z
+ 2R + 50  
P
O
I
--------------------------------------  
V
=
=
A
SHD(min)  
LOOP CURRENT  
OH(on,off)  
Z
O
the on hook overhead  
voltage requirement. The  
2R + 50  
P
V
R
OH(on)  
SAT  
1 + ------------------------ A  
Z
maximum I  
is  
O
SHD(max)  
ISH-  
established by the minimum  
open circuit voltage  
requirement.  
(min)  
V
V
WHERE A IS EITHER SP(on, off) OR PM(off)  
FIGURE 13. OVERHEAD VOLTAGE OF THE TIP AND RING  
AMPLIFIERS  
2R  
P + 50  
(EQ. 6)  
----------------------  
V
x
1 +  
SP(on)  
Z
V
O
OH(on)  
---------------------- ---------------------------------------------------------------------  
ISH-min =  
=
The Overhead voltage is defined at the output of the tip or  
ring amplifiers. The off hook overhead voltage requirement is  
the voltage drop across the internal sense resistors at  
maximum loop current, plus the required voltage for both  
speech and pulse metering. The two protection resistors  
R
R
SAT  
SAT  
The minimum Switch Hook Detect threshold current  
(I  
) is defined by Equation 7.  
SHD(min)  
(R ) are considered as part of the load.  
P
(EQ. 7)  
I
= 1.7 x ISH-(min)  
SHD(min)  
14  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
The current limit is set by a single resistor and is calculated  
using Equation 13:  
The maximum ISH- is  
determined by the  
minimum open circuit  
voltage requirement  
(Typical value is -43 volts).  
DC FEED CURVE  
V
BH  
SAT  
OH(on)  
(EQ. 13)  
1000  
2.5V  
ON HOOK  
V
-----------------------------  
R
=
LIM  
I
LOOP(max)  
V
OVER HEAD  
MIN O/C  
VOLTAGE  
The maximum loop resistance for the given conditions is  
calculated by Equation 14.  
Equation 8 determines the  
maximum ISH- allowed for  
a given minimum open  
circuit voltage.  
ISH-(max)  
LOOP CURRENT  
V
-V  
V
2R + 50  
P
BH SAT  
SP(off)  
----------------------------  
LOOP(min)  
---------------------------  
------------------------  
R
=
-50-  
x
1 +  
LOOP(max)  
I
I
Z
0
LOOP(min)  
R
SAT  
V
OH(on)  
(EQ. 14)  
V
2R + 50  
P
Z
PM  
PM(off)  
ISH-  
(max)  
--------------------------- x 1 + ------------------------- -2R  
-
P
I
LOOP(min)  
V
-V  
-V  
SLIC in the Standby Mode  
BH SAT O/C  
(EQ. 8)  
--------------------------------------------  
ISH-(max) =  
R
SAT  
Overall system power is saved by configuring the SLIC in the  
standby state when not in use. In the standby state the tip  
and ring amplifiers are disabled and internal resistors are  
The maximum Switch Hook Detect Current threshold is  
defined by Equation 9.  
connected between tip to ground and ring to V . This  
BH  
(EQ. 9)  
I
= 1.7 x ISH -(max)  
connection enables a loop current to flow when the phone  
goes off hook. The loop current detector then detects this  
current and the SHD pin goes low.  
SHD(MAX)  
The above analysis establishes a range for the Switch Hook  
Detect threshold current to meet the selected requirements.  
SLIC in the Active Mode  
After selecting an I  
threshold between the I  
and  
SHD  
SHD(min)  
Figure 14 shows a simplified AC transmission model. Circuit  
analysis yields the following design equations:  
I
, the programming resistor is determined by  
SHD(max)  
Equation 10.  
Node Equation  
(EQ. 10)  
500  
------------  
R
=
D
(EQ. 15)  
I
V
V
A
SHD  
RX  
------------- ----------------  
-
= I  
X
500K 1000K  
The true value of ISH-, for the selected value of I  
by Equation 11:  
is given  
(EQ. 11)  
SHD  
Loop Equation  
I 500k - V  
(EQ. 16)  
(EQ. 17)  
ISH- = I  
(0.6)  
= I 500k = 0  
SHD  
X
TX′  
X
Loop Equation  
-I 2R + V = 0  
TX′  
Verify that the value of ISH- is above the suspected line  
leakage of the application. The UniSLIC family will provide a  
constant on hook voltage level for leakage currents up to this  
value of line leakage.  
V
TR  
M
P
where:  
= Is the input voltage at the VRX pin.  
V
RX  
The ROH resistor, which  
is used to set the offhook  
overhead voltage, is  
calculated using  
Equation 12.  
DC FEED CURVE  
V = Is an internal node voltage that is a function of the loop  
A
current detector and the impedance matching networks  
V
BH  
2.5V  
V
SAT  
I
= Internal current in the SLIC that is the result between  
X
OFF HOOK  
OVER HEAD  
the input receive current and the feedback current.  
V
OH(off)  
IOH is the difference  
I
OH  
I
= Is the AC metallic current.  
= Is a fuse resistor.  
P
M
between the I  
and ISH-.  
LOOP(min)  
R
I
ISH-  
LOOP(min)  
LOOP CURRENT  
Z = Is used to set the SLIC’s 2-wire impedance.  
T
V ´= Is the tip to ring voltage at the output pins of the SLIC.  
TX  
V
= Is the tip to ring voltage including the voltage across  
TR  
the protection resistors.  
500  
IOH  
500  
---------- ------------------------------------------  
(EQ. 12)  
R
=
=
OH(max)  
I
-ISH-  
LOOP(min)  
Z = Is the line impedance.  
L
15  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
+ I  
-
X
I
M
500k  
+
-
V
TIP  
R
TX  
S
-
+
-
+
R
P
500k  
500k  
-
TX  
+
V
Z
L
-
Z
PTG  
TR  
+
-
HC5514  
V
V
´
TX  
TR  
+
+
I
I
X
E
-
X
I
G
X
I
X
I
+
M
-
R
S
V
RX  
+
-
500K  
R
P
RING  
+
RX  
-
500k  
V
1M  
-
+
I
X
10  
1/80k  
V
= I (Z -2R )  
M O P  
A
Z
T
FIGURE 14. SIMPLIFIED AC TRANSMISSION CIRCUIT  
EXAMPLE:  
(AC) 4-Wire to 2-Wire Gain  
Calculate Z to make Z = 600in series with 2.16µF.  
The 4-wire to 2-wire gain is equal to V /V  
.
T
TR  
TR RX  
R
= 30.  
P
From Equations 15, 16 and 17 with E = 0.  
G
1
Z
(EQ. 18)  
Z
= 200 600 + ----------------------------------------- – 2 30  
(EQ. 22)  
L
T
6  
---------------------  
A
= -2  
jω • 2.16 10  
4-2  
Z
+ Z  
L
O
Z = 114kin series with 0.0108µF.  
T
(AC) 2-Wire to 4-Wire Gain  
The 2-wire to 4-wire gain is equal to V / E with V  
TX  
= 0.  
G
RX  
Layout Considerations  
Floating the PTG Pin:  
V
Z
- 2R  
O P  
+ Z  
O L  
(EQ. 19)  
TX  
---------- -------------------------  
= -  
A
=
2-4  
The PTG pin is a high impedance pin that is used to reduce  
the 2-wire to 4-wire gain to 0dB. If 0dB is required, it is  
necessary to float the PTG pin. The PC board interconnect  
should be as short as possible to minimize stray capacitance  
on this pin. Stray capacitance on this pin forms a low pass  
filter and will cause the 2-wire to 4-wire gain to roll off at the  
higher frequencies.  
E
G
Z
(AC) 4-Wire to 4-Wire Gain  
The 4-wire to 4-wire gain is equal to V /V  
.
TX RX  
From Equations 15, 16 and 17 with E = 0.  
G
Z - 2R  
V
L
P
TX  
----------------------  
(EQ. 20)  
A
= ----------- = 2  
If a 2-wire to 4-wire gain of -6dB is required in the design, the  
PTG pin should be grounded at the pin.  
4 4  
Z
+ Z  
0
V
L
RX  
Layout of the 2-Wire Impedance Matching Resistor  
(AC) 2-Wire Impedance  
Z :  
T
The AC 2-wire impedance (Z ) is the impedance looking  
TR  
into the SLIC, including the fuse resistors. The formula to  
Proper connection to this pin is to have the external Z  
network as close to the pin as possible.  
T
calculate the proper Z for matching the 2-wire impedance is  
T
shown in Equation 21.  
The Z pin is a high impedance pin that is used to set the  
T
(EQ. 21)  
proper feedback for matching the impedance of the 2-wire  
side. This will eliminate circuit board capacitance on this pin  
to maintain the 2-wire return loss across frequency.  
Z
= 200 • (Z  
2R )  
TR P  
T
Equation 21 can now be used to match the SLIC’s  
impedance to any known line impedance (Z ).  
TR  
SPM Pin:  
For optimum performance, the PC board interconnect  
connected to the SPM pin should be as short as possible.  
16  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
TABLE 1. DETECTOR STATES  
OUTPUT  
STATE  
C3  
C2  
C1  
SLIC OPERATING STATE  
ACTIVE DETECTOR  
SHD  
GKD_ LVM  
HIGH  
0
0
0
0
Open Circuit State  
HIGH  
1
2
0
0
0
1
1
0
Ringing State  
Ring Trip Detector  
HIGH  
Forward Active State  
Loop Current Detector  
Ground Key Detector  
3
0
1
1
Test Active State  
On Hook Loopback Detector  
LOW  
LOW  
Requires previous state to be in the  
Forward Active state to determine  
the On hook or Off hook status of the  
line.  
Ground Key Detector  
On Hook Loop Current Detector  
Line Voltage Detector  
Ground Key Detector  
4
5
1
1
0
0
0
1
Tip Open State  
Low Power Standby State  
Loop Current Detector  
Ground Key Detector  
Loop Current Detector  
Ground Key Detector  
6
7
1
1
1
1
0
1
Reverse Active State  
Test Reversal Active State  
Requires previous state to be in the  
Reverse Active state to determine  
the On hook or Off hook status of the  
line.  
On Hook Loop Current Detector  
On Hook Loop Current Detector  
Line Voltage Detector  
HIGH  
LOW  
LOW  
LOW  
8
X
X
X
Thermal Shutdown  
17  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
HC55120  
(28 PIN PLCC)  
TOP VIEW  
HC55121  
(28 PIN PLCC)  
TOP VIEW  
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
RING  
GND  
5
6
25 NC  
RING  
GND  
5
6
25 ZSPM  
24 RSYNC  
23 ILIM  
22 ROH  
21 RD  
24 RSYNC_  
REV  
TIP  
7
TIP  
7
23 ILIM  
22 ROH  
21 RD  
VBH  
8
VBH  
8
9
9
VBL  
VBL  
10  
11  
V
10  
11  
RDC_RSG  
CRT  
20  
RDC_RSG  
CRT_REV  
20  
V
CC  
CC  
19 GKD  
19 GKD  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
HC55130  
(28 PIN PLCC)  
TOP VIEW  
HC55140  
(28 PIN PLCC)  
TOP VIEW  
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
RING  
GND  
5
6
25 NC  
RING  
GND  
5
6
25 NC  
24 RSYNC  
23 ILIM  
22 ROH  
21 RD  
24 RSYNC_  
REV  
TIP  
7
TIP  
7
23 ILIM  
22 ROH  
21 RD  
VBH  
8
VBH  
8
9
9
VBL  
VBL  
10  
11  
V
10  
11  
RDC_RSG  
CRT  
20  
RDC_RSG  
20  
V
CC  
CC  
19 NC  
CRT_REV_  
LVM  
19 GKD_LVM  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
HC55142  
(28 PIN PLCC)  
TOP VIEW  
HC55150  
(28 PIN PLCC)  
TOP VIEW  
4
3
2
1
28 27 26  
4
3
2
1
28 27 26  
RING  
GND  
TIP  
5
6
7
8
9
25 ZSPM  
RING  
5
25 ZSPM  
24 RSYNC_  
GND  
TIP  
6
7
24 RSYNC_  
REV  
REV  
23 ILIM  
23 ILIM  
22 ROH  
21 RD  
VBH  
VBL  
22 ROH  
21 RD  
VBH  
8
9
VBL  
10  
11  
V
CC  
RDC_RSG  
20  
10  
11  
V
CC  
RDC_RSG  
20  
CRT_REV_  
LVM  
19 LVM  
CRT_REV_  
LVM  
19 GKD_LVM  
12 13 14 15 16 17 18  
12 13 14 15 16 17 18  
18  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pinouts SOIC Packages  
HC55120  
(28 PIN SOIC)  
TOP VIEW  
HC55121  
(28 PIN SOIC)  
TOP VIEW  
1
2
1
2
ZT  
PTG  
28  
27  
26  
25  
ZT  
PTG  
28  
27  
26  
25  
NC  
VTX  
NC  
ZSPM  
VTX  
RRLY  
RRLY  
3
3
SPM  
CH  
CH  
4
VRX  
4
VRX  
RING  
GND  
RING  
GND  
5
24 RSYNC  
23  
5
24 RSYNC_REV  
23  
6
6
ILIM  
ILIM  
TIP  
TIP  
7
22 ROH  
21 RD  
7
22 ROH  
21 RD  
VBH  
VBH  
8
8
VBL  
9
20  
19  
18  
17  
16  
15  
V
VBL  
9
20  
19  
18  
17  
16  
15  
V
CC  
CC  
10  
10  
RDC_RSG  
RDC_RSG  
SHD  
C1  
SHD  
C1  
CDC 11  
CDC 11  
12  
12  
DT  
C2  
DT  
C2  
C3  
C3  
DR 13  
DR 13  
CRT 14  
GKD  
CRT_REV 14  
GKD  
HC55130  
(28 PIN SOIC)  
TOP VIEW  
HC55140  
(28 PIN SOIC)  
TOP VIEW  
1
2
1
2
ZT  
PTG  
28  
NC  
ZT  
PTG  
28 NC  
27  
26  
25  
27  
26  
25  
VTX  
NC  
VTX  
NC  
RRLY  
RRLY  
3
3
CH  
CH  
4
VRX  
4
VRX  
RING  
GND  
RING  
GND  
5
24 RSYNC  
23  
5
24 RSYNC_REV  
23  
6
6
ILIM  
ILIM  
TIP  
TIP  
7
22 ROH  
21 RD  
7
22 ROH  
21 RD  
VBH  
VBH  
8
8
VBL  
9
20  
19  
18  
17  
16  
15  
V
VBL  
9
20  
19  
18  
17  
16  
15  
V
CC  
CC  
10  
10  
RDC_RSG  
RDC_RSG  
SHD  
C1  
SHD  
CDC 11  
CDC 11  
C1  
12  
12  
DT  
C2  
DT  
C2  
C3  
C3  
DR 13  
DR 13  
CRT 14  
NC  
CRT_REV_LVM 14  
GKD_LVM  
HC55142  
(28 PIN SOIC)  
TOP VIEW  
HC55150  
(28 PIN SOIC)  
TOP VIEW  
1
2
3
4
5
6
7
8
9
ZT  
PTG  
28  
1
ZSPM  
ZT  
28  
ZSPM  
27  
26  
25  
PTG  
RRLY  
VTX  
SPM  
VRX  
2
3
27  
26  
25  
VTX  
SPM  
VRX  
RRLY  
CH  
CH  
4
RING  
GND  
TIP  
RING  
GND  
24 RSYNC_REV  
23  
5
24 RSYNC_REV  
23  
ILIM  
6
ILIM  
TIP  
22 ROH  
21 RD  
7
22 ROH  
21 RD  
VBH  
VBL  
VBH  
8
20  
19  
18  
17  
16  
15  
V
CC  
VBL  
9
20  
19  
18  
17  
16  
15  
V
CC  
10  
RDC_RSG  
10  
RDC_RSG  
SHD  
SHD  
C1  
CDC 11  
C1  
CDC 11  
12  
DT  
C2  
12  
DT  
C2  
C3  
DR 13  
C3  
DR 13  
CRT_REV_LVM 14  
GKD_LVM  
CRT_REV_LVM 14  
LVM  
19  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pin Descriptions  
28  
32  
28  
PIN  
PIN  
PIN  
PLCC PLCC SOIC  
SYMBOL  
DESCRIPTION  
1
1
2
PTG  
Programmable Transmit Gain - The 2-wire to 4-wire transmission gain is 0dB if this pin is left floating and  
-6.02dB if tied to ground. The -6.02dB gain option is useful in systems where Pulse Metering is used.  
See Figure 14.  
2
3
2
3
3
4
RRLY  
CH  
Ring Relay Driver Output - The relay coil may be connected to a maximum of 14 volts.  
AC/DC Separation Capacitor - CH is required to properly process the AC current from the DC loop cur-  
rent. Recommended value 0.47µF.  
4
4
1
ZT  
2-Wire Impedance Matching Pin - Impedance matching of the 2-wire side is accomplished by placing  
an impedance between the Z pin and ground. See Equation 21.  
T
5
6
5
6
5
6
RING  
GND  
TIP  
Connects via protection resistors (R reference Figure 15 - 18) to ring wire of subscriber pair.  
P
Analog and Digital ground.  
7
7
7
Connects via protection resistors (R reference Figure 19) to tip wire of subscriber pair.  
P
8
8
8
V
High Battery Supply (negative with respect to GND pin 6).  
BH  
9
9
9
V
Low Battery Supply (negative with respect to GND pin 6, magnitude < V ).  
BH  
BL  
10  
10  
10  
RDC_RSG  
Resistive Feed/Saturation Guard - Performs the saturation guard function on constant current designs  
and sets the slope of the resistive feed curve for constant voltage designs.  
11  
11  
14  
CRT_REV  
_LVM  
Ring Trip, Soft Polarity Reversal and Line Voltage Measurement - A capacitor when placed between  
the CRT_REV_LVM pin and ground performs 3 mutually exclusive functions. When the SLIC is config-  
ured in the Ringing mode it provides filtering of the ringing signal to prevent false detect. When the SLIC  
is transitioning between the Forward Active State and Reverse Active State it provides Soft Polarity Re-  
versal and performs charge storage in the Line Voltage Measurement State. Recommended value  
0.47µF.  
12  
13  
12  
13  
11  
12  
CDC  
DT  
Filter Capacitor- The CDC Capacitor removes the VF signals from the battery feed control loop.  
Tip side of Ring Trip Detector - Ring trip detection is accomplished by connecting an external network  
to a detector in the SLIC with inputs DT and DR. Ring trip occurs when the voltage on DT is more  
negative than the voltage on DR.  
14  
14  
13  
DR  
Ring Side of Ring Trip Detector - Ring trip detection is accomplished by connecting an external network  
to a detector in the SLIC with inputs DT and DR. Ring trip occurs when the voltage on DR is more  
positive than the voltage on DT.  
-
-
15  
16  
17  
-
-
C5  
C4  
C3  
Activates Test Relay TRLY1.  
Activates Test Relay TRLY2.  
15  
16  
TTL Compatible Logic Input. The logic states of C1, C2 and C3 determine the operating states of the  
SLIC. Reference Table 1 for details.  
16  
17  
18  
19  
17  
18  
C2  
C1  
TTL Compatible Logic Input. The logic states of C1, C2 and C3 determine the operating states of the  
SLIC. Reference Table 1 for details.  
TTL Compatible Logic Input. The logic states of C1, C2 and C3 determine the operating states of the  
SLIC. Reference Table 1 for details.  
18  
19  
20  
20  
21  
22  
19  
15  
20  
SHD  
GKD_LVM  
VCC  
Switch Hook Detect - Active during off hook, ground key and loopback. Reference Table 1 for details.  
Ground Key Detector and Line Voltage Measurement - Reference Table 1 for details.  
5V Supply.  
20  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Pin Descriptions (Continued)  
28  
32  
28  
PIN  
PIN  
PIN  
PLCC PLCC SOIC  
SYMBOL  
DESCRIPTION  
21  
22  
23  
24  
23  
24  
25  
26  
21  
22  
23  
24  
RD  
Loop Current Threshold Programming Pin - A resistor between this pin and ground will determine the  
trigger level for the loop current detect circuit. See Equation 10.  
ROH  
ILIM  
Off Hook Overload Setting Resistor - Used to set combined overhead for voice and pulse metering  
signals. See Equation 12.  
Current Limit Programming Pin - A resistor between this pin and ground will determine the constant  
current limit of the feed curve. See Equation 13.  
RSYNC_REV Ring Synchronization Input and Reversal Time Setting. A resistor between this pin and GND (pin 6)  
determines the polarity reversal time. Synchronization of the closing of the relay to connect the ringing  
signal to the subscriber pair is achieved via the grounding of this pin.  
25  
27  
28  
ZSPM  
Pulse Metering Signal Impedance Pin - A resistor on the input of this pin will allow programming of the  
source impedance of the pulse metering signal for maximum signal on the 2-wire loop.  
26  
27  
28  
-
28  
29  
30  
31  
32  
25  
26  
27  
-
VRX  
SPM  
Receive Input - Ground referenced 4-wire side.  
Pulse Metering Signal Input.  
VTX  
Transmit Output - Ground referenced 4-wire side.  
Test Relay Driver 1.  
TRLY1  
TRLY2  
-
-
Test Relay Driver 2.  
21  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basis Application Circuit  
Voice Only 28 Pin PLCC Package  
R
11  
+5V  
C
20  
R
9
28  
1
V
U1  
CC  
V
TX  
1
+12V  
2
3
RELAY  
RRLY  
CH  
PTG  
R
10  
C
2
RING  
TIP  
R
P
26  
5
6
V
RING  
GND  
RX  
U2  
CODEC/FILTER  
R
R
R
R
R
8
7
6
5
4
4
Z
T
24  
23  
22  
R
P
RSYNC_REV  
7
8
TIP  
ILIM  
ROH  
RD  
VBH  
-24V  
-48V  
C7  
9
VBL  
21  
18  
C
5
R
1
10  
12  
13  
RDC_RSG  
CDC  
SHD  
C
R
6
19  
17  
16  
GKD_LVM  
C1  
R
C
2
3
DT  
12  
14  
11  
C2  
DR  
15  
C3  
CRT_REV_LVM  
R
3
RING  
GENERATOR  
C
4
VBAT  
CONTROL LOGIC  
+5V  
FIGURE 15. UniSLIC14 VOICE ONLY BASIC APPLICATION CIRCUIT  
TABLE 2. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
RATING  
N/A  
U1 - SLIC  
N/A  
N/A  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
RP (Line Feed Resistors)  
R1 (RDC_RSG Resistor)  
R2, R3  
Matched 1%  
1%  
2.0W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
2W  
13kΩ  
2 MegΩ  
1%  
R4 (RD Resistor)  
R5 (ROH Resistor)  
R6 (RILIM Resistor)  
R7 (RSYNC_REV Resistor)  
R8 (RZT Resistor)  
R9, R10, R11  
R12  
43.2kΩ  
1%  
37.4kΩ  
1%  
33.2kΩ  
1%  
34.8kΩ  
1%  
107kΩ  
1%  
20kΩ  
1%  
400Ω  
5%  
C1  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.47µF  
20%  
20%  
20%  
20%  
20%  
10V  
C5  
50V  
C6  
100V  
10V  
C2, C4, C7  
C3  
2.2µF  
50V  
Design Parameters: Maximum onhook voltage = 0.775V  
, Maximum Offhook Voice = 3.1Vpeak, Switch Hook Threshold = 11.6mA, Loop  
RMS  
Current Limit = 29.6mA, Synthesize Device Impedance = 600 -60 = 540, with 30protection resistors, impedance across Tip and Ring terminals  
= 600. Where applicable, these component values apply to the Basic Application Circuits for the HC55120, HC55121, HC55130, HC55140,  
HC55142 and HC55150. Pins not shown in the Basic Application Circuit are no connect (NC) pins.  
22  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basis Application Circuit  
Pulse Metering 28 Pin PLCC Package  
R
11  
+5V  
20  
R
9
28  
1
V
U1  
CC  
V
TX  
C
1
+12V  
2
3
PTG  
RELAY  
RRLY  
CH  
SPM  
VRX  
R
10  
C
2
RING  
TIP  
R
26  
P
5
6
RING  
GND  
R
R
14  
U2  
13  
ZSPM  
CODEC/FILTER  
R
R
R
R
R
8
7
6
5
4
4
C
7
Z
T
24  
23  
22  
R
P
7
8
RSYNC_REV  
ILIM  
12/16kHZ  
PULSE METERING  
INPUT SIGNAL  
TIP  
-24V  
-48V  
VBH  
R
C
5
OH  
9
C8  
VBL  
21  
18  
RD  
C
6
R
1
10  
12  
RDC_RSG  
CDC  
SHD  
19  
17  
16  
GKD_LVM  
C1  
R
C
2
3
13  
DT  
RING  
GENERATOR  
R
12  
14  
11  
C2  
DR  
15  
V
R
BAT  
3
C3  
CRT_REV_LVM  
C
CONTROL LOGIC  
4
+5V  
FIGURE 16. UniSLIC14 PULSE METERING BASIC APPLICATION CIRCUIT  
TABLE 3. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
N/A  
RATING  
N/A  
U1 - SLIC  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
N/A  
RP (Line Feed Resistors)  
R1 (RDC_RSG Resistor)  
R2, R3  
Matched 1%  
1%  
2.0W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
2W  
19.1kΩ  
2 MegΩ  
1%  
R4 (RD Resistor)  
R5 (ROH Resistor)  
R6 (RILIM Resistor)  
R7 (RSYNC_REV Resistor)  
R8 (RZT Resistor)  
R9, R10, R11  
R12  
51.1kΩ  
1%  
34.8kΩ  
1%  
33.2kΩ  
1%  
34.8kΩ  
1%  
107kΩ  
1%  
20kΩ  
1%  
400Ω  
5%  
R13, R14  
10.7kΩ  
1%  
1/4W  
10V  
C1  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.47µF  
20%  
20%  
20%  
20%  
20%  
10%  
C5  
50V  
C6  
100V  
10V  
C2, C4, C8  
C3  
2.2µF  
50V  
C7  
680pF  
10V  
Design Parameters: Maximum onhook voltage = 0.775V  
, Maximum offhook voice = 1.1Vpeak, Maximum simultaneous pulse metering signal  
RMS  
= 3.1Vpeak, Switch Hook Threshold = 9.8mA, Loop Current Limit = 29.6mA, Synthesize Device Impedance = 600-60 = 540, with 30protection  
resistors, impedance across Tip and Ring terminals = 600. Where applicable, these component values apply to the Basic Application Circuits for  
the HC55120, HC55121, HC55130, HC55140, HC55142 and HC55150. Pins not shown in the Basic Application Circuit are no connect (NC) pins.  
23  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basis Application Circuit  
Voice Only 28 Pin SOIC Package  
R
11  
+5V  
C
20  
R
9
27  
25  
V
U1  
CC  
V
V
TX  
1
+12V  
3
4
RELAY  
RRLY  
CH  
R
10  
C
2
RING  
TIP  
R
P
5
6
RING  
GND  
RX  
U2  
CODEC/FILTER  
R
R
R
R
R
8
7
6
5
4
1
Z
T
24  
23  
22  
21  
R
P
RSYNC_REV  
ILIM  
7
8
TIP  
V
V
BH  
BL  
-24V  
-48V  
C7  
R
OH  
9
RD  
C
5
R
1
10  
11  
19  
RDC_RSG  
CDC  
SHD  
C
6
15  
18  
17  
GKD_LVM  
C1  
R
C
2
3
12  
13  
14  
DT  
R
12  
C2  
C3  
DR  
16  
R
RING  
GENERATOR  
3
CRT_REV_LVM  
C
4
V
BAT  
CONTROL LOGIC  
+5V  
FIGURE 17. UniSLIC14 VOICE ONLY BASIC APPLICATION CIRCUIT  
TABLE 4. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
RATING  
N/A  
U1 - SLIC  
N/A  
N/A  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
RP (Line Feed Resistors)  
R1 (RDC_RSG Resistor)  
R2, R3  
Matched 1%  
1%  
2.0W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
2W  
13kΩ  
2 MegΩ  
1%  
R4 (RD Resistor)  
R5 (ROH Resistor)  
R6 (RILIM Resistor)  
R7 (RSYNC_REV Resistor)  
R8 (RZT Resistor)  
R9, R10, R11  
R12  
43.2kΩ  
1%  
37.4kΩ  
1%  
33.2kΩ  
1%  
34.8kΩ  
1%  
107kΩ  
1%  
20kΩ  
1%  
400Ω  
5%  
C1  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.47µF  
20%  
20%  
20%  
20%  
20%  
10V  
C5  
50V  
C6  
100V  
10V  
C2, C4, C7  
C3  
2.2µF  
50V  
Design Parameters: Maximum onhook voltage = 0.775V  
, Maximum offhook voice = 3.1Vpeak, Switch Hook Threshold = 11.6mA, Loop Cur-  
RMS  
rent Limit = 29.6mA, Synthesize Device Impedance = 600-60 = 540, with 30protection resistors, impedance across Tip and Ring terminals =  
600. Where applicable, these component values apply to the Basic Application Circuits for the HC55120, HC55121, HC55130, HC55140,  
HC55142 and HC55150. Pins not shown in the Basic Application Circuit are no connect (NC) pins.  
24  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
Basis Application Circuit  
Pulse Metering 28 Pin SOIC Package  
R
11  
+5V  
R
9
20  
27  
2
V
V
U1  
TX  
CC  
C
1
+12V  
3
4
PTG  
RELAY  
RRLY  
CH  
26  
SPM  
R
10  
C
2
RING  
TIP  
25  
R
R
P
V
5
6
RX  
RING  
GND  
R
R
14  
13  
U2  
28  
1
CODEC/FILTER  
ZSPM  
R
R
R
R
R
8
7
6
5
4
C
7
Z
T
12/16KHZ  
PULSE METERING  
INPUT SIGNAL  
24  
23  
22  
21  
RSYNC_REV  
ILIM  
P
7
8
TIP  
-24V  
-48V  
V
BH  
R
OH  
C
5
C8  
9
V
BL  
RD  
C
R
6
R
1
10  
11  
12  
19  
RDC_RSG  
CDC  
SHD  
15  
18  
17  
GKD_LVM  
C1  
R
2
C
3
DT  
RING  
13  
14  
12  
C2  
C3  
DR  
GENERATOR  
16  
R
VBAT  
3
CRT_REV_LVM  
CONTROL LOGIC  
C
4
+5V  
FIGURE 18. UniSLIC14 PULSE METERING BASIC APPLICATION CIRCUIT  
TABLE 5. BASIC APPLICATION CIRCUIT COMPONENT LIST  
COMPONENT  
VALUE  
UniSLIC14 Family  
TISP1072F3  
30Ω  
TOLERANCE  
N/A  
RATING  
N/A  
U1 - SLIC  
U2 - Dual Asymmetrical Transient Voltage Suppressor  
N/A  
N/A  
RP (Line Feed Resistors)  
R1 (RDC_RSG Resistor)  
R2, R3  
Matched 1%  
1%  
2.0W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
1/4W  
2W  
19.1kΩ  
2 MegΩ  
1%  
R4 (RD Resistor)  
R5 (ROH Resistor)  
R6 (RILIM Resistor)  
R7 (RSYNC_REV Resistor)  
R8 (RZT Resistor)  
R9, R10, R11  
R12  
51.1kΩ  
1%  
34.8kΩ  
1%  
33.2kΩ  
1%  
34.8kΩ  
1%  
107kΩ  
1%  
20kΩ  
1%  
400Ω  
5%  
R13, R14  
10.7kΩ  
1%  
1/4W  
10V  
C1  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.1µF + 1.0µF  
0.47µF  
20%  
20%  
20%  
20%  
20%  
10%  
C5  
50V  
C6  
100V  
10V  
C2, C4, C8  
C3  
2.2µF  
50V  
C7  
680pF  
10V  
Design Parameters: Maximum onhook voltage = 0.775V  
, Maximum offhook voice = 1.1Vpeak, Maximum simultaneous pulse metering signal  
RMS  
= 3.1Vpeak, Switch Hook Threshold = 9.8mA, Loop Current Limit = 29.6mA, Synthesize Device Impedance = 600-60 = 540, with 30protection  
resistors, impedance across Tip and Ring terminals = 600. Where applicable, these component values apply to the Basic Application Circuits for  
the HC55120, HC55121, HC55130, HC55140, HC55142 and HC55150. Pins not shown in the Basic Application Circuit are no connect (NC) pins.  
25  
HC55120, HC55121, HC55130, HC55131, HC55140, HC55141, HC55142, HC55143, HC55150, HC55151  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
26  

相关型号:

HC5515IM

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515IM96

TELECOM-SLIC, PQCC28
RENESAS

HC5515IP

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5515_06

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5517

3 REN Ringing SLIC For ISDN Modem/TA and WLL
INTERSIL

HC55171

5 REN Ringing SLIC for ISDN Modem/TA and WLL
INTERSIL

HC55171B

Low Cost 5 REN Ringing SLIC for ISDN Modem/TA and WL
INTERSIL

HC55171BIB

Low Cost 5 REN Ringing SLIC for ISDN Modem/TA and WL
INTERSIL

HC55171BIM

Low Cost 5 REN Ringing SLIC for ISDN Modem/TA and WL
INTERSIL

HC55171BIM96

TELECOM-SLIC, PQCC28
RENESAS

HC55171CB

5 REN Ringing SLIC for ISDN Modem/TA and WLL
INTERSIL

HC55171CB

TELECOM-SLIC, PDSO28
RENESAS