HC5515IP [INTERSIL]

ITU CO/PABX SLIC with Low Power Standby; ITU CO / PABX SLIC与低功耗待机
HC5515IP
型号: HC5515IP
厂家: Intersil    Intersil
描述:

ITU CO/PABX SLIC with Low Power Standby
ITU CO / PABX SLIC与低功耗待机

文件: 总17页 (文件大小:174K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HC5515  
Data Sheet  
October 1998  
File Number 4235.4  
ITU CO/PABX SLIC with Low Power  
Standby  
Features  
• DI Monolithic High Voltage Process  
The HC5515 is a subscriber line interface circuit which is  
interchangeable with Ericsson’s PBL3860 for distributed  
central office applications. Enhancements include immunity  
to circuit latch-up during hot plug and absence of false  
signaling in the presence of longitudinal currents.  
• Programmable Current Feed (20mA to 60mA)  
• Programmable Loop Current Detector Threshold and  
Battery Feed Characteristics  
• Ring Trip Detection  
The HC5515 is fabricated in a High Voltage Dielectrically  
Isolated (DI) Bipolar Process that eliminates leakage  
currents and device latch-up problems normally associated  
with junction isolated ICs. The elimination of the leakage  
currents results in improved circuit performance for wide  
temperature extremes. The latch free benefit of the DI  
process guarantees operation under adverse transient  
conditions. This process feature makes the HC5515 ideally  
suited for use in harsh outdoor environments.  
• Compatible with Ericsson’s PBL3860  
• Thermal Shutdown  
• On-Hook Transmission  
• Wide Battery Voltage Range (-24V to -58V)  
• Low Standby Power  
o
o
• -40 C to 85 C Ambient Temperature Range  
Applications  
Ordering Information  
• Digital Loop Carrier Systems  
• Fiber-In-The-Loop ONUs  
• Wireless Local Loop  
• Pair Gain  
TEMP.  
PKG.  
NO.  
o
PART NUMBER RANGE ( C)  
PACKAGE  
28 Ld PLCC  
22 Ld PDIP  
28 Ld PLCC  
22 Ld PDIP  
• POTS  
PABX  
HC5515CM  
HC5515CP  
HC5515IM  
HC5515IP  
0 to 70  
0 to 70  
N28.45  
E22.4  
• Hybrid Fiber Coax  
-40 to 85  
-40 to 85  
N28.45  
E22.4  
• Related Literature  
- AN9632, Operation of the HC5523/15 Evaluation Board  
Block Diagram  
RING RELAY  
DRIVER  
4-WIRE  
RINGRLY  
V
INTERFACE  
TX  
VF SIGNAL  
PATH  
RSN  
DT  
DR  
RING TRIP  
DETECTOR  
TIP  
RING  
2-WIRE  
INTERFACE  
HPT  
HPR  
LOOP CURRENT  
DETECTOR  
E0  
C1  
C2  
DIGITAL  
MULTIPLEXER  
V
BAT  
V
CC  
DET  
V
BIAS  
EE  
R
R
D
AGND  
BGND  
DC  
RSG  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
55  
HC5515  
Absolute Maximum Ratings  
Thermal Information  
o
Temperature, Humidity  
Storage Temperature Range . . . . . . . . . . . . . . . . -65 C to 150 C  
Operating Temperature Range. . . . . . . . . . . . . . . -40 C to 110 C  
Thermal Resistance (Typical, Note 1)  
θ
( C/W)  
JA  
o
o
22 Lead PDIP Package . . . . . . . . . . . . . . . . . . . . . .  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . .  
53  
53  
o
o
o
o
o
Operating Junction Temperature Range. . . . . . . . -40 C to 150 C  
Continuous Power Dissipation at 70 C  
o
o
Power Supply (-40 C T 85 C)  
A
22 Lead PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5W  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.5W  
Supply Voltage V  
to GND . . . . . . . . . . . . . . . . . . . . 0.5V to 7V  
CC  
o
Supply Voltage V to GND. . . . . . . . . . . . . . . . . . . . .-7V to 0.5V  
EE  
Package Power Dissipation at 70 C, t < 100ms, t  
> 1s  
REP  
Supply Voltage V  
to GND . . . . . . . . . . . . . . . . . . .-80V to 0.5V  
BAT  
22 Lead PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4W  
28 Lead PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4W  
Derate above . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 C  
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.8mW/ C  
PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18.8mW/ C  
Maximum Junction Temperature Range . . . . . . . . . -40 C to 150 C  
Maximum Storage Temeprature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
Ground  
o
Voltage between AGND and BGND . . . . . . . . . . . . . -0.3V to 0.3V  
Relay Driver  
Ring Relay Supply Voltage . . . . . . . . . . . . . . . . 0V to V  
Ring Relay Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA  
Ring Trip Comparator  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
o
o
+75V  
BAT  
o
o
o
o
o
to 0V  
BAT  
Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -5mA to 5mA  
Digital Inputs, Outputs (C1, C2, E0, DET)  
(PLCC - Lead Tips Only)  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0V to V  
Output Voltage (DET Not Active) . . . . . . . . . . . . . . . . . .0V to V  
CC  
Die Characteristics  
CC  
Gate Count . . . . . . . . . . . . . . . . . . . . . . .543 Transistors, 51 Diodes  
Output Current (DET). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA  
o
o
Tipx and Ringx Terminals (-40 C T 85 C)  
A
Tipx or Ringx Voltage, Continuous (Referenced to GND)V  
to +2V  
BAT  
-20V to +5V  
Tipx or Ringx, Pulse < 10ms, T  
> 10s . . . . V  
REP  
BAT  
Tipx or Ringx, Pulse < 10µs, T  
Tipx or Ringx, Pulse < 250ns, T  
> 10s . . . V  
-40V to +10V  
-70V to +15V  
REP  
BAT  
> 10s. . . V  
REP  
BAT  
Tipx or Ringx Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70mA  
ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .500V  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Typical Operating Conditions  
These represent the conditions under which the part was developed and are suggested as guidelines.  
PARAMETER  
Case Temperature  
CONDITIONS  
MIN  
-40  
TYP  
MAX  
100  
UNITS  
o
-
-
-
-
C
o
o
V
V
V
with Respect to AGND  
-40 C to 85 C  
4.75  
-5.25  
-58  
5.25  
-4.75  
-24  
V
V
V
CC  
EE  
o
o
with Respect to AGND  
-40 C to 85 C  
o
o
with Respect to BGND  
-40 C to 85 C  
BAT  
o
o
Electrical Specifications  
T = -40 C to 85 C, V = +5V ±5%, V = -5V ±5%, V  
CC EE BAT  
= -48V, AGND = BGND = 0V, R  
DC1  
= R  
DC2  
= 41.2k,  
A
R
= 39k, R = 0, R = R = 0, C = 10nF, C = 1.5µF, Z = 600, Unless Otherwise Specified. All pin  
D
SG F1 F2 HP DC  
L
number references in the figures refer to the 28 lead PLCC package.  
PARAMETER  
Overload Level  
CONDITIONS  
MIN  
3.1  
-
TYP  
-
MAX  
-
UNITS  
1% THD, Z = 600, (Note 2, Figure 1)  
V
L
PEAK  
Longitudinal Impedance (Tip/Ring)  
0 < f < 100Hz (Note 3, Figure 2)  
20  
35  
/Wire  
A
V
V
T
TX  
19  
TIP  
27  
TX  
19  
1V  
TIP  
27  
RMS  
0 < f < 100Hz  
V
300Ω  
T
E
L
C
R
T
R
L
R
T
600kΩ  
600Ω  
600kΩ  
V
TRO  
2.16µF  
I
300Ω  
DCMET  
23mA  
V
R
E
RX  
R
RX  
R
RX  
A
R
RING  
28  
RSN  
16  
RING  
28  
RSN  
16  
300kΩ  
300kΩ  
LZ = V /A  
LZ = V /A  
R R R  
T
T
T
FIGURE 1. OVERLOAD LEVEL (TWO-WIRE PORT)  
FIGURE 2. LONGITUDINAL IMPEDANCE  
56  
HC5515  
o
o
Electrical Specifications  
T = -40 C to 85 C, V = +5V ±5%, V = -5V ±5%, V  
CC EE BAT  
= -48V, AGND = BGND = 0V, R  
DC1  
= R = 41.2k,  
DC2  
A
R
= 39k, R = 0, R = R = 0, C = 10nF, C = 1.5µF, Z = 600, Unless Otherwise Specified. All pin  
D
SG F1 F2 HP DC  
L
number references in the figures refer to the 28 lead PLCC package. (Continued)  
PARAMETER  
LONGITUDINAL CURRENT LIMIT (TIP/RING)  
Off-Hook (Active)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
No False Detections, (Loop Current),  
LB > 45dB (Note 4, Figure 3A)  
20  
5
-
-
-
-
mA  
/
/
PEAK  
Wire  
On-Hook (Standby), R = ∞  
No False Detections (Loop Current) (Note 5,  
Figure 3B)  
mA  
L
PEAK  
Wire  
368Ω  
368Ω  
TIP  
27  
RSN  
16  
A
TIP  
27  
RSN  
16  
A
2.16µF  
C
39kΩ  
C
39kΩ  
R
DC1  
R
E
R
D
E
DC1  
R
D
L
L
41.2kΩ  
41.2kΩ  
-5V  
A
-5V  
A
2.16µF  
2.16µF  
C
C
R
C
DC  
DC2  
DC  
R
DC2  
R
RING  
28  
R
RING  
28  
DC  
14  
DC  
368Ω  
41.2kΩ  
14  
368Ω  
1.5µF  
1.5µF  
41.2kΩ  
DET  
DET  
FIGURE 3A. OFF-HOOK  
FIGURE 3B. ON-HOOK  
FIGURE 3. LONGITUDINAL CURRENT LIMIT  
OFF-HOOK LONGITUDINAL BALANCE  
Longitudinal to Metallic  
IEEE 455 - 1985, R , R = 368Ω  
0.2kHz < f < 4.0kHz (Note 6, Figure 4)  
53  
53  
50  
70  
70  
55  
-
-
-
dB  
LR LT  
Longitudinal to Metallic  
Metallic to Longitudinal  
R
, R = 300, 0.2kHz < f < 4.0kHz  
LR LT  
dB  
dB  
(Note 6, Figure 4)  
FCC Part 68, Para 68.310  
0.2kHz < f < 1.0kHz  
1.0kHz < f < 4.0kHz (Note 7)  
50  
53  
50  
55  
70  
55  
-
-
-
dB  
dB  
dB  
Longitudinal to 4-Wire  
Metallic to Longitudinal  
0.2kHz < f < 4.0kHz (Note 8, Figure 4)  
R
, R = 300, 0.2kHz < f < 4.0kHz  
LR LT  
(Note 9, Figure 5)  
4-Wire to Longitudinal  
0.2kHz < f < 4.0kHz (Note 10, Figure 5)  
50  
55  
-
dB  
R
LT  
R
LT  
V
TIP  
27  
V
TX  
19  
TIP  
27  
TX  
19  
300Ω  
E
2.16µF  
L
E
R
C
TR  
T
R
T
V
V
600kΩ  
TR  
TX  
600kΩ  
C
2.16µF  
V
L
E
RX  
R
R
R
LR  
RX  
RX  
RSN  
16  
RING  
28  
RSN  
16  
RING  
28  
R
LR  
300kΩ  
300Ω  
300kΩ  
FIGURE 4. LONGITUDINAL TO METALLIC AND  
LONGITUDINAL TO 4-WIRE BALANCE  
FIGURE 5. METALLIC TO LONGITUDINAL AND 4-WIRE TO  
LONGITUDINAL BALANCE  
2-Wire Return Loss  
= 20nF  
0.2kHz to 0.5kHz (Note 11, Figure 6)  
0.5kHz to 1.0kHz (Note 11, Figure 6)  
1.0kHz to 3.4kHz (Note 11, Figure 6)  
25  
27  
23  
-
-
-
-
-
-
dB  
dB  
dB  
C
HP  
TIP IDLE VOLTAGE  
Active, I = 0  
-
-
-1.5  
<0  
-
-
V
V
L
Standby, I = 0  
L
RING IDLE VOLTAGE  
Active, I = 0  
-
-46.5  
-
V
L
57  
HC5515  
o
o
Electrical Specifications  
T = -40 C to 85 C, V = +5V ±5%, V = -5V ±5%, V  
CC EE BAT  
= -48V, AGND = BGND = 0V, R  
DC1  
= R = 41.2k,  
DC2  
A
R
= 39k, R = 0, R = R = 0, C = 10nF, C = 1.5µF, Z = 600, Unless Otherwise Specified. All pin  
D
SG F1 F2 HP DC  
L
number references in the figures refer to the 28 lead PLCC package. (Continued)  
PARAMETER  
CONDITIONS  
MIN  
-
TYP  
>-48  
-
MAX  
-
UNITS  
Standby, I = 0  
L
V
V
TIP-RING Open Loop Metallic Voltage, V  
V
= -52V, R  
BAT SG  
= 0Ω  
43  
47  
TR  
4-WIRE TRANSMIT PORT (V  
Overload Level  
)
TX  
Z
> 20k, 1% THD (Note 12, Figure 7)  
3.1  
-60  
-
-
-
-
V
L
PEAK  
mV  
Output Offset Voltage  
E
= 0, Z = (Note 13, Figure 7)  
60  
G
L
Output Impedance (Guaranteed by Design)  
0.2kHz < f < 03.4kHz  
5
20  
2-Wire to 4-Wire (Metallic to V ) Voltage Gain 0.3kHz < f < 03.4kHz (Note 14, Figure 7)  
0.98  
1.0  
1.02  
V/V  
TX  
Z
2.16µF  
D
TIP  
27  
V
V
TX  
19  
TIP  
27  
TX  
19  
R
L
C
600Ω  
V
R
R
TR  
R
V
T
M
Z
R
600kΩ  
T
V
V
TXO  
TX  
V
Z
L
S
600kΩ  
I
DCMET  
23mA  
E
G
IN  
R
R
RX  
RX  
RING  
28  
RSN  
16  
RING RSN  
28 16  
R
300kΩ  
300kΩ  
LR  
FIGURE 6. TWO-WIRE RETURN LOSS  
FIGURE 7. OVERLOAD LEVEL (4-WIRE TRANSMIT PORT),  
OUTPUT OFFSET VOLTAGE, 2-WIRE TO 4-WIRE  
VOLTAGE GAIN AND HARMONIC DISTORTION  
4-WIRE RECEIVE PORT (RSN)  
DC Voltage  
I
= 0mA  
-
-
0
-
-
V
RSN  
R
Sum Node Impedance (Gtd by Design)  
0.2kHz < f < 3.4kHz  
20  
X
Current Gain-RSN to Metallic  
FREQUENCY RESPONSE (OFF-HOOK)  
2-Wire to 4-Wire  
0.3kHz < f < 3.4kHz (Note 15, Figure 8)  
900  
1000  
1100  
Ratio  
0dBm at 1.0kHz, E  
= 0V  
-0.2  
-0.2  
-0.2  
-
-
-
0.2  
0.2  
0.2  
dB  
dB  
dB  
RX  
0.3kHz < f < 3.4kHz (Note 16, Figure 9)  
4-Wire to 2-Wire  
4-Wire to 4-Wire  
0dBm at 1.0kHz, E = 0V  
G
0.3kHz < f < 3.4kHz (Note 17, Figure 9)  
0dBm at 1.0kHz, E = 0V  
G
0.3kHz < f < 3.4kHz (Note 18, Figure 9)  
INSERTION LOSS  
2-Wire to 4-Wire  
0dBm, 1kHz (Note 19, Figure 9)  
0dBm, 1kHz (Note 20, Figure 9)  
-0.2  
-0.2  
-
-
0.2  
0.2  
dB  
dB  
4-Wire to 2-Wire  
GAIN TRACKING (Ref = -10dBm, at 1.0kHz)  
2-Wire to 4-Wire  
+3dBm to +7dBm (Note 21, Figure 9)  
-40dBm to +3dBm (Note 21, Figure 9)  
-55dBm to -40dBm (Note 21, Figure 9)  
-40dBm to +7dBm (Note 22, Figure 9)  
-0.15  
-0.1  
-0.2  
-0.1  
-
-
-
-
0.15  
0.1  
0.2  
0.1  
dB  
dB  
dB  
dB  
2-Wire to 4-Wire  
2-Wire to 4-Wire  
4-Wire to 2-Wire  
58  
HC5515  
o
o
Electrical Specifications  
T = -40 C to 85 C, V = +5V ±5%, V = -5V ±5%, V  
CC EE BAT  
= -48V, AGND = BGND = 0V, R  
DC1  
= R = 41.2k,  
DC2  
A
R
= 39k, R = 0, R = R = 0, C = 10nF, C = 1.5µF, Z = 600, Unless Otherwise Specified. All pin  
D
SG F1 F2 HP DC  
L
number references in the figures refer to the 28 lead PLCC package. (Continued)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
4-Wire to 2-Wire  
-55dBm to -40dBm (Note 22, Figure 9)  
-0.2  
-
0.2  
dB  
GRX = ((V )(300k))/(-3)(600)  
- V  
is the Tip to Ring Voltage with V  
TR1 TR2  
Where: V  
TR1  
= 0V  
RSN  
and V  
is the Tip to Ring Voltage with V  
RSN  
= -3V  
TR2  
V
V
= 0V  
RSN  
RSN  
C
R
RX  
= -3V  
TIP  
27  
V
TIP  
27  
RSN  
16  
TX  
19  
R
300kΩ  
L
600Ω  
R
T
R
R
L
DC1  
600kΩ  
V
TX  
600Ω  
I
41.2kΩ  
V
V
DCMET  
TR  
TR  
E
G
E
RX  
C
R
R
DC  
RX  
DC2  
1/ωC < R  
L
RING  
28  
R
RING RSN  
28 16  
DC  
14  
1.5µF  
41.2kΩ  
300kΩ  
FIGURE 8. CURRENT GAIN-RSN TO METALLIC  
FIGURE 9. FREQUENCY RESPONSE, INSERTION LOSS,  
GAIN TRACKING AND HARMONIC DISTORTION  
NOISE  
Idle Channel Noise at 2-Wire  
C-Message Weighting (Note 23, Figure 10)  
-
-
8.5  
-
-
dBrnC  
dBrnp  
Psophometrical Weighting  
(Note 23, Figure 10)  
-81.5  
Idle Channel Noise at 4-Wire  
C-Message Weighting (Note 24, Figure 10)  
-
-
8.5  
-
-
dBrnC  
dBrnp  
Psophometrical Weighting  
(Note 23, Figure 10)  
-81.5  
HARMONIC DISTORTION  
2-Wire to 4-Wire  
0dBm, 1kHz (Note 25, Figure 7)  
-
-
-65  
-65  
-54  
-54  
dB  
dB  
4-Wire to 2-Wire  
0dBm, 0.3kHz to 3.4kHz (Note 26, Figure 9)  
BATTERY FEED CHARACTERISTICS  
Constant Loop Current Tolerance  
I = 2500/(R  
DC1  
-40 C to 85 C (Note 27)  
+ R  
),  
0.85I  
0.75I  
14  
I
I
1.15I  
1.25I  
20  
mA  
mA  
V
L
DC2  
L
L
L
L
o
o
R
= 41.2kΩ  
DCX  
Loop Current Tolerance (Standby)  
I = (V -3)/(R +1800),  
L
BAT  
L
L
L
o
o
-40 C to 85 C (Note 28)  
o
o
Open Circuit Voltage (V  
TIP  
- V  
RING  
)
-40 C to 85 C, (Active) R  
= ∞  
16.67  
SG  
LOOP CURRENT DETECTOR  
On-Hook to Off-Hook  
o
o
R
R
R
= 33kΩ, -40 C to 85 C  
11  
9.5  
-
465/R  
405/R  
17.2  
15.0  
-
mA  
mA  
mA  
D
D
D
D
o
o
Off-Hook to On-Hook  
= 33kΩ, -40 C to 85 C  
D
o
o
Loop Current Hysteresis  
= 33kΩ, -40 C to 85 C  
60/R  
D
TIP  
27  
V
TX  
19  
R
R
L
T
V
600Ω  
TR  
V
TX  
600kΩ  
R
RX  
RING RSN  
28 16  
300kΩ  
FIGURE 10. IDLE CHANNEL NOISE  
59  
HC5515  
o
o
Electrical Specifications  
T = -40 C to 85 C, V = +5V ±5%, V = -5V ±5%, V  
CC EE BAT  
= -48V, AGND = BGND = 0V, R  
DC1  
= R = 41.2k,  
DC2  
A
R
= 39k, R = 0, R = R = 0, C = 10nF, C = 1.5µF, Z = 600, Unless Otherwise Specified. All pin  
D
SG F1 F2 HP DC  
L
number references in the figures refer to the 28 lead PLCC package. (Continued)  
PARAMETER  
RING TRIP DETECTOR (DT, DR)  
Offset Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Source Res = 0  
Source Res = 0  
Source Res = 0  
-20  
-
-
-
-
-
20  
mV  
nA  
V
Input Bias Current  
-360  
360  
Input Common-Mode Range  
Input Resistance  
V
+1  
0
-
BAT  
Source Res = 0, Unbalanced  
Source Res = 0, Balanced  
1
MΩ  
MΩ  
3
-
RING RELAY DRIVER  
V
at 25mA  
I
= 25mA  
= 12V  
-
-
0.2  
-
0.6  
10  
V
SAT  
OL  
Off-State Leakage Current  
V
µA  
OH  
DIGITAL INPUTS (E0, C1, C2)  
Input Low Voltage, V  
IL  
0
2
-
-
-
-
-
0.8  
V
Input High Voltage, V  
V
V
IH  
CC  
-
Input Low Current, I : C1, C2  
V
V
V
= 0.4V  
= 0.4V  
= 2.4V  
-200  
-100  
-
µA  
µA  
µA  
IL  
IL  
IL  
IH  
Input Low Current, I : E0  
IL  
-
Input High Current  
40  
DETECTOR OUTPUT (DET)  
Output Low Voltage, V  
I
I
= 2mA  
-
2.7  
8
-
-
0.45  
-
V
V
OL  
OL  
Output High Voltage, V  
= 100µA  
OH  
OH  
Internal Pull-Up Resistor  
POWER DISSIPATION (V  
Open Circuit State  
15  
25  
kΩ  
= -48V)  
BAT  
C1 = C2 = 0  
C1 = C2 = 1  
-
-
-
-
26.3  
37.5  
110  
1.1  
70  
85  
mW  
mW  
mW  
W
On-Hook, Standby  
On-Hook, Active  
C1 = 0, C2 = 1, R = High Impedance  
300  
1.4  
L
Off-Hook, Active  
C1 = 0, C2 = 1, R = 600Ω  
L
TEMPERATURE GUARD  
Thermal Shutdown  
o
150  
-
180  
C
SUPPLY CURRENTS (V  
= -28V)  
BAT  
Open Circuit State (C1, 2 = 0, 0)  
On-Hook  
I
I
I
I
I
I
I
I
I
-
-
-
-
-
-
-
-
-
1.3  
0.6  
2.8  
2.0  
1.2  
3.5  
2.0  
1.6  
9.5  
4.0  
5.2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
CC  
EE  
0.35  
1.6  
BAT  
CC  
EE  
Standby State (C1, 2 = 1, 1)  
On-Hook  
0.62  
0.55  
3.7  
BAT  
CC  
EE  
Active State (C1, 2 = 0, 1)  
On-Hook  
1.1  
2.2  
BAT  
PSRR  
V
V
to 2 or 4-Wire Port  
to 2 or 4-Wire Port  
(Note 29, Figure 11)  
(Note 29, Figure 11)  
-
-
40  
40  
-
-
dB  
dB  
CC  
EE  
60  
HC5515  
o
o
Electrical Specifications  
T = -40 C to 85 C, V = +5V ±5%, V = -5V ±5%, V  
CC EE BAT  
= -48V, AGND = BGND = 0V, R  
DC1  
= R = 41.2k,  
DC2  
A
R
= 39k, R = 0, R = R = 0, C = 10nF, C = 1.5µF, Z = 600, Unless Otherwise Specified. All pin  
D
SG F1 F2 HP DC  
L
number references in the figures refer to the 28 lead PLCC package. (Continued)  
PARAMETER  
CONDITIONS  
(Note 29, Figure 11)  
MIN  
TYP  
MAX  
UNITS  
V
to 2 or 4-Wire Port  
-
40  
-
dB  
BAT  
-48V SUPPLY  
+5V SUPPLY  
-5V SUPPLY  
100mV  
, 50Hz TO 4kHz  
RMS  
TIP  
27  
V
TX  
19  
PSRR = 20 log (VTX/VIN  
)
R
T
R
L
V
600kΩ  
TX  
600Ω  
R
RX  
RING RSN  
28 16  
300kΩ  
FIGURE 11. POWER SUPPLY REJECTION RATIO  
Circuit Operation and Design Information  
The HC5515 is a current feed voltage sense Subscriber Line  
Interface Circuit (SLIC). This means that for short loop  
For loop resistances that result in a tip to ring voltage less than  
the saturation guard voltage the loop current is defined as:  
applications the SLIC provides a programed constant current to  
the tip and ring terminals while sensing the tip to ring voltage.  
2.5V  
-------------------------------------  
I
=
× 1000  
(EQ. 1)  
L
R
+ R  
DC1  
DC2  
The following discussion separates the SLIC’s operation into  
its DC and AC paths, then follows up with additional circuit  
and design information.  
where: I = Constant loop current, and  
L
R
and R  
= Loop current programming resistors.  
DC1  
DC2  
Capacitor C  
between R  
DC1  
and R removes the VF  
Constant Loop Current (DC) Path  
DC  
DC2  
signals from the battery feed control loop. The value of C  
is determined by Equation 2:  
DC  
SLIC in the Active Mode  
The DC path establishes a constant loop current that flows  
out of tip and into the ring terminal. The loop current is  
1
1
(EQ. 2)  
C
= T × --------------- + ---------------  
DC  
R
R
programmed by resistors R and the voltage on  
, R  
DC1  
DC2  
DC1 DC2  
the R  
DC  
pin (Figure 12). The R  
voltage is determined by  
DC  
the voltage across R in the saturation guard circuit. Under  
where T = 30ms.  
1
constant current feed conditions, the voltage drop across R  
1
NOTE: The minimum C  
value is obtained if R  
DC1  
= R  
.
DC  
DC2  
sets the R  
voltage to -2.5V. This occurs when current  
DC  
flows through R into the current source I . The R  
voltage  
Figure 13 illustrates the relationship between the tip to ring  
voltage and the loop resistance. For a 0loop resistance  
1
2
DC  
/(R  
establishes a current (I  
) that is equal to V  
RSN  
RDC DC1  
+R  
). This current is then multiplied by 1000, in the loop  
both tip and ring are at V  
/2. As the loop resistance  
DC2  
BAT  
current circuit, to become the tip and ring loop currents.  
increases, so does the voltage differential between tip and  
ring. When this differential voltage becomes equal to the  
saturation guard voltage, the operation of the SLIC’s loop  
feed changes from a constant current feed to a resistive  
feed. The loop current in the resistive feed region is no  
longer constant but varies as a function of the loop  
resistance.  
For the purpose of the following discussion, the saturation  
guard voltage is defined as the maximum tip to ring voltage  
at which the SLIC can provide a constant current for a given  
battery and overhead voltage.  
61  
HC5515  
V
TX  
I
+
-
RSN  
R
R
R
RX  
RSN  
LOOP CURRENT  
CIRCUIT  
I
TIP  
TIP  
I
DC1  
DC2  
TIP  
I
RING  
RING  
I
C
DC  
RING  
R
DC  
SATURATION GUARD  
CIRCUIT  
-
-2.5V  
+
-
+
A
2
A
1
R
1
-
+
I
17.3kΩ  
2
R
I
SG  
1
-5V  
R
SG  
HC5515  
-5V  
-5V  
FIGURE 12. DC LOOP CURRENT  
The Saturation Guard circuit (Figure 12) monitors the tip to  
ring voltage via the transconductance amplifier A . A  
generates a current that is proportional to the tip to ring  
V
= -48V, I = 23mA, R  
= 4.0kΩ  
SG  
BAT  
L
0
-10  
-20  
-30  
-40  
-50  
V
1
1
TIP  
SATURATION  
GUARD VOLTAGE  
voltage difference. I is internally set to sink all of A ’s  
1
1
CONSTANT CURRENT  
FEED REGION  
RESISTIVE FEED  
REGION  
current until the tip to ring voltage exceeds 12.5V. When the  
tip to ring voltage exceeds 12.5V (with no R resistor) A  
SG  
1
supplies more current than I can sink. When this happens  
1
A amplifies its input current by a factor of 12 and the current  
2
through R becomes the difference between I and the  
1
2
output current from A . As the current from A increases, the  
2
2
voltage across R decreases and the output voltage on R  
1
DC  
SATURATION  
GUARD VOLTAGE  
decreases. This results in a corresponding decrease in the  
V
RING  
loop current. The R pin provides the ability to increase the  
SG  
saturation guard reference voltage beyond 12.5V. Equation 3  
gives the relationship between the R resistor value and  
0
1.2K  
LOOP RESISTANCE ()  
SG  
FIGURE 13. V vs R  
TR  
L
the programmable saturation guard reference voltage:  
Figure 14 shows the relationship between the saturation  
guard voltage, the loop current and the loop resistance.  
Notice from Figure 14 that for a loop resistance <1.2kΩ  
5
5 10  
(EQ. 3)  
V
= 12.5 + -----------------------------------  
SGREF  
R
+ 17300  
SG  
where:  
(R  
= 4.0k) the SLIC is operating in the constant current  
SG  
feed region and for resistances >1.2kthe SLIC is operating  
in the resistive feed region. Operation in the resistive feed  
region allows long loop and off-hook transmission by  
keeping the tip and ring voltages off the rails. Operation in  
this region is transparent to the customer.  
V
= Saturation Guard reference voltage, and  
= Saturation Guard programming resistor.  
SGREF  
R
SG  
When the Saturation guard reference voltage is exceeded,  
the tip to ring voltage is calculated using Equation 4:  
50  
5
16.66 + 5 10 ⁄ (R  
+ 17300)  
CONSTANT CURRENT  
SG  
V
= -48V, R  
SG  
= 4.0kΩ  
(EQ. 4)  
BAT  
FEED REGION  
------------------------------------------------------------------------------------  
= R ×  
L
V
TR  
R
+ (R  
+ R  
) ⁄ 600  
DC2  
40  
30  
20  
10  
0
L
DC1  
SATURATION GUARD  
VOLTAGE, V = 38V  
TR  
where:  
= Voltage differential between tip and ring, and  
V
TR  
R = Loop resistance.  
V
= -24V, R = ∞  
SG  
BAT  
L
SATURATION GUARD  
RESISTIVE FEED  
REGION  
VOLTAGE, V = 13V  
For on-hook transmission R = , Equation 4 reduces to:  
TR  
L
5
5 10  
0
10  
20  
LOOP CURRENT (mA)  
30  
(EQ. 5)  
V
= 16.66 + -----------------------------------  
TR  
R
+ 17300  
SG  
R
R
100kΩ  
100kΩ  
4kΩ  
2kΩ  
<1.2kΩ  
<400Ω  
R
R
= 4.0kΩ  
= Ω  
L
L
SG  
The value of R  
should be calculated to allow maximum  
SG  
1.5kΩ  
700Ω  
SG  
loop length operation. This requires that the saturation guard  
reference voltage be set as high as possible without clipping  
the incoming or outgoing VF signal. A voltage margin of -4V  
FIGURE 14. V vs I and R  
TR  
L
L
62  
HC5515  
on tip and -4V on ring, for a total of -8V margin, is  
recommended as a general guideline. The value of R  
calculated using Equation 6:  
V
= Is the analog ground referenced receive signal,  
= Is used to set the 4-wire to 2-wire gain,  
RX  
RX  
is  
Z
E
SG  
= Is the AC open circuit voltage, and  
G
Z = Is the line impedance.  
L
5
5 10  
(R  
R
= --------------------------------------------------------------------------------------------------------------------------------------------- 17300  
SG  
+ R  
)
(AC) 2-Wire Impedance  
DC1  
DC2  
( V  
V  
) × 1 + --------------------------------------------- 16.66V  
BAT  
MAR  
600R  
The AC 2-wire impedance (Z ) is the impedance looking  
TR  
L
into the SLIC, including the fuse resistors, and is calculated  
(EQ. 6)  
as follows:  
where:  
Let V  
= 0. Then from Equation 10:  
RX  
T
V
V
= Battery voltage, and  
BAT  
I
(EQ. 12)  
(EQ. 13)  
M
= Voltage Margin. Recommended value of -8V to  
MAR  
------------  
V
= Z  
TX  
1000  
allow a maximum overload level of 3.1V  
.
PEAK  
Z
is defined as:  
TR  
For on-hook transmission R = , Equation 6 reduces to:  
L
5
V
5 10  
V  
TR  
R
= ------------------------------------------------------------------ 17300  
Z
= -----------  
(EQ. 7)  
SG  
TR  
V
16.66V  
I
BAT  
MAR  
M
Substituting in Equation 9 for V  
TR  
:
SLIC in the Standby Mode  
V
2R I  
F M  
TX  
Overall system power is saved by configuring the SLIC in the  
standby state when not in use. In the standby state the tip  
and ring amplifiers are disabled and internal resistors are  
(EQ. 14)  
(EQ. 15)  
(EQ. 16)  
Z
= ---------- + -----------------------  
TR  
I
I
M
M
Substituting in Equation 12 for V  
:
TX  
connected between tip to ground and ring to V  
. This  
BAT  
connection enables a loop current to flow when the phone  
goes off-hook. The loop current detector then detects this  
current and the SLIC is configured in the active mode for  
voice transmission. The loop current in standby state is  
calculated as follows:  
Z
T
1000  
Z
= ------------ + 2R  
TR  
F
Therefore:  
Z
= 1000 • (Z  
2R )  
T
TR  
F
V
3V  
BAT  
(EQ. 8)  
-------------------------------  
I
L
R
+ 1800Ω  
Equation 16 can now be used to match the SLIC’s  
L
impedance to any known line impedance (Z ).  
TR  
where:  
I = Loop current in the standby state,  
L
Example:  
R = Loop resistance, and  
L
Calculate Z to make Z = 600in series with 2.16µF.  
T
TR  
R = 20.  
V
= Battery voltage.  
F
BAT  
1
(AC) Transmission Path  
Z
= 1000 600 + ----------------------------------------- – 2 20  
T
6  
jω • 2.16 10  
SLIC in the Active Mode  
Z = 560kin series with 2.16nF.  
T
Figure 15 shows a simplified AC transmission model. Circuit  
analysis yields the following design equations:  
(AC) 2-Wire to 4-Wire Gain  
(EQ. 9)  
(EQ. 10)  
(EQ. 11)  
The 2-wire to 4-wire gain is equal to V / V  
.
V
= V + I 2R  
TX TR  
TR  
TX  
M
F
From Equations 9 and 10 with V  
= 0:  
RX  
V
V
I
TX  
RX  
M
---------- + ----------- = ------------  
V
Z 1000  
T
Z 1000 + 2R  
T F  
Z
Z
1000  
= E I Z  
L
TX  
(EQ. 17)  
T
RX  
A
= ----------- = -----------------------------------------  
2 4  
V
TR  
V
TR  
G
M
(AC) 4-Wire to 2-Wire Gain  
where:  
= Is the AC metallic voltage between tip and ring,  
The 4-wire to 2-wire gain is equal to V /V  
TR RX  
.
V
TR  
including the voltage drop across the fuse resistors R ,  
From Equations 9, 10 and 11 with E = 0:  
G
F
V
= Is the AC metallic voltage. Either at the ground  
Z
V
Z
T
Z
RX  
TX  
referenced 4-wire side or the SLIC tip and ring terminals,  
L
TR  
--------------------------------------------  
A
= ----------- = ----------- •  
4 2  
Z
V
(EQ. 18)  
T
RX  
------------ + 2R + Z  
I
= Is the AC metallic current,  
F
L
M
1000  
R = Is a fuse resistor,  
F
Z = Is used to set the SLIC’s 2-wire impedance,  
T
63  
A
= ----------- = ---------  
                                                       
- •  
A
= –---------  
                                          
- •  
HC5515  
I
M
TIP  
A = 250  
R
F
Z
L
V
TX  
+
-
Z
TR  
+
TX  
-
+
1
V
V
TR  
+
TX  
-
V
+
-
Z
T
E
G
-
I
M
A = 4  
RSN  
Z
A = 250  
RX  
R
I
F
M
RING  
+
RX  
1000  
V
-
HC5515  
FIGURE 15. SIMPLIFIED AC TRANSMISSION CIRCUIT  
For applications where the 2-wire impedance (Z  
TR  
Equation 15) is chosen to equal the line impedance (Z ), the  
,
Example:  
L
Given: R = 20k, Z  
TX  
= 280k, Z = 562k(standard  
T
RX  
expression for A  
simplifies to:  
4-2  
value), R = 20and Z = 600,  
F
Z
1
2
T
(EQ. 19)  
The value of Z = 18.7kΩ  
--  
B
4 2  
Z
RX  
R
FB  
(AC) 4-Wire to 4-Wire Gain  
I
2
R
V
TX  
TX  
The 4-wire to 4-wire gain is equal to V /V  
TX RX  
.
-
+
From Equations 9, 10 and 11 with E = 0:  
G
+
TX  
-
I
1
V
Z
+ 2R  
F
V
Z
T
Z
RX  
L
TX  
--------------------------------------------  
(EQ. 20)  
4 4  
Z
V
T
RX  
------------ + 2R + Z  
F
L
Z
Z
B
HC5515  
1000  
T
+
RX  
-
Transhybrid Circuit  
The purpose of the transhybrid circuit is to remove the  
V
RSN  
Z
RX  
receive signal (V ) from the transmit signal (V ), thereby  
RX  
TX  
preventing an echo on the transmit side. This is  
accomplished by using an external op amp (usually part of  
the CODEC) and by the inversion of the signal from the  
CODEC/  
FILTER  
4-wire receive port (RSN) to the 4-wire transmit port (V ).  
TX  
Figure 16 shows the transhybrid circuit. The input signal will  
FIGURE 16. TRANSHYBRID CIRCUIT  
be subtracted from the output signal if I equals I . Node  
1
2
analysis yields the following equation:  
Supervisory Functions  
V
V
RX  
Z
B
The loop current and the ring trip detector outputs are  
TX  
(EQ. 21)  
(EQ. 22)  
----------- + ----------- = 0  
multiplexed to a single logic output pin called DET. See Table  
1 to determine the active detector for a given logic input. For  
further discussion of the logic circuitry see section titled  
“Digital Logic Inputs”.  
R
TX  
The value of Z is then:  
B
V
RX  
-----------  
Z
= –R  
TX  
Before proceeding with an explanation of the loop current  
detector and the longitudinal impedance, it is important to  
understand the difference between a “metallic” and  
“longitudinal” loop currents. Figure 17 illustrates 3 different  
types of loop current encountered.  
B
V
TX  
Where V /V equals 1/ A  
RX TX  
.
4-4  
Therefore:  
Z
T
Case 1 illustrates the metallic loop current. The definition of  
a metallic loop current is when equal currents flow out of tip  
and into ring. Loop current is a metallic current.  
------------ + 2R + Z  
Z
(EQ. 23)  
F
L
1000  
RX  
---------- --------------------------------------------  
Z
= R  
TX  
B
Z
Z + 2R  
L
T
F
64  
HC5515  
Cases 2 and 3 illustrate the longitudinal loop current. The  
definition of a longitudinal loop current is a common mode  
current, that flows either out of or into tip and ring  
simultaneously. Longitudinal currents in the on-hook state  
result in equal currents flowing through the sense resistors  
Taking into account the hysteresis voltage, the typical value  
of R for the off-hook to on-hook condition is:  
D
375  
R
= --------------------------------------------------------------------------  
(EQ. 26)  
D
I
OFF HOOK to ON HOOK  
R and R (Figure 17). And longitudinal currents in the off-  
hook state result in unequal currents flowing through the  
1
2
A filter capacitor (C ) in parallel with R will improve the  
accuracy of the trip point in a noisy environment. The value  
of this capacitor is calculated using the following Equation:  
D
D
sense resistors R and R . Notice that for case 2,  
1
2
longitudinal currents flowing away from the SLIC, the current  
T
C
= -------  
(EQ. 27)  
through R is the metallic loop current plus the longitudinal  
D
1
R
D
current; whereas the current through R is the metallic loop  
2
current minus the longitudinal current. Longitudinal currents  
are generated when the phone line is influenced by  
magnetic fields (e.g. power lines).  
where: T = 0.5ms.  
Ring Trip Detector  
Ring trip detection is accomplished with the internal ring trip  
comparator and the external circuitry shown in Figure 18.  
The process of ring trip is initiated when the logic input pins  
are in the following states: E0 = 0, C1 = 1 and C2 = 0. This  
logic condition connects the ring trip comparator to the DET  
output, and causes the Ringrly pin to energize the ring relay.  
The ring relay connects the tip and ring of the phone to the  
external circuitry in Figure 18. When the phone is on-hook  
the DT pin is more positive than the DR pin and the DET  
output is high. For off-hook conditions DR is more positive  
than DT and DET goes low. When DET goes low, indicating  
that the phone has gone off-hook, the SLIC is commanded  
by the logic inputs to go into the active state. In the active  
state, tip and ring are once again connected to the phone  
and normal operation ensues.  
Loop Current Detector  
Figure 17 shows a simplified schematic of the loop current  
detector. The loop current detector works by sensing the  
metallic current flowing through resistors R and R . This  
1
2
results in a current (I ) out of the transconductance  
RD  
amplifier (gm ) that is equal to the product of gm and the  
1
1
metallic loop current. I  
then flows out the R pin and  
RD  
D
through resistor R to V . The value of I  
is equal to:  
RD  
D
EE  
I
I  
I
L
300  
TIP  
RING  
(EQ. 24)  
I
= ----------------------------------- = ---------  
RD  
600  
The I  
current results in a voltage drop across R that is  
D
RD  
compared to an internal 1.25V reference voltage. When the  
voltage drop across R exceeds 1.25V, and the logic is  
D
configured for loop current detection, the DET pin goes low.  
Figure 18 illustrates battery backed unbalanced ring injected  
ringing. For tip injected ringing just reverse the leads to the  
phone. The ringing source could also be balanced.  
The hysteresis resistor R adds an additional voltage  
H
effectively across R , causing the on-hook to off-hook  
D
threshold to be slightly higher than the off-hook to on-hook  
threshold.  
NOTE: The DET output will toggle at 20Hz because the DT input is  
not completely filtered by C . Software can examine the duty cycle  
RT  
and determine if the DET pin is low for more that half the time, if so  
the off-hook condition is indicated.  
Taking into account the hysteresis voltage, the typical value  
of R for the on-hook to off-hook condition is:  
D
465  
R
= --------------------------------------------------------------------------  
(EQ. 25)  
D
I
ON HOOK to OFF HOOK  
gm (I  
)
METALLIC  
1
R
D
R
H
+
-
I
RD  
C
D
R
CURRENT  
LOOP  
COMPARATOR  
D
+
-
+
TIP  
-
V
R
R
REF  
1.25V  
1
V
EE  
gm  
1
-5V  
2
RING  
CASE 1  
CASE 2  
CASE 3  
DIGITAL MULTIPLEXER  
DET  
-
+
I
I
I
LONGITUDI-  
METAL-  
LONGITUDI-  
LIC  
NAL  
NAL  
HC5515  
FIGURE 17. LOOP CURRENT DETECTOR  
65  
HC5515  
transconductance amplifiers GT and GR. The output of GT  
and GR are the differential currents DI1 and DI2, which in  
turn feed the differential inputs of current sources IT and IR  
respectively. IT and IR have current gains of 250 single  
ended and 500 differentially, thus leading to a change in IT  
and IR that is equal to 500(DI) and 500(DI2).  
R
R
R
C
RT  
1
RT  
DT  
DR  
-
DET  
R
+
3
RING TRIP  
COMPARATOR  
TIP  
R
4
2
The circuit shown in Figure 19(B) illustrates the tip side of  
the longitudinal network. The advantages of a differential  
input current source are: improved noise since the noise due  
E
RG  
to current source 2I is now correlated, power savings due  
V
O
BAT  
to differential current gain and minimized offset error at the  
Operational Amplifier inputs via the two 5kresistors.  
RING  
RINGRLY  
HC5515  
RING  
RELAY  
Digital Logic Inputs  
Table 1 is the logic truth table for the TTL compatible logic  
input pins. The HC5515 has an enable input pin (E0) and  
two control inputs pins (C1, C2).  
FIGURE 18. RING TRIP CIRCUIT FOR BATTERY BACKED  
RINGING  
The enable pin E0 is used to enable or disable the DET  
output pin. The DET pin is enabled if E0 is at a logic level 0  
and disabled if E0 is at a logic level 1.  
Longitudinal Impedance  
The feedback loop described in Figure 19(A, B) realizes the  
desired longitudinal impedances from tip to ground and from  
ring to ground. Nominal longitudinal impedance is resistive  
and in the order of 22.  
A combination of the control pins C1 and C2 is used to  
select 1 of the 4 possible operating states. A description of  
each operating state and the control logic follow:  
In the presence of longitudinal currents this circuit  
attenuates the voltages that would otherwise appear at the  
tip and ring terminals, to levels well within the common mode  
range of the SLIC. In fact, longitudinal currents may exceed  
the programmed DC loop current without disturbing the  
SLIC’s VF transmission capabilities.  
Open Circuit State (C1 = 0, C2 = 0)  
In this state the SLIC is effectively off. All detectors and  
both the tip and ring line drive amplifiers are powered  
down, presenting a high impedance to the line. Power  
dissipation is at a minimum.  
The function of this circuit is to maintain the tip and ring  
Active State (C1 = 0, C2 = 1)  
voltages symmetrically around V  
/2, in the presence of  
BAT  
The tip output is capable of sourcing loop current and for  
open circuit conditions is about -4V from ground. The ring  
output is capable of sinking loop current and for open circuit  
longitudinal currents. The differential transconductance  
amplifiers G and G accomplish this by sourcing or sinking  
T
R
the required current to maintain V at V  
/2.  
C
BAT  
conditions is about V  
+4V. VF signal transmission is  
BAT  
When a longitudinal current is injected onto the tip and ring  
inputs, the voltage at VC moves from it’s equilibrium value  
VBAT/2. When VC changes by the amount DVC, this change  
appears between the input terminals of the differential  
normal. The loop current detector is active, E0 determines if  
the detector is gated to the DET output.  
I
LONG  
TIP CURRENT SOURCE  
WITH DIFFERENTIAL INPUTS  
I
I
LONG  
T
TIP  
20Ω  
+
I  
1
I  
TIP  
1
V  
T
-
5kΩ  
5kΩ  
G
T
R
-
LARGE  
+
R
LARGE  
V
/2  
I  
BAT  
+
I  
1
1
V
C
-
V
C
V
/2  
BAT  
G
R
R
LARGE  
2I  
0
I
LONG  
R
I  
I  
LARGE  
2
2
RING  
HC5515  
+
TIP DIFFERENTIAL  
TRANSCONDUCTANCE  
AMPLIFIER  
I
R
RING  
I
V  
LONG  
R
-
FIGURE 19A.  
FIGURE 19. LONGITUDINAL IMPEDANCE NETWORK  
FIGURE 19B.  
66  
HC5515  
Surge Voltage Protection  
Ringing State (C1 = 1, C2 = 0)  
The ring relay driver and the ring trip detector are activated.  
Both the tip and ring line drive amplifiers are powered down.  
Both tip and ring are disconnected from the line via the  
external ring relay.  
The HC5515 must be protected against surge voltages and  
power crosses. Refer to “Maximum Ratings” TIPX and  
RINGX terminals for maximum allowable transient tip and  
ring voltages. The protection circuit shown in Figure 20  
utilizes diodes together with a clamping device to protect tip  
and ring against high voltage transients.  
Standby State (C1 = 1, C2 = 1)  
Both the tip and ring line drive amplifiers are powered down.  
Internal resistors are connected between tip to ground and ring  
Positive transients on tip or ring are clamped to within a  
couple of volts above ground via diodes D and D . Under  
1
2
to V  
to allow loop current detect in an off-hook condition.  
BAT  
normal operating conditions D and D are reverse biased  
1
2
The loop current and ground key detectors are both active, E0  
determines if the detector is gated to the DET output.  
and out of the circuit.  
Negative transients on tip and ring are clamped to within a  
couple of volts below ground via diodes D and D with the  
help of a Surgector. The Surgector is required to block  
AC Transmission Circuit Stability  
To ensure stability of the AC transmission feedback loop two  
3
4
conduction through diodes D and D under normal  
3
4
compensation capacitors C and C  
are required.  
TC RC  
operating conditions and allows negative surges to be  
returned to system ground.  
Figure 20 (Application Circuit) illustrates their use.  
Recommended value is 2200pF.  
The fuse resistors (R ) serve a dual purpose of being  
F
nondestructive power dissipaters during surge and fuses  
when the line in exposed to a power cross.  
AC-DC Separation Capacitor, C  
The high pass filter capacitor connected between pins HPT  
and HPR provides the separation between circuits sensing  
tip to ring DC conditions and circuits processing AC signals.  
HP  
Power-Up Sequence  
A 10nf C  
3dB break point at 48Hz. Where:  
will position the low end frequency response  
The HC5515 has no required power-up sequence. This is a  
result of the Dielectrically Isolated (DI) process used in the  
fabrication of the part. By using the DI process, care is no  
longer required to insure that the substrate be kept at the  
most negative potential as with junction isolated ICs.  
HP  
1
(EQ. 28)  
f
= ----------------------------------------------------  
3dB  
(2 • π • R  
C  
)
HP  
HP  
where R  
= 330k.  
HP  
Printed Circuit Board Layout  
Thermal Shutdown Protection  
Care in the printed circuit board layout is essential for proper  
operation. All connections to the RSN pin should be made as  
close to the device pin as possible, to limit the interference  
that might be injected into the RSN terminal. It is good  
practice to surround the RSN pin with a ground plane.  
The HC5515’s thermal shutdown protection is invoked if a  
fault condition on the tip or ring causes the temperature of  
o
the die to exceed 160 C. If this happens, the SLIC goes into  
a high impedance state and will remain there until the  
temperature of the die cools down by about 20 C. The SLIC  
will return back to its normal operating mode, providing the  
fault condition has been removed.  
o
The analog and digital grounds should be tied together at  
the device.  
SLIC Operating States  
TABLE 1. LOGIC TRUTH TABLE  
SLIC OPERATING STATE ACTIVE DETECTOR  
E0  
0
C1  
0
C2  
0
DET OUTPUT  
Logic Level High  
Open Circuit  
Active  
No Active Detector  
Loop Current Detector  
Ring Trip Detector  
0
0
1
Loop Current Status  
Ring Trip Status  
0
1
0
Ringing  
0
1
1
Standby  
Loop Current Detector  
Loop Current Status  
1
1
1
1
0
0
1
1
0
1
0
1
Open Circuit  
Active  
No Active Detector  
Loop Current Detector  
Ring Trip Detector  
Logic Level High  
Ringing  
Standby  
Loop Current Detector  
67  
HC5515  
in Figure 7. Note: I  
DCMET  
resistor between tip and ring.  
is established with a series 600Ω  
Notes  
2. Overload Level (Two-Wire port) - The overload level is  
specified at the 2-wire port (V ) with the signal source at the  
14. Two-Wire to Four-Wire (Metallic to V ) Voltage Gain - The  
TX  
TR0  
2-wire to 4-wire (metallic to V ) voltage gain is computed  
TX  
4-wire receive port (E ). I  
= 30mA, R = 4k,  
RX DCMET  
SG  
using the following equation.  
increase the amplitude of E until 1% THD is measured at  
RX  
V
. Reference Figure 1.  
TRO  
G
= (V /V ), E = 0dBm0, V , V , and E are defined  
TX TR TX TR  
2-4  
in Figure 7.  
G
G
3. LongitudinalImpedance - The longitudinal impedance is  
computed using the following equations, where TIP and RING  
voltages are referenced to ground. L , L , V , V , A and  
15. Current Gain RSN to Metallic - The current gain RSN to  
Metallic is computed using the following equation:  
ZT ZR  
T
R
R
A are defined in Figure 2.  
T
K = I [(R  
+ R  
)/(V  
DC2  
- V  
)] K, I , R  
DC1  
, R ,  
DC2  
M
DC1  
RDC  
are defined in Figure 8.  
RSN  
RSN  
M
(TIP) L = V /A ,  
V
and V  
ZT  
T
T
RDC  
(RING) L = V /A ,  
ZR  
R
R
16. Two-Wire to Four-Wire Frequency Response - The 2-wire to  
4-wire frequency response is measured with respect to  
where: E = 1V  
RMS  
(0Hz to 100Hz).  
L
E
= 0dBm at 1.0kHz, E  
= 0V, I = 23mA. The fre-  
G
RX  
DCMET  
4. Longitudinal Current Limit (Off-Hook Active) - Off-Hook  
(Active, C = 1, C = 0) longitudinal current limit is determined  
quency response is computed using the following equation:  
1
2
F
= 20 log (V /V ), vary frequency from 300Hz to  
2-4  
TX TR  
by increasing the amplitude of E (Figure 3A) until the 2-wire  
longitudinal balance drops below 45dB. DET pin remains low  
(no false detection).  
L
3.4kHz and compare to 1kHz reading.  
V
, V , and E are defined in Figure 9.  
TX TR  
G
5. Longitudinal Current Limit (On-Hook Standby) - On-Hook  
17. Four-Wire to Two-Wire Frequency Response - The 4-wire to  
(Active, C = 1, C = 1) longitudinal current limit is determined  
2-wire frequency response is measured with respect to  
1
2
by increasing the amplitude of E (Figure 3B) until the 2-wire  
longitudinal balance drops below 45dB. DET pin remains high  
(no false detection).  
E
= 0dBm at 1.0kHz, E = 0V, I = 23mA. The  
L
RX  
G
DCMET  
frequency response is computed using the following equation:  
F
= 20 log (V /E ), vary frequency from 300Hz to  
4-2  
TR RX  
6. Longitudinal to Metallic Balance - The longitudinal to metallic  
3.4kHz and compare to 1kHz reading.  
balance is computed using the following equation:  
V
and E are defined in Figure 9.  
TR  
RX  
BLME = 20 log (E /V ), where: E and V  
TR TR  
Figure 4.  
are defined in  
L
L
18. Four-Wire to Four-Wire Frequency Response - The 4-wire  
to 4-wire frequency response is measured with respect to  
7. Metallic to Longitudinal FCC Part 68, Para 68.310 - The  
E
= 0dBm at 1.0kHz, E = 0V, I = 23mA. The  
RX  
G
DCMET  
metallic to longitudinal balance is defined in this spec.  
frequency response is computed using the following equation:  
F
= 20 log (V /E ), vary frequency from 300Hz to  
8. Longitudinal to Four-Wire Balance - The longitudinal to 4-wire  
4-4  
TX RX  
3.4kHz and compare to 1kHz reading.  
balance is computed using the following equation:  
V
and E are defined in Figure 9.  
BLFE = 20 log (E /V ),: E and V are defined in Figure 4.  
TX  
RX  
L
TX  
L
TX  
19. Two-Wire to Four-Wire Insertion Loss - The 2-wire to 4-wire  
9. Metallic to Longitudinal Balance - The metallic to longitudi-  
insertion loss is measured with respect to E = 0dBm at 1.0kHz  
nal balance is computed using the following equation:  
G
input signal, E  
the following equation:  
= 0, I = 23mA and is computed using  
DCMET  
RX  
BMLE = 20 log (E /V ), E  
TR RX  
= 0,  
L
where: E , V and E  
are defined in Figure 5.  
TR RX  
L
L
= 20 log (V /V )  
TX TR  
2-4  
10. Four-Wire to Longitudinal Balance - The 4-wire to longitudinal  
where: V , V , and E are defined in Figure 9. (Note: The  
TX TR  
G
balance is computed using the following equation:  
fuse resistors, R , impact the insertion loss. The specified  
F
insertion loss is for R = 0).  
BFLE = 20 log (E /V ), E = source is removed.  
RX TR  
F
L
20. Four-Wire to Two-Wire Insertion Loss - The 4-wire to 2-wire  
where: E , V and E are defined in Figure 5.  
RX TR  
L
insertion loss is measured based upon E  
= 0dBm, 1.0kHz  
= 23mA and is computed using  
RX  
11. Two-Wire Return Loss - The 2-wire return loss is computed  
input signal, E = 0, I  
G
DCMET  
using the following equation:  
the following equation:  
r = -20 log (2V /V ).  
M
S
L
= 20 log (V /E ),  
TR RX  
4-2  
where: Z = The desired impedance; e.g., the characteristic  
D
impedance of the line, nominally 600Ω. (Reference Figure 6).  
where: V and E  
are defined in Figure 9.  
TR RX  
21. Two-Wire to Four-Wire Gain Tracking - The 2-wire to 4-wire  
12. Overload Level (4-Wire port) - The overload level is specified  
gain tracking is referenced to measurements taken for  
at the 4-wire transmit port (V  
) with the signal source (E ) at  
TXO  
G
E
= -10dBm, 1.0kHz signal, E  
= 0, I = 23mA and is  
G
RX  
DCMET  
the 2-wire port, I  
= 23mA, Z = 20k, R  
= 4k(Refer-  
DCMET  
L
SG  
computed using the following equation.  
ence Figure 7). Increase the amplitude of E until 1% THD is  
G
G
= 20 log (V /V ) vary amplitude -40dBm to +3dBm, or  
measured at V  
TXO  
. Note that the gain from the 2-wire port to  
2-4  
TX TR  
-55dBm to -40dBm and compare to -10dBm reading.  
the 4-wire port is equal to 1.  
V
and V are defined in Figure 9.  
TR  
TX  
13. Output Offset Voltage - The output offset voltage is specified  
with the following conditions: E = 0, I  
= 23mA, Z = ∞  
G
DCMET  
L
22. Four-Wire to Two-Wire Gain Tracking - The 4-wire to 2-wire  
and is measured at V . E , I  
, V and Z are defined  
TX  
G
DCMET TX  
L
gain tracking is referenced to measurements taken for  
68  
HC5515  
E
= -10dBm, 1.0kHz signal, E = 0, I  
DCMET  
= 23mA and is  
at 1kHz, I  
= 23mA. Measurement taken at V  
.
TX  
RX  
G
DCMET  
(Reference Figure 7).  
computed using the following equation:  
G
= 20 log (V /E ) vary amplitude -40dBm to +3dBm,  
TR RX  
26. Harmonic Distortion (4-Wire to 2-Wire) - The harmonic dis-  
4-2  
or -55dBm to -40dBm and compare to -10dBm reading.  
tortion is measured with the following conditions. E  
= 0dBm0.  
= 23mA.  
RX  
Vary frequency between 300Hz and 3.4kHz, I  
DCMET  
V
and E are defined in Figure 9. The level is specified at  
TR  
RX  
Measurement taken at V . (Reference Figure 9).  
TR  
the 4-wire receive port and referenced to a 600impedance  
level.  
27. Constant Loop Current - The constant loop current is  
calculated using the following equation:  
23. Two-Wire Idle Channel Noise - The 2-wire idle channel noise  
at V  
is specified with the 2-wire port terminated in 600(R )  
I
= 2500 / (R  
DC1  
+ R  
).  
DC2  
TR  
L
L
and with the 4-wire receive port grounded (Reference Figure 10).  
28. Standby State Loop Current - The standby state loop current  
24. Four-Wire Idle Channel Noise - The 4-wire idle channel noise  
is calculated using the following equation:  
at V is specified with the 2-wire port terminated in 600(R ).  
The noise specification is with respect to a 600impedance  
TX  
L
o
I
= [|V  
| - 3] / [R +1800], T = 25 C.  
L
BAT  
L
A
level at V . The 4-wire receive port is grounded (Reference  
Figure 10).  
TX  
29. Power Supply Rejection Ratio - Inject a 100mV  
signal  
RMS  
supplies. PSRR is  
(50Hz to 4kHz) on V  
, V  
and V  
BAT  
CC EE  
computed using the following equation:  
25. Harmonic Distortion (2-Wire to 4-Wire) - The harmonic dis-  
tortion is measured with the following conditions. E = 0dBm  
G
PSRR = 20 log (V /V ). V and V are defined in Figure 11.  
TX IN TX IN  
Pin Descriptions  
PLCC PDIP  
SYMBOL  
DESCRIPTION  
Internally connected to output of RING power amplifier.  
1
RING  
SENSE  
2
7
BGND  
Battery Ground - To be connected to zero potential. All loop current and longitudinal current flow from this ground.  
Internally separate from AGND but it is recommended that it is connected to the same potential as AGND.  
4
5
6
7
8
9
8
V
+5V power supply.  
CC  
9
RINGRLY Ring relay driver output.  
10  
11  
12  
13  
V
Battery supply voltage, -24V to -56V.  
BAT  
R
Saturation guard programming resistor pin.  
SG  
NC  
E0  
This pin is used during manufacturing.This pin is to be left open for proper SLIC operation .  
TTL compatible logic input. Enables the DET output when set to logic level zero and disables DET output when set to  
a logic level one.  
11  
14  
DET  
Detector output. TTL compatible logic output. A zero logic level indicates that the selected detector was triggered (see  
Truth Table for selection of Ground Key detector, Loop Current detector or the Ring Trip detector). The DET output is  
an open collector with an internal pull-up of approximately 15kto V  
CC.  
12  
13  
14  
15  
16  
17  
C2  
C1  
TTL compatible logic input. The logic states of C1 and C2 determine the operating states (Open Circuit, Active, Ringing  
or Standby) of the SLIC.  
TTL compatible logic input. The logic states of C1 and C2 determine the operating states (Open Circuit, Active, Ringing  
or Standby) of the SLIC.  
R
DC feed current programming resistor pin. Constant current feed is programmed by resistors R  
DC1  
and R  
DC2  
DC  
connected in series from this pin to the receive summing node (RSN). The resistor junction point is decoupled to AGND  
to isolate the AC signal components.  
15  
16  
18  
19  
AGND  
RSN  
Analog ground.  
Receive Summing Node. The AC and DC current flowing into this pin establishes the metallic loop current that flows  
between tip and ring. The magnitude of the metallic loop current is 1000 times greater than the current into the RSN  
pin. The constant current programming resistors and the networks for program receive gain and 2-wire impedance all  
connect to this pin.  
18  
19  
20  
21  
V
V
-5V power supply.  
EE  
Transmit audio output. This output is equivalent to the TIP to RING metallic voltage. The network for programming the  
2-wire input impedance connects between this pin and RSN.  
TX  
69  
HC5515  
Pin Descriptions (Continued)  
PLCC PDIP  
SYMBOL  
DESCRIPTION  
20  
21  
22  
23  
25  
22  
HPR  
RING side of AC/DC separation capacitor C . C is required to properly separate the ring AC current from the DC  
HP HP  
loop current. The other end of C is connected to HPT.  
HP  
1
HPT  
RD  
DT  
TIP side of AC/DC separation capacitor C . C is required to properly separate the tip AC current from the DC loop  
HP HP  
current. The other end of C is connected to HPR.  
HP  
2
Loop current programming resistor. Resistor R sets the trigger level for the loop current detect circuit. A filter capacitor  
D
C
is also connected between this pin and V .  
D
EE  
3
Input to ring trip comparator. Ring trip detection is accomplished by connecting an external network to a comparator  
in the SLIC with inputs DT and DR.  
4
DR  
Input to ring trip comparator. Ring trip detection is accomplished by connecting an external network to a comparator  
in the SLIC with inputs DT and DR.  
26  
27  
28  
TIP  
Internally connected to output of tip power amplifier.  
Output of tip power amplifier.  
SENSE  
5
6
TIPX  
RINGX  
N/C  
Output of ring power amplifier.  
3, 10  
No internal connection.  
17, 24  
Pinouts  
HC5515  
(PLCC)  
HC5515  
(PDIP)  
TOP VIEW  
TOP VIEW  
HPT  
RD  
1
2
22  
21  
HPR  
V
TX  
EE  
DT  
3
20 V  
4
3
2
1
28 27 26  
DR  
4
19 RSN  
TIPX  
RINGX  
BGND  
5
18 AGND  
RINGRLY  
5
6
25 DR  
24 N/C  
23 DT  
6
17  
R
DC  
7
16 C1  
15 C2  
V
BAT  
V
8
CC  
R
7
SG  
14  
13  
12  
RINGRLY  
9
DET  
NC  
8
22 RD  
V
10  
11  
E0  
BAT  
9
E0  
21 HPT  
20 HPR  
R
NC  
SG  
10  
11  
N/C  
DET  
19 V  
TX  
12 13 14 15 16 17 18  
70  
HC5515  
Application Circuit  
C
(NOTE 32)  
HP  
R
C
R
RT  
RT  
1
R
U
FB  
R
R
3
D
U
1
21 HPT  
HPR 20  
2
-5V  
R
R
R
TX  
2
4
22 RD  
23 DT  
V
V
19  
18  
-
TX  
+
-5V  
R
R
B
EE  
T
V
BAT  
R
RX  
25 DR  
RSN 16  
AGND 15  
PTC  
PTC  
R
F1  
27 TIPX  
R
DC1  
D
D
TIP  
D
1
3
CODEC/FILTER  
C
TC  
2 BGND  
R
14  
DC  
NOTE 31  
R
C
DC  
DC2  
C
4 V  
CC  
C1 13  
C2 12  
RC  
D
RING  
4
2
28 RINGX  
6 V  
R
Surgector  
F2  
V
BAT  
K
A
DET 11  
BAT  
G
5 RINGRLY  
E
9
8
O
D
5
R
SG  
E
7 R  
SG  
1
RINGING  
+ 90V  
+5V  
OR  
12V  
RELAY  
-5V  
(V  
)
RMS  
BAT  
D
6
R , R 200k, 5%, 1/4W  
U1 SLIC (Subscriber Line Interface Circuit)  
HC5515  
1
3
R
R
910k, 5%, 1/4W  
2
U2 Combination CODEC/Filter e.g.  
CD22354A or Programmable CODEC/  
Filter, e.g. SLAC  
1.2M, 5%, 1/4W  
18.7k,1%, 1/4W  
39k, 5%, 1/4W  
41.2k, 5%, 1/4W  
20.0k, 1%, 1/4W  
280k, 1%, 1/4W  
562k, 1%, 1/4W  
20k, 1%, 1/4W  
150, 5%, 2W  
4
R
B
R
D
C
1.5µF, 20%, 10V  
DC  
R
, R  
DC1 DC2  
C
10nF, 20%, 100V (Note 2)  
0.39µF, 20%, 100V  
2200pF, 20%, 100V  
HP  
R
FB  
C
RT  
R
RX  
C
, C  
TC RC  
R
T
TX  
RT  
Relay Relay, 2C Contacts, 5V or 12V Coil  
- D IN4007 Diode  
R
D
1
5
R
Surgector SGT27S10  
R
V
= -28V, R  
= -48V, R  
= ∞  
SG BAT  
SG  
SG  
PTC Polyswitch TR600-150  
V
= 4.0k, 1/4W 5%  
BAT  
D
Diode, 1N4454  
6
R
, R  
Line Resistor, 20, 1% Match, 2 W  
Carbon column resistor or thick film on  
ceramic  
F1 F2  
NOTES:  
30. It is recommended that the anodes of D and D be shorted to ground through a battery referenced surgector (SGT27S10).  
3
4
31. To meet the specified 25dB 2-wire return loss at 200Hz, C  
needs to be 20nF, 20%, 100V.  
HP  
FIGURE 20. APPLICATION CIRCUIT  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
71  

相关型号:

HC5515_06

ITU CO/PABX SLIC with Low Power Standby
INTERSIL

HC5517

3 REN Ringing SLIC For ISDN Modem/TA and WLL
INTERSIL

HC55171

5 REN Ringing SLIC for ISDN Modem/TA and WLL
INTERSIL

HC55171B

Low Cost 5 REN Ringing SLIC for ISDN Modem/TA and WL
INTERSIL

HC55171BIB

Low Cost 5 REN Ringing SLIC for ISDN Modem/TA and WL
INTERSIL

HC55171BIM

Low Cost 5 REN Ringing SLIC for ISDN Modem/TA and WL
INTERSIL

HC55171BIM96

TELECOM-SLIC, PQCC28
RENESAS

HC55171CB

5 REN Ringing SLIC for ISDN Modem/TA and WLL
INTERSIL

HC55171CB

TELECOM-SLIC, PDSO28
RENESAS

HC55171CB

SLIC, PDSO28,
ROCHESTER

HC55171CM

5 REN Ringing SLIC for ISDN Modem/TA and WLL
INTERSIL

HC55171CM

SLIC, PQCC28,
ROCHESTER