82573 [INTEL]

GbE Controllers; 千兆以太网控制器
82573
型号: 82573
厂家: INTEL    INTEL
描述:

GbE Controllers
千兆以太网控制器

控制器 以太网
文件: 总39页 (文件大小:497K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
82573 Family of GbE Controllers  
Datasheet  
Product Features  
„ PCIe*  
— x1 PCIe* interface on ICH7 or MCH devices  
„ Manageability  
— Intel® Active Management Technology (Intel®  
AMT) support (82573E only)  
— Peak bandwidth: 2 Gb/s per direction  
— Power management  
— High bandwidth density per pin  
— Alerting Standards Format 2.0 and advanced  
pass through support (82573E/V only)  
— Boot ROM Preboot eXecution Environment  
(PXE) Flash interface support  
„ MAC  
— Optimized transmit and receive queues  
— IEEE 802.3x compliant flow control with  
software controlled pause times and threshold  
values  
— Compliance with PCI Power Management 1.1  
and Advanced Configuration and Power  
Interface (ACPI) 2.0 register set compliant  
— Wake on LAN support  
— Caches up to 64 packet descriptors per queue  
— Programmable host memory receive buffers  
(256 bytes to 16 KB) and cache line size (16  
bytes to 256 bytes)  
„ Additional  
— Three activity and link indication outputs that  
directly drive LEDs  
— Programmable LEDs  
— 32 KB configurable transmit and receive FIFO  
— Internal PLL for clock generation that can use  
buffer  
a 25 MHz crystal  
— Mechanism available for reducing interrupts  
generated by transmit and receive operation  
— Descriptor ring management hardware for  
transmit and receive  
— Power saving feature for the 82573L. During  
the L1 and L2 link states, the 82573L asserts  
the Clock Request signal (CLKREQ#) to  
indicate that its PCIe* reference clock can be  
gated  
— Optimized descriptor fetching and write-back  
mechanisms  
— On-chip power control circuitry  
— Loopback capabilities  
— Wide, pipelined internal data path architecture  
„ PHY  
— JTAG (IEEE 1149.1) Test Access Port (TAP)  
— Integrated PHY for 10/100/1000 Mb/s full and  
built in silicon  
half duplex operation  
„ Technology  
— IEEE 802.3ab auto negotiation support  
— IEEE 802.3ab PHY compliance and  
compatibility  
— Lead-free 196-pin Thin and Fine Pitch Ball Grid  
Array (TF-BGA) package  
— Operating temperature: 0° C to 70° C (with  
external regulators)  
— DSP architecture implements digital  
adaptive equalization, echo cancellation,  
and cross-talk cancellation  
— Operating temperature: 0° to 55° C (with on-  
die 2.5V regulator)  
— Storage temperature -40° C to 125° C  
„ Host Offloading  
— Transmit and receive IP, TCP and UDP  
checksum off-loading capabilities  
— Transmit TCP segmentation, IPv6 offloading,  
and advanced packet filtering  
— IEEE 802.1q VLAN support with VLAN tag  
insertion, stripping and packet filtering for up  
to 4096 VLAN tags  
— Descriptor ring management hardware for  
transmit and receive  
Order Number: 315514-002  
Revision 2.5  
Legal Lines and Disclaimers  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR  
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS  
OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING  
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,  
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for  
use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.  
Intel may make changes to specifications and product descriptions at any time, without notice.  
Intel Corporation may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the  
presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel  
or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights.  
IMPORTANT - PLEASE READ BEFORE INSTALLING OR USING INTEL® PRE-RELEASE PRODUCTS.  
Please review the terms at http://www.intel.com/netcomms/prerelease_terms.htm carefully before using any Intel® pre-release product, including any  
evaluation, development or reference hardware and/or software product (collectively, “Pre-Release Product”). By using the Pre-Release Product, you  
indicate your acceptance of these terms, which constitute the agreement (the “Agreement”) between you and Intel Corporation (“Intel”). In the event  
that you do not agree with any of these terms and conditions, do not use or install the Pre-Release Product and promptly return it unused to Intel.  
Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.Intel reserves these for  
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.  
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different  
processor families. See http://www.intel.com/products/processor_number for details.  
This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not  
finalize a design with this information.  
The 82573 GbE Controllers may contain design defects or errors known as errata which may cause the product to deviate from published specifications.  
Current characterized errata are available on request.  
®
®
Hyper-Threading Technology requires a computer system with an Intel Pentium 4 processor supporting HT Technology and a HT Technology enabled  
chipset, BIOS and operating system. Performance will vary depending on the specific hardware and software you use. See http://www.intel.com/  
products/ht/Hyperthreading_more.htm for additional information.  
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.  
Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling  
1-800-548-4725 or by visiting Intel's website at http://www.intel.com.  
Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.  
*Other names and brands may be claimed as the property of others.  
Copyright © 2007, Intel Corporation. All Rights Reserved.  
2
Datasheet—82573  
Contents  
1.0 Introduction..............................................................................................................7  
1.1  
1.2  
1.3  
1.4  
Document Scope.................................................................................................8  
Reference Documents..........................................................................................8  
82573 Architecture .............................................................................................9  
Product Codes for the 82573............................................................................... 10  
2.0 Signal Descriptions.................................................................................................. 10  
2.1  
2.2  
2.3  
2.4  
2.5  
Signal Type Definitions....................................................................................... 10  
PCIe* Data Signals............................................................................................ 11  
PCIe* Miscellaneous Signals ............................................................................... 11  
Non-Volatile Memory Interface Signals................................................................. 12  
Miscellaneous Signals ........................................................................................ 12  
2.5.1 Reset and Power-down Signals................................................................. 12  
2.5.2 System Management Bus (SMBus) Signals................................................. 13  
2.5.3 LED Signals........................................................................................... 13  
2.5.4 Other Signals......................................................................................... 13  
PHY Analog and Crystal Signals........................................................................... 14  
Test Signals...................................................................................................... 15  
2.7.1 MAC Test Signals.................................................................................... 15  
2.7.2 PHY Test Signals .................................................................................... 15  
2.7.3 Other Test Signals.................................................................................. 15  
Power Signals................................................................................................... 16  
2.8.1 Power Support Signals ............................................................................ 16  
2.8.2 Digital and Analog Power Supply Signals ................................................... 16  
Grounds and No Connects .................................................................................. 16  
2.6  
2.7  
2.8  
2.9  
3.0 Voltage, Temperature, and Timing Specifications .................................................... 17  
3.1  
3.2  
3.3  
Absolute Maximum Ratings................................................................................. 17  
Recommended Operating Conditions.................................................................... 17  
Power Supply Connections.................................................................................. 17  
3.3.1 External LVR Power Delivery.................................................................... 18  
3.3.2 Power Sequencing with External Regulators ............................................... 19  
3.3.3 Internally Generated Power Delivery......................................................... 20  
3.3.4 Internal LVR Power Sequencing................................................................ 21  
DC and AC Specifications.................................................................................... 25  
External Interfaces............................................................................................ 28  
3.5.1 Crystal.................................................................................................. 28  
3.5.2 External Clock Oscillator ......................................................................... 28  
3.5.3 Non-Volatile Memory (NVM) Interface: EEPROM ......................................... 29  
3.4  
3.5  
4.0 Package and Pinout Information ............................................................................. 30  
4.1  
4.2  
4.3  
Package Information.......................................................................................... 30  
Thermal Specifications ....................................................................................... 32  
Pinout Information ............................................................................................ 33  
4.3.1 PCIe Bus Interface Signals....................................................................... 33  
4.3.2 Non-Volatile Memory Interface Signals...................................................... 34  
4.3.3 Miscellaneous Signals ............................................................................. 34  
4.3.4 PHY Signals........................................................................................... 35  
4.3.5 Test Signals........................................................................................... 35  
4.3.6 Power Supply Signals.............................................................................. 36  
Visual Pin Assignments....................................................................................... 38  
4.4  
3
82573—Datasheet  
Figures  
1
2
3
4
5
6
7
8
9
82573 Block Diagram................................................................................................. 9  
Minimum Requirements for Power Supply Sequencing ...................................................20  
Power Supply Sequencing..........................................................................................21  
82573 2.5V and 1.2V LVR Schematic ..........................................................................25  
External Clock Oscillator Connectivity to the 82573.......................................................29  
82573 Controller TF-BGA Package Ball Pad Dimensions..................................................30  
82573 Mechanical Specifications.................................................................................31  
82573E and 82573V Gigabit Ethernet Controller Pinout..................................................38  
82573L Gigabit Ethernet Controller Pinout....................................................................39  
4
Datasheet—82573  
Tables  
1
2
3
4
5
6
7
8
9
Absolute Maximum Ratings ....................................................................................... 17  
Recommended Operating Conditions........................................................................... 17  
3.3V External Supply Voltage Ramp and Sequencing Recommendations .......................... 18  
2.5V External Supply Voltage Ramp and Sequencing Recommendations .......................... 18  
1.2V External Supply Voltage Ramp and Sequencing Recommendations .......................... 19  
3.3V Internal Power Supply Parameters ...................................................................... 20  
82573 Bill of Materials (BOM) of Components for Internal Regulator................................ 22  
2.5V Internal LVR Specification.................................................................................. 22  
1.2V Internal LVR Specification.................................................................................. 23  
10 PNP Specification ..................................................................................................... 23  
11 82573E and 82573V Maximum Measured External Power Characteristics ......................... 25  
12 82573E and 82573V Typical Measured External Power Characteristics............................. 26  
13 82573E and 82573V 2.5V Internal Power Regulator Numbers......................................... 26  
14 82573L Maximum Measured Power Characteristics ....................................................... 27  
15 82573L Measured Power Characteristics...................................................................... 27  
16 DC Specifications ..................................................................................................... 27  
17 LED DC Specifications............................................................................................... 28  
18 Crystal Specifications................................................................................................ 28  
19 Specification for External Clock Oscillator .................................................................... 29  
20 NVM Interface Timing Specifications for EEPROM.......................................................... 29  
21 Thermal Resistance Values........................................................................................ 33  
22 PCIe Data Signals .................................................................................................... 33  
23 PCI Express Miscellaneous Signals.............................................................................. 34  
24 Non-Volatile Memory Interface Signals........................................................................ 34  
25 Reset and Power-down Signals .................................................................................. 34  
26 SMBus Signals......................................................................................................... 34  
27 LED Signals............................................................................................................. 34  
28 Other Signals .......................................................................................................... 34  
29 Analog and Crystal Signals........................................................................................ 35  
30 82573E/V MAC Test Signals....................................................................................... 35  
31 82573L MAC Test Signals.......................................................................................... 35  
32 PHY Test Interface Signals ........................................................................................ 35  
33 82573E/V Other Test Signals..................................................................................... 36  
34 Power Support Signals.............................................................................................. 36  
35 Power Signals.......................................................................................................... 36  
36 Ground Signals........................................................................................................ 37  
37 82573E/V No Connect Signals.................................................................................... 37  
38 82573L No Connect Signals....................................................................................... 37  
5
82573—Datasheet  
Revision History  
Date  
Jan 2007  
Revision Description  
2.5  
Updated the PHY_REF signal description in Section 2.6.  
Added document order number.  
Corrected the AUX_PWR pin (C6) description for the 82573E/V.  
Updated Table 18 “Crystal Specifications.  
Updated the visual pin assignments for the 82573L.  
Major edit all sections.  
Oct 2006  
2.4  
Chapter 1, Introduction, corrected note.  
3.5.1, Removed line item  
August 2006  
2.3  
3.5.2, Corrected title Heading  
June 2006  
Feb 2006  
Sept 2005  
June 2005  
2.2  
2.1  
2.0  
1.5  
Revised Section 3.3, ’PCIe Miscellaneous Signals", updated Intel logo.  
Added Section 5.2, ’Thermal Specifications".”  
Integrated 82573L information into this document.  
Initial public release.  
6
Datasheet—82573  
1.0  
Introduction  
Note:  
Unless specifically noted, 82573 refers to the Intel® 82573E, 82573V and 82573L GbE  
controllers.  
82573 GbE controllers are single, compact components with integrated Gigabit  
Ethernet Media Access Control (MAC) and Physical Layer (PHY) functions. These  
devices use PCIe* architecture (Revision 1.0a). For desktop, workstation, and value  
server network designs with critical space constraints, the 82573 enables a GbE  
implementation in a very small area.  
The 82573 provides a standard IEEE 802.3 Ethernet interface for 1000BASE-T,  
100BASE-TX, and 10BASE-T applications (802.3, 802.3u, and 802.3ab, respectively).  
In addition to managing MAC and PHY Ethernet layer functions, the 82573 manages  
PCIe* packet traffic across its transaction, link, and physical and logical layers.  
The 82573E contains a dedicated microcontroller for manageability with an on-board  
Intel® Active Management Technology (Intel® AMT) enabling network. This enables  
manageability implementations required by information technology personnel for out-  
of-band management, remote troubleshooting and recovery, asset management, and  
non-volatile storage. Intel® AMT is the first step towards a complete Intel® Cross-  
Platform Manageability Program (Intel® CPMP), which is a business and technology  
initiative to deliver consistent management capabilities, protocols, and interfaces  
across all Intel platforms.  
The 82573E and 82573V GbE controllers have an integrated System Management Bus  
(SMBus) port enabling industry standards, such as the Alert Standard Forum (ASF) 2.0.  
With SMBus, management packets can be routed to or from a management processor.  
In addition, integrated ASF 2.0 circuitry provides alerting and capabilities with  
standardized interfaces.  
The 82573 with PCIe* architecture is designed for high performance and low memory  
latency. The device is optimized to connect to a system I/O Control Hub (ICH7) using  
one PCIe* lane. Alternatively, the 82573 is able to connect to a Memory Control Hub  
(MCH) device with a PCIe* interface.  
Wide internal data paths eliminate performance bottlenecks by efficiently handling  
large address and data words. The 82573 efficiently handles packets with minimum  
latency by combining a parallel and pipelined logic architecture optimized for GbE and  
independent transmit and receive queues. The 82573 also includes advanced interrupt  
handling features and uses efficient ring buffer descriptor data structures, with up to 64  
packet descriptors per queue cached on chip. A 32-KB on-chip packet buffer maintains  
superior performance. In addition, using hardware acceleration, the 82573 offloads  
tasks from the host (for example, TCP/UDP/IP checksum calculations and TCP  
segmentation).  
The 82573L features low power management. During the L1 and L2 link states, the  
82573L asserts the Clock Request signal (CLKREQ#) to indicate that its PCIe*  
reference clock can be gated.  
The 82573 is packaged in a 15 mm X 15 mm, 196-Ball Grid Array (BGA).  
7
82573—Datasheet  
1.1  
1.2  
Document Scope  
This document contains targeted datasheet specifications for the 82573 GbE controller,  
including signal descriptions, DC and AC parameters, packaging data, and pinout  
information.  
Reference Documents  
This application assumes that the designer is acquainted with high-speed design and  
board layout techniques. The following documents provide additional information:  
• IEEE Standard 802.3, 2000 Edition. Institute of Electrical and Electronics Engineers  
(IEEE).  
• PCI Express Base Specification, Revision 1.0a. PCI Special Interest Group.  
• PCI Express Card Electromechanical Specification, Revision 1.0a. PCI Special  
Interest Group.  
• PCI Bus Power Management Interface Specification, Revision 1.1. PCI Special  
Interest Group.  
• Intel Ethernet Controller Timing Device Selection Guide. Intel Corporation.  
• 82573 NVM Map and Programming Information Guide. Intel Corporation.  
• 82573/82562 Dual Footprint Design Guide. Intel Corporation.  
• PCIe* Family of Gigabit Ethernet Controllers Software Developer’s Manual. Intel  
Corporation.  
• 82573 Family GbE Controllers Specification Update. Intel Corporation.  
8
Datasheet—82573  
1.3  
82573 Architecture  
Figure 1.  
82573 Block Diagram  
PCIe* Core  
NVM  
Slave  
Access  
Logic  
DMA Function  
Descriptor Management  
32 KB  
Packet  
RAM  
Control  
Status  
Logic  
Manage-  
ability  
(82573E/  
Receive  
Filters  
Transmit  
Switch  
82573V only)  
Statistics  
MAC  
PHY  
Note:  
The 82573L does not support manageability.  
9
82573—Datasheet  
1.4  
Product Codes for the 82573  
Leaded/  
Unleaded  
Device  
Top Marking  
Product Features  
82573E with Intel® AMT includes:  
Intel® AMT  
ASF 2.0  
Advanced Pass Through (APT)  
82573E  
RC82573E  
Leaded  
82573E with Intel® AMT includes:  
Intel® AMT  
ASF 2.0  
APT  
82573E  
PC82573E  
Lead Free  
82573V Baseline includes:  
82573V  
82573V  
82573L  
82573L  
RC82573V  
PC82573V  
RC82573L  
PC82573L  
Leaded  
ASF 2.0  
APT  
82573V Baseline includes:  
Lead Free  
Leaded  
ASF 2.0  
APT  
82573L:  
Low-power  
No management  
82573L:  
Lead Free  
Low-power  
No management  
2.0  
Signal Descriptions  
2.1  
Signal Type Definitions  
The signals of the 82573 are electrically defined as follows:  
Name  
Definition  
Input  
I
Standard input only digital signal.  
Output  
O
Standard output only digital signal.  
I/O  
I/O  
TS  
Standard I/O digital signal.  
Tri-state  
Bi-directional three-state digital input/output signal.  
Open Drain  
Wired-OR with other agents.  
OD  
The signaling agent asserts the open drain signal, but the signal is returned to the inactive state by  
a weak pull-up resistor. The pull-up resistor might require two or three clock periods to fully  
restore the signal to the de-asserted state.  
Analog  
A
P
PCIe, SerDes, or PHY analog signal.  
Power  
Power connection, voltage reference, or other reference connection.  
10  
Datasheet—82573  
Name  
Definition  
B
Input Bias  
Pull Up  
PU  
PD  
This signal requires a pull-up resistor.  
Pull Down  
This signal requires a pull-down resistor.  
2.2  
PCIe* Data Signals  
Signal  
Type  
Name and Function  
PCIe Differential Reference Clock  
The reference clock is furnished by the system and has a 300 ppm frequency  
tolerance. It is used as reference clock for PCIe transmit and receive circuitry  
and is used by the PCIe core PLL to generate 125 MHz and 250 MHz clocks for  
the PCIe* core logic.  
PE_CLKn  
PE_CLKp  
A(In)  
PCIe* Serial Data Output  
PE_T0n  
PE_T0p  
These signals connect to corresponding PERn and PERp signals on a system  
motherboard or a PCIe* connector. Series AC coupling capacitors are required  
at the 82573 device end. The PCIe* differential outputs are clocked at 2.5 Gb/s.  
A(0ut)  
A(In)  
PCIe Serial Data Input  
PE_R0n  
PE_R0p  
These signals connect to corresponding PETn and PETp signals on a system  
motherboard or a PCIe* connector. The PCIe* differential inputs are clocked at  
2.5 Gb/s.  
2.3  
PCIe* Miscellaneous Signals  
Signal  
PE_RST#  
Type  
Name and Function  
Reset  
I
This signal indicates whether or not the PCIe* power and clock are available.  
Wake  
This signal is driven to zero when it receives a wake-up packet and either the PME  
enable bit of the Power Management Control/Status Register is set to 1b or the  
Advanced Power Management enabled bit of the Wake Up Control Register equals  
1b.  
PE_WAKE#  
OD  
I
Auxiliary Power Present  
AUX_  
AUX_PRESENT must be pulled up to 3.3V standby power if the 82573 is powered  
from standby supplies. This signal must be pulled down if auxiliary power is not  
used.  
PRESENT  
(AUX_PWR)1  
Clock Request.  
The Clock Request (CLKREQ#) signal is located at ball P9 of the 82573L. When it is  
sampled high, this open-drain signal alerts the system that the 82573L does not  
need the PCIe* differential reference clock. During normal operation, the 82573L  
keeps CLKREQ# asserted (low), and the system supplies this clock to the device on  
the PE_CLKp and PE_CLKn signals. The 82573L deasserts CLKREQ# (high) when it  
is in an electrical idle state (L1 and L2), and the system might choose to continue  
supplying the reference clock or gate it conserving platform power. The CLKREQ#  
signal should be connected to the clock driver that supplies the 82573L PCIe*  
clock. If other devices use the same CLKREQ# signal, a pull-up resistor should be  
used to ensure that no device pulls this signal low when it is powered off.  
CLKREQ#  
(82573L only)  
OD  
1. This signal is used in all three devices and has the same functionality but is denoted as AUX_PRESENT in the  
82573E/V and AUX_PWR in the 82573L.  
11  
82573—Datasheet  
2.4  
Non-Volatile Memory Interface Signals  
Signal  
Type  
Name and Function  
NVM Serial Data Output  
The data output pin is used for input to the non-volatile memory device. This pin is  
occasionally used as input during arbitration. This signal has an internal pull-up  
resistor.  
NVM_SI  
I/O  
NVM Serial Data Input  
NVM_SO  
I
The data input pin is used for output from the non-volatile memory device to the  
82573. This signal has an internal pull-up resistor.  
O
TS  
NVM Serial Clock  
The serial clock provides the clock rate for the memory interface.  
NVM_SK  
NVM Chip Enable  
NVM_CS#  
NVM_REQ  
I/O  
O
This signal is used to enable the device. This signal has an internal pull-up resistor.  
NVM Arbitration Request.  
This signal is used to request use of the NVM interface.  
NVM Protection Enable.  
NVM_PROT  
NVM_TYPE  
I/PU  
I/PU  
This pin should be connected to ground to disable NVM protection; otherwise, NVM  
protection is enabled. This signal has an internal pull-up resistor.  
NVM Device Type  
If the device uses a Flash, this pin should be connected to a pull-down resistor. If  
the 82573 is connected to an EEPROM, this pin can be connected to an external  
pull-up resistor. This signal has an internal pull-up resistor of 30 K±50%.  
NVM Shared Enable  
NVM_SHARED# I/PU  
This pin should be connected to a pull-down resistor to enable sharing of SPI Flash  
with ICH. This signal has an internal pull-up resistor.  
2.5  
Miscellaneous Signals  
2.5.1  
Reset and Power-down Signals  
Signal  
Type  
Name and Function  
LAN Power Good  
This signal indicates that stable power is available to the 82573. When the signal is  
low, LAN_PWR_GOOD acts as a master reset of the entire device. LAN_PWR_GOOD  
should be connected to a power supervisor driven from auxiliary power. The signal  
should go active approximately 80 ms after all power rails are within their  
operating ranges.  
LAN_PWR_  
GOOD  
I
A PCIe* reset must only occur after LAN Power Good is active.  
Device Off  
DEVICE_OFF#  
I
This asynchronously disables the 82573, including voltage regulator control  
outputs if selected in external control.  
12  
Datasheet—82573  
1
2.5.2  
System Management Bus (SMBus) Signals  
Note:  
The signals listed in the following table should not be connected when using an 82573L.  
Refer to the 82573/82562 Dual Footprint Design Guide reference schematics for more  
information.  
Signal  
SMB_CLK  
Type  
Name and Function  
SMBus Clock  
I/O  
The SMBus Clock signal is an open drain signal for the serial SMBus interface.  
SMBus Data  
SMB_DAT  
I/O  
I/O  
The SMB Data signal is an open drain signal for the serial SMBus interface.  
SMBus Alert/PCI Power Good  
The SMBus Alert signal is an open drain signal for serial SMBus interface. In ASF  
mode, this signal acts as the PCI Power Good input signal.  
SMB_ALRT#/  
ASF_PWR_  
GOOD  
2.5.3  
LED Signals  
Signal  
LED0#  
Type  
Name and Function  
LED0  
O
O
O
This pin provides a signal for programmable LED indication.  
LED1  
LED1#  
LED2#  
This pin provides a signal for programmable LED indication.  
LED2  
This pin provides a signal for programmable LED indication.  
2.5.4  
Other Signals  
Signal  
THERMn  
Type  
Name and Function  
Thermal Test Pins  
O
P
THERMp  
These pins are used for thermal testing. They can be connected to test points.  
Fuse Supply  
FUSEV  
This should be connected to 2.5V for normal operation.  
1. The 82573L does not support the System Management Bus (SMBus).  
13  
82573—Datasheet  
2.6  
PHY Analog and Crystal Signals  
Signal  
Type  
Name and Function  
Media Dependent Interface [0]  
1000BASE-T:  
In MDI configuration, MDIp0/MDIn0 corresponds to BI_DA+/-, and in MDI-X  
configuration, MDIp0/MDIn0 corresponds to BI_DB+/-.  
MDI0n  
MDI0p  
100BASE-TX:  
A
In MDI configuration, MDIp0/MDIn0 is used for the transmit pair, and in MDI-X  
configuration, MDIp0/MDIn0 is used for the receive pair.  
10BASE-T:  
In MDI configuration, MDIp0/MDIn0 is used for the transmit pair, and in MDI-X  
configuration, MDIp0/MDIn0 is used for the receive pair.  
Media Dependent Interface [1]  
1000BASE-T:  
In MDI configuration, MDIp1/MDIn1 corresponds to BI_DB+/-, and in MDI-X  
configuration, MDIp1/MDIn1 corresponds to BI_DA+/-.  
MDI1n  
MDI1p  
100BASE-TX:  
A
In MDI configuration, MDIp1/MDIn1 is used for the receive pair, and in MDI-X  
configuration, MDIp1/MDIn1 is used for the transmit pair.  
10BASE-T:  
In MDI configuration, MDIp1/MDIn1 is used for the receive pair, and in MDI-X  
configuration, MDIp1/MDIn1 is used for the transmit pair.  
Media Dependent Interface [2]  
1000BASE-T:  
In MDI configuration, MDIp2/MDIn2 corresponds to BI_DC+/-, and in MDI-X  
configuration, MDIp2/MDIn2 corresponds to BI_DD+/-.  
100BASE-TX:  
Unused.  
MDI2n  
MDI2p  
A
10BASE-T:  
Unused.  
Media Dependent Interface [3]  
1000BASE-T:  
In MDI configuration, MDIp3/MDIn3 corresponds to BI_DD+/-, and in MDI-X  
configuration, MDIp3/MDIn3 corresponds to BI_DC+/-.  
100BASE-TX:  
Unused.  
MDI3n  
MDI3p  
A
10BASE-T:  
Unused.  
Reference Input  
PHY_REF  
XTAL1  
A
I
This signal is used as the analog reference input for the PHY. It should be  
connected to a pull-down, 4.99 K , 1% resistor.  
Crystal One  
The Crystal One pin is a 25 MHz input signal. It should be connected to a parallel  
resonant crystal with a frequency tolerance of 30 ppm. The other end of the crystal  
should be connected to XTAL2.  
Crystal Two  
XTAL2  
O
Crystal Two is the output of an internal oscillator circuit used to drive a crystal into  
oscillation.  
14  
Datasheet—82573  
2.7  
Test Signals  
2.7.1  
MAC Test Signals  
Signal  
Type  
Name and Function  
Factory Test Pin  
TEST_EN  
I
A 1 Kpull-down resistor should be attached to ground from this pin for normal  
operation.  
Alternate 125 MHz Clock  
This signal should not be connected. This signal has an internal pull-up resistor.  
ALT_CLK125  
JTAG_TCK  
NC  
I
JTAG Test Access Port Clock  
This signal has an internal pull-down resistor.  
JTAG Test Access Port Test Data In  
This signal has an internal pull-up resistor.  
JTAG_TDI  
JTAG_TDO  
JTAG_TMS  
I
O/OD  
I
JTAG Test Access Port Test Data Out  
JTAG Test Access Port Mode Select  
This signal has an internal pull-up resistor.  
Clock View  
CLK_VIEW  
NC  
The Clock View signal is an output for the clock signals required for IEEE testing.  
This signal has an internal pull-up resistor.  
Test Pin[16:0]  
TEST[16:0] for  
the 82573E/V  
TEST[10:0] for  
the 82573L  
These test pins are for the 82573E/V only. These signals have internal pull-up  
resistor. For normal operation, these pins should be left unconnected.  
Test Pin[10:0]  
These test pins are for the 82573L only. These signals have internal pull-up  
resistor. For normal operation, these pins should be left unconnected.  
Rsvd  
2.7.2  
PHY Test Signals  
Signal  
Type  
Name and Function  
PHY_HSDACn  
PHY_HSDACp  
(82573E/V)  
PHY Differential Test Port  
These signals are used for factory test purposes only.  
A(Out)  
PHY_TESTn  
PHY_TESTp  
(82573L only)1  
PHY Test Port  
PHY_TSTPT  
This signal is used for factory test purposes only. This pin must be left  
unconnected for normal operation.  
1. These signals are used in all three devices and have the same functionality but are denoted as PHY_HSDACn  
and PHY_HSDACp in the 82573E/V and PHY_TESTn and PHY_TESTp in the 82573L.  
2.7.3  
Other Test Signals  
Signal  
SDP[3:0]  
Type  
Name and Function  
These signals are used for factory test purposes only and have internal pull-up  
resistors.  
NC  
15  
82573—Datasheet  
2.8  
Power Signals  
2.8.1  
Power Support Signals  
Signal  
Type  
Name and Function  
2.5V Control  
This is the voltage control signal for external 2.5V. It is only active when the  
EN25REG signal is low (disabled). When external 2.5V and 1.2V supplies are used,  
CTRL_25 can be left floating or can be connected to ground through a 3.3 KΩ  
resistor.  
CTRL_25  
P
1.2V Control  
This is the voltage control signal for external 1.2V. When external 2.5V and 1.2V  
supplies are used, CTRL_12 can be left floating or can be connected to ground  
through a 3.3 Kresistor.  
CTRL_12  
EN25REG  
P
Enable 2.5V Regulator  
When this signal is high, the internal 2.5V regulator is enabled. When it is low, the  
internal 2.5V regulator is disables and the CTRL_25 signal is active. This signal  
should be pulled up to the 3.3V power rail.  
I/PU  
2.8.2  
Digital and Analog Power Supply Signals  
Signal  
VCC33  
Type  
Name and Function  
3.3V Power Supply  
P
This signal is used for I/O circuits.  
2.5V Analog Power Supply  
VCC25  
VCC12  
P
P
These signals are used for PHY analog, PHY I/O, PCIe* analog and phase lock loop  
circuits. All 2.5V pins should be connected to a single power supply.  
1.2V Digital Power Supply  
These signals are used for core digital, PHY digital, PCIe* digital and clock circuits.  
All 1.2V pins should be connected to a single power supply.  
IREG25_IN  
(82573E/V)  
IREG25_IN  
P
P
3.3V power supply for internal 2.5V regulator. When external 2.5V and 1.2V  
supplies are used, IREG25_IN should be connected to 3.3V.  
VCC3.3_REG25  
(82573L only)1  
VCC25_OUT  
VCC25_OUT  
2.5V output supply from internal power supply. When external 2.5V and 1.2V  
supplies are used, VCC25_OUT can be left floating.  
1. This signal is used in all three devices and has the same functionality but is denoted as IREG25_IN for the  
82573E/V and VCC3.3_REG25 for the 82573L.  
2.9  
Grounds and No Connects  
Signal  
Type  
Name and Function  
Ground  
VSS  
NC  
P
These signals connect to ground.  
VSS is also referred to as GND.  
No Connect  
These pins are reserved by Intel and might have factory test functions. For normal  
operation, do not connect any circuitry to these pins. Do not connect pull-up or  
pull-down resistors.  
16  
Datasheet—82573  
3.0  
Voltage, Temperature, and Timing Specifications  
3.1  
Absolute Maximum Ratings  
Table 1.  
Absolute Maximum Ratings1  
Symbol  
Tstg  
Parameter  
Min  
Max  
Unit  
Storage temperature  
-40  
125  
°C  
DC supply voltage on 3.3V pins  
with respect to VSS  
VCC (3.3)  
VCC (2.5)  
VCC (1.2)  
Vin  
-0.3  
-0.3  
-0.3  
-1.0  
6.6  
5.0  
2.4  
V
V
V
V
DC supply voltage on 2.5V pins  
with respect to VSS2  
DC supply voltage on 1.2V pins  
with respect to VSSb  
VCC (3.3) + 0.3  
(less than 6.6 V)  
Input voltage (digital inputs)  
Analog input voltage (digital  
inputs)  
VCC (2.5) + 0.3  
(less than 5.0 V)  
AVin  
RPUD  
-1.0  
15  
V
Pull-up/pull-down Resistor Value  
50  
KΩ  
1. Maximum ratings are referenced to ground (VSS). Permanent device damage is likely to occur if the ratings  
in this table are exceeded for an indefinite duration. These values should not be used as the limits for normal  
device operations. This specification is not guaranteed by design or simulations.  
2. During normal device power up and power down, the 2.5V and 1.2V supplies must not ramp before the 3.3V.  
3.2  
Recommended Operating Conditions  
Table 2.  
Recommended Operating Conditions  
Symbol  
Parameter  
Condition  
Min  
Typical  
Max  
Units  
Operating Temperature with  
external regulators  
0
70  
°C  
TOP  
Operating temperature with  
on-die 2.5V regulator  
0
55  
°C  
VPERIF  
VD  
Periphery Voltage Range  
Core Digital Voltage Range  
Analog VDD Range  
3.3 V ± 3%  
1.2 V ± 5%  
2.5 V ± 5%  
3.0  
1.14  
2.375  
3.3  
1.2  
2.5  
3.6  
1.26  
2.625  
V
V
V
VA  
3.3  
Power Supply Connections  
There are three options in providing power to the 82573:  
• Connecting the 82573 to three external power supplies with nominal voltages of  
3.3V, 2.5V, and 1.2V. This is covered in Section 3.3.1.  
• Powering the 82573 with only an external 3.3V supply and using internal power  
regulators from the 82573 combined with external PNP transistors to supply the  
2.5V and 1.2V levels. This is covered in Section 3.3.3.  
• Using the 2.5V internal (on-die) regulator combined with an external PNP transistor  
to supply the 1.2V level. This is covered in Section 3.3.3.  
17  
82573—Datasheet  
3.3.1  
External LVR Power Delivery  
The following power supply requirements apply to designs where the 82573 is supplied  
by external voltage regulators. These systems do not use the internal regulator logic  
built into the 82573 as described in Section 3.3.3.  
Table 3.  
3.3V External Supply Voltage Ramp and Sequencing Recommendations  
Parameter  
Rise Time  
Description  
Rise time from 10% to 90%  
Min  
Max  
Unit  
5
1001  
300  
ms  
Monotonicity  
Voltage dip allowed in ramp  
mV  
Ramp rate at any time between 10% to 90%  
Minimum = (0.8 * Vmin) / (Maximum Rise Time)  
Maximum = (0.8 * Vmax) / (Minimum Rise Time)  
Slope  
1500  
mV/ms  
Operational Range Voltage range for normal operating conditions  
3
3.6  
100  
660  
V
mVpk-pk  
mV  
Ripple  
Maximum voltage ripple at a bandwidth of 50 MHz  
Maximum voltage allowed2  
Overshoot  
Capacitance  
Minimum capacitance  
25  
µF  
1. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.  
2. Excessive overshoot can affect long term reliability.  
Table 4.  
2.5V External Supply Voltage Ramp and Sequencing Recommendations  
Parameter  
Rise Time  
Description  
Rise time from 10% to 90%  
Min  
Max  
Unit  
2.5  
1001  
200  
ms  
Monotonicity  
Voltage dip allowed in ramp  
mV  
Ramp rate at any time between 10% to 90%  
Minimum = (0.8 * Vmin) / (Maximum Rise Time)  
Maximum = (0.8 * Vmax) / (Minimum Rise Time)  
Slope  
1500  
mV/ms  
Operational Range Voltage range for normal operating conditions  
Operational Range Voltage range for normal operating conditions  
2.375  
-5  
2.625  
+5  
V
%
Ripple  
Maximum voltage ripple at a bandwidth of 50 MHz  
60  
mVpk-pk  
Maximum voltage allowed will not exceed 10% of  
nominal supply  
Undershoot  
Overshoot  
Maximum voltage allowed2  
480  
25  
mV  
µF  
Output  
Capacitance  
Capacitance range when using a PNP circuit  
4.7  
4.7  
Input Capacitance  
Capacitance ESR  
Capacitance range when using a PNP circuit  
µF  
Equivalent series resistance of output capacitance3  
10  
20  
mΩ  
Maximum output current rating with respect to  
CTRL_25  
ICTRL  
mA  
1. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.  
2. Excessive overshoot can affect long term reliability.  
3. Tantalum capacitors must not be used.  
18  
Datasheet—82573  
Table 5.  
1.2V External Supply Voltage Ramp and Sequencing Recommendations  
Parameter  
Rise Time  
Description  
Rise time from 10% to 90%  
Min  
Max  
Unit  
1.51  
ms  
Monotonicity  
Voltage dip allowed in ramp  
120  
mV  
Ramp rate at any time between 10% to 90%  
Minimum = (0.8 * Vmin) / (Maximum Rise Time)  
Maximum = (0.8 * Vmax) / (Minimum Rise Time)  
Slope  
1500  
mV/ms  
Operational Range Voltage range for normal operating conditions  
Operational Range Voltage range for normal operating conditions  
1.14  
-5  
1.26  
+5  
V
%
Ripple  
Maximum voltage ripple at a bandwidth of 50 MHz  
60  
mVpk-pk  
Maximum voltage allowed will not exceed 10% of  
nominal supply  
Undershoot  
Overshoot  
Maximum voltage allowed2  
500  
25  
mV  
µF  
Output  
Capacitance  
Capacitance range when using a PNP circuit  
4.7  
4.7  
Input Capacitance  
Capacitance ESR  
Capacitance range when using a PNP circuit  
µF  
Equivalent series resistance of output capacitance3  
10  
20  
mΩ  
Maximum output current rating with respect to  
CTRL_12  
ICTRL  
mA  
1. Good design practices achieve voltage ramps to within the regulation bands in approximately 20 ms or less.  
2. Excessive overshoot can affect long term reliability.  
3. Tantalum capacitors must not be used.  
3.3.2  
Power Sequencing with External Regulators  
The following power-on and power-off sequence should be applied when external power  
supplies are in use. Designs must comply with the required power sequence to avoid  
risk of either latch-up or forward biased internal diodes.  
Generally, the 82573 power sequencing should power up the three power rails in the  
following order: 3.3V Æ 2.5V Æ 1.2V. However, if this general guideline is not followed,  
there are specific requirements that must be adhered to. These requirements are listed  
in the following two subsections.  
3.3.2.1  
External LVR Power Up Sequencing and Tracking  
Sequencing of the external supplies during power up might be necessary to ensure that  
the 82573 is not electrically overstressed and does not latch-up. These requirements  
are shown in Figure 2.  
The 82573 core voltage (1.2V) cannot exceed the 3.3V supply by more than 0.5 V at  
any time during the power up. The 82573 core voltage (1.2V) cannot exceed the 2.5V  
supply by more than 0.5 V at any time during the power up. The core voltage is not  
required to begin ramping before the 3.3V or the 2.5V supply.  
The 82573 analog voltage (2.5V) can not exceed the 3.3V supply by more than 0.5 V at  
any time during the power up. The analog voltage is not required to begin ramping  
before the 3.3V supply.  
19  
82573—Datasheet  
Figure 2.  
Minimum Requirements for Power Supply Sequencing  
3.3V  
2.5V  
3.3V  
2.5V  
Max Difference  
1.2V (Core Supply)  
0.3 V  
Max Difference  
0.3 V  
1.2V (Core Supply)  
Max Difference 0.3 V  
Max Difference 0.3 V  
• If the 1.2V and 2.5V rails power up before 3.3V, they should never exceed the 3.3V  
supply by more than 0.3 V.  
• At power down, all three supplies should be turned off simultaneously. If the 3.3V  
supply powers down first, the 1.2V and 2.5V supplies must never exceed the 3.3V  
supply by more than 0.3 V.  
3.3.2.2  
External LVR Power Down Sequencing  
There are no specific power down sequencing and tracking requirements for the 82573  
silicon. The risk of latch-up or electrical overstress is small since the only charge storing  
in decoupling capacitors is left in the system.  
3.3.3  
Internally Generated Power Delivery  
The 82573 has two internal linear voltage regulator controllers. The controllers use  
external transistors to generate 2 of the 3 required voltages: 2.5V (nominal) and 1.2V  
(nominal). These two voltages are stepped down from a 3.3V source.  
Table 6.  
3.3V Internal Power Supply Parameters  
Parameter  
Rise Time  
Description  
Min  
Max  
Units  
Time from 10% to 90% mark  
Voltage dip allowed in ramp  
5
-
ms  
Monotonicity  
300  
mV  
Ramp rate at any given time between  
10% and 90%  
Min: 0.8*V(min)/Rise time (max)  
Max: 0.8*V(max)/Rise time (min)  
Slope  
-
1500  
mV/ms  
Voltage range for normal operating  
conditions  
Operational Range  
3.0  
3.6  
V
Ripple1  
Maximum voltage ripple (peak to peak)  
Maximum overshoot allowed  
-
-
100  
660  
mV  
mV  
Overshoot  
Maximum overshoot allowed duration.  
Overshoot Settling  
Time  
(At that time delta voltage should be  
lower than 5 mV from steady state  
voltage)  
-
3
ms  
1. The peak to peak output rippled is measured at 20 MHz bandwidth within the operational range.  
20  
Datasheet—82573  
3.3.4  
Internal LVR Power Sequencing  
All supplies should rise monotonically. Sequencing of the supplies is controlled by the  
82573.  
3.3.4.1  
Power Up Sequencing and Tracking  
During power up, the sequencing and tracking of the internally controlled supplies  
(2.5V and 1.2V) are controlled by the 82573. No specific motherboard requirements  
are necessary to prevent electrical overstress or latch-up.  
The 82573 analog voltage (2.5V) never exceeds the 3.3V supply at any time during the  
power up. This is because the 2.5V supply is generated from the 3.3V supply when the  
internal voltage regulator control logic is being used. Figure 3 shows the internal LVR  
circuit. The 2.5V supply tracks the 3.3V ramp.  
The 82573 core voltage (1.2V) never exceeds the 3.3V at any time during the power  
up. This is because the 2.5V supply is generated from the 3.3V supply when the  
internal voltage regulator control logic is being used. Figure 3 shows the internal LVR  
circuit. The 1.2V ramp is delayed internally to prevent it from exceeding the 2.5V and  
3.3V supply at any time. The delay is proportional to the slope of the 3.3V ramp.  
The delay is approximated by Tramp(3.3V)*0.25 < Tdelay(1.2V) < Tramp(3.3V)*0.75.  
Tramp is defined to the ramp rate of the 3.3V input to the internal voltage regulator  
circuit.  
Figure 3.  
Power Supply Sequencing  
Voltage  
3.3V  
LAN_PWR_GOOD  
2.5V  
1.2V  
0
Time  
Minimum 80 ms  
• It is recommended that the voltage on a lower voltage rail never exceed the  
voltage on a higher voltage rail during power on.  
• There are no minimum time requirements between the voltage rails as long as they  
power up in sequence: 3.3V 2.5V 1.2V.  
• All 3 supplies must be stable for at least 80 ms before LAN_PWR_GOOD is  
asserted. 100 ms is preferable if possible.  
• A PCIe* reset must occur after LAN Power Good is active.  
3.3.4.2  
Internal LVR Power Down Sequencing  
There are no specific power down sequencing and tracking requirements for the 82573  
device. The risk of latch-up or electrical overstress is small because the only charge  
storing in decoupling capacitors is left in the system.  
21  
82573—Datasheet  
3.3.4.3  
Table 7.  
Internal Voltage Regulators Components for the 82573  
82573 Bill of Materials (BOM) of Components for Internal Regulator  
Recommended Component  
Description  
Quantity  
Manufacturer  
Philips  
Part Number  
BCP-69-16  
Package  
SOT-223  
SOT-223  
PNP Transistor  
For 1.2V LVR  
1
1
PNP Transistor  
For 2.5V LVR  
Philips  
BCP-69-16  
3.3.4.4  
Table 8.  
2.5V Internal LVR Specification  
2.5V Internal LVR Specification1  
Value  
Parameter  
Units  
Comments  
Minimum Maximum  
Input Voltage  
3.0  
5
3.6  
V
Input Voltage Slew Rate  
ms  
Input Capacitance  
4.7  
µF  
Input Capacitance ESR  
10  
mΩ  
Load Current  
1
-
A
VOUT = 2.500 V  
Output Voltage Tolerance  
-5  
+5  
%
Output Capacitance  
4.7  
µF  
Output Capacitance ESR  
10  
mΩ  
mA  
Current Consumption During Power Up  
0.5  
Current Consumption During Power Down  
Maximum Undershoot  
0.5  
mA  
%
< 10  
of nominal supply  
±60 mV at 20 MHz  
bandwidth  
Peak to Peak Output Ripple  
PSRR  
120  
20  
mV  
dB  
External PNP hFE  
100  
1. The use of tantalum capacitors is not recommended.  
22  
Datasheet—82573  
3.3.4.5  
Table 9.  
1.2V Internal LVR Specification  
1.2V Internal LVR Specification1  
Value  
Parameter  
Units  
Comments  
Maximu  
Minimum  
m
Input Voltage  
3.0  
5
3.6  
V
Input Voltage Slew Rate  
ms  
Input Capacitance  
4.7  
µF  
Input Capacitance ESR  
10  
mΩ  
Load Current  
1
-
A
VOUT = 1.200 V  
Output Voltage Tolerance  
-5  
+5  
%
Output Capacitance  
4.7  
µF  
mΩ  
mA  
Output Capacitance ESR  
10  
Current Consumption During Power Up  
0.5  
Current Consumption During Power Down  
Maximum Undershoot  
0.5  
mA  
%
< 10  
of nominal supply  
±60 mV at 20 MHz  
bandwidth  
Peak to Peak Output Ripple  
PSRR  
120  
20  
mV  
dB  
External PNP hFE  
100  
1. The use of tantalum capacitors is not recommended.  
3.3.4.6  
PNP Transistor Specification for Internal LVR  
Table 10.  
PNP Specification (Sheet 1 of 2)  
Symbol  
Vce,sat  
Description  
Min  
Max  
Units  
Collector-Emitter Saturation Voltage  
Collector Current, Maximum Sustained  
Base Current, Maximum Sustained  
Base-Emitter on Voltage  
-
-
-
-
-
0.5  
1000  
10  
V
Ic(max)  
Ib  
mA  
mA  
V
Vbe  
1
Tjmax  
Maximum Junction Temperature  
125  
°C  
23  
82573—Datasheet  
Table 10.  
PNP Specification (Sheet 2 of 2)  
Symbol  
Description  
Min  
Max  
Units  
Power  
Maximum Total Power Dissipation  
-
1.35  
W
Dissipation  
hFE  
DC Current Gain  
100  
10  
-
-
-
fT  
Current Gain Product Bandwidth  
MHz  
3.3.4.7  
Internal LVR Board Schematic  
When using the internal voltage regulator controllers built into the 82573, resistors  
might need to be placed in series with the emitter in order to prevent the PNP  
transistors from overheating. These series resistors dissipate a portion of the power  
that would otherwise be dissipated by the PNP devices. The value and power rating of  
the resistors must be carefully chosen to balance thermal limits against the PNP  
characteristics against total current draw. The regulator must never drop below the  
minimum Vce and out of the linear region.  
The effective resistance of the pass resistors should equal approximately 1 and have  
a combined power dissipation rating of 0.5 Watts for the 82573. Figure 4 shows the  
recommended implementation.  
24  
Datasheet—82573  
Figure 4.  
82573 2.5V and 1.2V LVR Schematic  
2.5V Voltage Regulator  
Intel recommends using  
40uF at the emitter of Q3  
on the 3.3V rail.  
Install when using the  
Integrated 2.5V Voltage  
Regulator with External  
Pass Transistor. Do not  
Use ceramic capacitors.  
install if on-die 2.5V  
regulator is used.  
Q3 Requires Heat-  
Sink surface pad of  
0.5'' x 0.5'' min.  
1 ohm is not needed for R60 for 82573L.  
0 ohm may be used instead. 82573L only  
designs may connect C23 directly to 2.5V.  
Intel recommends using  
40uF at the emitter of Q4  
on the 3.3V rail.  
1.2V Voltage Regulator  
Use ceramic capacitors.  
Q4 Requires Heat-Sink surface  
pad of 0.5'' x 0.5'' min.  
1 ohm is not needed for R61 for 82573L.  
0 ohm may be used instead. 82573L only  
designs can connect C29 directly to 1.2V.  
3.4  
DC and AC Specifications  
Table 11.  
82573E and 82573V Maximum Measured External Power Characteristics1  
System  
State  
82573E Power (mW)  
with Intel® AMT  
82573V Power (mW)  
without Intel® AMT  
Link State  
1000 Mbps Active  
(Maximum Power)  
S0  
1548  
1426  
1. Maximum conditions refer to fast silicon, high temperature and nominal VCC.  
25  
82573—Datasheet  
Table 12.  
82573E and 82573V Typical Measured External Power Characteristics1  
3.3V  
Current  
(mA)  
2.5V  
Current  
(mA)  
1.2V  
Current  
(mA)  
82573E/V  
System  
State  
Link State  
Power  
(mW)2 3  
1000 Mb/s:  
Intel® AMT  
12  
297  
551  
1443.3  
(82573E only)  
1000 Mb/s Active  
1000 Mb/s Idle  
100 Mb/s Active  
100 Mb/s Idle  
12  
12  
11  
11  
7
297  
276  
130  
107  
167  
76  
490  
380  
1370.1  
1185.6  
534.7  
425  
S0  
144.5  
101  
10 Mb/s Active  
10 Mb/s Idle  
125.5  
82  
591.2  
311.5  
197.5  
408.5  
292.5  
177.3  
173.1  
7
No Link (SPD)  
3
40  
73  
100 Mb/s Idle (wake)  
10 Mb/s Idle (wake)  
No Link (no wake)  
Device Off  
11  
7
104  
72  
93.5  
74.5  
64.5  
48.5  
Sx  
3
364  
42d  
3
1. Maximum conditions refer to fast silicon, high temperature and nominal VCC.  
2. For 10/100 Mb/s non-stress mode with Intel® AMT, add 12 mW to this number (for example,  
using IDE-R functionality).  
3. For 10/100 Mb/s stress mode active Intel® AMT, add 120 mW to this number (for example, using  
IDE-R functionality).  
4. The current use is slightly higher in the device off state than in the no link state. This occurs since  
a PHY reset is required in the device off state, which overrides the PHY power down.  
Table 13.  
82573E and 82573V 2.5V Internal Power Regulator Numbers  
2.5V  
3.3V  
Current  
(mA)  
1.2V  
Current  
(mA)  
82573E/V  
Power  
(mW)  
System  
State  
Current (mA)  
(on-die 2.5V  
regulator)  
Link State  
1000 Mb/s: Active with  
Full Management  
313  
Internal  
607  
1760  
1000 Mb/s Active  
1000 Mb/s Idle  
100 Mb/s Active  
100 Mb/s Idle  
313  
294  
142  
119  
173  
84  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
Internal  
506  
404  
145  
101  
126  
83  
1638  
1453  
642  
513  
722  
376  
233  
S0  
10 Mb/s Active  
10 Mb/s Idle  
D0 No Link (SPD)  
44  
73  
D3 100 Mb/s Idle  
(wake)  
116  
80  
Internal  
Internal  
94  
75  
493  
354  
Sx  
D3 10 Mb/s Idle  
(wake)  
D3 No Link (no wake)  
Device Off  
40  
45  
Internal  
Internal  
64  
49  
209  
207  
26  
Datasheet—82573  
Table 14.  
Table 15.  
82573L Maximum Measured Power Characteristics1  
System  
State  
Link State  
82573L (mW)  
S0  
1000 Mb/s Active (Maximum Power)  
1296  
1. Maximum conditions refer to fast silicon, high temperature and nominal VCC.  
82573L Measured Power Characteristics  
System  
State  
3.3V  
2.5V  
1.2V  
82573L  
Power (mW)  
Link State  
Current (mA) Current (mA) Current (mA)  
1000 Mb/s Active  
1000 Mb/s Idle  
14.8  
14.8  
14.0  
14.2  
10.5  
10.3  
6.2  
288.5  
243.2  
121.3  
78.8  
169  
372.5  
294.0  
111.5  
58.5  
118  
1217  
1010  
483  
314  
504  
194  
53  
100 Mb/s Active  
S0  
Sx  
100 Mb/s Idle  
10 Mb/s Active  
10 Mb/s Idle  
143.5  
7.0  
91.8  
12.3  
49.3  
31.0  
12.2  
D0 No Link (SPD)  
D3 100 Mb/s Idle (wake)  
D3 10 Mb/s Idle (wake)  
D3 No Link (no wake)  
14.2  
10.5  
6.2  
78.8  
45.7  
7.3  
303  
186  
53  
Table 16.  
DC Specifications  
Symbol  
Vih  
Parameter  
Condition  
Min  
Max  
Unit  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
2.0  
V
V
Vil  
0.8  
Vhy  
Voh  
Vol  
100  
2.4  
mV  
V
Output High Voltage  
Output Low Voltage  
Input Leakage Current  
0.4  
V
Ilkg  
0 < Vin < VCCP  
±50  
µA  
Rpup/  
Rpdn  
Internal Pull Up and Pull  
Down Resistor  
15  
50  
KΩ  
Cin/out  
Cout  
Pin Capacitance  
Input and bi-directional buffer  
Output only buffer  
2.5  
2.0  
pF  
pF  
Output Pin Capacitance  
27  
82573—Datasheet  
Table 17.  
LED DC Specifications  
Symbol  
Voh  
Parameter1  
Condition  
Min  
Max  
Unit  
Output High Voltage  
Output Low Voltage  
at 12 mA  
at 12 mA  
2.4  
V
V
Vol  
Ioz  
0.4  
3-state Output Leakage  
Current  
Voh = VDD or VSS  
±10  
mV  
VDD = 3.6 V, Vo = VDD,  
VDD = 3.6 V, Vo = VSS  
Ios  
Output Short Current  
Pin Capacitance2  
µA  
pF  
Cin/out  
Input and bi-directional buffer  
2.5  
1. Outputs are inputs/outputs in test mode.  
2. This parameter is characterized but not tested.  
3.5  
External Interfaces  
Crystal  
3.5.1  
The quartz crystal is strongly recommended as a low cost and high performance choice  
with the 82573 device. Quartz crystals are the mainstay of frequency control  
components and are available from numerous vendors in many package types with  
various specification options.  
Table 18.  
Crystal Specifications  
Parameter Name  
Symbol  
Recommended Value  
Max/Min Range  
Conditions  
Frequency  
fo  
25.000 MHz  
Fundamental  
±30 ppm  
-
-
at 25 °C  
Vibration mode  
-
f/fo at 25 °C  
f/fo  
-
Frequency Tolerance  
Temperature Tolerance  
Operating Temperature  
at 25 °C  
±30 ppm  
-
-
Topr  
0 °C to +70 °C  
Equivalent Series  
Resistance (ESR)  
Rs  
40 Ω  
50 (max)  
at 25 MHz  
Load Capacitance  
Shunt Capacitance  
Max Drive Level  
Nominal Drive Level  
Aging  
Cload  
Co  
20 pF  
6 pF  
-
-
-
-
-
-
-
-
DL  
500 µW  
200 µW  
±5 ppm per year  
4 pF  
1 mW  
DL  
500 µW  
f/fo  
Cs  
±5 ppm per year  
1
Board Capacitance  
External Capacitors  
Board Resistance  
C1, C2  
Rs  
22 pF  
0.1 Ω  
1 Ω  
1. This value can change up to 10%.  
3.5.2  
External Clock Oscillator  
If an external oscillator is used to provide a clock to the 82573, the connection shown  
in the figure below must be used. The XTAL2 output signal of the 82573 must not be  
connected. The XTAL1 input signal receives the output of the oscillator directly. AC  
coupling is not recommended.  
28  
Datasheet—82573  
Figure 5.  
External Clock Oscillator Connectivity to the 82573  
82573  
XTAL2  
3.3V  
XTAL1  
Table 19.  
Specification for External Clock Oscillator  
Parameter Name  
Frequency  
Symbol  
Value  
Conditions  
fo  
25.0 MHz  
3.3 ± 0.3 V  
±30 ppm  
at 25 °C  
Swing  
Vp-p  
f/fo  
Topr  
f/fo  
-
Frequency Tolerance  
Operating Temperature  
Aging  
0 °C to +70 °C  
0 °C to +70 °C  
-
-20 °C to +70 °C  
±5 ppm per year  
3.5.3  
Non-Volatile Memory (NVM) Interface: EEPROM  
Table 20.  
NVM Interface Timing Specifications for EEPROM (Sheet 1 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
SCK clock  
frequency  
tSCK  
0
2
2.1  
MHz  
tRU  
Input rise time  
Input fall time  
SCK high time1  
SCK low timea  
CS high time  
CS setup time  
CS hold time  
2.5  
2.5  
2
2
µs  
µs  
ns  
ns  
ns  
ns  
ns  
tFI  
tWH  
tWH  
tCS  
200  
200  
250  
250  
250  
250  
250  
tCSS  
tCSH  
Data-in setup  
time  
tSU  
50  
ns  
Data-in hold  
time  
tH  
tV  
50  
0
ns  
ns  
Output Valid  
200  
29  
82573—Datasheet  
Table 20.  
NVM Interface Timing Specifications for EEPROM (Sheet 2 of 2)  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Output hold  
time  
tHO  
0
ns  
Output disable  
time  
tDIS  
tWC  
1. 50% duty cycle.  
250  
10  
ns  
Write cycle time  
ms  
4.0  
Package and Pinout Information  
This section describes the 82573 physical characteristics and pin-to-signal mapping.  
4.1  
Package Information  
The 82573 device is a lead-free 196-pin thin and Fine Pitch Ball Grid Array (TF-BGA)  
measuring 15 mm by 15 mm. The nominal ball pitch is 1.0 mm.  
Figure 6.  
82573 Controller TF-BGA Package Ball Pad Dimensions  
Detail Area  
0.4 mm  
Solder Resist Opening  
0.55 mm  
Metal Diameter  
30  
Datasheet—82573  
Figure 7.  
82573 Mechanical Specifications  
31  
82573—Datasheet  
4.2  
Thermal Specifications  
The case temperature (TC) is calculated using the equation:  
TC = TA + P (JA - JC)  
Junction temperature (TJ) is calculated using the equation:  
TJ = TA + P JA  
The power consumption (P) is calculated by using the typical ICC and nominal VCC  
where TA represents the ambient temperature. The thermal resistances are listed in  
Table 21.  
32  
Datasheet—82573  
Table 21.  
Thermal Resistance Values  
Value at Specified Airflow (m/s)  
Symbol  
Parameter  
Units  
0
1
2
3
TJ  
Maximum junction temperature  
127.1  
122.1  
119.3  
117.5  
C
Thermal resistance, junction-to-  
ambient  
JA  
26.0  
6.1  
23.7  
6.1  
22.4  
6.1  
21.6  
6.1  
C/Watt  
Thermal resistance, junction-to-  
case  
JC  
C/Watt  
Thermal resistances are determined empirically with test devices mounted on standard  
thermal test boards. Real system designs may have different characteristics due to  
board thickness, arrangement of ground planes, and proximity of other components.  
The case temperature measurements should be used to assure that the 82573 is  
operating under recommended conditions. The use of a heat sink device is not  
required.  
4.3  
Pinout Information  
4.3.1  
PCIe Bus Interface Signals  
Table 22.  
PCIe Data Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
PE_CLKn  
PE_CLKp  
G2  
G1  
PE_T0n  
PE_T0p  
C1  
D1  
PE_R0n  
PE_R0p  
F1  
F2  
33  
82573—Datasheet  
Table 23.  
PCI Express Miscellaneous Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
AUX_PRESENT  
(82573E/V) /  
AUX_PWR  
PE_RST#  
P7  
P9  
PE_WAKE#  
P10  
C6  
(82573L)1  
CLKREQ# (82573L  
only)  
1. This signal is used in all three devices and has the same functionality but is denoted as AUX_PRESENT  
in the 82573E/V or AUX_PWR in the 82573L.  
4.3.2  
Non-Volatile Memory Interface Signals  
Table 24.  
Non-Volatile Memory Interface Signals  
Signal  
NVM_SI  
Pin  
Signal  
NVM_CS#  
Pin  
Signal  
NVM_TYPE  
Pin  
A9  
B9  
C9  
B10  
B4  
A6  
D3  
NVM_SO  
NVM_SK  
NVM_REQ  
NVM_SHARED#  
NVM_PROT  
A5  
4.3.3  
Miscellaneous Signals  
Table 25.  
Reset and Power-down Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
LAN_PWR_GOOD  
P5  
DEVICE_OFF#  
L7  
Table 26.  
SMBus Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
SMB_ALRT#/  
ASF_PWR_  
GOOD  
SMB_CLK  
P11  
SMB_DAT  
M11  
N11  
Table 27.  
Table 28.  
LED Signals  
Signal  
Pin  
Pin  
Signal  
LED1#  
Pin  
Signal  
Pin  
LED0#  
B11  
C11  
LED2#  
A12  
Other Signals  
Signal  
Signal  
THERMp  
Pin  
Signal  
Pin  
THERMn  
L2  
L3  
34  
Datasheet—82573  
4.3.4  
PHY Signals  
Table 29.  
Analog and Crystal Signals  
Signal  
MDI0n  
Pin  
Signal  
MDI2n  
Pin  
Signal  
PHY_REF  
Pin  
C14  
C13  
E14  
E13  
F14  
F13  
H14  
H13  
D12  
K14  
J14  
MDI0p  
MDI1n  
MDI1p  
MDI2p  
MDI3n  
MDI3p  
XTAL1  
XTAL2  
4.3.5  
Test Signals  
Table 30.  
82573E/V MAC Test Signals1  
Signal  
TEST_EN  
Pin  
Signal  
TEST1  
Pin  
Signal  
Pin  
A13  
N10  
N5  
H2  
H3  
J1  
TEST9  
M3  
N2  
P1  
ALT_CLK125  
JTAG_TCK  
JTAG_TDI  
JTAG_TDO  
TESTPT2  
TESTPT3  
TESTPT4  
TEST5  
TEST10  
TEST11  
TEST12  
TEST13  
P4  
J2  
N3  
M8  
P6  
J3  
TEST14  
(82573E/V only)  
JTAG_TMS  
CLK_VIEW  
TEST0  
N4  
TEST6  
TEST7  
TEST8  
K1  
L1  
P9  
TEST15  
(82573E/V only)  
L14  
H1  
E3  
TEST16  
(82573E/V only)  
M1  
A14  
1. These test signals do not apply to the 82573L.  
Table 31.  
82573L MAC Test Signals1  
Signal  
TEST_EN  
Pin  
Signal  
CLK_VIEW  
Pin  
Signal  
Pin  
A13  
N10  
N5  
L14  
TEST5  
TEST6  
TEST7  
TEST8  
TEST9  
J3  
ALT_CLK125  
JTAG_TCK  
JTAG_TDI  
JTAG_TDO  
JTAG_TMS  
TEST0  
H1  
H2  
H3  
J1  
K1  
L1  
M1  
M3  
TEST1  
P4  
TESTPT2  
TESTPT3  
TESTPT4  
P6  
N4  
J2  
1. These test signals do not apply to the 82573E or 82573V devices.  
Table 32.  
PHY Test Interface Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
PHY_HSDACn  
B13  
PHY_HSDACp  
B12  
PHY_TSTPT  
B14  
35  
82573—Datasheet  
Table 33.  
82573E/V Other Test Signals1  
Signal  
Pin  
Signal  
SDP[1]  
Pin  
Signal  
SDP[2]  
Pin  
SDP[0]  
SDP[3]  
A8  
C7  
B8  
C8  
1. These test signals do not apply to the 82573L.  
4.3.6  
Power Supply Signals  
Table 34.  
Power Support Signals  
Signal  
CTRL_25  
Pin  
Signal  
CTRL_12  
Pin  
Signal  
EN25REG  
Pin  
A4  
P3  
B5  
Table 35.  
Power Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
VCC33  
IREG25_IN  
IREG25_IN  
FUSEV  
VCC25  
VCC25  
VCC25  
VCC25  
VCC25  
VCC25  
VCC25  
A7  
VCC25  
VCC25  
VCC25  
VCC25  
VCC25  
VCC25_OUT  
VCC25_OUT  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
J12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
J6  
D9  
F3  
J4  
K13  
L12  
M4  
J7  
J8  
J9  
M10  
N6  
N8  
P2  
N7  
J10  
J11  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
L5  
B1  
B2  
A10  
C4  
P12  
A2  
C5  
A3  
F12  
G6  
M2  
A11  
B6  
G12  
G13  
H6  
G3  
G5  
H4  
H5  
J5  
H7  
H8  
L9  
H11  
H12  
L10  
36  
Datasheet—82573  
Table 36.  
Ground Signals  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
A1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
E5  
E6  
E7  
E8  
E9  
E10  
F4  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G4  
B3  
G7  
C2  
G8  
C10  
C12  
D2  
D4  
D5  
D6  
D7  
D8  
D13  
E2  
G9  
G10  
G11  
G14  
H9  
F5  
F6  
H10  
K2  
F7  
F8  
N1  
F9  
N12  
P8  
F10  
F11  
E4  
Table 37.  
82573E/V No Connect Signals1  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
B7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
K12  
L4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
M9  
C3  
M12  
M13  
M14  
N9  
D10  
D11  
D14  
E1  
L6  
L8  
L11  
L13  
M5  
M6  
M7  
N13  
N14  
P13  
P14  
E11  
E12  
J13  
1. These test signals do not apply to the 82573L.  
Table 38.  
82573L No Connect Signals1 (Sheet 1 of 2)  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A8  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
E12  
J13  
K12  
L4  
NC  
M9  
A14  
B7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
M12  
M13  
M14  
N2  
B8  
C3  
L6  
C7  
L8  
N3  
C8  
L11  
L13  
N9  
D10  
N13  
37  
82573—Datasheet  
Table 38.  
82573L No Connect Signals1 (Sheet 2 of 2)  
Signal  
Pin  
Signal  
Pin  
Signal  
Pin  
NC  
NC  
NC  
NC  
NC  
D11  
D14  
E1  
NC  
NC  
NC  
NC  
M5  
M6  
M7  
M8  
NC  
NC  
NC  
NC  
N14  
P1  
P13  
P14  
E3  
E11  
1. These test signals do not apply to the 82573E or 82573V devices.  
4.4  
Visual Pin Assignments  
M
A
B
C
D
E
F
G
H
J
K
L
N
P
VCC25_  
OUT  
VSS  
PE_T0n  
PE_TR0p  
NC  
PE_R0n  
TEST0  
TEST3  
TEST6  
TEST7  
TEST8  
FUSEV  
TEST9  
VCC25  
NC  
PE_CLKp  
VSS  
TEST11  
1
2
3
4
5
6
VCC25_  
OUT  
VSS  
NC  
VSS  
VSS  
PE_R0p  
VCC33  
VSS  
PE_CLKn  
VCC25  
VSS  
TEST1  
TEST2  
TEST4  
TEST5  
VCC33  
VCC25  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC25  
NC  
VSS  
THERMn  
TEST10  
VCC33  
IREG25_IN  
IREG25_IN  
NVM_  
SHARED  
VSS  
TEST15  
VSS  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
NC  
TEST12  
THERMp  
NC  
CTRL_12  
JTAG_TDI  
VCC12  
VCC12  
CTRL_25  
NVM_REQ  
EN25REG  
VCC25  
VSS  
VSS  
VCC25  
JTAG_TMS  
JTAG_  
TCK  
NVM_  
PROT  
LAN_PWR_  
GOOD  
VSS  
VSS  
VCC25  
VCC12  
VSS  
VCC25  
VCC12  
VCC12  
VCC12  
VSS  
VCC12  
NC  
AUX_  
PRESENT  
NVM_  
TYPE  
JTAG_TDO  
VSS  
VSS  
VSS  
NC  
VCC33  
VCC25  
VCC33  
DEVICE_  
OFF#  
VCC33  
SDP[0]  
NC  
SDP[3]  
SDP[2]  
NVM_SK  
VSS  
VSS  
VSS  
NC  
PE_RST#  
VSS  
7
8
9
SDP[1]  
VSS  
VSS  
VSS  
VSS  
NC  
TEST13  
NC  
NVM_SI  
VCC12  
NVM_SO  
NVM_CS#  
VCC33  
NC  
VSS  
VSS  
VSS  
VCC12  
VCC12  
NC  
NC  
TEST14  
PE_WAKE#  
VSS  
VSS  
VSS  
VSS  
VSS  
ALT_CLK125  
VCC33  
SMB_DAT  
NC  
10  
11  
12  
13  
14  
SMB_ALRT#/  
ASF_PWR_  
GOOD  
VCC25  
LED2#  
LED0#  
LED1#  
VSS  
NC  
NC  
VSS  
VSS  
VCC12  
VCC12  
MDI3p  
MDI3n  
SMB_CLK  
VCC33  
NC  
PHY_  
HSDACp  
PHY_REF  
VSS  
NC  
VCC12  
MDI2p  
MDI2n  
VCC12  
VCC12  
VSS  
VCC25  
NC  
VSS  
NC  
PHY_  
HSDACn  
TEST_EN  
TEST16  
MDI0p  
MDI0n  
MDI1p  
MDI1n  
VCC25  
XTAL1  
NC  
PHY_  
TSTPT  
CLK_VIEW  
NC  
XTAL2  
NC  
NC  
NC  
Figure 8.  
82573E and 82573V Gigabit Ethernet Controller Pinout  
38  
Datasheet—82573  
Figure 9.  
82573L Gigabit Ethernet Controller Pinout  
M
A
B
C
D
E
F
G
H
J
K
L
N
P
VCC25_  
OUT  
VSS  
PE_T0n  
PE_TR0p  
NC  
PE_R0n  
TEST0  
TEST3  
TEST6  
TEST7  
TEST8  
VSS  
NC  
PE_CLKp  
1
2
3
4
5
6
VCC3.3_  
REG25  
VCC25_  
OUT  
VSS  
VSS  
VSS  
PE_R0p  
VCC33  
PE_CLKn  
VCC25  
TEST1  
TEST2  
TEST4  
TEST5  
VSS  
THERMn  
FUSEV  
TEST10  
NC  
VCC33  
VCC3.3_  
REG25  
NVM_  
SHARED  
VSS  
NC  
NC  
VCC12  
TEST9  
VCC25  
THERMp  
NC  
CTRL_12  
JTAG_TDI  
VCC12  
VCC12  
CTRL_25  
NVM_REQ  
EN25REG  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC25  
VCC33  
VCC25  
VCC12  
VCC12  
JTAG_TMS  
JTAG_  
TCK  
NVM_  
PROT  
LAN_PWR_  
GOOD  
VSS  
VCC25  
VCC25  
VCC12  
NC  
NVM_  
TYPE  
JTAG_TDO  
VCC25  
NC  
AUX_PWR  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC12  
VSS  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
NC  
NC  
NC  
NC  
VCC33  
VCC25  
VCC33  
DEVICE_  
OFF#  
VCC33  
PE_RST#  
VSS  
7
8
9
NC  
NC  
NC  
VSS  
NC  
NVM_SI  
VCC12  
NVM_SO  
NVM_CS#  
NVM_SK  
VCC33  
NC  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
VCC12  
NC  
NC  
CLK_REQ#  
PE_WAKE#  
VSS  
ALT_CLK125  
VCC33  
RSVD  
10  
11  
12  
13  
14  
VCC25  
LED0#  
LED1#  
NC  
NC  
VSS  
VSS  
VCC12  
VCC12  
VCC12  
NC  
RSVD  
RSVD  
PHY_  
HSDACp  
LED2#  
VSS  
PHY_REF  
VSS  
NC  
VCC12  
MDI2p  
VCC12  
VCC12  
VCC12  
MDI3p  
VCC25  
NC  
NC  
VCC25  
NC  
NC  
NC  
VSS  
NC  
VCC33  
NC  
PHY_  
HSDACn  
TEST_EN  
MDI0p  
MDI1p  
VCC25  
PHY_  
TSTPT  
CLK_VIEW  
NC  
MDI0n  
NC  
MDI1n  
MDI2n  
VSS  
MDI3n  
XTAL2  
XTAL1  
NC  
NC  
NC  
39  

相关型号:

82573E

Intel® 945G Express and Intel® 945GC Express Chipsets for Embedded Computing
INTEL

82574L

Low-Power, Small-Footprint, Single-Port Gigabit Network Connectivity with Advanced Performance Features
INTEL

82575

Gigabit Ethernet Controller
INTEL

82575EB

Intel® 82575EB Gigabit Ethernet Controller Datasheet
INTEL

82576EB

Intel® 82576EB Gigabit Ethernet Controller Specification Update
INTEL

82577GBE

Intel® 82577 GbE PHY Specification Update
INTEL

82579GBE

High-performance Gigabit Network Connectivity with Support for Intel® vPro™ technology.
INTEL

82583V

Intel® 82583V GbE Controller
INTEL

82586

IEEE802.3 ETHERNET LAN COPROCESSOR
INTEL

82586-10

IEEE802.3 ETHERNET LAN COPROCESSOR
INTEL

82586-6

IEEE802.3 ETHERNET LAN COPROCESSOR
INTEL

8259010U1000

RG-58A/U type, 20 AWG stranded (19x33) .035 tinned copper conductor, polyethylene insulation
ETC