IRLS3034TRLPBF [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
IRLS3034TRLPBF
型号: IRLS3034TRLPBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

文件: 总10页 (文件大小:373K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97364A  
IRLS3034PbF  
IRLSL3034PbF  
HEXFET® Power MOSFET  
Applications  
D
S
l DC Motor Drive  
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
40V  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
1.4m  
1.7m  
343A  
195A  
G
Benefits  
l Optimized for Logic Level Drive  
l Very Low RDS(ON) at 4.5V VGS  
l Superior R*Q at 4.5V VGS  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D
D
S
S
D
G
G
D2Pak  
IRLS3034PbF  
TO-262  
IRLSL3034PbF  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
343  
243  
195  
1372  
375  
2.5  
Units  
ID @ TC = 25°C  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
A
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
W/°C  
V
VGS  
±20  
4.6  
Gate-to-Source Voltage  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
Operating Junction and  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lbf in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
255  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.4  
Units  
RθJC  
Junction-to-Case  
°C/W  
RθJA  
–––  
40  
Junction-to-Ambient (PCB Mount)  
www.irf.com  
1
07/02/09  
IRLS/SL3034PbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.04 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
Breakdown Voltage Temp. Coefficient  
–––  
–––  
1.0  
1.4  
1.6  
1.7  
2.0  
2.5  
20  
VGS = 10V, ID = 195A  
VGS = 4.5V, ID = 172A  
VDS = VGS, ID = 250µA  
RDS(on)  
Static Drain-to-Source On-Resistance  
m
VGS(th)  
IDSS  
Gate Threshold Voltage  
–––  
V
Drain-to-Source Leakage Current  
––– –––  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
µA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
RG(int)  
–––  
2.1  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 195A  
286 ––– –––  
S
Qg  
Total Gate Charge  
––– 108 162  
ID = 185A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
–––  
–––  
–––  
–––  
29  
54  
54  
65  
–––  
–––  
–––  
–––  
VDS = 20V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
VGS = 4.5V  
ID = 185A, VDS =0V, VGS = 4.5V  
VDD = 26V  
Turn-On Delay Time  
Rise Time  
––– 827 –––  
––– 97 –––  
ID = 195A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
RG = 2.1Ω  
VGS = 4.5V  
Fall Time  
––– 355 –––  
––– 10315 –––  
––– 1980 –––  
––– 935 –––  
––– 2378 –––  
––– 2986 –––  
Ciss  
Coss  
Crss  
Input Capacitance  
VGS = 0V  
Output Capacitance  
VDS = 25V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 32V  
pF  
C
oss eff. (ER)  
oss eff. (TR)  
V
C
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
––– –––  
343  
(Body Diode)  
showing the  
A
––– –––  
G
ISM  
Pulsed Source Current  
(Body Diode)  
integral reverse  
1372  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 195A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
–––  
–––  
–––  
–––  
–––  
39  
41  
39  
46  
1.7  
ns  
IF = 195A  
di/dt = 100A/µs  
Qrr  
Reverse Recovery Charge  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calcuted continuous current based on maximum allowable junction  
temperature Bond wire current limit is 195A. Note that current  
limitation arising from heating of the device leds may occur with  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.013mH  
RG = 25, IAS = 195A, VGS =10V. Part not recommended for use  
above this value .  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques refer  
to applocation note # AN-994.  
.
.
‰ Rθ is measured at TJ approximately 90°C  
ŠRθJC value shown is at time zero  
„ ISD 195A, di/dt 841A/µs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
IRLS/SL3034PbF  
100000  
10000  
1000  
100  
100000  
10000  
1000  
100  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
VGS  
15V  
10V  
8.0V  
4.5V  
3.5V  
3.0V  
2.7V  
2.5V  
60µs PULSE WIDTH  
Tj = 175°C  
TOP  
TOP  
60µs PULSE WIDTH  
Tj = 25°C  
BOTTOM  
BOTTOM  
10  
2.5V  
2.5V  
10  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
10000  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
I
= 195A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
5.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 185A  
C
C
C
+ C , C  
SHORTED  
ds  
D
V
V
= 32V  
= 20V  
iss  
gs  
gd  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
DS  
DS  
= C  
rss  
oss  
gd  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
1
10  
100  
0
20  
40  
60  
80  
100 120 140  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRLS/SL3034PbF  
10000  
1000  
100  
10  
10000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
1000  
100µsec  
1msec  
T
= 175°C  
J
100  
10  
LIMITED BY PACKAGE  
10msec  
T
= 25°C  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
1.0  
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
350  
50  
48  
46  
44  
42  
40  
Id = 5mA  
Limited By Package  
300  
250  
200  
150  
100  
50  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T
, Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2.5  
1200  
I
D
TOP  
38.9A  
65.3A  
1000  
800  
600  
400  
200  
0
2.0  
1.5  
1.0  
0.5  
0.0  
BOTTOM 195A  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRLS/SL3034PbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.02477  
0.000025  
τ
τ
J τJ  
τ
Cτ  
0.02  
0.01  
0.08004  
0.000077  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.01  
0.19057 0.001656  
0.10481 0.008408  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Τj = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 195A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRLS/SL3034PbF  
3.0  
14  
12  
10  
8
I = 78A  
F
V
= 34V  
2.5  
2.0  
1.5  
R
T = 25°C  
J
T = 125°C  
J
6
I
I
= 250µA  
= 1.0mA  
D
D
1.0  
0.5  
0.0  
4
ID = 1.0A  
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
100  
200  
300  
400  
500  
T , Temperature ( °C )  
J
di /dt (A/µs)  
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
14  
400  
I = 117A  
I = 78A  
F
F
12  
10  
8
V
= 34V  
V
= 34V  
R
R
T = 25°C  
T = 25°C  
J
J
300  
200  
100  
0
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
400  
I = 117A  
F
V
= 34V  
R
T = 25°C  
J
300  
200  
100  
0
T = 125°C  
J
0
100  
200  
300  
400  
500  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRLS/SL3034PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRLS/SL3034PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRLS/SL3034PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
IRLS/SL3034PbF  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 07/2009  
10  
www.irf.com  

相关型号:

IRLS3034TRRPBF

Power Field-Effect Transistor, 195A I(D), 40V, 0.0017ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRLS3036

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRLS3036-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036-7PPBF

HEXFET Power MOSFET
INFINEON

IRLS3036-7PPBF_10

HEXFETPower MOSFET
INFINEON

IRLS3036PBF

HEXFET Power MOSFET
INFINEON

IRLS3036TRL-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRL7PP

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRLPBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRLS3813PBF

Power Field-Effect Transistor,
INFINEON

IRLS4030

100V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRLS4030-7PPBF

HEXFET Power MOSFET
INFINEON