IRLS4030-7PPBF [INFINEON]

HEXFET Power MOSFET; HEXFET功率MOSFET
IRLS4030-7PPBF
型号: IRLS4030-7PPBF
厂家: Infineon    Infineon
描述:

HEXFET Power MOSFET
HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管 开关 脉冲
文件: 总9页 (文件大小:289K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97371  
IRLS4030-7PPbF  
HEXFET® Power MOSFET  
Applications  
l DC Motor Drive  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
VDSS  
100V  
RDS(on) typ.  
3.2m  
3.9m  
G
max.  
ID  
190A  
S
Benefits  
l Optimized for Logic Level Drive  
l Very Low RDS(ON) at 4.5V VGS  
l Superior R*Q at 4.5V VGS  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D
S
S
S
S
S
G
D2Pak 7 Pin  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
Max.  
190  
130  
750  
370  
2.5  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
A
PD @TC = 25°C  
W
Maximum Power Dissipation  
Linear Derating Factor  
W/°C  
V
VGS  
± 16  
13  
Gate-to-Source Voltage  
Peak Diode Recovery e  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy d  
EAS (Thermally limited)  
320  
mJ  
A
Avalanche Current c  
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy f  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
RθJC  
Junction-to-Case jk  
RθJA  
–––  
Junction-to-Ambient (PCB Mount) ij  
www.irf.com  
1
02/12/09  
IRLS4030-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.10 ––– V/°C Reference to 25°C, ID = 5mAc  
Conditions  
VGS = 0V, ID = 250µA  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
–––  
1.0  
3.2  
3.3  
–––  
3.9  
4.1  
2.5  
20  
VGS = 10V, ID = 110A f  
VGS = 4.5V, ID = 94A f  
VDS = VGS, ID = 250µA  
mΩ  
VGS(th)  
IDSS  
Gate Threshold Voltage  
V
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 100V, VGS = 0V  
––– ––– 250  
––– ––– 100  
––– ––– -100  
V
DS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA VGS = 16V  
GS = -16V  
V
RG(int)  
–––  
2.0  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
250 ––– –––  
Conditions  
VDS = 25V, ID = 110A  
S
–––  
–––  
–––  
–––  
–––  
93  
27  
43  
50  
53  
140  
–––  
–––  
–––  
–––  
nC ID = 110A  
VDS = 50V  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Qgd  
VGS = 4.5V f  
Qsync  
ID = 110A, VDS =0V, VGS = 4.5V  
td(on)  
ns  
VDD = 65V  
tr  
Rise Time  
––– 160 –––  
––– 110 –––  
ID = 110A  
td(off)  
Turn-Off Delay Time  
RG = 2.7Ω  
VGS = 4.5V f  
tf  
Fall Time  
–––  
87  
–––  
Ciss  
Input Capacitance  
––– 11490 –––  
––– 680 –––  
––– 300 –––  
––– 760 –––  
––– 1170 –––  
V
GS = 0V  
Coss  
Output Capacitance  
VDS = 50V  
Crss  
Reverse Transfer Capacitance  
pF ƒ = 1.0MHz  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 80V h  
Effective Output Capacitance (Energy Related)  
h
VGS = 0V, VDS = 0V to 80V g  
Effective Output Capacitance (Time Related)  
g
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– –––  
A
MOSFET symbol  
190  
(Body Diode)  
Pulsed Source Current  
(Body Diode)ꢁc  
showing the  
integral reverse  
G
ISM  
––– ––– 750  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
–––  
–––  
–––  
V
TJ = 25°C, IS = 110A, VGS = 0V f  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
–––  
–––  
–––  
53  
63  
99  
ns  
IF = 110A  
di/dt = 100A/µs f  
Qrr  
Reverse Recovery Charge  
nC  
A
––– 155 –––  
––– 3.3 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.05mH  
RG = 25, IAS = 110A, VGS =10V. Part not recommended for use  
above this value .  
ƒ ISD 110A, di/dt 1520A/µs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
‰ RθJC value shown is at time zero.  
2
www.irf.com  
IRLS4030-7PPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.7V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.7V  
2.5V  
BOTTOM  
BOTTOM  
2.5V  
2.5V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 110A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60µs PULSE WIDTH  
0.1  
1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
100000  
10000  
1000  
5.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 110A  
D
C
C
C
+ C , C  
SHORTED  
V
V
= 80V  
= 50V  
iss  
gs  
gd  
ds  
DS  
DS  
= C  
rss  
oss  
gd  
4.0  
3.0  
2.0  
1.0  
0.0  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
100  
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1000  
Q , Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRLS4030-7PPbF  
10000  
1000  
100  
10  
1000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100µsec  
1msec  
T
= 25°C  
J
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
1
10  
100  
1000  
0.0  
0.5  
1.0  
1.5  
2.0  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
200  
180  
160  
140  
120  
100  
80  
125  
120  
115  
110  
105  
100  
95  
Id = 5mA  
60  
40  
20  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1400  
I
D
1200  
1000  
800  
600  
400  
200  
0
TOP  
12A  
16A  
BOTTOM 110A  
-20  
0
20  
40  
60  
80  
100 120  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
www.irf.com  
IRLS4030-7PPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
Ri (°C/W) τi (sec)  
0.02  
0.01  
0.01  
τ
τ
J τJ  
CτC  
0.176  
0.000343  
τ
τ
1 τ1  
2 τ2  
0.227  
0.006073  
Ci= τi/Ri  
Ci= τi/Ri  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
0.01  
Tstart =25°C (Single Pulse)  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
∆Τ  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
400  
300  
200  
100  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 110A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRLS4030-7PPbF  
30  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
I = 75A  
F
V
= 85V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
1.0  
0.5  
0.0  
0
0
200  
400  
600  
800  
1000  
-75 -50 -25  
0
25 50 75 100 125 150 175  
di /dt (A/µs)  
T
, Temperature ( °C )  
F
J
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
30  
1400  
I = 110A  
I = 75A  
F
F
V
= 85V  
1200  
1000  
800  
600  
400  
200  
0
V
= 85V  
R
25  
20  
15  
10  
5
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
di /dt (A/µs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1600  
I = 110A  
F
1400  
V
= 85V  
R
T = 25°C  
J
1200  
1000  
800  
600  
400  
200  
0
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/µs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRLS4030-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2µF  
12V  
.3µF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRLS4030-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
8
www.irf.com  
IRLS4030-7PPbF  
D2Pak - 7 Pin Part Marking Information  
ꢀ14  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 02/09  
www.irf.com  
9

相关型号:

IRLS4030PBF

HEXFET Power MOSFET
INFINEON

IRLS4030TRL7PP

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, D2PAK- 7
INFINEON

IRLS4030TRLPBF

DC Motor Drive
INFINEON

IRLS510

Power Field-Effect Transistor, 3.6A I(D), 100V, 0.75ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRLS510A

Advanced Power MOSFET
FAIRCHILD

IRLS511

Power Field-Effect Transistor, 3.6A I(D), 80V, 0.75ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRLS520A

Advanced Power MOSFET
FAIRCHILD

IRLS521

Power Field-Effect Transistor, 5.8A I(D), 80V, 0.4ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRLS530

Advanced Power MOSFET
FAIRCHILD

IRLS530

Power Field-Effect Transistor, 8.8A I(D), 100V, 0.2ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRLS530A

Advanced Power MOSFET
FAIRCHILD

IRLS540

Power Field-Effect Transistor, 12.7A I(D), 100V, 0.11ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG