IRLS3036-7P [INFINEON]

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7;
IRLS3036-7P
型号: IRLS3036-7P
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7

开关 脉冲 晶体管
文件: 总9页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD -97148A  
IRLS3036-7PPbF  
HEXFET® Power MOSFET  
Applications  
l DC Motor Drive  
D
VDSS  
60V  
RDS(on) typ.  
l High Efficiency Synchronous Rectification in SMPS  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
1.5m  
1.9m  
300A  
:
:
c
max.  
ID (Silicon Limited)  
ID (Package Limited)  
G
240A  
S
Benefits  
l Optimized for Logic Level Drive  
l Very Low RDS(ON) at 4.5V VGS  
l Superior R*Q at 4.5V VGS  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
D
S
S
S
S
S
G
D2Pak 7 Pin  
G
D
S
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Parameter  
Max.  
300c  
210  
Units  
A
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current d  
240  
1000  
380  
PD @TC = 25°C  
Maximum Power Dissipation  
W
2.5  
Linear Derating Factor  
W/°C  
V
VGS  
± 16  
8.1  
Gate-to-Source Voltage  
Peak Diode Recovery f  
dv/dt  
TJ  
V/ns  
Operating Junction and  
-55 to + 175  
300  
TSTG  
°C  
Storage Temperature Range  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Avalanche Characteristics  
Single Pulse Avalanche Energy e  
EAS (Thermally limited)  
300  
mJ  
A
Avalanche Current d  
IAR  
See Fig. 14, 15, 22a, 22b  
Repetitive Avalanche Energy d  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.40  
40  
Units  
°C/W  
RθJC  
Junction-to-Case kl  
RθJA  
Junction-to-Ambient (PCB Mount, steady state) j  
–––  
www.irf.com  
1
10/28/10  
IRLS3036-7PPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.059 ––– V/°C Reference to 25°C, ID = 5mAd  
Conditions  
VGS = 0V, ID = 250μA  
V
ΔV(BR)DSS/ΔTJ  
Breakdown Voltage Temp. Coefficient  
–––  
–––  
1.0  
1.5  
1.7  
1.9  
2.2  
2.5  
20  
VGS = 10V, ID = 180A g  
RDS(on)  
Static Drain-to-Source On-Resistance  
mΩ  
V
V
GS = 4.5V, ID = 150A g  
DS = VGS, ID = 250μA  
VGS(th)  
IDSS  
Gate Threshold Voltage  
–––  
V
Drain-to-Source Leakage Current  
––– –––  
VDS = 60V, VGS = 0V  
μA  
––– ––– 250  
––– ––– 100  
––– ––– -100  
VDS = 60V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
VGS = 16V  
nA  
VGS = -16V  
RG(int)  
–––  
1.9  
–––  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Parameter  
Forward Transconductance  
Min. Typ. Max. Units  
Conditions  
VDS = 10V, ID = 180A  
390 ––– –––  
S
Qg  
Total Gate Charge  
––– 110 160  
ID = 180A  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
–––  
–––  
–––  
–––  
33  
53  
57  
81  
–––  
–––  
–––  
–––  
VDS = 30V  
nC  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
VGS = 4.5V g  
ID = 180A, VDS =0V, VGS = 4.5V  
VDD = 39V  
Rise Time  
––– 540 –––  
––– 89 –––  
ID = 180A  
RG = 2.1Ω  
VGS = 4.5V g  
VGS = 0V  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
––– 170 –––  
––– 11270 –––  
––– 1025 –––  
––– 520 –––  
––– 1460 –––  
––– 1630 –––  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
VDS = 50V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)iꢀ  
Effective Output Capacitance (Time Related) h  
pF ƒ = 1.0MHz  
VGS = 0V, VDS = 0V to 48V i  
Coss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 48V h  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
D
S
IS  
––– –––  
300  
(Body Diode)  
Pulsed Source Current  
showing the  
A
––– –––  
G
ISM  
integral reverse  
1000  
(Body Diode)e  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
––– –––  
1.3  
–––  
–––  
V
TJ = 25°C, IS = 180A, VGS = 0V g  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
57  
60  
ns  
IF = 180A  
di/dt = 100A/μs g  
Qrr  
––– 140 –––  
––– 160 –––  
nC  
A
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
4.6  
–––  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time as  
 Calculated continuous current based on maximum allowable junction  
temperature Bond wire current limit is 240A. Note that current  
limitation arising from heating of the device leds may occur with  
some lead mounting arrangements.  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For  
recommended footprint and soldering techniquea refer to applocation  
note # AN- 994 echniques refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.018mH  
RG = 25Ω, IAS = 180A, VGS =10V. Part not recommended for use  
above this value .  
Š RθJC value shown is at time zero.  
„ ISD 180A, di/dt 1070A/μs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
IRLS3036-7PPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
2.7V  
VGS  
15V  
10V  
4.5V  
4.0V  
3.5V  
3.3V  
3.0V  
2.7V  
TOP  
TOP  
BOTTOM  
BOTTOM  
1
2.7V  
2.7V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
DS  
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 180A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
V
= 25V  
DS  
60μs PULSE WIDTH  
1
2.0  
3.0  
4.0  
5.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
5
20000  
15000  
10000  
5000  
0
V
C
= 0V,  
f = 100 kHz  
GS  
V
V
= 48V  
= 30V  
I
= 180A  
DS  
DS  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
C
= C  
rss  
gd  
4
3
2
1
0
C
= C + C  
oss  
ds  
gd  
Ciss  
Coss  
Crss  
0
20  
Q
40  
60  
80  
100 120 140  
1
10  
100  
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRLS3036-7PPbF  
1000  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100  
10  
1
100μsec  
T
= 25°C  
J
1msec  
LIMITED BY PACKAGE  
10msec  
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
1.4  
GS  
0.1  
0.1  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.6  
0.1  
1
10  
100  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
300  
80  
70  
60  
50  
LIMITED BY PACKAGE  
I
= 5mA  
D
250  
200  
150  
100  
50  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
C
T
, Junction Temperature (°C)  
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
4.0  
3.0  
2.0  
1.0  
0.0  
1200  
I
D
TOP  
22A  
37A  
180A  
1000  
800  
600  
400  
200  
0
BOTTOM  
0
10  
20  
30  
40  
50  
60  
70  
25  
50  
75  
100  
125  
150  
175  
V
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
J
DS,  
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRLS3036-7PPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
R1  
R1  
R2  
R2  
R3  
R3  
τι (sec)  
Ri (°C/W)  
0.05  
0.02  
0.01  
τ
J τJ  
τ
τ
Cτ  
0.103731 0.000184  
0.196542 0.001587  
0.098271 0.006721  
0.01  
τ
1τ1  
τ
2τ2  
3τ3  
Ci= τi/Ri  
Ci= τi/Ri  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 180A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRLS3036-7PPbF  
3.0  
24  
18  
12  
6
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250μA  
2.5  
2.0  
1.5  
1.0  
I
= 120A  
= 51V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
100 200 300 400 500 600 700 800 900  
T
di / dt - (A / μs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
1000  
24  
800  
600  
400  
200  
0
18  
12  
I
= 120A  
= 51V  
I
= 180A  
= 51V  
F
F
6
0
V
V
T
R
R
T
= 125°C  
= 125°C  
= 25°C  
J
J
T
= 25°C  
T
J
J
100 200 300 400 500 600 700 800 900  
100 200 300 400 500 600 700 800 900  
di / dt - (A / μs)  
di / dt - (A / μs)  
f
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
1000  
I
= 180A  
= 51V  
F
V
T
R
= 125°C  
800  
600  
400  
200  
0
J
T
= 25°C  
J
100 200 300 400 500 600 700 800 900  
di / dt - (A / μs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRLS3036-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01Ω  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRLS3036-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
8
www.irf.com  
IRLS3036-7PPbF  
D2Pak - 7 Pin Part Marking Information  
25  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/10  
www.irf.com  
9

相关型号:

IRLS3036-7PPBF

HEXFET Power MOSFET
INFINEON

IRLS3036-7PPBF_10

HEXFETPower MOSFET
INFINEON

IRLS3036PBF

HEXFET Power MOSFET
INFINEON

IRLS3036TRL-7P

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRL7PP

Power Field-Effect Transistor, 240A I(D), 60V, 0.0019ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263CB, PLASTIC, D2PAK-7
INFINEON

IRLS3036TRLPBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.0024ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, LEAD FREE, D2PAK-3
INFINEON

IRLS3813PBF

Power Field-Effect Transistor,
INFINEON

IRLS4030

100V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRLS4030-7PPBF

HEXFET Power MOSFET
INFINEON

IRLS4030PBF

HEXFET Power MOSFET
INFINEON

IRLS4030TRL7PP

Power Field-Effect Transistor, 190A I(D), 100V, 0.0039ohm, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, D2PAK- 7
INFINEON

IRLS4030TRLPBF

DC Motor Drive
INFINEON