IRFS7437TRL7PP [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
IRFS7437TRL7PP
型号: IRFS7437TRL7PP
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

晶体 晶体管 功率场效应晶体管
文件: 总11页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRFS7437-7PPbF  
Applications  
HEXFET® Power MOSFET  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l PWM Inverterized topologies  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Electronic ballast applications  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
D
VDSS  
40V  
RDS(on) typ.  
max.  
1.1m  
1.4m  
G
ID  
295A  
(Silicon Limited)  
ID  
195A  
S
(Package Limited)  
D
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
S
S
S
SOA  
S
S
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
G
D2Pak 7 Pin  
l Halogen Free  
G
D
S
Gate  
Drain  
Source  
Ordering Information  
Base Part Number  
Package Type  
Standard Pack  
Form  
Complete Part  
Number  
Quantity  
Tube  
Tape and Reel Left  
50  
800  
IRFS7437-7PPbF  
IRFS7437TRL7PP  
IRFS7437-7PPbF  
D2Pak-7PIN  
4.0  
3.0  
2.0  
1.0  
300  
250  
200  
150  
100  
50  
I
= 100A  
Limited By Package  
D
T = 125°C  
J
T
= 25°C  
J
0
4
6
8
10 12 14  
16 18 20  
25  
50  
75  
100  
125  
150  
175  
T
, Case Temperature (°C)  
C
V
Gate -to -Source Voltage (V)  
GS,  
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com  
1
September 6, 2012  
IRFS7437-7PPbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
295  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
208  
A
195  
1040  
231  
PD @TC = 25°C  
Maximum Power Dissipation  
W
1.5  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
Gate-to-Source Voltage  
3.5  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
10lbf in (1.1N m)  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
344  
508  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
Max.  
0.65  
40  
Units  
°C/W  
R  
R  
Junction-to-Case  
JC  
Junction-to-Ambient (PCB Mount)  
JA  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
40  
–––  
–––  
V
VGS = 0V, ID = 250μA  
V(BR)DSS/TJ  
RDS(on)  
––– 0.035 –––  
V/°C Reference to 25°C, ID = 1.0mA  
mVGS = 10V, ID = 100A  
mVGS = 6.0V, ID = 50A  
–––  
1.1  
1.7  
1.4  
–––  
3.9  
VGS(th)  
IDSS  
Gate Threshold Voltage  
2.2  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
2.2  
V
VDS = VGS, ID = 150μA  
Drain-to-Source Leakage Current  
1.0  
μA VDS = 40V, VGS = 0V  
150  
100  
-100  
–––  
V
V
DS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
Notes:  
 Calculated continuous current based on maximum allowable junction  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
‰ Ris measured at TJ approximately 90°C.  
temperature. Bond wire current limit is 195A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.069mH  
RG = 50, IAS = 100A, VGS =10V.  
.
.
Š This value determined from sample failure population,  
„ ISD 100A, di/dt 1288A/μs, VDD V(BR)DSS, TJ 175°C.  
starting TJ = 25°C, L= 0.069mH, RG = 50, IAS = 100A, VGS =10V.  
2
www.irf.com  
September 6, 2012  
IRFS7437-7PPbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Qg  
Forward Transconductance  
122  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
150  
41  
–––  
225  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
S
VDS = 10V, ID = 100A  
Total Gate Charge  
nC ID = 100A  
VDS = 20V  
Qgs  
Qgd  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
51  
VGS = 10V  
Qsync  
td(on)  
tr  
99  
ID = 100A, VDS =0V, VGS = 10V  
18  
ns VDD = 20V  
ID = 30A  
Rise Time  
62  
td(off)  
tf  
Turn-Off Delay Time  
78  
RG = 2.7  
VGS = 10V  
Fall Time  
51  
Ciss  
Coss  
Crss  
Input Capacitance  
7437  
1097  
748  
1314  
1735  
pF VGS = 0V  
Output Capacitance  
V
DS = 25V  
ƒ = 1.0 MHz  
VGS = 0V, VDS = 0V to 32V  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
C
oss eff. (ER)  
Coss eff. (TR)  
VGS = 0V, VDS = 0V to 32V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
–––  
––– 285  
A
A
V
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
–––  
–––  
1040  
(Body Diode)  
Diode Forward Voltage  
Reverse Recovery Time  
p-n junction diode.  
TJ = 25°C, IS = 100A, VGS = 0V  
VSD  
trr  
–––  
–––  
–––  
–––  
–––  
–––  
1.0  
37  
38  
34  
36  
1.8  
1.3  
–––  
–––  
–––  
–––  
–––  
ns TJ = 25°C  
TJ = 125°C  
VR = 34V,  
IF = 100A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
nC TJ = 25°C  
TJ = 125°C  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
TJ = 25°C  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
www.irf.com  
3
September 6, 2012  
IRFS7437-7PPbF  
10000  
10000  
1000  
100  
VGS  
15V  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.5V  
6.0V  
5.5V  
5.0V  
1000  
100  
BOTTOM  
BOTTOM  
5.0V  
10  
5.0V  
60μs PULSE WIDTH  
Tj = 25°C  
60μs PULSE WIDTH  
Tj = 175°C  
1
10  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
10000  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 100A  
= 10V  
D
V
GS  
1000  
100  
10  
T = 175°C  
J
T
V
= 25°C  
= 10V  
J
DS  
60μs PULSE WIDTH  
1.0  
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I = 100A  
D
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
12.0  
= C  
rss  
oss  
gd  
= C + C  
V
V
= 32V  
= 20V  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
C
oss  
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
0
20 40 60 80 100 120 140 160 180 200  
V
DS  
Q , Total Gate Charge (nC)  
G
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
September 6, 2012  
IRFS7437-7PPbF  
10000  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100μsec  
1msec  
T
= 175°C  
J
10msec  
Limited by  
package  
T
= 25°C  
J
DC  
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
GS  
= 0V  
1.0  
0.1  
0.1  
1
10  
100  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
V
DS  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
-0.1  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
Id = 1.0mA  
-5  
0
5
10 15 20 25 30 35 40  
Drain-to-Source Voltage (V)  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Temperature ( °C )  
J
V
DS,  
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
10.0  
V
V
= 6.0V  
GS  
8.0  
6.0  
4.0  
2.0  
0.0  
= 7.0V  
= 8.0V  
=10V  
GS  
V
GS  
V
GS  
0
200  
400  
600  
800 1000 1200  
I , Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com  
5
September 6, 2012  
IRFS7437-7PPbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
350  
300  
250  
200  
150  
100  
50  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
EAS (AR) = PD (ave)·tav  
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
September 6, 2012  
IRFS7437-7PPbF  
5.0  
4.0  
3.0  
2.0  
1.0  
12  
10  
8
I = 60A  
F
V
= 34V  
R
T = 25°C  
J
T = 125°C  
J
6
I
I
I
= 150μA  
= 1.0mA  
= 1.0A  
D
D
D
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
12  
300  
I = 100A  
F
I = 60A  
F
V
= 34V  
V
= 34V  
R
10  
8
R
250  
200  
150  
100  
50  
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
300  
I = 100A  
F
V
= 34V  
R
250  
200  
150  
100  
50  
T = 25°C  
J
T = 125°C  
J
0
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
September 6, 2012  
IRFS7437-7PPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
 Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width µs  
Duty Factor   
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50K  
.2F  
12V  
.3F  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
8
www.irf.com  
September 6, 2012  
IRFS7437-7PPbF  
D2Pak - 7 Pin Package Outline  
Dimensions are shown in millimeters (inches)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
September 6, 2012  
IRFS7437-7PPbF  
D2Pak - 7 Pin Part Marking Information  
D2Pak - 7 Pin Tape and Reel  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
10  
www.irf.com  
September 6, 2012  
IRFS7437-7PPbF  
Qualification information  
Industrial††  
(per JEDEC JESD47F††† guidelines)  
Qualification level  
MS L 1  
(per JE DE C J-S TD-020D†††  
D2Pak-7PIN  
Moisture Sensitivity Level  
RoHS compliant  
)
Yes  
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 04/2012  
www.irf.com  
11  
September 6, 2012  

相关型号:

IRFS7437TRLPBF

HEXFETPower MOSFET
INFINEON

IRFS7440

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFS7440PBF

Brushed Motor drive applications
INFINEON

IRFS7440TRLPBF

Applications
INFINEON

IRFS750

Advanced Power MOSFET
FAIRCHILD

IRFS750A

Advanced Power MOSFET
FAIRCHILD

IRFS7530

isc N-Channel MOSFET Transistor
ISC

IRFS7530

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRFS7530-7P

60V 单个 N 通道 HEXFET Power MOSFET, 采用 7引脚 D2-Pak 封装
INFINEON

IRFS7530-7PPBF

Power Field-Effect Transistor
INFINEON

IRFS7530PBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3/2
INFINEON

IRFS7530TRL7PP

Power Field-Effect Transistor
INFINEON