IRFS7437TRLPBF [INFINEON]

HEXFETPower MOSFET; ?? HEXFET功率MOSFET
IRFS7437TRLPBF
型号: IRFS7437TRLPBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
?? HEXFET功率MOSFET

文件: 总11页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
StrongIRFET™  
IRFS7437PbF  
Applications  
IRFSL7437PbF  
l Brushed Motor drive applications  
l BLDC Motor drive applications  
l Battery powered circuits  
l Half-bridge and full-bridge topologies  
l Synchronous rectifier applications  
l Resonant mode power supplies  
l OR-ing and redundant power switches  
l DC/DC and AC/DC converters  
l DC/AC Inverters  
HEXFET® Power MOSFET  
VDSS  
40V  
D
RDS(on) typ.  
max.  
1.4mΩ  
1.8mΩ  
G
ID  
250A  
(Silicon Limited)  
ID  
195A  
(Package Limited)  
S
D
D
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
S
S
D
l Fully Characterized Capacitance and Avalanche  
G
G
SOA  
D2Pak  
TO-262  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
IRFSL7437PbF  
IRFS7437PbF  
l Halogen-Free  
G
D
S
Gate  
Drain  
Source  
Ordering Information  
Base part number  
Package Type  
Standard Pack  
Form  
Tube  
Tube  
Tape and Reel Left  
Complete Part  
Number  
IRFSL7437PbF  
IRFS7437PbF  
IRFS7437TRLPbF  
Quantity  
50  
IRFSL7437PbF  
IRFS7437PbF  
IRFS7437PbF  
TO-262  
D2Pak  
D2Pak  
50  
800  
6
5
4
3
2
1
0
250  
200  
150  
100  
50  
LIMITED BY PACKAGE  
I
= 100A  
D
T
= 125°C  
= 25°C  
J
T
J
0
4.0  
6.0  
8.0 10.0 12.0 14.0 16.0 18.0 20.0  
, Gate-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
V
T
, Case Temperature (°C)  
GS  
C
Fig 2. Maximum Drain Current vs. Case Temperature  
Fig 1. Typical On-Resistance vs. Gate Voltage  
www.irf.com  
1
September06,2012  
IRFS/SL7437PbF  
Absolute Maximum Ratings  
Symbol  
Parameter  
Max.  
250  
Units  
ID @ TC = 25°C  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)  
Pulsed Drain Current  
180  
A
195  
1000  
230  
PD @TC = 25°C  
Maximum Power Dissipation  
W
1.5  
Linear Derating Factor  
W/°C  
V
± 20  
VGS  
Gate-to-Source Voltage  
3.0  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
°C  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Mounting torque, 6-32 or M3 screw  
10lbf in (1.1N m)  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
350  
500  
mJ  
EAS (tested)  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
Max.  
0.65  
40  
Units  
Rθ  
Rθ  
Junction-to-Case  
Junction-to-Ambient (PCB Mount) , D2Pak  
JC  
°C/W  
JA  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.029 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250μA  
V
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
–––  
–––  
2.2  
1.4  
2.0  
3.0  
1.8  
–––  
3.9  
1.0  
VGS = 10V, ID = 100A  
VGS = 6.0V, ID = 50A  
RDS(on)  
VGS(th)  
IDSS  
Gate Threshold Voltage  
V
V
V
V
V
DS = VGS, ID = 150μA  
DS = 40V, VGS = 0V  
DS = 40V, VGS = 0V, TJ = 125°C  
GS = 20V  
Drain-to-Source Leakage Current  
––– –––  
μA  
––– ––– 150  
––– ––– 100  
––– ––– -100  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
VGS = -20V  
–––  
2.2  
–––  
Ω
Notes:  
 Calculated continuous current based on maximum allowable junction  
Pulse width 400μs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
temperature. Bond wire current limit is 195A. Note that current  
limitations arising from heating of the device leads may occur with  
some lead mounting arrangements. (Refer to AN-1140)  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.069mH  
RG = 25Ω, IAS = 100A, VGS =10V.  
.
Coss while VDS is rising from 0 to 80% VDSS  
.
ˆ Rθ is measured at TJ approximately 90°C.  
‰ This value determined from sample failure population,  
starting TJ = 25°C, L=0.095mH, RG = 25Ω, IAS = 100A, VGS =10V  
„ ISD 100A, di/dt 1166A/μs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
September06,2012  
IRFS/SL7437PbF  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
gfs  
Forward Transconductance  
160 ––– –––  
S
VDS = 10V, ID = 100A  
nC ID = 100A  
DS =20V  
VGS = 10V  
ID = 100A, VDS =20V, VGS = 10V  
ns VDD = 20V  
Qg  
Total Gate Charge  
––– 150 225  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
41  
51  
99  
19  
70  
78  
53  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
ID = 30A  
RG = 2.7Ω  
VGS = 10V  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 7330 –––  
––– 1095 –––  
––– 745 –––  
––– 1310 –––  
––– 1735 –––  
pF VGS = 0V  
Output Capacitance  
Reverse Transfer Capacitance  
V
DS = 25V  
ƒ = 1.0 MHz, See Fig. 5  
C
oss eff. (ER) Effective Output Capacitance (Energy Related)  
V
V
GS = 0V, VDS = 0V to 32V , See Fig. 11  
GS = 0V, VDS = 0V to 32V  
Coss eff. (TR) Effective Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
D
S
IS  
Continuous Source Current  
––– ––– 250  
A
A
V
MOSFET symbol  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
G
ISM  
––– ––– 1000  
(Body Diode)  
Diode Forward Voltage  
Reverse Recovery Time  
p-n junction diode.  
TJ = 25°C, IS = 100A, VGS = 0V  
VSD  
trr  
–––  
–––  
–––  
–––  
–––  
–––  
1.0  
30  
30  
24  
25  
1.3  
1.3  
–––  
–––  
–––  
–––  
–––  
ns TJ = 25°C  
TJ = 125°C  
VR = 34V,  
IF = 100A  
di/dt = 100A/μs  
Qrr  
Reverse Recovery Charge  
nC TJ = 25°C  
TJ = 125°C  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
TJ = 25°C  
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
www.irf.com  
3
September06,2012  
IRFS/SL7437PbF  
1000  
1000  
100  
10  
VGS  
15V  
VGS  
15V  
10V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
100  
BOTTOM  
BOTTOM  
4.5V  
10  
4.5V  
60μs PULSE WIDTH  
60μs PULSE WIDTH  
Tj = 25°C  
Tj = 175°C  
10  
, Drain-to-Source Voltage (V)  
1
0.1  
1
10  
100  
0.1  
1
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
1000  
100  
10  
I
= 100A  
= 10V  
D
V
GS  
T
= 175°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60μs PULSE WIDTH  
1.0  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
3
4
5
6
7
8
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Normalized On-Resistance vs. Temperature  
Fig 5. Typical Transfer Characteristics  
14  
100000  
10000  
1000  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 100A  
D
V
V
= 32V  
= 20V  
= C + C , C SHORTED  
DS  
DS  
iss  
gs  
gd ds  
12  
10  
8
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
C
iss  
6
C
oss  
C
rss  
4
2
0
100  
0
40  
Q
80  
120  
160  
200  
1
10  
, Drain-to-Source Voltage (V)  
100  
Total Gate Charge (nC)  
G
V
DS  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
September06,2012  
IRFS/SL7437PbF  
1000  
100  
10  
1000  
100  
10  
100μsec  
T
= 175°C  
J
1msec  
Limited by Package  
T
= 25°C  
J
10msec  
DC  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-toSource Voltage (V)  
DS  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 10. Maximum Safe Operating Area  
Fig 9. Typical Source-Drain Diode  
Forward Voltage  
1.2  
50  
48  
46  
44  
42  
40  
Id = 1.0mA  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0
10  
20  
30  
40  
50  
-60 -40 -20 0 20 40 60 80 100120140160180  
, Temperature ( °C )  
V
Drain-to-Source Voltage (V)  
DS,  
T
J
Fig 11. Drain-to-Source Breakdown Voltage  
Fig 12. Typical COSS Stored Energy  
8
7
6
V
= 5.5V  
= 6.0V  
GS  
V
GS  
5
V
= 7.0V  
GS  
VGS = 8.0V  
VGS = 10V  
4
3
2
1
0
100  
200  
300  
400  
500  
I
, Drain Current (A)  
D
Fig 13. Typical On-Resistance vs. Drain Current  
www.irf.com  
5
September06,2012  
IRFS/SL7437PbF  
1
D = 0.50  
0.20  
0.1  
0.10  
0.05  
0.02  
0.01  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Δ
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming j = 25°C and  
ΔΤ  
Tstart = 150°C. (Single Pulse)  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 15. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
350  
300  
250  
200  
150  
100  
50  
TOP  
BOTTOM 1% Duty Cycle  
= 100A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
0
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 16. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
September06,2012  
IRFS/SL7437PbF  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
10  
8
I
= 60A  
= 34V  
F
V
R
T = 25°C  
J
T = 125°C  
J
6
I
I
I
= 150μA  
= 1.0mA  
= 1.0A  
D
D
D
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
0
200  
400  
600  
800  
1000  
T , Temperature ( °C )  
di /dt (A/μs)  
J
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig 17. Threshold Voltage vs. Temperature  
10  
140  
120  
100  
80  
I
= 100A  
= 34V  
I
= 60A  
= 34V  
F
F
V
V
R
R
8
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
60  
4
40  
2
20  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Recovery Current vs. dif/dt  
Fig. 20 - Typical Stored Charge vs. dif/dt  
140  
I
= 100A  
= 34V  
F
120  
100  
80  
60  
40  
20  
0
V
R
T = 25°C  
J
T = 125°C  
J
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
September06,2012  
IRFS/SL7437PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
Ω
0.01  
t
p
I
AS  
Fig 23b. Unclamped Inductive Waveforms  
Fig 23a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 24a. Switching Time Test Circuit  
Fig 24b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 25a. Gate Charge Test Circuit  
Fig 25b. Gate Charge Waveform  
8
www.irf.com  
September06,2012  
IRFS/SL7437PbF  
D2Pak (TO-263AB) Package Outline  
Dimensions are shown in millimeters (inches)  
D2Pak (TO-263AB) Part Marking Information  
THIS IS AN IRF530S WITH  
PART NUMBER  
LOT CODE 8024  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 02, 2000  
IN THE ASSEMBLY LINE "L"  
F530S  
DAT E CODE  
YEAR 0 = 2000  
WE EK 02  
AS S E MBL Y  
LOT CODE  
LINE L  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
F530S  
DATE CODE  
P = DESIGNATES LEAD - FREE  
PRODUCT (OPTIONAL)  
YEAR 0 = 2000  
AS S E MB L Y  
LOT CODE  
WE E K 02  
A= ASSEMBLY SITE CODE  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
September06,2012  
IRFS/SL7437PbF  
TO-262 Package Outline  
Dimensions are shown in millimeters (inches)  
TO-262 Part Marking Information  
EXAMPLE: THIS IS AN IRL3103L  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 1997  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 7 = 1997  
WEEK 19  
ASSEMBLY  
LOT CODE  
LINE C  
OR  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
P = DE S IGNAT E S L E AD-F RE E  
PRODUCT (OPTIONAL)  
YEAR 7 = 1997  
ASSEMBLY  
LOT CODE  
WEEK 19  
A= ASSEMBLY SITE CODE  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
September06,2012  
IRFS/SL7437PbF  
Qualification information  
Qualification level  
Industrial††  
(per JEDEC JESD47F††† guidelines)  
Moisture Sensitivity Level  
RoHS compliant  
D2Pak  
TO-262  
MS L1  
(per JEDEC J-S TD-020D  
Not applicable  
†††  
)
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/  
†† Higher qualification ratings may be available should the user have such requirements. Please contact your  
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/  
††† Applicable version of JEDEC standard at the time of product release.  
Data and specifications subject to change without notice.  
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.  
www.irf.com  
11  
September06,2012  

相关型号:

IRFS7440

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFS7440PBF

Brushed Motor drive applications
INFINEON

IRFS7440TRLPBF

Applications
INFINEON

IRFS750

Advanced Power MOSFET
FAIRCHILD

IRFS750A

Advanced Power MOSFET
FAIRCHILD

IRFS7530

isc N-Channel MOSFET Transistor
ISC

IRFS7530

60V 单个 N 通道 HEXFET Power MOSFET, 采用 D2-Pak 封装
INFINEON

IRFS7530-7P

60V 单个 N 通道 HEXFET Power MOSFET, 采用 7引脚 D2-Pak 封装
INFINEON

IRFS7530-7PPBF

Power Field-Effect Transistor
INFINEON

IRFS7530PBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3/2
INFINEON

IRFS7530TRL7PP

Power Field-Effect Transistor
INFINEON

IRFS7530TRLPBF

Power Field-Effect Transistor, 195A I(D), 60V, 0.002ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, ROHS COMPLIANT, PLASTIC, D2PAK-3/2
INFINEON