IRFHE4250D [INFINEON]

;
IRFHE4250D
型号: IRFHE4250D
厂家: Infineon    Infineon
描述:

文件: 总14页 (文件大小:531K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRFHE4250D FastIRFET 6×6 PQFN 顶部外露电源模块器件  
DC-DC 应用提供卓越效率  
2014 8 13 日  
全球功率半导体和管理方案领导厂商 – 国际整流器公司 (International Rectifier,简称 IR) 推出 IRFHE4250D FastIRFET 双功  
MOSFET,藉以扩充电源模块组件系列。新款 25V 器件在 25A 的电流下能够比其它顶级的传统电源模块产品减少 5%以上  
的功率损耗,适用于 12V 输入 DC-DC 同步降压应用,包括先进的电信和网络通讯设备、服务器、显卡、台式电脑、超极本  
(Ultrabook) 和笔记本电脑等。  
IRFHE4250D 配备 IR 新一代硅技术采用了适合背面贴装的 6×6 PQFN 顶部外露纤薄封装电源模块带来更多封装选择。  
这款封装结合了出色的散热性能导通电阻 (Rds(on)) 与栅极电荷 (Qg)供卓越的功率密度和较低的开关损耗而缩  
减电路板尺寸,提升整体系统效率。  
IR 亚太区销售副总裁潘大伟表示高达 60A 额定值的 IRFHE4250D FastIRFET MOSFET 是全球首款顶部外露电源模块器件,  
提供行业领先的功率密度,有效满足要求顶尖效率的高性能 DC-DC 应用。”  
IR 的其它电源模块器件一样IRFHE4250D 可与各种控制器或驱动器共同操作提供设计灵活性时以小的占位面积  
实现更高的电流、效率和频率,还为 IR 电源模块带来全新的 6×6 PQFN 封装选择。  
IRFHE4250D 符合工业标准及第二级湿度敏感度 (MSL2) 标准,并采用了 6×6 PQFN 顶部外露封装,备有符合电子产品有害  
物质管制规定 (RoHS) 的环保物料清单。  
规格  
4.5V 下的典型/  
4.5V 下的  
典型 Q (nC)  
4.5V 下的  
典型 QGD (nC)  
器件编号  
封装  
电流额定值  
G
最高导通电阻  
IRFHE4250D  
PQFN  
60A  
3.2 / 4.1  
13  
35  
5. × 13  
1.35 / 1.0  
6mm × 6mm  
产品现正接受批量订单,相关数据和 SPICE 模型,请浏览 IR 的网站 http://www.irf.com。  
IR 简介  
国际整流器公司 (简称 IR约证交所代号 IRF) 是全球功率半导体和管理方案领导厂商IR 的模拟及混合信号集成电路、  
先进电路器件、集成功率系统和器件广泛应用于驱动高性能计算设备及降低电机的能耗 (电机是全球最大耗能设备) ,是众  
多国际知名厂商开发下一代计算机、节能电器、照明设备、汽车、卫星系统、宇航及国防系统的电源管理基准。  
IR 成立于 1947 年,总部设在美国洛杉矶,在二十个国家设有办事处。  
IR 全球网站:www.irf.com,中国网站:www.irf.com.cn。  
商标  
FastIRFET 是国际整流器公司的商标, IR 是国际整流器公司的注册商标。所有其它的产品名称可能与其相关持有人拥有的  
商标名称相同。  
FASTIRFET™  
IRFHE4250DPbF  
HEXFET® Power MOSFET  
Q1  
25  
Q2  
25  
VDSS  
V
RDS(on) max  
(@VGS = 4.5V)  
4.10  
13  
1.35  
35  
m  
nC  
Qg (typical)  
ID  
60  
60  
A
(@TC = 25°C)  
Applications  
Control and Synchronous MOSFETs for synchronous buck  
converters  
DUAL PQFN 6X6 mm  
Benefits  
Features  
Control and synchronous MOSFETs in one package  
Low thermal resistance path to the PCB  
Low thermal resistance path to the top  
Low charge control MOSFET (13nC typical)  
Low RDSON synchronous MOSFET (<1.35m)  
Intrinsic schottky diode with low forward voltage on Q2  
RoHS compliant, halogen-free  
Increased power density  
Increased power density  
Increased power density  
Lower switching losses  
Lower conduction losses  
Lower switching losses  
Environmentally friendlier  
Increased reliability  
results in  
MSL2, industrial qualification  
Base part number  
Package Type  
Standard Pack  
Orderable Part Number  
IRFHE4250DTRPbF  
Form  
Quantity  
4000  
IRFHE4250DPbF  
Dual PQFN 6mm x 6mm  
Tape and Reel  
Absolute Maximum Ratings  
Parameter  
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Q1 Max.  
Q2 Max.  
Units  
VGS  
± 16  
V
A
ID @ TC = 25°C  
86  
69  
303  
243  
ID @ TC = 70°C  
ID @ TC = 25°C  
Continuous Drain Current  
(Source Bonding Technology Limited)  
60  
60  
IDM  
Pulsed Drain Current  
Power Dissipation  
Power Dissipation  
180  
156  
100  
525  
156  
PD @TC = 25°C  
PD @TC = 70°C  
W
100  
Linear Derating Factor  
1.3  
1.3  
W/°C  
°C  
TJ  
Operating Junction and  
Storage Temperature Range  
-55 to + 150  
TSTG  
Thermal Resistance  
Parameter  
Q1 Max.  
Q2 Max.  
Units  
Junction-to-Case   
3.7  
0.91  
24  
0.91  
2.1  
24  
RJC (Bottom)  
RJC (Top)  
RJA  
°C/W  
Junction-to-Case   
Junction-to-Ambient   
Junction-to-Ambient   
17  
17  
RJA (<10s)  
Notes through are on page 12  
1
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
BVDSS  
Drain-to-Source Breakdown Voltage  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
25  
25  
––– –––  
––– –––  
V
VGS = 0V, ID = 250µA  
VGS = 0V, ID = 1.0mA  
Breakdown Voltage Temp. Coefficient  
–––  
–––  
23  
21  
––– mV/°C Reference to 25°C, ID = 1.0mA  
BVDSS/TJ  
–––  
Reference to 25°C, ID = 10mA  
––– 2.20 2.75  
––– 0.70 0.90  
––– 3.20 4.10  
––– 1.00 1.35  
VGS = 10V, ID = 27A   
RDS(on)  
Static Drain-to-Source On-Resistance  
V
GS = 10V, ID = 27A   
VGS = 4.5V, ID = 27A   
GS = 4.5V, ID = 27A   
m  
V
VGS(th)  
Gate Threshold Voltage  
1.1  
1.1  
1.6  
1.6  
2.1  
2.1  
V
Q1: VDS = VGS, ID = 35µA  
Q2: VDS = VGS, ID = 100µA  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– -5.8 ––– mV/°C Q1: VDS = VGS, ID = 35µA  
VGS(th)/TJ  
IDSS  
IGSS  
gfs  
––– -7.8 –––  
––– ––– 1.0  
––– ––– 500  
Q2: VDS = VGS, ID = 1.0mA  
µA VDS = 20V, VGS = 0V  
VDS = 20V, VGS = 0V  
nA VGS = 16V  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Q1/Q2 ––– ––– 100  
Q1/Q2 ––– ––– -100  
VGS = -16V  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
73  
––– –––  
S
VDS = 10V, ID = 14A  
121 ––– –––  
VDS = 10V, ID = 23A  
Qg  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
13  
35  
20  
53  
Q1  
Qgs1  
Qgs2  
Qgd  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
3.6 –––  
8.6 –––  
1.3 –––  
3.8 –––  
5.2 –––  
VDS = 13V  
VGS = 4.5V, ID = 13A  
nC  
Q2  
VDS = 13V  
13  
–––  
VGS = 4.5V, ID = 23A  
Qgodr  
Qsw  
Qoss  
RG  
2.9 –––  
9.6 –––  
6.5 –––  
––– 16.8 –––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
14  
41  
–––  
–––  
nC VDS = 16V, VGS = 0V  
Gate Resistance  
0.5 –––  
0.4 –––  
  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
11  
17  
33  
54  
14  
24  
12  
16  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Q1  
VDS = 13V VGS = 4.5V  
ID = 14A, Rg = 1.8  
ns  
Q2  
Turn-Off Delay Time  
Fall Time  
VDS = 13V VGS = 4.5V  
ID = 23A, Rg = 1.8  
Ciss  
Input Capacitance  
––– 1735 –––  
––– 4765 –––  
––– 493 –––  
––– 1577 –––  
––– 137 –––  
––– 370 –––  
VGS = 0V  
pF  
VDS = 13V  
Coss  
Crss  
Output Capacitance  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
2
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Q1 Max.  
71  
Q2 Max.  
481  
63  
Units  
mJ  
EAS  
IAR  
Single Pulse Avalanche Energy   
Avalanche Current   
32  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
(Body Diode)  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
Q1  
Q2  
––– ––– 60  
––– ––– 60  
––– ––– 180  
––– ––– 525  
––– 0.77 0.88  
––– 0.60 0.75  
A
A
V
MOSFET symbol  
showing the  
integral reverse  
p-n junction diode.  
ISM  
VSD  
trr  
Pulsed Source Current  
(Body Diode)  
Diode Forward Voltage  
TJ = 25°C, IS = 14A, VGS = 0V  
TJ = 25°C, IS = 27A, VGS = 0V  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
19  
34  
16  
54  
29  
51  
24  
81  
ns Q1 TJ = 25°C, IF = 30A  
VDD = 13V, di/dt = 200A/µs   
nC Q2 TJ = 25°C, IF = 30A  
Qrr  
VDD = 13V, di/dt = 200A/µs   
3
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
Q2 - Synchronous FET  
Q1 - Control FET  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
4.0V  
3.5V  
3.25V  
3.0V  
2.75V  
2.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.25V  
3.0V  
2.75V  
BOTTOM  
BOTTOM  
2.5V  
1
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 25°C  
2.75V  
0.1  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1000  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
5.0V  
4.5V  
4.0V  
3.5V  
3.25V  
3.0V  
2.75V  
4.5V  
4.0V  
3.5V  
3.25V  
3.0V  
2.75V  
2.5V  
100  
10  
1
BOTTOM  
BOTTOM  
2.5V  
2.75V  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
Tj = 150°C  
Tj = 150°C  
1
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 3. Typical Output Characteristics  
Fig 4. Typical Output Characteristics  
1000  
1000  
100  
10  
100  
10  
1
T
= 150°C  
T
= 150°C  
J
J
T
= 25°C  
= 15V  
J
T
= 25°C  
J
1
V
= 15V  
V
DS  
DS  
60µs PULSE WIDTH  
60µs PULSE WIDTH  
0.1  
0.1  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
1.0  
1.5  
2.0  
2.5 3.0 3.5 4.0  
V
, Gate-to-Source Voltage (V)  
GS  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 6. Typical Transfer Characteristics  
September 26, 2013  
Fig 5. Typical Transfer Characteristics  
www.irf.com © 2013 International Rectifier  
4
IRFHE4250DPbF  
Q2 - Synchronous FET  
Q1 - Control FET  
10000  
1000  
100  
100000  
10000  
1000  
V
= 0V,  
= C  
f = 1 MHZ  
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C SHORTED  
GS  
GS  
C
C
C
+ C , C  
SHORTED  
C
C
C
iss  
gs  
gd  
gd  
ds  
iss  
gs  
gd  
ds  
= C  
= C  
rss  
oss  
gd  
= C + C  
rss  
oss  
gd  
= C + C  
ds  
ds  
gd  
C
C
iss  
C
iss  
oss  
C
oss  
C
C
rss  
rss  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
1
10  
, Drain-to-Source Voltage (V)  
100  
V
DS  
V
DS  
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 8. Typical Capacitance vs. Drain-to-Source Voltage  
14.0  
14.0  
I
= 30A  
I = 30A  
D
D
12.0  
10.0  
8.0  
12.0  
10.0  
8.0  
V
V
= 20V  
= 13V  
DS  
DS  
V
V
= 20V  
= 13V  
DS  
DS  
6.0  
6.0  
4.0  
4.0  
2.0  
2.0  
0.0  
0.0  
0
5
10 15 20 25 30 35 40  
Q , Total Gate Charge (nC)  
0
10 20 30 40 50 60 70 80 90 100  
Q , Total Gate Charge (nC)  
G
G
Fig 10. Typical Gate Charge vs. Gate-to-Source Voltage  
Fig 9. Typical Gate Charge vs. Gate-to-Source Voltage  
1000  
10000  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
OPERATION IN THIS AREA  
DS  
LIMITED BY R  
(on)  
DS  
1000  
100  
10  
100µsec  
100  
10  
1
1msec  
100µsec  
1msec  
Limited by  
package  
Limited by package  
10msec  
10msec  
DC  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
DC  
0.1  
0.1  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 11. Maximum Safe Operating Area  
Fig 12. Maximum Safe Operating Area  
5
www.irf.com © 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
Q2 - Synchronous FET  
Q1 - Control FET  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 27A  
I
= 27A  
D
D
V
= 4.5V  
V
= 4.5V  
GS  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
T
J
, Junction Temperature (°C)  
Fig 14. Normalized On-Resistance vs. Temperature  
1000  
Fig 13. Normalized On-Resistance vs. Temperature  
1000  
T
= 150°C  
J
100  
10  
100  
T
= 150°C  
J
T
= 25°C  
J
T
V
= 25°C  
= 0V  
J
10  
V
= 0V  
GS  
GS  
1.0  
1.0  
0.2  
0.4  
0.6  
0.8  
1.0  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
V
, Source-to-Drain Voltage (V)  
V
, Source-to-Drain Voltage (V)  
SD  
SD  
Fig 15. Typical Source-Drain Diode Forward Voltage  
Fig 16. Typical Source-Drain Diode Forward Voltage  
10  
3.0  
I
= 23A  
I
= 27A  
D
D
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
8
6
4
2
0
T
= 125°C  
J
T
= 125°C  
J
T
= 25°C  
J
T
= 25°C  
J
2
4
6
8
10 12 14 16 18 20  
2
4
6
8
10 12 14 16 18 20  
V
Gate -to -Source Voltage (V)  
V
Gate -to -Source Voltage (V)  
GS,  
GS,  
Fig 17. Typical On-Resistance vs. Gate Voltage  
Fig 18. Typical On-Resistance vs. Gate Voltage  
September 26, 2013  
6
www.irf.com  
© 2013 International Rectifier  
IRFHE4250DPbF  
Q2 - Synchronous FET  
Q1 - Control FET  
350  
300  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
Limited By Package  
Limited By Package  
0
25  
50  
T
75  
100  
125  
150  
25  
50  
T
75  
100  
125  
150  
, Case Temperature (°C)  
, Case Temperature (°C)  
C
C
Fig 20. Maximum Drain Current vs. Case Temperature  
Fig 19. Maximum Drain Current vs. Case Temperature  
2.5  
2.2  
2.0  
1.8  
1.6  
2.0  
1.5  
I
= 1.0mA  
D
I
= 35µA  
D
1.4  
1.2  
1.0  
0.8  
1.0  
0.5  
0.0  
-75 -50 -25  
0
25 50 75 100 125 150  
-75 -50 -25  
0
25 50 75 100 125 150  
T
, Temperature ( °C )  
T
, Temperature ( °C )  
J
J
Fig 21. Threshold Voltage vs. Temperature  
Fig 22. Threshold Voltage vs. Temperature  
300  
2000  
I
I
D
D
TOP  
8.6A  
15A  
TOP  
18A  
33A  
250  
200  
150  
100  
50  
1500  
1000  
500  
0
BOTTOM 32A  
BOTTOM 63A  
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
Starting T , Junction Temperature (°C)  
J
J
Fig 23. Maximum Avalanche Energy vs. Drain Current  
Fig 24. Maximum Avalanche Energy vs. Drain Current  
7
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
t
, Rectangular Pulse Duration (sec)  
1
Fig 25. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Q1)  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
0.001  
0.0001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-007  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 26. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Q2)  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 125°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
  
pulsewidth, tav, assuming  
Tstart = 125°C.  
j = 25°C and  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 27. Single Avalanche Event: Pulse Current vs. Pulse Width (Q1)  
8
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
1000  
100  
10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 125°C and  
Tstart =25°C (Single Pulse)  
Allowed avalanche Current vs avalanche  
  
pulsewidth, tav, assuming  
Tstart = 125°C.  
j = 25°C and  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 28. Single Avalanche Event: Pulse Current vs. Pulse Width (Q2)  
9
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
Fig 29. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
t
p
15V  
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
20V  
I
0.01  
t
p
AS  
Fig 30a. Unclamped Inductive Test Circuit  
Fig 30b. Unclamped Inductive Waveforms  
Fig 31a. Switching Time Test Circuit  
Fig 31b. Switching Time Waveforms  
Id  
Vds  
Vgs  
VDD  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 32a. Gate Charge Test Circuit  
Fig 32b. Gate Charge Waveform  
September 26, 2013  
10  
www.irf.com  
© 2013 International Rectifier  
IRFHE4250DPbF  
Dual PQFN 6x6 Outline Package Details  
For more information on board mounting, including footprint and stencil recommendation, please refer to  
application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf  
For more information on package inspection techniques, please refer to application note AN-1154:  
http://www.irf.com/technical-info/appnotes/an-1154.pdf  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
11  
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  
IRFHE4250DPbF  
Dual PQFN 6x6 Outline Tape and Reel  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Qualification Information†  
Industrial  
Qualification level  
(per JEDEC JESD47F †† guidelines )  
MSL2  
DUAL PQFN 6mm x 6mm  
Moisture Sensitivity Level  
RoHS Compliant  
(per JEDEC J-STD-020D††)  
Yes  
††  
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability  
Applicable version of JEDEC standard at the time of product release.  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
Starting TJ = 25°C,  
Q1: L = 0.14 mH, RG = 50, IAS = 32A;  
Q2: L = 0.24 mH, RG = 50, IAS = 63A.  
Pulse width 400µs; duty cycle 2%.  
Ris measured at TJ approximately 90°C.  
When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:  
http://www.irf.com/technical-info/appnotes/an-994.pdf  
Calculated continuous current based on maximum allowable junction temperature.  
Current is limited to Q1 = 60A & Q2 = 60A by source bonding technology.  
Pulsed drain current is limited to 240A by source bonding technology.  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
To contact International Rectifier, please visit http://www.irf.com/whoto-call/  
12  
www.irf.com  
© 2013 International Rectifier  
September 26, 2013  

相关型号:

IRFHE4250DPBF

Low thermal resistance path to the PCB
INFINEON

IRFHE4250DPBF_15

Low thermal resistance path to the PCB
INFINEON

IRFHM3911PBF

Compatible with Existing Surface Mount Techniques
INFINEON

IRFHM3911PBF_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRFHM4226PBF

Compatible with Existing Surface Mount Techniques
INFINEON

IRFHM4226PBF_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRFHM4226TRPBF

Control or Synchronous MOSFET for high frequency buck converters
INFINEON

IRFHM4231PBF

Compatible with Existing Surface Mount Techniques
INFINEON

IRFHM4231PBF_15

Compatible with Existing Surface Mount Techniques
INFINEON

IRFHM4231TRPBF

Power Field-Effect Transistor
INFINEON

IRFHM4234PBF

Control MOSFET for synchronous buck converter
INFINEON

IRFHM4234TRPBF

Control MOSFET for synchronous buck converter
INFINEON