IRFB4212PBF [INFINEON]

DIGITAL AUDIO MOSFET; 数字音频MOSFET
IRFB4212PBF
型号: IRFB4212PBF
厂家: Infineon    Infineon
描述:

DIGITAL AUDIO MOSFET
数字音频MOSFET

晶体 晶体管 功率场效应晶体管 脉冲 放大器 局域网
文件: 总7页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96918A  
IRFB4212PbF  
Key Parameters  
DIGITAL AUDIO MOSFET  
Features  
Key parameters optimized for Class-D audio  
amplifier applications  
VDS  
100  
72.5  
15  
V
m:  
RDS(ON) typ. @ 10V  
Qg typ.  
Low RDSON for improved efficiency  
Low QG and QSW for better THD and improved  
efficiency  
nC  
nC  
Qsw typ.  
8.3  
RG(int) typ.  
TJ max  
2.2  
Low QRR for better THD and lower EMI  
175°C operating junction temperature for  
ruggedness  
175  
°C  
D
Can deliver up to 150W per channel into 4load in  
half-bridge topology  
G
S
TO-220AB  
Description  
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes  
thelatestprocessingtechniquestoachievelowon-resistancepersiliconarea.Furthermore,Gatecharge,body-diode  
reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance  
factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction  
temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient,  
robust and reliable device for ClassD audio amplifier applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
100  
±20  
18  
Units  
V
VDS  
VGS  
Gate-to-Source Voltage  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current c  
A
13  
57  
Power Dissipation f  
PD @TC = 25°C  
PD @TC = 100°C  
60  
W
Power Dissipation f  
30  
Linear Derating Factor  
Operating Junction and  
0.4  
W/°C  
°C  
TJ  
-55 to + 175  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
300  
10lbxin (1.1Nxm)  
Mounting torque, 6-32 or M3 screw  
Thermal Resistance  
Parameter  
Typ.  
Max.  
2.5  
Units  
Junction-to-Case f  
RθJC  
RθCS  
RθJA  
–––  
0.50  
–––  
Case-to-Sink, Flat, Greased Surface  
–––  
62  
°C/W  
Junction-to-Ambient f  
Notes  through are on page 2  
www.irf.com  
1
9/16/05  
IRFB4212PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
100  
–––  
–––  
3.0  
–––  
0.09  
58  
–––  
–––  
72.5  
5.0  
V
∆ΒVDSS/TJ  
RDS(on)  
V/°C Reference to 25°C, ID = 1mA  
mΩ  
VGS = 10V, ID = 13A  
VGS(th)  
–––  
-13  
–––  
–––  
–––  
–––  
–––  
15  
V
V
DS = VGS, ID = 250µA  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
11  
––– mV/°C  
20  
250  
200  
-200  
–––  
23  
µA  
nA  
S
V
V
V
V
V
DS = 100V, VGS = 0V  
DS = 100V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
GS = -20V  
gfs  
DS = 50V, ID = 13A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
RG(int)  
td(on)  
tr  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
3.3  
1.4  
6.9  
3.4  
8.3  
2.2  
7.7  
28  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
V
DS = 80V  
nC VGS = 10V  
ID = 13A  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Internal Gate Resistance  
Turn-On Delay Time  
See Fig. 6 and 19  
V
DD = 50V, VGS = 10V  
Rise Time  
ID = 13A  
td(off)  
tf  
Turn-Off Delay Time  
14  
ns  
R
G = 2.5Ω  
Fall Time  
3.9  
550  
66  
Ciss  
Coss  
Crss  
Coss  
LD  
Input Capacitance  
V
GS = 0V  
Output Capacitance  
pF VDS = 50V  
ƒ = 1.0MHz,  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
35  
See Fig.5  
350  
4.5  
VGS = 0V, VDS = 0V to 80V  
Between lead,  
D
S
nH 6mm (0.25in.)  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
from package  
and center of die contact  
Avalanche Characteristics  
Parameter  
Typ.  
Max.  
Units  
Single Pulse Avalanche Energy  
Avalanche Current  
EAS  
IAR  
–––  
25  
mJ  
See Fig. 14, 15, 17a, 17b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS @ TC = 25°C  
Continuous Source Current  
–––  
–––  
18  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
57  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
41  
1.3  
62  
V
TJ = 25°C, IS = 13A, VGS = 0V  
Reverse Recovery Time  
Reverse Recovery Charge  
ns TJ = 25°C, IF = 13A  
di/dt = 100A/µs  
nC  
Qrr  
69  
100  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.32mH, RG = 25, IAS = 13A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
Limited by Tjmax. See Figs. 14, 15, 17a, 17b for repetitive  
avalanche information  
θ
2
www.irf.com  
IRFB4212PbF  
100  
10  
1
100  
10  
1
VGS  
15V  
12V  
VGS  
15V  
12V  
TOP  
TOP  
10V  
10V  
9.0V  
8.0V  
7.0V  
6.0V  
9.0V  
8.0V  
7.0V  
6.0V  
BOTTOM  
BOTTOM  
6.0V  
6.0V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 13A  
D
V
= 10V  
GS  
10.0  
1.0  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
V
DS  
60µs PULSE WIDTH  
0.1  
2
4
6
8
10  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
10000  
20  
V
C
= 0V,  
f = 1 MHZ  
I
= 13A  
GS  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
ds  
oss  
gd  
1000  
100  
10  
Ciss  
Coss  
Crss  
4
0
0
5
10  
15  
20  
25  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRFB4212PbF  
100.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
10.0  
100µsec  
T
= 175°C  
J
1msec  
1.0  
0.1  
T
= 25°C  
10msec  
J
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
DC  
10  
0.1  
1
100  
1000  
0.0  
0.5  
1.0  
1.5  
V
, Drain-toSource Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 7. Typical Source-Drain Diode Forward Voltage  
Fig 8. Maximum Safe Operating Area  
20  
5.0  
4.0  
3.0  
2.0  
16  
12  
8
I
= 250µA  
D
4
0
25  
50  
75  
100  
125  
150  
175  
-75 -50 -25  
0
25 50 75 100 125 150 175  
, Temperature ( °C )  
T
, Junction Temperature (°C)  
T
J
J
Fig 9. Maximum Drain Current vs. Case Temperature  
Fig 10. Threshold Voltage vs. Temperature  
10  
D = 0.50  
1
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.1  
0.0489  
0.3856  
1.3513  
0.7140  
0.00000  
τ
τ
J τJ  
τ
Cτ  
0.02  
0.01  
0.000062  
0.001117  
0.013125  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2τ2  
3τ3  
4τ4  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
4
www.irf.com  
IRFB4212PbF  
120  
100  
80  
60  
40  
20  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
I
I
= 13A  
D
D
TOP  
3.2A  
5.7A  
13A  
BOTTOM  
T
= 125°C  
J
T
= 25°C  
10  
J
6
8
12  
14  
16  
25  
50  
75  
100  
125  
150  
175  
V
, Gate-to-Source Voltage (V)  
GS  
Starting T , Junction Temperature (°C)  
J
Fig 12. On-Resistance Vs. Gate Voltage  
Fig 13. Maximum Avalanche Energy Vs. Drain Current  
10  
Duty Cycle = Single Pulse  
0.01  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming Tj = 25°C due to  
avalanche losses. Note: In no  
case should Tj be allowed to  
exceed Tjmax  
0.05  
0.10  
1
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current Vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 17a, 17b.  
30  
25  
20  
15  
10  
5
TOP  
BOTTOM 1% Duty Cycle  
= 13A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
Fig 15. Maximum Avalanche Energy Vs. Temperature  
EAS (AR) = PD (ave)·tav  
www.irf.com  
5
IRFB4212PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
I
AS  
Fig 17b. Unclamped Inductive Waveforms  
Fig 17a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 18a. Switching Time Test Circuit  
Fig 18b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 19a. Gate Charge Test Circuit  
Fig 19b Gate Charge Waveform  
6
www.irf.com  
IRFB4212PbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
LOT CODE 1789  
PART NUMBER  
INTERNATIONAL  
RECTIFIER  
LOGO  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
DATE CODE  
YEAR 0 = 2000  
WE EK 19  
Note: "P" in assembly lineposition  
indicates "Lead - F ree"  
AS S E MB L Y  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 9/05  
www.irf.com  
7

相关型号:

IRFB4215

HEXFET Power MOSFET
INFINEON

IRFB4215PBF

HEXFET Power MOSFET
INFINEON

IRFB4227

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters.
INFINEON

IRFB4227PBF

PDP SWITCH
INFINEON

IRFB4228PBF

PDP SWITCH
INFINEON

IRFB4229

N-Channel MOSFET Transistor
ISC

IRFB4229

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4229PBF

PDP SWITCH
INFINEON

IRFB4233PBF

Energy Recovery & Pass switch applications in Plasma Display Panels
INFINEON

IRFB42N20D

High frequency DC-DC converters
INFINEON

IRFB42N20DPBF

HEXFET Power MOSFET
INFINEON

IRFB4310

HEXFET Power MOSFET
INFINEON