IRFB4227PBF [INFINEON]

PDP SWITCH; PDP开关
IRFB4227PBF
型号: IRFB4227PBF
厂家: Infineon    Infineon
描述:

PDP SWITCH
PDP开关

晶体 开关 晶体管 功率场效应晶体管 脉冲 光电二极管 PC 局域网
文件: 总8页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97035A  
IRFB4227PbF  
PDP SWITCH  
Features  
Key Parameters  
l
Advanced Process Technology  
VDS max  
200  
240  
19.7  
130  
175  
V
V
l
Key Parameters Optimized for PDP Sustain,  
Energy Recovery and Pass Switch Applications  
Low EPULSE Rating to Reduce Power  
Dissipation in PDP Sustain, Energy Recovery  
and Pass Switch Applications  
VDS (Avalanche) typ.  
RDS(ON) typ. @ 10V  
IRP max @ TC= 100°C  
TJ max  
l
m:  
A
°C  
l
l
Low QG for Fast Response  
High Repetitive Peak Current Capability for  
Reliable Operation  
D
D
l
Short Fall & Rise Times for Fast Switching  
175°C Operating Junction Temperature for  
Improved Ruggedness  
l
G
S
l
Repetitive Avalanche Capability for Robustness  
and Reliability  
D
G
S
TO-220AB  
G
D
S
Gate  
Drain  
Source  
Description  
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch  
applicationsinPlasmaDisplayPanels. ThisMOSFETutilizesthelatestprocessingtechniquestoachieve  
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C  
operating junction temperature and high repetitive peak current capability. These features combine to  
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.  
Absolute Maximum Ratings  
Max.  
±30  
Parameter  
Gate-to-Source Voltage  
Units  
VGS  
V
A
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
65  
46  
260  
IRP @ TC = 100°C  
PD @TC = 25°C  
PD @TC = 100°C  
130  
Repetitive Peak Current  
330  
Power Dissipation  
W
190  
Power Dissipation  
2.2  
Linear Derating Factor  
W/°C  
°C  
TJ  
-40 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature for 10 seconds  
Mounting Torque, 6-32 or M3 Screw  
300  
10lb in (1.1N m)  
N
Thermal Resistance  
Parameter  
Typ.  
Max.  
0.45  
–––  
62  
Units  
Junction-to-Case  
RθJC  
RθCS  
RθJA  
–––  
0.50  
–––  
Case-to-Sink, Flat, Greased Surface  
Junction-to-Ambient  
°C/W  
Notes  through †are on page 8  
www.irf.com  
1
10/12/05  
IRFB4227PbF  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Reference to 25°C, I = 1mA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
200  
–––  
–––  
3.0  
–––  
170  
19.7  
–––  
-13  
–––  
V
∆ΒVDSS/TJ  
RDS(on)  
––– mV/°C  
D
VGS = 10V, ID = 46A e  
mΩ  
24  
VDS = VGS, ID = 250µA  
VGS(th)  
5.0  
V
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
49  
––– mV/°C  
VDS = 200V, VGS = 0V  
–––  
–––  
–––  
–––  
–––  
70  
20  
1.0  
µA  
mA  
nA  
V
V
V
DS = 200V, VGS = 0V, TJ = 125°C  
GS = 20V  
GS = -20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
100  
-100  
–––  
98  
VDS = 25V, ID = 46A  
DD = 100V, ID = 46A, VGS = 10Ve  
gfs  
Qg  
Qgd  
tst  
S
V
–––  
–––  
100  
nC  
Gate-to-Drain Charge  
23  
–––  
–––  
VDD = 160V, VGS = 15V, RG= 4.7Ω  
L = 220nH, C= 0.4µF, VGS = 15V  
VDS = 160V, RG= 4.7Ω, TJ = 25°C  
L = 220nH, C= 0.4µF, VGS = 15V  
Shoot Through Blocking Time  
–––  
ns  
µJ  
–––  
–––  
570  
910  
–––  
–––  
EPULSE  
Energy per Pulse  
VDS = 160V, RG= 4.7Ω, TJ = 100°C  
V
GS = 0V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 4600 –––  
VDS = 25V  
Output Capacitance  
–––  
–––  
–––  
–––  
460  
91  
–––  
–––  
–––  
–––  
pF  
ƒ = 1.0MHz,  
Reverse Transfer Capacitance  
Effective Output Capacitance  
Internal Drain Inductance  
VGS = 0V, VDS = 0V to 160V  
Coss eff.  
360  
4.5  
LD  
Between lead,  
D
S
nH 6mm (0.25in.)  
from package  
G
LS  
Internal Source Inductance  
–––  
7.5  
–––  
and center of die contact  
Avalanche Characteristics  
Typ.  
–––  
–––  
240  
–––  
Max.  
140  
33  
Parameter  
Units  
mJ  
mJ  
V
EAS  
Single Pulse Avalanche Energyd  
Repetitive Avalanche Energy c  
Repetitive Avalanche Voltageꢀc  
Avalanche Currentꢀd  
EAR  
VDS(Avalanche)  
IAS  
–––  
39  
A
Diode Characteristics  
Conditions  
Parameter  
Min. Typ. Max. Units  
IS @ TC = 25°C  
MOSFET symbol  
showing the  
Continuous Source Current  
(Body Diode)  
–––  
–––  
65  
A
ISM  
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)ꢀc  
–––  
–––  
260  
TJ = 25°C, IS = 46A, VGS = 0V e  
TJ = 25°C, IF = 46A, VDD = 50V  
di/dt = 100A/µs e  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
100  
430  
1.3  
150  
640  
V
ns  
nC  
Qrr  
2
www.irf.com  
IRFB4227PbF  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
VGS  
15V  
10V  
8.0V  
7.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
100  
7.0V  
7.0V  
10  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
1
0.1  
1
10  
0.1  
1
10  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000.0  
100.0  
10.0  
1.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I
= 46A  
V
= 25V  
D
DS  
60µs PULSE WIDTH  
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
0.1  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance vs. Temperature  
1000  
1000  
L = 220nH  
C = Variable  
L = 220nH  
C = 0.4µF  
100°C  
900  
800  
700  
600  
500  
400  
300  
200  
100  
100°C  
25°C  
800  
25°C  
600  
400  
200  
0
130  
140  
150  
160  
170  
180  
190  
110  
120  
130  
140  
150  
160  
170  
I
Peak Drain Current (A)  
V
Drain-to -Source Voltage (V)  
D,  
DS,  
Fig 6. Typical EPULSE vs. Drain Current  
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage  
www.irf.com  
3
IRFB4227PbF  
1400  
1000.0  
100.0  
10.0  
1.0  
L = 220nH  
1200  
C= 0.4µF  
C= 0.3µF  
C= 0.2µF  
1000  
800  
600  
400  
200  
0
T
= 175°C  
J
T
= 25°C  
0.8  
J
V
= 0V  
GS  
1.0  
0.1  
25  
50  
75  
100  
125  
150  
0.2  
0.4  
0.6  
1.2  
Temperature (°C)  
V
, Source-to-Drain Voltage (V)  
SD  
Fig 7. Typical EPULSE vs.Temperature  
Fig 8. Typical Source-Drain Diode Forward Voltage  
8000  
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 46A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
V
V
= 160V  
= 100V  
= 40V  
DS  
DS  
DS  
C
= C  
rss  
gd  
16  
12  
8
C
= C + C  
6000  
4000  
2000  
0
oss ds  
gd  
Ciss  
Coss  
Crss  
4
0
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1000  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage  
70  
60  
50  
40  
30  
20  
10  
0
1000  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
1µsec  
100  
10  
1
100µsec  
10µsec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
25  
50  
75  
100  
125  
150  
175  
1
10  
100  
1000  
T
, CaseTemperature (°C)  
V
, Drain-to-Source Voltage (V)  
C
DS  
Fig 12. Maximum Safe Operating Area  
Fig 11. Maximum Drain Current vs. Case Temperature  
4
www.irf.com  
IRFB4227PbF  
600  
500  
400  
300  
200  
100  
0
0.16  
0.12  
0.08  
0.04  
0.00  
I
I
= 46A  
D
D
TOP  
8.6A  
14A  
39A  
BOTTOM  
T
T
= 125°C  
J
= 25°C  
9
J
5
6
7
8
10  
25  
50  
75  
100  
125  
150  
175  
V
, Gate-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
GS  
J
Fig 13. On-Resistance Vs. Gate Voltage  
Fig 14. Maximum Avalanche Energy Vs. Temperature  
5.0  
200  
ton= 1µs  
Duty cycle = 0.25  
4.5  
4.0  
Half Sine Wave  
Square Pulse  
160  
I
= 250µA  
D
120  
3.5  
3.0  
2.5  
2.0  
1.5  
80  
40  
0
-75 -50 -25  
0
J
25 50 75 100 125 150 175  
, Temperature ( °C )  
25  
50  
75  
100  
125  
150  
175  
T
Case Temperature (°C)  
Fig 16. Typical Repetitive peak Current vs.  
Fig 15. Threshold Voltage vs. Temperature  
Case temperature  
1
D = 0.50  
0.1  
0.01  
0.20  
0.10  
0.05  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.08698 0.000074  
R1  
τ
JτJ  
τ
τ
Cτ  
τ
1τ1  
τ
2 τ2  
3τ3  
0.2112 0.001316  
0.1506 0.009395  
0.02  
0.01  
Ci= τi/Ri  
τ /  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
www.irf.com  
5
IRFB4227PbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
di/dt controlled by RG  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01Ω  
t
p
I
AS  
Fig 19b. Unclamped Inductive Waveforms  
Fig 19a. Unclamped Inductive Test Circuit  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 20a. Gate Charge Test Circuit  
Fig 20b. Gate Charge Waveform  
6
www.irf.com  
IRFB4227PbF  
Fig 21b. tst Test Waveforms  
Fig 21a. tst and EPULSE Test Circuit  
Fig 21c. EPULSE Test Waveforms  
www.irf.com  
7
IRFB4227PbF  
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))  
TO-220AB Part Marking Information  
EXAMPLE: THIS IS AN IRF1010  
PART NUMBER  
LOT CODE 1789  
ASSEMBLED ON WW 19, 2000  
IN THE ASSEMBLY LINE "C"  
INTERNATIONAL  
RECTIFIER  
LOGO  
DATE CODE  
YEAR 0 = 2000  
WEEK 19  
Note: "P" in assembly line position  
indicates "Lead - F ree"  
ASSEMBLY  
LOT CODE  
LINE C  
TO-220AB packages are not recommended for Surface Mount Application.  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.18mH, RG = 25, IAS = 39A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ R is measured at TJ of approximately 90°C.  
θ
Half sine wave with duty cycle = 0.25, ton=1µsec.  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information. 10/05  
8
www.irf.com  

相关型号:

IRFB4228PBF

PDP SWITCH
INFINEON

IRFB4229

N-Channel MOSFET Transistor
ISC

IRFB4229

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4229PBF

PDP SWITCH
INFINEON

IRFB4233PBF

Energy Recovery & Pass switch applications in Plasma Display Panels
INFINEON

IRFB42N20D

High frequency DC-DC converters
INFINEON

IRFB42N20DPBF

HEXFET Power MOSFET
INFINEON

IRFB4310

HEXFET Power MOSFET
INFINEON

IRFB4310

HEXFET Power MOSFET
FREESCALE

IRFB4310GPBF

HEXFETPower MOSFET
INFINEON

IRFB4310HR

Power Field-Effect Transistor, 75A I(D), 100V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, PLASTIC PACKAGE-3
INFINEON

IRFB4310PBF

HEXFET㈢Power MOSFET
INFINEON