IRFB4310GPBF [INFINEON]

HEXFETPower MOSFET; HEXFETPower MOSFET
IRFB4310GPBF
型号: IRFB4310GPBF
厂家: Infineon    Infineon
描述:

HEXFETPower MOSFET
HEXFETPower MOSFET

文件: 总8页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96190  
IRFB4310GPbF  
Applications  
l High Efficiency Synchronous Rectification in SMPS  
HEXFET® Power MOSFET  
l Uninterruptible Power Supply  
l High Speed Power Switching  
l Hard Switched and High Frequency Circuits  
D
S
VDSS  
RDS(on) typ.  
max.  
100V  
5.6m  
7.0m  
130A  
G
ID  
Benefits  
l Improved Gate, Avalanche and Dynamic dV/dt  
Ruggedness  
l Fully Characterized Capacitance and Avalanche  
SOA  
l Enhanced body diode dV/dt and dI/dt Capability  
l Lead-Free  
l Halogen-Free  
S
D
G
TO-220AB  
IRFB4310GPbF  
Absolute Maximum Ratings  
Symbol  
ID @ TC = 25°C  
ID @ TC = 100°C  
IDM  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
130  
Units  
92  
A
550  
PD @TC = 25°C  
W
300  
Maximum Power Dissipation  
Linear Derating Factor  
2.0  
W/°C  
V
VGS  
± 20  
Gate-to-Source Voltage  
14  
Peak Diode Recovery  
dV/dt  
TJ  
V/ns  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
Soldering Temperature, for 10 seconds  
(1.6mm from case)  
°C  
300  
10lb in (1.1N m)  
Mounting torque, 6-32 or M3 screw  
Avalanche Characteristics  
Single Pulse Avalanche Energy  
EAS (Thermally limited)  
980  
mJ  
A
Avalanche Current  
IAR  
See Fig. 14, 15, 22a, 22b,  
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.50  
–––  
62  
Units  
RθJC  
Junction-to-Case  
RθCS  
RθJA  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
www.irf.com  
1
10/15/08  
IRFB4310GPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
100 ––– –––  
––– 0.064 ––– V/°C Reference to 25°C, ID = 1mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
–––  
2.0  
5.6  
7.0  
4.0  
20  
VGS = 10V, ID = 75A  
mΩ  
V
VGS(th)  
–––  
VDS = VGS, ID = 250µA  
IDSS  
Drain-to-Source Leakage Current  
––– –––  
µA  
VDS = 100V, VGS = 0V  
––– ––– 250  
––– ––– 200  
––– ––– -200  
V
DS = 100V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Gate Input Resistance  
nA VGS = 20V  
GS = -20V  
f = 1MHz, open drain  
V
RG  
–––  
1.4  
–––  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol  
gfs  
Qg  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min. Typ. Max. Units  
Conditions  
VDS = 50V, ID = 75A  
nC ID = 75A  
160 ––– –––  
S
––– 170 250  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
46  
62  
26  
–––  
–––  
–––  
V
V
V
DS = 80V  
GS = 10V  
DD = 65V  
ns  
––– 110 –––  
ID = 75A  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
68  
78  
–––  
–––  
RG = 2.6Ω  
VGS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 7670 –––  
––– 540 –––  
––– 280 –––  
––– 650 –––  
––– 720.1 –––  
pF  
V
GS = 0V  
Output Capacitance  
Reverse Transfer Capacitance  
VDS = 50V  
ƒ = 1.0MHz  
Coss eff. (ER)  
V
GS = 0V, VDS = 0V to 80V , See Fig.11  
GS = 0V, VDS = 0V to 80V , See Fig. 5  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
Coss eff. (TR)  
V
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
D
Continuous Source Current  
––– –––  
A
130  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 550  
S
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
68  
V
TJ = 25°C, IS = 75A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 85V,  
IF = 75A  
di/dt = 100A/µs  
–––  
–––  
–––  
45  
55  
82  
ns  
83  
Qrr  
Reverse Recovery Charge  
120  
nC  
––– 120 180  
––– 3.3 –––  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
 Calculated continuous current based on maximum allowable junction  
temperature. Package limitation current is 75A  
‚ Repetitive rating; pulse width limited by max. junction  
temperature.  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.35mH  
RG = 25, IAS = 75A, VGS =10V. Part not recommended for use  
above this value.  
„ ISD 75A, di/dt 550A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For  
recommended footprint and soldering techniques refer to  
application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
2
www.irf.com  
IRFB4310GPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
60µs PULSE WIDTH  
Tj = 175°C  
60µs PULSE WIDTH  
Tj = 25°C  
4.5V  
1
1
0.1  
1
10  
100  
0.1  
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
I
= 75A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
= 50V  
J
V
DS  
60µs PULSE WIDTH  
1
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Junction Temperature (°C)  
J
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12000  
10000  
8000  
6000  
4000  
2000  
0
20  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 75A  
D
= C + C , C SHORTED  
iss  
gs  
gd ds  
V
= 80V  
DS  
C
= C  
rss  
gd  
16  
12  
8
VDS= 50V  
VDS= 20V  
C
= C + C  
ds  
oss  
gd  
Ciss  
4
Coss  
Crss  
0
0
40  
80  
120 160 200 240 280  
1
10  
100  
Q
Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
www.irf.com  
3
IRFB4310GPbF  
1000.0  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
T
= 175°C  
J
100.0  
10.0  
1.0  
100µsec  
T
= 25°C  
J
1
1msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
DC  
V
= 0V  
GS  
0.1  
0.1  
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
, Source-to-Drain Voltage (V)  
1
10  
100  
1000  
V
V
DS  
, Drain-toSource Voltage (V)  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
120  
115  
110  
105  
100  
140  
120  
100  
80  
Limited By Package  
60  
40  
20  
0
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
25  
50  
75  
100  
125  
150  
175  
T
, Junction Temperature (°C)  
J
T
, Case Temperature (°C)  
C
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
2400  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
D
TOP  
12A  
17A  
75A  
2000  
1600  
1200  
800  
400  
0
BOTTOM  
0
20  
V
40  
60  
80  
100  
120  
25  
50  
75  
100  
125  
150  
175  
Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS,  
J
Fig 11. Typical COSS Stored Energy  
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent  
4
www.irf.com  
IRFB4310GPbF  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
R1  
R2  
R2  
R1  
Ri (°C/W) τi (sec)  
0.1962 0.00117  
τ
0.01  
0.02  
0.01  
J τJ  
τ
τ
Cτ  
1 τ1  
Ci= τi/Ri  
τ
2τ2  
0.2542 0.016569  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C  
and Tstart =25°C (Single Pulse)  
Duty Cycle = Single Pulse  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming∆Τ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
1000  
800  
600  
400  
200  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)  
is exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1% Duty Cycle  
= 75A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
25  
50  
75  
100  
125  
150  
175  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Starting T , Junction Temperature (°C)  
J
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Fig 15. Maximum Avalanche Energy vs. Temperature  
www.irf.com  
5
IRFB4310GPbF  
20  
16  
12  
8
5.0  
I
I
I
= 1.0A  
D
D
D
= 1.0mA  
= 250µA  
4.0  
3.0  
2.0  
1.0  
I
= 30A  
= 85V  
F
V
T
R
4
= 125°C  
= 25°C  
J
T
J
0
-75 -50 -25  
0
25 50 75 100 125 150 175  
100 200 300 400 500 600 700 800 900 1000  
T , Temperature ( °C )  
J
di / dt - (A / µs)  
f
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage Vs. Temperature  
500  
20  
400  
300  
200  
100  
0
16  
12  
8
I
= 30A  
= 85V  
I
= 45A  
= 85V  
F
F
V
T
V
T
R
R
4
0
= 125°C  
= 25°C  
= 125°C  
= 25°C  
J
J
T
T
J
J
100 200 300 400 500 600 700 800 900 1000  
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
di / dt - (A / µs)  
f
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
500  
400  
300  
200  
100  
0
I
= 45A  
= 85V  
F
V
T
R
= 125°C  
= 25°C  
J
T
J
100 200 300 400 500 600 700 800 900 1000  
di / dt - (A / µs)  
f
Fig. 20 - Typical Stored Charge vs. dif/dt  
6
www.irf.com  
IRFB4310GPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
0.01  
t
p
I
AS  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1µs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 23a. Switching Time Test Circuit  
Fig 23b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
www.irf.com  
7
IRFB4310GPbF  
TO-220AB Package Outline  
Dimensions are shown in millimeters (inches)  
TO-220AB Part Marking Information  
TO-220AB packages are not recommended for Surface Mount Application.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Industrial market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.10/2008  
8
www.irf.com  

相关型号:

IRFB4310HR

Power Field-Effect Transistor, 75A I(D), 100V, 0.007ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, PLASTIC PACKAGE-3
INFINEON

IRFB4310PBF

HEXFET㈢Power MOSFET
INFINEON

IRFB4310Z

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4310ZGPBF

HEXFETPower MOSFET
INFINEON

IRFB4310ZPBF

HEXFET Power MOSFET
INFINEON

IRFB4310ZTRLPBF

Power Field-Effect Transistor, 75A I(D), 100V, 0.006ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, LEAD FREE, PLASTIC PACKAGE-3
INFINEON

IRFB4310ZTRRPBF

暂无描述
INFINEON

IRFB4321

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4321GPBF

HEXFETPower MOSFET
INFINEON

IRFB4321PBF

HEXFET Power MOSFET
INFINEON

IRFB4332

The StrongIRFET™ power MOSFET family is optimized for low RDS(on) and high current capability. The devices are ideal for low frequency applications requiring performance and ruggedness. The comprehensive portfolio addresses a broad range of applications including DC motors, battery management systems, inverters, and DC-DC converters. 
INFINEON

IRFB4332PBF

PDP SWITCH
INFINEON