IRF8113PBF-1 [INFINEON]

Power Field-Effect Transistor;
IRF8113PBF-1
型号: IRF8113PBF-1
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor

文件: 总10页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF8113PbF-1  
HEXFET® Power MOSFET  
A
VDS  
30  
V
A
1
2
3
4
8
D
S
S
S
G
RDS(on) max  
(@VGS = 10V)  
RDS(on) max  
(@VGS = 4.5V)  
Qg (typical)  
ID  
5.6  
7
D
m
Ω
6
D
6.8  
24  
5
D
nC  
A
SO-8  
Top View  
17.2  
(@TA = 25°C)  
Features  
Industry-standard pinout SO-8 Package  
Benefits  
Multi-Vendor Compatibility  
Compatible with Existing Surface Mount Techniques  
RoHS Compliant, Halogen-Free  
MSL1, Industrial qualification  
Easier Manufacturing  
Environmentally Friendlier  
Increased Reliability  
Standard Pack  
Form  
Base Part Number  
Package Type  
Orderable Part Number  
Quantity  
Tube/Bulk  
Tape and Reel  
95  
4000  
IRF8113PbF-1  
IRF8113TRPbF-1  
IRF8113PbF-1  
SO-8  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
VDS  
Drain-to-Source Voltage  
30  
V
V
Gate-to-Source Voltage  
± 20  
17.2  
13.8  
135  
2.5  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
A
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
W
D
D
Power Dissipation  
1.6  
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
Rθ  
Rθ  
JL  
–––  
50  
JA  
Notes  through are on page 10  
1
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250μA  
BVDSS  
V
ΔΒVDSS/ΔTJ  
RDS(on)  
Breakdown Voltage Temp. Coefficient ––– 0.024 ––– V/°C Reference to 25°C, ID = 1mA  
mΩ  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.5  
4.7  
5.8  
–––  
5.6  
6.8  
2.2  
V
V
V
GS = 10V, ID = 17.2A  
GS = 4.5V, ID = 13.8A  
DS = VGS, ID = 250μA  
VGS(th)  
ΔVGS(th)  
IDSS  
Gate Threshold Voltage  
V
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
––– - 5.4 ––– mV/°C  
–––  
–––  
–––  
–––  
73  
–––  
–––  
–––  
1.0  
150  
100  
μA VDS = 24V, VGS = 0V  
V
V
DS = 24V, VGS = 0V, TJ = 125°C  
GS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
nA  
S
––– -100  
VGS = -20V  
gfs  
–––  
24  
–––  
36  
VDS = 15V, ID = 13.3A  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Qsw  
Qoss  
RG  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
6.2  
2.0  
8.5  
7.3  
10.5  
10  
–––  
–––  
–––  
–––  
–––  
–––  
1.5  
VDS = 15V  
nC VGS = 4.5V  
ID = 13.3A  
See Fig. 16  
nC  
V
V
DS = 10V, VGS = 0V  
Ω
Gate Resistance  
0.8  
13  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
DD = 15V, VGS = 4.5V  
Rise Time  
8.9  
17  
ID = 13.3A  
Turn-Off Delay Time  
ns Clamped Inductive Load  
Fall Time  
3.5  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 2910 –––  
VGS = 0V  
Output Capacitance  
–––  
–––  
600  
250  
–––  
–––  
pF  
V
DS = 15V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
Units  
mJ  
Single Pulse Avalanche Energy  
Avalanche Current  
EAS  
IAR  
48  
13.3  
A
Diode Characteristics  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
Continuous Source Current  
–––  
–––  
3.1  
MOSFET symbol  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
135  
integral reverse  
p-n junction diode.  
(Body Diode)  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
34  
1.0  
51  
32  
V
T = 25°C, I = 13.3A, V = 0V  
J S GS  
ns T = 25°C, I = 13.3A, VDD = 10V  
J
F
Qrr  
Reverse Recovery Charge  
21  
nC di/dt = 100A/μs  
2
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
BOTTOM 2.5V  
BOTTOM 2.5V  
2.5V  
2.5V  
20μs PULSE WIDTH  
20μs PULSE WIDTH  
Tj = 25°C  
Tj = 150°C  
1
1
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
2.0  
1.5  
1.0  
0.5  
I
= 16.6A  
= 10V  
D
V
GS  
T
= 150°C  
J
T
= 25°C  
J
10  
V
= 15V  
DS  
20μs PULSE WIDTH  
1
2.5  
3.0  
3.5  
4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
, Junction Temperature (°C)  
GS  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
3
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
100000  
10000  
1000  
12  
10  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 13.3A  
D
V
= 24V  
= C + C , C SHORTED  
DS  
VDS= 15V  
iss  
gs gd ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
6
Ciss  
4
Coss  
Crss  
2
0
100  
0
10  
20  
30  
40  
50  
60  
1
10  
100  
Q
G
Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
10.0  
1.0  
T
= 150°C  
J
100μsec  
1msec  
1
10msec  
T
= 25°C  
J
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1.0  
10.0  
100.0  
1000.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
18  
16  
14  
12  
10  
8
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
I
= 250μA  
D
6
4
2
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
, Temperature ( °C )  
T
J
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage Vs. Temperature  
Fig 9. Maximum Drain Current Vs.  
Case Temperature  
100  
D = 0.50  
0.20  
10  
1
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.924  
0.000228  
0.1728  
1.5543  
22.5  
τ
τ
J τJ  
Cτ  
13.395  
22.046  
14.911  
0.1  
τ
1τ1  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
Ci= τi/Ri  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
5
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
200  
160  
120  
80  
15V  
I
D
7.3A  
8.2A  
13.3A  
TOP  
DRIVER  
+
L
BOTTOM  
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
Ω
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
40  
V
(BR)DSS  
0
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
LD  
VDS  
I
AS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
VGS  
Current Regulator  
Same Type as D.U.T.  
Pulse Width < 1μs  
Duty Factor < 0.1%  
50KΩ  
.2μF  
12V  
Fig 14a. Switching Time Test Circuit  
VDS  
.3μF  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
Driver Gate Drive  
P.W.  
P.W.  
D =  
D.U.T  
Period  
Period  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
7
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
SO-8 Package Outline(Mosfet & Fetky)  
Dimensions are shown in milimeters (inches)  
INCHES  
MILLIMETERS  
DIM  
D
B
MIN  
.0532  
A1 .0040  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
A
E
b
c
D
E
.013  
8
1
7
2
6
3
5
.0075  
.189  
.0098  
.1968  
.1574  
6
H
0.25 [.010]  
A
.1497  
4
e
.050 BASIC  
1.27 BASIC  
e1 .025 BASIC  
0.635 BASIC  
H
K
L
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
y
e1  
A
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
FOOTPRINT  
NOTES:  
1. DIMENSIONING& TOLERANCINGPER ASME Y14.5M-1994.  
2. CONTROLLINGDIMENSION: MILLIMETER  
8X 0.72 [.028]  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OU T L INE CONF OR MS T O JEDE C OU T L INE MS -012AA.  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
6.46 [.255]  
DIMENSION IS THE LENGT H OF LEAD FOR SOLDERING TO  
ASUBSTRATE.  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking Information  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DAT E CODE (YWW)  
P = DISGNATES LEAD - FREE  
PRODUCT (OPTIONAL)  
Y = LAST DIGIT OF THE YEAR  
WW = WEE K  
A= ASSEMBLY SITE CODE  
XXXX  
F7101  
INTERNATIONAL  
RECTIFIER  
LOGO  
LOT CODE  
PART NUMBER  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
9
www.irf.com © 2014 International Rectifier Submit Datasheet Feedback  
June 23, 2014  
IRF8113PbF-1  
SO-8 Tape and Reel(Dimensions are shown in milimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/  
Notes:  
 Repetitive rating; pulse width limited by max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.54m, RG = 25Ω, IAS = 13.3A.  
ƒ Pulse width 400μs; duty cycle 2%.  
„ When mounted on 1 inch square copper board  
Rθ is measured at TJ approximately 90°C  
Qualification information†  
Industrial  
(per JEDEC JESD47F†† guidelines)  
Qualification level  
MS L 1  
Moisture Sensitivity Level  
RoHS compliant  
SO-8  
(per JEDEC J-S TD-020D††  
Yes  
)
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability  
†† Applicable version of JEDEC standard at the time of product release  
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA  
TocontactInternationalRectifier, pleasevisithttp://www.irf.com/whoto-call/  
10  
www.irf.com © 2014 International Rectifier  
Submit Datasheet Feedback  
June 23, 2014  

相关型号:

IRF8113TR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF8113TRPBF

Synchronous MOSFET for Notebook Processor Power
INFINEON

IRF8113TRPBF-1

Power Field-Effect Transistor
INFINEON

IRF8113UPBF

Power Field-Effect Transistor, 17.2A I(D), 30V, 0.0056ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, MS-012AA, SOP-8
INFINEON

IRF8113UTRPBF

Power Field-Effect Transistor, 17.2A I(D), 30V, 0.0056ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, MS-012AA, SOP-8
INFINEON

IRF82

N CHANNEL ENHANCEMENT MODE POWER MOSTRANSISTORS
STMICROELECTR

IRF820

N-CHANNEL Enhancement-Mode Silicon Gate TMOS
MOTOROLA

IRF820

N - CHANNEL 500V - 2.5ohm - 2.5 A - TO-220 PowerMESH] MOSFET
STMICROELECTR

IRF820

N-CHANNEL POWER MOSFETS
SAMSUNG

IRF820

2.5A, 500V, 3.000 Ohm, N-Channel Power MOSFET
INTERSIL

IRF820

Power MOSFET(Vdss=500V, Rds(on)=3.0ohm, Id=2.5A)
INFINEON

IRF820

N-Channel Power MOSFETs, 3.0 A, 450 V/500 V
FAIRCHILD