IRF820 [INTERSIL]

2.5A, 500V, 3.000 Ohm, N-Channel Power MOSFET; 2.5A , 500V , 3.000 Ohm的N通道功率MOSFET
IRF820
型号: IRF820
厂家: Intersil    Intersil
描述:

2.5A, 500V, 3.000 Ohm, N-Channel Power MOSFET
2.5A , 500V , 3.000 Ohm的N通道功率MOSFET

晶体 晶体管 开关 脉冲 局域网
文件: 总7页 (文件大小:58K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IRF820  
Data Sheet  
July 1999  
File Number 1581.4  
2.5A, 500V, 3.000 Ohm, N-Channel Power  
MOSFET  
Features  
• 2.5A, 500V  
This N-Channel enhancement mode silicon gate power field  
effect transistor is an advanced power MOSFET designed,  
tested, and guaranteed to withstand a specified level of  
energy in the breakdown avalanche mode of operation. All of  
these power MOSFETs are designed for applications such  
as switching regulators, switching convertors, motor drivers,  
relay drivers, and drivers for high power bipolar switching  
transistors requiring high speed and low gate drive power.  
These types can be operated directly from integrated  
circuits.  
• r  
= 3.000  
DS(ON)  
• Single Pulse Avalanche Energy Rated  
• SOA is Power Dissipation Limited  
• Nanosecond Switching Speeds  
• Linear Transfer Characteristics  
• High Input Impedance  
• Related Literature  
- TB334 “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Formerly developmental type TA17405.  
Ordering Information  
Symbol  
PART NUMBER  
PACKAGE  
BRAND  
IRF820  
D
IRF820  
TO-220AB  
NOTE: When ordering, use the entire part number.  
G
S
Packaging  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
DRAIN (FLANGE)  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.  
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999  
4-245  
IRF820  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
IRF820  
500  
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
V
V
A
A
A
V
W
DS  
Drain to Gate Voltage (R  
GS  
= 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
500  
DGR  
Continuous Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
2.5  
1.6  
D
D
o
T
= 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
C
Pulsed Drain Current (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
8.0  
DM  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
50  
D
o
Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
0.4  
W/ C  
Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
210  
mJ  
AS  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
Maximum Temperature for Soldering  
T
-55 to 150  
C
J, STG  
o
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T  
300  
260  
C
C
L
o
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T  
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 125 C.  
J
o
Electrical Specifications  
T
= 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
= 0V (Figure 10)  
MIN  
TYP  
-
MAX UNITS  
Drain to Source Breakdown Voltage  
Gate Threshold Voltage  
BV  
I
= 250µA, V  
500  
-
4.0  
25  
250  
-
V
V
DSS  
D GS  
V
V
V
V
V
= V , I = 250µA  
GS  
2.0  
-
GS(TH)  
DS  
DS  
DS  
DS  
D
Zero Gate Voltage Drain Current  
I
= Rated BV  
, V  
DSS GS  
= 0V  
-
-
µA  
µA  
A
DSS  
o
= 0.8 x Rated BV  
, V  
= 0V, T = 125 C  
-
-
DSS GS  
, V = 10V (Figure 7)  
DS(ON)MAX GS  
J
On-State Drain Current (Note 2)  
Gate to Source Leakage Current  
I
> I  
D(ON)  
x r  
2.5  
-
D(ON)  
I
V
= ±20V  
-
-
±100  
3.0  
-
nA  
GSS  
GS  
Drain to Source On Resistance (Note 2)  
Forward Transconductance (Note 2)  
Turn-On Delay Time  
r
I
= 1.4A, V  
= 10V (Figures 8, 9)  
-
2.5  
2.3  
11  
11  
29  
12  
12  
DS(ON)  
D
GS  
g
V
10V, I = 2.0A (Figure 12)  
1.5  
S
fs  
DS  
DD  
D
t
V
= 250V, I 2.5A, R  
GS  
= 18, R = 96Ω  
-
-
-
-
-
15  
18  
42  
18  
19  
ns  
ns  
ns  
ns  
nC  
d(ON)  
D
L
MOSFET Switching Times are Essentially  
Independent of Operating Temperature  
Rise Time  
t
r
Turn-Off Delay Time  
t
d(OFF)  
Fall Time  
t
f
Total Gate Charge  
Q
V
= 10V, I = 2.5A, V  
= 0.8 x Rated BV  
DS DSS  
g(TOT)  
GS  
D
(Gate to Source + Gate to Drain)  
I
= 1.5mA  
g(REF)  
(Figure 14) Gate Charge is Essentially Independent  
of Operating Temperature  
Gate to Source Charge  
Gate to Drain “Miller” Charge  
Input Capacitance  
Q
Q
-
-
-
-
-
-
2.5  
6.0  
360  
60  
-
-
-
-
-
-
nC  
nC  
pF  
pF  
pF  
nH  
gs  
gd  
C
V
= 25V, V = 0V, f = 1MHz (Figure 11)  
GS  
ISS  
DS  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
Internal Drain Inductance  
C
10  
L
Measured From the  
Contact Screw on Tab to  
Center of Die  
Modified MOSFET  
Symbol Showing the  
Internal Device  
Inductances  
3.5  
D
Measured From the Drain  
Lead, 6mm (0.25in) From  
Package to Center of Die  
-
-
4.5  
7.5  
-
-
nH  
nH  
D
L
D
Internal Source Inductance  
L
Measured From the Source  
Lead, 6mm (0.25in) from  
Header to Source Bonding  
Pad  
S
G
L
S
S
o
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
-
-
-
-
2.5  
80  
C/W  
C/W  
θJC  
Free Air Operation  
θJA  
4-246  
IRF820  
Source to Drain Diode Specifications  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
Continuous Source to Drain Current  
I
Modified MOSFET Symbol  
Showing the Integral  
Reverse P-N Junction  
Rectifier  
-
-
-
-
2.5  
8.0  
A
A
SD  
D
Pulse Source to Drain Current  
(Note 3)  
I
SDM  
G
S
o
Source to Drain Diode Voltage (Note 2)  
Reverse Recovery Time  
Reverse Recovery Charge  
NOTES:  
V
T = 25 C, I  
J
= 2.5A, V  
GS  
= 0V (Figure 13)  
-
-
1.6  
540  
2.3  
V
SD  
SD  
SD  
SD  
o
t
T = 25 C, I  
J
= 2.5A, dI /dt = 100A/µs  
SD  
130  
0.57  
300  
1.4  
ns  
µC  
rr  
o
Q
T = 25 C, I  
= 2.5A, dI /dt = 100A/µs  
SD  
RR  
J
2. Pulse test: pulse width 300µs, duty cycle 2%.  
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).  
o
4. V  
= 50V, starting T = 25 C, L = 60mH, R = 25Ω, peak I = 2.5A.  
J G AS  
DD  
Typical Performance Curves Unless Otherwise Specified  
1.2  
2.5  
2.0  
1.5  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0
0
50  
100  
150  
25  
50  
75  
T , CASE TEMPERATURE ( C)  
C
100  
125  
150  
o
o
T
, CASE TEMPERATURE ( C)  
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
10  
0.5  
1
0.2  
0.1  
P
DM  
0.05  
0.1  
0.02  
t
t
0.01  
1
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
PEAK T = P  
x Z  
+ T  
J
DM  
θJC  
C
-2  
10  
-5  
10  
-4  
-3  
10  
-2  
10  
10  
0.1  
1
10  
t , RECTANGULAR PULSE DURATION (s)  
1
FIGURE 3. MAXIMUM TRANSIENT THERMAL IMPEDANCE  
4-247  
IRF820  
Typical Performance Curves Unless Otherwise Specified (Continued)  
5
100  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
OPERATION IN THIS AREA  
IS LIMITED BY r  
DS(ON)  
GS  
4
V
= 6.0V  
GS  
10  
10µs  
3
2
V
= 5.5V  
GS  
100µs  
1
1ms  
V
= 5.0V  
= 4.5V  
150  
GS  
1
o
= 25 C  
= MAX RATED  
T
T
10ms  
DC  
C
J
V
= 4.0V  
GS  
V
GS  
SINGLE PULSE  
0
0.1  
2
3
0
50  
100  
200  
250  
1
10  
10  
10  
V
, DRAIN TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
DS  
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 5. OUTPUT CHARACTERISTICS  
10  
1
5
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V  
GS  
V
50V  
DS  
4
3
2
1
0
V
= 6.0V  
GS  
o
o
T
= 150 C  
T
= 25 C  
J
J
V
= 5.5V  
GS  
0.1  
-2  
V
= 5.0V  
V
GS  
V
= 4.0V  
12  
= 4.5V  
GS  
GS  
10  
0
2
4
6
8
10  
0
8
16  
20  
4
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 6. SATURATION CHARACTERISTICS  
FIGURE 7. TRANSFER CHARACTERISTICS  
10  
8
3.0  
2.4  
1.8  
1.2  
0.6  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 10V, I = 2.5A  
GS  
D
V
= 10V  
GS  
6
V
= 20V  
GS  
4
2
0
0
-40  
0
40  
80  
120  
160  
0
2
4
6
8
10  
o
I , DRAIN CURRENT (A)  
T , JUNCTION TEMPERATURE ( C)  
D
J
FIGURE 8. DRAIN TO SOURCE ON RESISTANCE vs GATE  
VOLTAGE AND DRAIN CURRENT  
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
4-248  
IRF820  
Typical Performance Curves Unless Otherwise Specified (Continued)  
1.25  
1.15  
1.05  
0.95  
0.85  
1000  
800  
600  
400  
200  
0
I
= 250µA  
V
= 0V, f = 1MHz  
D
GS  
ISS  
C
C
C
= C  
+ C  
GS  
GD  
= C  
GD  
RSS  
OSS  
C + C  
DS  
GD  
C
ISS  
C
OSS  
RSS  
C
0.75  
-40  
0
40  
80  
120  
160  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
100  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
FIGURE 10. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 11. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
4.0  
100  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
3.2  
o
= 25 C  
T
J
10  
2.4  
o
= 150 C  
T
J
o
o
1.6  
0.8  
0
T
= 150 C  
T = 25 C  
J
J
1
0.1  
0
0.4  
0.8  
, SOURCE TO DRAIN VOLTAGE (V)  
SD  
1.2  
1.6  
2.0  
0
0.8  
1.6  
2.4  
3.2  
4.0  
I , DRAIN CURRENT (A)  
V
D
FIGURE 12. TRANSCONDUCTANCE vs DRAIN CURRENT  
FIGURE 13. SOURCE TO DRAIN DIODE VOLTAGE  
20  
I
= 2.5A  
D
16  
12  
8
IRF820, IRF822  
V
V
V
= 400V  
= 250V  
= 100V  
DS  
DS  
DS  
4
0
0
4
8
12  
16  
20  
Q , GATE CHARGE (nC)  
g
FIGURE 14. GATE TO SOURCE VOLTAGE vs GATE CHARGE  
4-249  
IRF820  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
-
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
FIGURE 15. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 16. UNCLAMPED ENERGY WAVEFORMS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
r
V
R
L
DS  
90%  
90%  
+
V
DD  
10%  
10%  
R
G
0
0
-
DUT  
90%  
50%  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
FIGURE 18. RESISTIVE SWITCHING WAVEFORMS  
FIGURE 17. SWITCHING TIME TEST CIRCUIT  
V
DS  
(ISOLATED  
SUPPLY)  
CURRENT  
REGULATOR  
V
DD  
Q
SAME TYPE  
AS DUT  
g(TOT)  
V
GS  
12V  
BATTERY  
0.2µF  
Q
gd  
50kΩ  
0.3µF  
Q
gs  
D
S
V
DS  
G
DUT  
0
0
I
g(REF)  
0
V
I
DS  
G(REF)  
I
CURRENT  
SAMPLING  
RESISTOR  
I
CURRENT  
SAMPLING  
RESISTOR  
G
D
FIGURE 19. GATE CHARGE TEST CIRCUIT  
FIGURE 20. GATE CHARGE WAVEFORMS  
4-250  
IRF820  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (407) 724-7000  
FAX: (407) 724-7240  
4-251  

相关型号:

IRF820-013PBF

Power Field-Effect Transistor, 2.5A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY

IRF820-019PBF

Power Field-Effect Transistor, 2.5A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY

IRF820-220

POWER MOSFET
SUNTAC

IRF820-220FP

POWER MOSFET
SUNTAC

IRF820-251

POWER MOSFET
SUNTAC

IRF820-252

POWER MOSFET
SUNTAC

IRF82016

Power Field-Effect Transistor, 2.5A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
MOTOROLA

IRF820A

Power MOSFET(Vdss=500V, Rds(on)max=3.0ohm, Id=2.5A)
INFINEON

IRF820A

Power MOSFET
VISHAY

IRF820A

2.5A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA

IRF820A

Power Field-Effect Transistor, 2.5A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB, TO-220, 3 PIN
SAMSUNG

IRF820A16A

2.5 A, 500 V, 3 ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
MOTOROLA