IRF8113UTRPBF [INFINEON]

Power Field-Effect Transistor, 17.2A I(D), 30V, 0.0056ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, MS-012AA, SOP-8;
IRF8113UTRPBF
型号: IRF8113UTRPBF
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 17.2A I(D), 30V, 0.0056ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, MS-012AA, SOP-8

开关 脉冲 光电二极管 晶体管
文件: 总10页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96077A  
IRF8113UPbF  
HEXFET® Power MOSFET  
Applications  
l Synchronous MOSFET for Notebook  
Processor Power  
VDSS  
30V  
RDS(on) max  
Qg Typ.  
24nC  
5.6m @VGS = 10V  
l Synchronous Rectifier MOSFET for  
Isolated DC-DC Converters in  
Networking Systems  
A
A
D
1
8
S
2
3
4
7
Benefits  
S
S
D
6
l Very Low RDS(on) at 4.5V VGS  
l Low Gate Charge  
l Fully Characterized Avalanche  
Voltage and Current  
l 100% Tested for RG  
l Lead-Free  
D
5
G
D
SO-8  
Top View  
Absolute Maximum Ratings  
Parameter  
Max.  
30  
Units  
V
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
V
± 20  
17.2  
13.8  
135  
2.5  
GS  
I
I
I
@ TA = 25°C  
D
D
@ TA = 70°C  
A
DM  
Power Dissipation  
P
P
@TA = 25°C  
@TA = 70°C  
W
D
D
Power Dissipation  
1.6  
Linear Derating Factor  
Operating Junction and  
0.02  
-55 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Drain Lead  
Junction-to-Ambient  
Typ.  
–––  
Max.  
20  
Units  
°C/W  
Rθ  
Rθ  
JL  
–––  
50  
JA  
Notes  through are on page 10  
www.irf.com  
1
09/18/06  
IRF8113UPbF  
Static @ TJ = 25°C (unless otherwise specified)  
Parameter  
Drain-to-Source Breakdown Voltage  
Min. Typ. Max. Units  
30 ––– –––  
Conditions  
VGS = 0V, ID = 250µA  
BVDSS  
∆Β  
V
VDSS/ TJ  
Breakdown Voltage Temp. Coefficient ––– 0.024 ––– V/°C Reference to 25°C, ID = 1mA  
m
RDS(on)  
Static Drain-to-Source On-Resistance  
–––  
–––  
1.5  
4.7  
5.8  
5.6  
6.8  
2.2  
VGS = 10V, ID = 17.2A  
GS = 4.5V, ID = 13.8A  
VDS = VGS, ID = 250µA  
V
VGS(th)  
Gate Threshold Voltage  
–––  
V
VGS(th)  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
73  
- 5.4 ––– mV/°C  
IDSS  
–––  
–––  
–––  
–––  
–––  
24  
1.0  
150  
100  
-100  
–––  
36  
µA  
nA  
S
V
DS = 24V, VGS = 0V  
VDS = 24V, VGS = 0V, TJ = 125°C  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
V
V
V
GS = 20V  
GS = -20V  
gfs  
Qg  
DS = 15V, ID = 13.3A  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
6.2  
2.0  
8.5  
7.3  
10.5  
10  
–––  
–––  
–––  
–––  
–––  
–––  
1.5  
VDS = 15V  
Qgs2  
Qgd  
nC VGS = 4.5V  
ID = 13.3A  
Qgodr  
See Fig. 16  
Qsw  
Qoss  
RG  
nC  
VDS = 10V, VGS = 0V  
Gate Resistance  
0.8  
13  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
–––  
–––  
–––  
–––  
VDD = 15V, VGS = 4.5V  
Rise Time  
8.9  
17  
ID = 13.3A  
Turn-Off Delay Time  
ns Clamped Inductive Load  
Fall Time  
3.5  
Ciss  
Coss  
Crss  
Input Capacitance  
––– 2910 –––  
VGS = 0V  
pF VDS = 15V  
ƒ = 1.0MHz  
Output Capacitance  
–––  
–––  
600  
250  
–––  
–––  
Reverse Transfer Capacitance  
Avalanche Characteristics  
Parameter  
Typ.  
–––  
–––  
Max.  
48  
Units  
mJ  
Single Pulse Avalanche Energy  
Avalanche Current  
EAS  
IAR  
13.3  
A
Diode Characteristics  
Parameter  
Continuous Source Current  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
IS  
–––  
–––  
3.1  
(Body Diode)  
A
showing the  
ISM  
Pulsed Source Current  
–––  
–––  
135  
integral reverse  
(Body Diode)  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
–––  
–––  
–––  
–––  
34  
1.0  
51  
32  
V
T = 25°C, I = 13.3A, V = 0V  
J S GS  
Reverse Recovery Time  
Reverse Recovery Charge  
ns T = 25°C, I = 13.3A, VDD = 10V  
J F  
Qrr  
2
21  
nC di/dt = 100A/µs  
www.irf.com  
IRF8113UPbF  
1000  
100  
10  
1000  
100  
10  
VGS  
10V  
VGS  
10V  
TOP  
TOP  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
4.5V  
3.7V  
3.5V  
3.3V  
3.0V  
2.7V  
BOTTOM 2.5V  
BOTTOM 2.5V  
2.5V  
2.5V  
20µs PULSE WIDTH  
Tj = 25°C  
20µs PULSE WIDTH  
Tj = 150°C  
1
1
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
2.0  
1.5  
1.0  
0.5  
I
= 16.6A  
= 10V  
D
V
GS  
T
= 150°C  
J
T
= 25°C  
J
10  
V
= 15V  
DS  
20µs PULSE WIDTH  
1
2.5  
3.0  
3.5 4.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160  
V
, Gate-to-Source Voltage (V)  
, Junction Temperature (°C)  
GS  
J
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF8113UPbF  
100000  
12  
10  
8
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 13.3A  
D
V
= 24V  
= C + C , C SHORTED  
DS  
VDS= 15V  
iss  
gs gd ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
10000  
1000  
100  
6
Ciss  
4
Coss  
Crss  
2
0
0
10  
20  
30  
40  
50  
60  
1
10  
100  
Q
G
Total Gate Charge (nC)  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
1000.0  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100.0  
10.0  
1.0  
T
= 150°C  
J
100µsec  
1msec  
1
10msec  
T
= 25°C  
J
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1.0  
10.0  
100.0  
1000.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
, Drain-toSource Voltage (V)  
V
, Source-toDrain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
4
www.irf.com  
IRF8113UPbF  
18  
16  
14  
12  
10  
8
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
I
= 250µA  
D
6
4
2
0
25  
50  
75  
100  
125  
150  
-75 -50 -25  
0
25  
50  
75 100 125 150  
T
, Temperature ( °C )  
T
J
, Junction Temperature (°C)  
J
Fig 10. Threshold Voltage Vs. Temperature  
Fig 9. Maximum Drain Current Vs.  
Case Temperature  
100  
D = 0.50  
0.20  
10  
1
0.10  
0.05  
0.02  
0.01  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
Ri (°C/W) τi (sec)  
0.924  
0.000228  
0.1728  
1.5543  
22.5  
τ
τ
J τJ  
Cτ  
13.395  
22.046  
14.911  
0.1  
τ
1τ1  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
Ci= τi/Ri  
0.01  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF8113UPbF  
200  
160  
120  
80  
15V  
I
D
7.3A  
8.2A  
13.3A  
TOP  
DRIVER  
+
L
BOTTOM  
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
0.01  
t
p
Fig 12a. Unclamped Inductive Test Circuit  
40  
V
(BR)DSS  
0
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 12c. Maximum Avalanche Energy  
Vs. Drain Current  
LD  
VDS  
I
AS  
Fig 12b. Unclamped Inductive Waveforms  
+
-
VDD  
D.U.T  
VGS  
Current Regulator  
Same Type as D.U.T.  
Pulse Width < 1µs  
Duty Factor < 0.1%  
50KΩ  
.2µF  
12V  
Fig 14a. Switching Time Test Circuit  
VDS  
.3µF  
+
V
DS  
D.U.T.  
-
90%  
V
GS  
3mA  
10%  
VGS  
I
I
D
G
Current Sampling Resistors  
td(on)  
td(off)  
tr  
tf  
Fig 13. Gate Charge Test Circuit  
Fig 14b. Switching Time Waveforms  
6
www.irf.com  
IRF8113UPbF  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
ƒ
-
*
=10V  
V
GS  
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
Id  
Vds  
Vgs  
Vgs(th)  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16. Gate Charge Waveform  
www.irf.com  
7
IRF8113UPbF  
Power MOSFET Selection for Non-Isolated DC/DC Converters  
Synchronous FET  
Control FET  
The power loss equation for Q2 is approximated  
by;  
Special attention has been given to the power losses  
in the switching elements of the circuit - Q1 and Q2.  
Power losses in the high side switch Q1, also called  
the Control FET, are impacted by the Rds(on) of the  
MOSFET, but these conduction losses are only about  
one half of the total losses.  
P = P  
+ P + P*  
loss  
conduction  
drive  
output  
P = Irms 2 × Rds(on)  
loss ( )  
Power losses in the control switch Q1 are given  
by;  
+ Q × V × f  
(
)
g
g
Qoss  
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput  
+
×V × f + Q × V × f  
(
)
in  
rr  
in  
2  
This can be expanded and approximated by;  
*dissipated primarily in Q1.  
P
= I 2 × Rds(on )  
(
)
loss  
rms  
For the synchronous MOSFET Q2, Rds(on) is an im-  
portant characteristic; however, once again the im-  
portance of gate charge must not be overlooked since  
it impacts three critical areas. Under light load the  
MOSFET must still be turned on and off by the con-  
trol IC so the gate drive losses become much more  
significant. Secondly, the output charge Qoss and re-  
verse recovery charge Qrr both generate losses that  
are transfered to Q1 and increase the dissipation in  
that device. Thirdly, gate charge will impact the  
MOSFETs’ susceptibility to Cdv/dt turn on.  
Qgd  
ig  
Qgs2  
ig  
+ I ×  
× V × f + I ×  
× V × f  
in  
in  
+ Q × V × f  
(
)
g
g
Qoss  
+
×V × f  
in  
2
This simplified loss equation includes the terms Qgs2  
The drain of Q2 is connected to the switching node  
of the converter and therefore sees transitions be-  
tween ground and Vin. As Q1 turns on and off there is  
a rate of change of drain voltage dV/dt which is ca-  
pacitively coupled to the gate of Q2 and can induce  
a voltage spike on the gate that is sufficient to turn  
the MOSFET on, resulting in shoot-through current .  
The ratio of Qgd/Qgs1 must be minimized to reduce the  
potential for Cdv/dt turn on.  
and Qoss which are new to Power MOSFET data sheets.  
Qgs2 is a sub element of traditional gate-source  
charge that is included in all MOSFET data sheets.  
The importance of splitting this gate-source charge  
into two sub elements, Qgs1 and Qgs2, can be seen from  
Fig 16.  
Qgs2 indicates the charge that must be supplied by  
the gate driver between the time that the threshold  
voltage has been reached and the time the drain cur-  
rent rises to Idmax at which time the drain voltage be-  
gins to change. Minimizing Qgs2 is a critical factor in  
reducing switching losses in Q1.  
Qoss is the charge that must be supplied to the out-  
put capacitance of the MOSFET during every switch-  
ing cycle. Figure A shows how Qoss is formed by the  
parallel combination of the voltage dependant (non-  
linear) capacitance’s Cds and Cdg when multiplied by  
the power supply input buss voltage.  
Figure A: Qoss Characteristic  
8
www.irf.com  
IRF8113UPbF  
SO-8 Package Outline  
Dimensions are shown in millimeters (inches)  
SO-8 Part Marking  
www.irf.com  
9
IRF8113UPbF  
SO-8 Tape and Reel  
Dimensions are shown in milimeters (inches)  
TERMINAL NUMBER 1  
12.3 ( .484 )  
11.7 ( .461 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
NOTES:  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
330.00  
(12.992)  
MAX.  
14.40 ( .566 )  
12.40 ( .488 )  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
Notes:  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.54mH  
RG = 25, IAS = 13.3A.  
ƒ Pulse width 400µs; duty cycle 2%.  
„ When mounted on 1 inch square copper board  
Rθ is measured at TJ approximately 90°C  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/2006  
10  
www.irf.com  

相关型号:

IRF82

N CHANNEL ENHANCEMENT MODE POWER MOSTRANSISTORS
STMICROELECTR

IRF820

N-CHANNEL Enhancement-Mode Silicon Gate TMOS
MOTOROLA

IRF820

N - CHANNEL 500V - 2.5ohm - 2.5 A - TO-220 PowerMESH] MOSFET
STMICROELECTR

IRF820

N-CHANNEL POWER MOSFETS
SAMSUNG

IRF820

2.5A, 500V, 3.000 Ohm, N-Channel Power MOSFET
INTERSIL

IRF820

Power MOSFET(Vdss=500V, Rds(on)=3.0ohm, Id=2.5A)
INFINEON

IRF820

N-Channel Power MOSFETs, 3.0 A, 450 V/500 V
FAIRCHILD

IRF820

Power MOSFET
VISHAY

IRF820

POWER MOSFET
SUNTAC

IRF820

2.5A, 500V, 3ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB
ROCHESTER

IRF820-013PBF

Power Field-Effect Transistor, 2.5A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY

IRF820-019PBF

Power Field-Effect Transistor, 2.5A I(D), 500V, 3ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB,
VISHAY