IRF7103Q [INFINEON]

Power MOSFET(Vdss=50V); 功率MOSFET ( VDSS = 50V )
IRF7103Q
型号: IRF7103Q
厂家: Infineon    Infineon
描述:

Power MOSFET(Vdss=50V)
功率MOSFET ( VDSS = 50V )

晶体 小信号场效应晶体管 开关 脉冲 光电二极管
文件: 总10页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 93944C  
IRF7103Q  
AUTOMOTIVE MOSFET  
Typical Applications  
HEXFET® Power MOSFET  
Anti-lock Braking Systems (ABS)  
Electronic Fuel Injection  
Power Doors, Windows & Seats  
VDSS  
50V  
RDS(on) max (mΩ)  
130@VGS = 10V  
ID  
3.0A  
Benefits  
Advanced Process Technology  
Dual N-Channel MOSFET  
Ultra Low On-Resistance  
175°C Operating Temperature  
Repetitive Avalanche Allowed up to Tjmax  
Automotive [Q101] Qualified  
200@VGS = 4.5V  
1.5A  
1
2
3
4
8
S1  
G 1  
D1  
Description  
7
D 1  
Specifically designed for Automotive applications, these  
HEXFET® Power MOSFET's in a Dual SO-8 package utilize  
the lastest processing techniques to achieve extremely low  
on-resistance per silicon area. Additional features of these  
Automotive qualified HEXFET Power MOSFET's are a 175°C  
junction operating temperature, fast switching speed and  
improved repetitive avalanche rating. These benefits combine  
to make this design an extremely efficient and reliable device  
for use in Automotive applications and a wide variety of other  
applications.  
6
S2  
D2  
5
G 2  
D 2  
SO-8  
Top View  
The efficient SO-8 package provides enhanced thermal  
characteristics and dual MOSFET die capability making it ideal  
in a variety of power applications. This dual, surface mount  
SO-8candramaticallyreduceboardspaceandisalsoavailable  
in Tape & Reel.  
Absolute Maximum Ratings  
Parameter  
Max.  
Units  
ID @ TC = 25°C  
ID @ TC = 70°C  
IDM  
Continuous Drain Current, VGS @ 4.5V  
Continuous Drain Current, VGS @ 4.5V  
Pulsed Drain Current   
3.0  
2.5  
A
25  
PD @TC = 25°C  
Power Dissipationƒ  
2.4  
W
mW/°C  
V
Linear Derating Factor  
16  
VGS  
Gate-to-Source Voltage  
± 20  
22  
EAS  
Single Pulse Avalanche Energy„  
Avalanche Current  
mJ  
IAR  
See Fig.16c, 16d, 19, 20  
A
EAR  
Repetitive Avalanche Energy†  
Peak Diode Recovery dv/dt ꢀ  
mJ  
dv/dt  
TJ, TSTG  
12  
V/ns  
°C  
Junction and Storage Temperature Range  
-55 to + 175  
Thermal Resistance  
Symbol  
RθJL  
Parameter  
Junction-to-Drain Lead  
Typ.  
–––  
Max.  
20  
Units  
RθJA  
Junction-to-Ambient ƒ  
–––  
50  
°C/W  
www.irf.com  
1
03/14/02  
IRF7103Q  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
50 ––– –––  
Conditions  
V(BR)DSS  
Drain-to-Source Breakdown Voltage  
V
VGS = 0V, ID = 250µA  
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient  
––– 0.057 ––– V/°C Reference to 25°C, ID = 1mA  
––– ––– 130  
––– ––– 200  
1.0 ––– 3.0  
3.4 ––– –––  
––– ––– 2.0  
––– ––– 25  
––– ––– 100  
––– ––– -100  
VGS = 10V, ID = 3.0A ‚  
VGS = 4.5V, ID = 1.5A ‚  
VDS = VGS, ID = 250µA  
VDS = 15V, ID = 3.0A  
RDS(on)  
Static Drain-to-Source On-Resistance  
mΩ  
VGS(th)  
gfs  
Gate Threshold Voltage  
V
S
Forward Transconductance  
VDS = 40V, VGS = 0V  
IDSS  
IGSS  
Drain-to-Source Leakage Current  
µA  
nA  
VDS = 40V, VGS = 0V, TJ = 55°C  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Total Gate Charge  
VGS = 20V  
VGS = -20V  
ID = 2.0A  
Qg  
––– 10  
15  
Qgs  
Qgd  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Turn-On Delay Time  
Rise Time  
––– 1.2 –––  
––– 2.8 –––  
––– 5.1 –––  
––– 1.7 –––  
––– 15 –––  
––– 2.3 –––  
––– 255 –––  
––– 69 –––  
––– 29 –––  
nC VDS = 40V  
VGS = 10V  
VDD = 25V ‚  
ID = 1.0A  
ns  
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 6.0Ω  
RD = 25Ω  
Ciss  
Coss  
Crss  
Input Capacitance  
VGS = 0V  
Output Capacitance  
pF  
VDS = 25V  
Reverse Transfer Capacitance  
ƒ = 1.0MHz  
Source-Drain Ratings and Characteristics  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
D
IS  
MOSFET symbol  
showing the  
–––  
–––  
3.0  
12  
–––  
–––  
A
G
ISM  
Pulsed Source Current  
(Body Diode)   
integral reverse  
p-n junction diode.  
S
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
––– ––– 1.2  
V
TJ = 25°C, IS = 1.5A, VGS = 0V ‚  
TJ = 25°C, IF = 1.5A  
––– 35  
––– 45  
53  
67  
ns  
Qrr  
nC di/dt = 100A/µs ‚  
Notes:  
„Starting TJ = 25°C, L = 4.9mH  
RG = 25, IAS = 3.0A. (See Figure 12).  
ISD 2.0A, di/dt 155A/µs, VDD V(BR)DSS  
TJ 175°C  
Repetitive rating; pulse width limited by  
max. junction temperature.  
‚Pulse width 400µs; duty cycle 2%.  
ƒSurface mounted on 1 in square Cu board  
,
†Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive  
avalanche performance.  
2
www.irf.com  
IRF7103Q  
100  
10  
1
100  
10  
1
VGS  
15V  
10V  
VGS  
15V  
10V  
TOP  
TOP  
8.0V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
BOTTOM 4.5V  
BOTTOM 4.5V  
4.5V  
20µs PULSE WIDTH  
Tj = 175°C  
20µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
100.00  
10.00  
1.00  
2.5  
3.0A  
=
I
D
T
= 175°C  
J
2.0  
1.5  
1.0  
0.5  
0.0  
T
= 25°C  
J
V
= 25V  
DS  
20µs PULSE WIDTH  
V
= 10V  
GS  
-60 -40 -20  
0
20 40 60 80 100 120 140 160 180  
3.0  
6.0  
9.0  
12.0  
15.0  
°
T , Junction Temperature ( C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 3. Typical Transfer Characteristics  
Fig 4. Normalized On-Resistance  
Vs. Temperature  
www.irf.com  
3
IRF7103Q  
12  
10000  
I
=
2.0A  
V
GS  
= 0V,  
f = 1 MHZ  
D
V
V
V
=
=
=
40V  
25V  
10V  
DS  
DS  
DS  
C
= C + C  
,
C
SHORTED  
iss  
gs  
gd  
ds  
C
= C  
rss  
gd  
C
= C + C  
oss  
ds  
gd  
9
1000  
100  
10  
6
Ciss  
Coss  
Crss  
3
0
0
3
6
9
12  
1
10  
100  
Q
, Total Gate Charge (nC)  
G
V
, Drain-to-Source Voltage (V)  
DS  
Fig 6. Typical Gate Charge Vs.  
Fig 5. Typical Capacitance Vs.  
Gate-to-Source Voltage  
Drain-to-Source Voltage  
10  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
°
T = 175 C  
J
1
1
100µsec  
1msec  
°
T = 25 C  
J
0.1  
0.01  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
10msec  
100  
V
= 0 V  
GS  
0.1  
0.4  
0.6  
0.8  
1.0  
1.2  
0
1
10  
1000  
V
,Source-to-Drain Voltage (V)  
SD  
V
, Drain-toSource Voltage (V)  
DS  
Fig 7. Typical Source-Drain Diode  
Fig 8. Maximum Safe Operating Area  
Forward Voltage  
4
www.irf.com  
IRF7103Q  
3.0  
2.4  
1.8  
1.2  
0.6  
0.0  
RD  
VDS  
VGS  
D.U.T.  
RG  
+VDD  
-
VGS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
Fig 10a. Switching Time Test Circuit  
V
DS  
90%  
25  
50  
75  
100  
125  
150  
175  
°
T , Case Temperature ( C)  
C
10%  
Fig 9. Maximum Drain Current Vs.  
V
GS  
Case Temperature  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 10b. Switching Time Waveforms  
100  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
P
DM  
0.02  
0.01  
t
1
SINGLE PULSE  
t
(THERMAL RESPONSE)  
2
Notes:  
1. Duty factor D =  
t
/ t  
1
2
2. Peak T  
= P  
x
Z
+ T  
J
DM  
thJA  
A
0.1  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
t , Rectangular Pulse Duration (sec)  
1
Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient  
www.irf.com  
5
IRF7103Q  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
V
= 4.5V  
GS  
I
= 3.0A  
D
V
= 10V  
GS  
4.5  
6.0  
-V  
7.5  
9.0  
10.5  
12.0  
13.5  
15.0  
0
5
10 15 20 25 30 35 40  
, Drain Current (A)  
Gate -to -Source Voltage (V)  
I
GS,  
D
Fig 13. Typical On-Resistance Vs. Drain  
Fig 12. Typical On-Resistance Vs. Gate  
Current  
Voltage  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
1.8  
I
= 250µA  
D
1.5  
1.3  
1.0  
-75 -50 -25  
0
25  
50  
75 100 125 150  
1.00  
10.00  
100.00  
1000.00  
T , Temperature ( °C )  
Time (sec)  
J
Fig 15. Typical Power Vs. Time  
Fig 14. Typical Threshold Voltage Vs.  
Junction Temperature  
6
www.irf.com  
IRF7103Q  
60  
48  
36  
24  
12  
0
I
D
TOP  
1.2A  
2.5A  
BOTTOM 3.0A  
1 5V  
DRIVER  
L
V
G
DS  
D.U.T  
AS  
R
+
V
D D  
-
I
A
20V  
0.01  
t
p
Fig 16c. Unclamped Inductive Test Circuit  
25  
50  
75  
100  
125  
150  
175  
°
Starting T , Junction Temperature ( C)  
J
V
(BR)DSS  
Fig 16a. Maximum Avalanche Energy  
t
p
Vs. Drain Current  
I
AS  
Fig 16d. Unclamped Inductive Waveforms  
Current Regulator  
Same Type as D.U.T.  
Q
G
50KΩ  
.2µF  
12V  
VGS  
.3µF  
Q
Q
GD  
GS  
+
V
DS  
D.U.T.  
-
V
V
GS  
G
3mA  
I
I
D
G
Charge  
Current Sampling Resistors  
Fig 18. Basic Gate Charge Waveform  
Fig 17. Gate Charge Test Circuit  
www.irf.com  
7
IRF7103Q  
1000  
Duty Cycle = Single Pulse  
100  
10  
Allowed avalanche Current vs  
avalanche pulsewidth, tav  
assuming  
Tj = 25°C due to  
avalanche losses  
0.01  
1
0.05  
0.10  
0.1  
0.01  
1.0E-08  
1.0E-07  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
1.0E+00  
1.0E+01  
tav (sec)  
Fig 19. Typical Avalanche Current Vs.Pulsewidth  
25  
20  
15  
10  
5
Notes on Repetitive Avalanche Curves , Figures 15, 16:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 12a, 12b.  
TOP  
BOTTOM 10% Duty Cycle  
= 3.0A  
Single Pulse  
I
D
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed  
Tjmax (assumed as 25°C in Figure 15, 16).  
tav = Average time in avalanche.  
0
25  
50  
75  
100  
125  
150  
175  
D = Duty cycle in avalanche = tav ·f  
Starting T , Junction Temperature (°C)  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Fig 20. Maximum Avalanche Energy  
Iav = 2T/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
Vs. Temperature  
8
www.irf.com  
IRF7103Q  
SO-8 Package Details  
INCHES  
MILLIMETERS  
DIM  
A
D
B
MIN  
.0532  
MAX  
.0688  
.0098  
.020  
MIN  
1.35  
0.10  
0.33  
0.19  
4.80  
3.80  
MAX  
1.75  
0.25  
0.51  
0.25  
5.00  
4.00  
5
A
A1 .0040  
b
c
.013  
8
1
7
2
6
3
5
4
.0075  
.189  
.0098  
.1968  
.1574  
6
H
D
E
e
E
0.25 [.010]  
A
.1497  
.050 BASIC  
1.27 BASIC  
0.635 BASIC  
e 1 .025 BASIC  
H
K
L
y
.2284  
.0099  
.016  
0°  
.2440  
.0196  
.050  
8°  
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
e
6X  
e1  
K x 45°  
A
C
y
0.10 [.004]  
8X c  
A1  
B
8X L  
8X b  
0.25 [.010]  
7
C
A
FOOTPRINT  
8X 0.72 [.028]  
NOT ES :  
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.  
2. CONT ROLLING DIMENS ION: MILLIMET ER  
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].  
4. OUT L INE CONF OR MS T O JE DE C OUT L INE MS -012AA.  
5
6
7
DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].  
6.46 [.255]  
DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS.  
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].  
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO  
ASUBSTRATE.  
3X 1.27 [.050]  
8X 1.78 [.070]  
SO-8 Part Marking  
EXAMPLE: THIS IS AN IRF7101 (MOSFET)  
DATE CODE (YWW)  
Y = LAST DIGIT OF THE YEAR  
WW = WEEK  
YWW  
XXXX  
LOT CODE  
INTERNATIONAL  
RECTIFIER  
LOGO  
F7101  
PART NUMBER  
www.irf.com  
9
IRF7103Q  
SO-8 Tape and Reel  
T E R M IN A L N U M B E R  
1
12.3 ( .48 4  
11.7 ( .46 1  
)
)
8.1 ( .31 8  
7.9 ( .31 2  
)
)
FE E D D IR E C TIO N  
N O TE S :  
1 . C O N TR O L L IN G D IM E N S IO N : M IL L IM E TE R .  
2 . A L L D IM E N S IO N S A R E S H O W N IN M IL L IM E TE R S (IN C H E S ).  
3 . O U TL IN E C O N FO R M S T O E IA -4 8 1 & E IA -5 4 1.  
33 0.00  
(12.992)  
M AX .  
14.40 ( .5 66  
12.40 ( .4 88  
)
)
N O TE S  
1. C O N T R O LLIN G D IM E N S IO N : M ILLIM E T ER .  
2. O U TL IN E C O N FO R M S T O E IA -481 E IA -541.  
:
&
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Automotive [Q101] market.  
Qualification Standards can be found on IRs Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.03/02  
10  
www.irf.com  

相关型号:

IRF7103QHR

Small Signal Field-Effect Transistor, 3A I(D), 50V, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SOP-8
INFINEON

IRF7103QPBF

AUTOMOTIVE MOSFET HEXFET㈢ Power MOSFET
INFINEON

IRF7103QTR

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 50V V(BR)DSS | 3A I(D) | SO
INFINEON

IRF7103QTRPBF

HEXFET® Power MOSFET
INFINEON

IRF7103TR

Power Field-Effect Transistor, 3A I(D), 50V, 0.13ohm, 2-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET
INFINEON

IRF7103TRPBF

adavanced process technology
INFINEON

IRF7103UPBF

Power Field-Effect Transistor, 3A I(D), 50V, 0.13ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, LEAD FREE, SO-8
INFINEON

IRF7103UTRPBF

暂无描述
INFINEON

IRF7104

HEXFET Power MOSFET
INFINEON

IRF7104PBF

HEXFET Power MOSFET
INFINEON

IRF7104TR

暂无描述
INFINEON

IRF7104TRPBF

暂无描述
INFINEON