IRF6665 [INFINEON]

DIGITAL AUDIO MOSFET; 数字音频MOSFET
IRF6665
型号: IRF6665
厂家: Infineon    Infineon
描述:

DIGITAL AUDIO MOSFET
数字音频MOSFET

文件: 总8页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96900  
DIGITAL AUDIO MOSFET  
IRF6665  
Features  
Key Parameters  
Latest MOSFET Silicon technology  
VDS  
100  
V
Key parameters optimized for Class-D audio amplifier applications  
Low RDS(on) for improved efficiency  
m:  
nC  
RDS(on) typ. @ VGS = 10V  
Qg typ.  
53  
8.7  
1.9  
Low Qg for better THD and improved efficiency  
Low Qrr for better THD and lower EMI  
RG(int) typ.  
Low package stray inductance for reduced ringing and lower EMI  
Can deliver up to 100W per channel into 8with no heatsink Š  
Dual sided cooling compatible  
· Compatible with existing surface mount technologies  
· Lead and Bromide Free  
DirectFET™ ISOMETRIC  
SH  
Applicable DirectFET Outline and Substrate Outline (see p. 6, 7 for details)  
SQ  
SX  
ST  
SH  
MQ  
MX  
MT  
MN  
Description  
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing  
techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate  
resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI.  
The IRF6665 device utilizes DirectFET TM packaging technology. DirectFET TM packaging technology offers lower parasitic inductance and  
resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage  
ringing that accompanies fast current transients. The DirectFET TM package is compatible with existing layout geometries used in power  
applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is  
followed regarding the manufacturing method and processes. The DirectFET TM package also allows dual sided cooling to maximize thermal  
transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient,  
robust and reliable device for Class-D audio amplifier applications.  
Absolute Maximum Ratings  
Parameter  
Drain-to-Source Voltage  
Max.  
100  
Units  
V
VDS  
VGS  
Gate-to-Source Voltage  
± 20  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
@ TC = 25°C  
@ T = 25°C  
A
19  
4.2  
D
D
A
I
I
@ T = 70°C  
A
3.4  
34  
D
DM  
P
P
P
@TC = 25°C  
@TA = 25°C  
@TA = 70°C  
Maximum Power Dissipation  
Power Dissipation  
42  
2.2  
1.4  
W
D
D
D
Power Dissipation  
Linear Derating Factor  
Operating Junction and  
0.017  
-40 to + 150  
W/°C  
°C  
T
J
T
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Junction-to-Ambient  
Typ.  
Max.  
Units  
Rθ  
JA  
–––  
12.5  
20  
58  
°C/W  
Rθ  
JA  
Junction-to-Ambient  
–––  
–––  
3.0  
Rθ  
JA  
Junction-to-Ambient  
Rθ  
JC  
Junction-to-Case  
–––  
1.4  
Rθ  
J-PCB  
Junction-to-PCB Mounted  
–––  
Notes  through Š are on page 2  
www.irf.com  
1
10/11/04  
IRF6665  
Static @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Reference to 25°C, ID = 1mA  
GS = 10V, ID = 5.0A  
VDS = VGS, ID = 250µA  
Parameter  
Min.  
100  
–––  
–––  
3.0  
Typ.  
–––  
0.12  
53  
Max.  
–––  
–––  
62  
Units  
V
V(BR)DSS  
V(BR)DSS/TJ  
RDS(on)  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
V/°C  
mΩ  
V
V
VGS(th)  
–––  
–––  
–––  
–––  
–––  
1.9  
5.0  
V
V
V
V
DS = 100V, VGS = 0V  
DS = 80V, VGS = 0V, TJ = 125°C  
GS = 20V  
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
20  
µA  
250  
100  
-100  
2.9  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
nA  
GS = -20V  
RG(int)  
Dynamic @ TJ = 25°C (unless otherwise specified)  
Conditions  
VDS = 10V, ID = 5.0A  
Parameter  
Forward Transconductance  
Total Gate Charge  
Min.  
6.6  
Typ.  
–––  
8.7  
Max.  
–––  
11.7  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Units  
S
gfs  
Qg  
VDS = 50V  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Qgs1  
VGS = 10V  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Turn-On Delay Time  
2.1  
Qgs2  
Qgd  
ID = 5.0A  
0.58  
2.8  
nC  
See Fig.6 and 16  
Qgodr  
3.2  
Qsw  
td(on)  
tr  
td(off)  
tf  
3.38  
7.4  
VDD = 50V  
I
D = 5.0A  
Rise Time  
2.8  
14  
RG = 6.0Ω  
Turn-Off Delay Time  
ns  
VGS = 10V  
VGS = 0V  
Fall Time  
4.3  
530  
110  
29  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
V
DS = 25V  
Output Capacitance  
ƒ = 1.0MHz  
Reverse Transfer Capacitance  
Output Capacitance  
pF  
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz  
510  
67  
V
V
GS = 0V, VDS = 80V, ƒ = 1.0MHz  
GS = 0V, VDS = 0V to 80V  
Output Capacitance  
Coss eff.  
Effective Output Capacitance  
130  
Avalanche Characteristics  
Typ.  
–––  
–––  
Max.  
11  
Parameter  
Units  
mJ  
EAS  
IAR  
Single Pulse Avalanche Energy  
Avalanche Current  
5.0  
A
Diode Characteristics  
Conditions  
Parameter  
Min.  
Typ.  
Max.  
Units  
D
S
MOSFET symbol  
I
I
Continuous Source Current  
–––  
–––  
4.2  
S
showing the  
(Body Diode)  
A
G
integral reverse  
p-n junction diode.  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
34  
SM  
T = 25°C, I = 5.0A, V = 0V  
V
t
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
31  
1.3  
–––  
–––  
V
J
S
GS  
SD  
T = 25°C, I = 5.0A, VDD = 25V  
ns  
nC  
J
F
rr  
di/dt = 100A/µs  
Q
37  
rr  
Notes:  
† Used double sided cooling , mounting pad.  
‡ Mounted on minimum footprint full size board with  
metalized back and with small clip heatsink.  
ˆ TC measured with thermal couple mounted to top  
(Drain) of part.  
 Repetitive rating; pulse width limited by  
max. junction temperature.  
‚ Starting TJ = 25°C, L = 0.89mH, RG = 25, IAS = 5.0A.  
ƒ Surface mounted on 1 in. square Cu board.  
„ Pulse width 400µs; duty cycle 2%.  
Coss eff. is a fixed capacitance that gives the same  
‰ R is measured at TJ of approximately 90°C.  
θ
Š Based on testing done using a typical device & evaluation board  
at Vbus=±45V, fSW=400KHz, and TA=25°C. The delta case  
temperature TC is 55°C.  
charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
2
www.irf.com  
IRF6665  
100  
10  
1
100  
10  
1
VGS  
15V  
10V  
9.0V  
8.0V  
7.0V  
6.0V  
VGS  
15V  
10V  
9.0V  
8.0V  
7.0V  
6.0V  
TOP  
TOP  
BOTTOM  
BOTTOM  
6.0V  
6.0V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
100  
2.0  
I
= 5.0A  
D
V
= 10V  
GS  
10  
1
1.5  
1.0  
0.5  
T
T
T
= -40°C  
= 25°C  
= 150°C  
J
J
J
V
= 25V  
DS  
60µs PULSE WIDTH  
10  
, Gate-to-Source Voltage (V)  
0.1  
2
4
6
8
12  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
10000  
1000  
100  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
I
= 5.0A  
D
C
C
C
+ C , C  
SHORTED  
iss  
gs  
gd  
ds  
= C  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
oss  
gd  
V
V
V
= 80V  
= 50V  
= 20V  
DS  
DS  
DS  
= C + C  
ds  
gd  
C
iss  
C
oss  
C
rss  
10  
0
2
4
6
8
10  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage  
www.irf.com  
3
IRF6665  
100  
1000  
100  
10  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
100µsec  
10  
T
T
T
= -40°C  
= 25°C  
= 150°C  
1msec  
10msec  
1
J
J
J
DC  
0.1  
0.01  
V
= 0V  
GS  
1
0.4  
0.6  
V
0.8  
1.0  
1.2  
1.4  
1.6  
0
1
10  
100  
1000  
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
5
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
4
3
2
1
0
I
I
I
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
-75 -50 -25  
0
25  
50  
75 100 125 150  
25  
50  
T
75  
100  
125  
150  
T
, Temperature ( °C )  
, Case Temperature (°C)  
J
C
Fig 10. Threshold Voltage vs. Temperature  
Fig 9. Maximum Drain Current vs. Case Temperature  
100  
D = 0.50  
0.20  
10  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
R5  
R5  
Ri (°C/W) τi (sec)  
τ
τ
J τJ  
τ
0.02  
0.01  
1.6195  
2.1406  
0.000126  
0.001354  
Cτ  
1
0.1  
τ
1 τ1  
τ
τ
τ
2τ2  
3τ3  
4τ4  
5τ5  
22.2887 0.375850  
20.0457 7.410000  
Ci= τi/Ri  
Ci= τi/Ri  
11.9144  
99  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthja + Tc  
0.01  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t
, Rectangular Pulse Duration (sec)  
1
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient ƒ  
4
www.irf.com  
IRF6665  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
I
= 5.0A  
D
T
= 125°C  
J
T
= 125°C  
J
T
= 25°C  
60  
J
60  
40  
T
= 25°C  
12  
J
Vgs = 10V  
20  
40  
0
0
2
4
6
8
10  
4
6
8
10  
14  
16  
18  
I , Drain Current (A)  
D
V
Gate -to -Source Voltage (V)  
GS,  
Fig 13. On-Resistance vs. Drain Current  
Fig 12. On-Resistance vs. Gate Voltage  
50  
15V  
I
D
TOP  
0.86A  
1.3A  
DRIVER  
L
40  
30  
20  
10  
0
V
DS  
BOTTOM 5.0A  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
V
20V  
GS  
0.01Ω  
t
p
Fig 14a. Unclamped Inductive Test Circuit  
V
(BR)DSS  
t
p
25  
50  
75  
100  
125  
150  
Starting T , Junction Temperature (°C)  
J
Fig 14c. Maximum Avalanche Energy vs. Drain Current  
I
AS  
Fig 14b. Unclamped Inductive Waveforms  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+VDD  
-
10%  
VGS  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 15b. Switching Time Waveforms  
Fig 15a. Switching Time Test Circuit  
www.irf.com  
5
IRF6665  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
V
GS  
Vgs(th)  
3mA  
I
I
D
G
Current Sampling Resistors  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 16a. Gate Charge Test Circuit  
Fig 16b. Gate Charge Waveform  
Driver Gate Drive  
P.W.  
Period  
D =  
D.U.T  
Period  
P.W.  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
di/dt controlled by RG  
RG  
+
-
Body Diode  
Inductor Current  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFETSubstrate and PCB Layout, SH Outline  
(Small Size Can, H-Designation).  
Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This  
includes all recommendations for stencil and substrate designs.  
1- Drain  
2- Drain  
3- Gate  
4- Source  
5- Drain  
6- Drain  
1
2
5
4
3
6
6
www.irf.com  
IRF6665  
DirectFET™ Outline Dimension, SH Outline  
(Small Size Can, H-Designation).  
Please see DirectFET application note AN-1035 for all details regarding PCB assembly using DirectFET. This  
includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
MIN  
METRIC  
MAX  
CODE  
MIN  
4.75  
3.70  
2.75  
0.35  
0.58  
0.58  
0.63  
0.83  
0.99  
2.29  
0.48  
0.03  
0.08  
MAX  
0.191  
0.156  
0.112  
0.018  
0.024  
0.024  
0.026  
0.034  
0.041  
0.092  
0.023  
0.003  
0.007  
Note: Controlling  
dimensions are in mm.  
4.85  
3.95  
2.85  
0.45  
0.62  
0.187  
0.146  
0.108  
0.014  
0.023  
A
B
C
D
E
F
0.62 0.023  
0.67  
0.87  
1.03  
0.025  
0.033  
0.039  
G
H
K
L
2.33 0.090  
0.58 0.019  
M
N
P
0.08  
0.17  
0.001  
0.003  
DirectFET™ Part Marking  
www.irf.com  
7
IRF6665  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6665). For 1000 parts on 7" reel,  
order IRF6665TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MIN  
MAX  
IMPERIAL  
CODE  
MIN  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
MIN  
MAX  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
Loaded Tape Feed Direction  
DIMENSIONS  
METRIC  
MAX  
IMPERIAL  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
CODE  
MIN  
MAX  
MIN  
7.90  
3.90  
A
B
C
D
E
F
0.311  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
8.10  
4.10  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
12.30  
5.55  
5.30  
6.70  
N.C  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.09/04  
8
www.irf.com  

相关型号:

IRF66651PBF

Latest MOSFET Silicon technology
INFINEON

IRF6665PBF

Latest MOSFET Silicon technology
INFINEON

IRF6665PBF_15

Latest MOSFET Silicon technology
INFINEON

IRF6665TR1

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

IRF6665TR1PBF

Power Field-Effect Transistor, 4.2A I(D), 100V, 0.062ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ROHS COMPLIANT, ISOMETRIC-2
INFINEON

IRF6665TRPBF

Latest MOSFET Silicon technology
INFINEON

IRF6668

DirectFET Power MOSFET
INFINEON

IRF6668PBF

DirectFET Power MOSFET
INFINEON

IRF6668TRBF

DirectFET Power MOSFET
INFINEON

IRF6668TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6674PBF

DirectFETPower MOSFET
INFINEON

IRF6674TR1PBF

Compatible with existing Surface Mount Techniques
INFINEON