IRF6668 [INFINEON]

DirectFET Power MOSFET; DirectFET功率MOSFET
IRF6668
型号: IRF6668
厂家: Infineon    Infineon
描述:

DirectFET Power MOSFET
DirectFET功率MOSFET

文件: 总9页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97044A  
IRF6668  
DirectFET™ Power MOSFET ‚  
l RoHS compliant containing no lead or bromide   
l Low Profile (<0.7 mm)  
Typical values (unless otherwise specified)  
VDSS  
VGS  
RDS(on)  
Qg tot Qgd  
l Dual Sided Cooling Compatible   
l Ultra Low Package Inductance  
80V max ±20V max  
12m@ 10V 22nC 7.8nC  
l Optimized for High Frequency Switching   
l Ideal for High Performance Isolated Converter  
Primary Switch Socket  
l Optimized for Synchronous Rectification  
l Low Conduction Losses  
l Compatible with existing Surface Mount Techniques   
DirectFET™  
ISOMETRIC  
MZ  
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)  
SH  
SJ  
SP  
MZ  
MN  
Description  
The IRF6668 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to  
achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET  
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,  
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods  
and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving  
previous best thermal resistance by 80%.  
The IRF6668 is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±10%) or 36V-60V ETSI  
input voltage range systems. The IRF6668 is also ideal for secondary side synchronous rectification in regulated isolated DC-  
DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency  
and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance  
isolated DC-DC converters.  
Absolute Maximum Ratings  
Max.  
80  
Parameter  
Units  
V
VDS  
Drain-to-Source Voltage  
±20  
55  
V
Gate-to-Source Voltage  
GS  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
@ TC = 25°C  
D
44  
@ TC = 70°C  
D
IDM  
170  
81  
A
I
I
@ TC = 25°C  
@ TC = 70°C  
Continuous Source Current (Body Diode)  
Continuous Source Current (Body Diode)  
Pulsed Source Current (Body Diode)  
S
S
52  
ISM  
170  
Notes:  
„TC measured with thermocouple mounted to top (Drain) of part.  
Click on this section to link to the appropriate technical paper.  
‚Click on this section to link to the DirectFET Website.  
ƒRepetitive rating; pulse width limited by max. junction temperature.  
www.irf.com  
1
11/4/05  
IRF6668  
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)  
Conditions  
VGS = 0V, ID = 250µA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
80  
–––  
–––  
V
V/°C  
mΩ  
V
Reference to 25°C, ID = 1mA  
VGS = 10V, ID = 12A g  
VDS = VGS, ID = 100µA  
BVDSS/TJ  
RDS(on)  
––– 0.097 –––  
–––  
3.0  
12  
4.0  
-11  
–––  
–––  
–––  
–––  
–––  
22  
15  
VGS(th)  
4.9  
VGS(th)/TJ  
IDSS  
Gate Threshold Voltage Coefficient  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
–––  
22  
––– mV/°C  
VDS = 80V, VGS = 0V  
20  
250  
100  
-100  
–––  
31  
µA  
nA  
S
VDS = 64V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Forward Transconductance  
Total Gate Charge  
VGS = -20V  
VDS = 10V, ID = 12A  
gfs  
Qg  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
VDS = 40V  
Qgs1  
Qgs2  
Qgd  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
4.8  
1.6  
7.8  
7.8  
9.4  
12  
–––  
–––  
12  
VGS = 10V  
ID = 12A  
nC  
Qgodr  
Qsw  
Qoss  
RG (Internal)  
td(on)  
tr  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
See Fig. 14  
VDS = 16V, VGS = 0V  
nC  
Gate Resistance  
1.0  
19  
VDD = 40V, VGS = 10Vꢁg  
Turn-On Delay Time  
ID = 12A  
Rise Time  
13  
td(off)  
tf  
RG= 6.2Ω  
See Fig. 16  
VGS = 0V  
Turn-Off Delay Time  
7.1  
23  
ns  
Fall Time  
Ciss  
Input Capacitance  
––– 1320 –––  
V
DS = 25V  
ƒ = 1.0MHz  
GS = 0V, VDS = 1.0V, f=1.0MHz  
Coss  
Crss  
Coss  
Coss  
Output Capacitance  
–––  
–––  
310  
76  
–––  
–––  
Reverse Transfer Capacitance  
Output Capacitance  
pF  
V
––– 1400 –––  
––– 200 –––  
VGS = 0V, VDS = 64V, f=1.0MHz  
Output Capacitance  
Avalanche Characteristics  
Parameter  
Conditions  
Min. Typ. Max. Units  
EAS  
TJ = 25°C, IS = 23A, RG = 25Ω  
L = 0.088mH. See Fig. 13  
Single Pulse Avalanche Energy  
–––  
–––  
24  
mJ  
Diode Characteristics  
Conditions  
TJ = 25°C, IS = 12A, VGS = 0V g  
TJ = 25°C, IF = 12A, VDD = 40V  
di/dt = 100A/µs g  
Parameter  
Min. Typ. Max. Units  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
1.3  
51  
60  
V
34  
ns  
nC  
Qrr  
40  
Notes:  
Pulse width 400µs; duty cycle 2%.  
2
www.irf.com  
IRF6668  
Absolute Maximum Ratings  
Max.  
Parameter  
Units  
2.8  
P
P
P
@TA = 25°C  
@TA = 70°C  
@TC = 25°C  
Power Dissipation  
Power Dissipation  
Power Dissipation  
W
D
D
D
P
J
1.8  
89  
270  
T
T
T
Peak Soldering Temperature  
Operating Junction and  
°C  
-40 to + 150  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
–––  
1.0  
Max.  
45  
Units  
Rθ  
Rθ  
Rθ  
Rθ  
Junction-to-Ambient  
JA  
Junction-to-Ambient  
Junction-to-Case  
–––  
1.4  
°C/W  
JA  
JC  
Junction-to-PCB Mounted  
–––  
J-PCB  
10  
1
D = 0.50  
0.20  
R1  
R1  
R2  
R2  
R3  
R3  
τi (sec)  
0.10  
0.05  
Ri (°C/W)  
τ
J τJ  
τ
0.1  
τ
CτC  
0.3173 0.000048  
0.5283 0.000336  
0.5536 0.001469  
τ
1 τ1  
τ
2 τ2  
3 τ3  
0.02  
0.01  
Ci= τi/Ri  
Ci= τi/Ri  
0.01  
0.001  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case   
Notes:  
ˆR is measured at TJ of approximately 90°C.  
†Surface mounted on 1 in. square Cu, steady state (still air).  
‡Used double sided cooling, mounted on 1 in. square Cu board  
PCB with small clip heatsink (still air).  
θ
Note  
†
Note  
‡
Note  
†
www.irf.com  
3
IRF6668  
1000  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
VGS  
15V  
TOP  
TOP  
10V  
8.0V  
7.0V  
6.0V  
BOTTOM  
BOTTOM  
100  
10  
1
6.0V  
6.0V  
60µs PULSE WIDTH  
Tj = 150°C  
60µs PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
0.1  
1
10  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 3. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.5  
1.0  
0.5  
V
= 10V  
I
= 12A  
DS  
D
60µs PULSE WIDTH  
V
= 10V  
GS  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
1
0.1  
2
4
6
8
10  
12  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
T
J
, Junction Temperature (°C)  
V
, Gate-to-Source Voltage (V)  
GS  
Fig 5. Normalized On-Resistance vs. Temperature  
Fig 4. Typical Transfer Characteristics  
10000  
1000  
100  
12.0  
V
= 0V,  
= C  
f = 1 MHZ  
+ C , C  
GS  
I = 12A  
D
C
C
C
SHORTED  
ds  
iss  
gs  
gd  
= C  
10.0  
rss  
oss  
gd  
= C + C  
V
V
= 64V  
= 40V  
ds  
gd  
DS  
DS  
C
iss  
8.0  
6.0  
4.0  
2.0  
0.0  
C
oss  
C
rss  
10  
1
10  
100  
0
2
4
6
8
10 12 14 16 18 20 22 24  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 7. Typical Total Gate Charge vs  
Fig 6. Typical Capacitance vs.Drain-to-Source Voltage  
Gate-to-Source Voltage  
4
www.irf.com  
IRF6668  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
I
= 12A  
T
= 25°C  
D
J
Vgs = 7.0V  
Vgs = 8.0V  
Vgs = 10V  
Vgs = 15V  
T
= 125°C  
J
T
= 25°C  
12  
J
0
20  
40  
60  
80  
100  
4
6
8
10  
14  
16  
I , Drain Current (A)  
V
Gate -to -Source Voltage (V)  
D
GS,  
Fig 9. Typical On-Resistance vs. Drain Current  
Fig 8. Typical On-Resistance vs. Gate Voltage  
1000  
6.0  
T
T
T
= 150°C  
= 25°C  
= -40°C  
J
J
J
100  
10  
1
5.0  
4.0  
I
I
I
I
= 100µA  
= 250µA  
= 1.0mA  
= 1.0A  
D
D
D
D
3.0  
2.0  
V
= 0V  
GS  
0
-75 -50 -25  
0
25 50 75 100 125 150  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
T
, Temperature ( °C )  
V
, Source-to-Drain Voltage (V)  
J
SD  
Fig 10. Typical Source-Drain Diode Forward Voltage  
Fig 11. Typical Threshold Voltage vs.  
Junction Temperature  
100  
80  
60  
40  
20  
0
1000  
OPERATION IN THIS AREA  
I
TOP  
D
LIMITED BY R (on)  
DS  
4.3A  
7.6A  
100  
BOTTOM 23A  
100µsec  
1msec  
10  
10msec  
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.1  
25  
50  
75  
100  
125  
150  
0
1
10  
100  
Starting T , Junction Temperature (°C)  
V
, Drain-to-Source Voltage (V)  
J
DS  
Fig12. Maximum Safe Operating Area  
Fig 13. Maximum Avalanche Energy vs. Drain Current  
www.irf.com  
5
IRF6668  
Current Regulator  
Same Type as D.U.T.  
Id  
Vds  
50KΩ  
Vgs  
.2µF  
.3µF  
12V  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
Qgs1  
Qgs2  
Qgd  
Qgodr  
G
D
Current Sampling Resistors  
Fig 14a. Gate Charge Test Circuit  
Fig 14b. Gate Charge Waveform  
V
(BR)DSS  
15V  
t
p
DRIVER  
L
V
DS  
D.U.T  
AS  
R
G
+
-
V
DD  
I
A
VGS  
20V  
0.01  
t
p
I
AS  
Fig 15a. Unclamped Inductive Test Circuit  
Fig 15b. Unclamped Inductive Waveforms  
RD  
VDS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
-
VDD  
10%  
VGS  
10V  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
td(on)  
td(off)  
tr  
tf  
Fig 16a. Switching Time Test Circuit  
Fig 16b. Switching Time Waveforms  
6
www.irf.com  
IRF6668  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
di/dt controlled by RG  
Re-Applied  
Voltage  
RG  
+
-
Driver same type as D.U.T.  
Body Diode  
Inductor Current  
Forward Drop  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
I
SD  
Ripple  
5%  
* VGS = 5V for Logic Level Devices  
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
DirectFET™ Substrate and PCB Layout, MZ Outline  
(Medium Size Can, Z-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
www.irf.com  
7
IRF6668  
DirectFET™ Outline Dimension, MZ Outline  
(Medium Size Can, Z-Designation).  
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.  
This includes all recommendations for stencil and substrate designs.  
DIMENSIONS  
IMPERIAL  
METRIC  
CODE  
MAX  
MIN  
MIN  
6.25  
4.80  
3.85  
0.35  
0.68  
0.68  
0.93  
0.63  
0.28  
1.13  
2.53  
0.59  
0.03  
0.08  
MAX  
0.250  
0.201  
0.156  
0.018  
0.028  
0.028  
0.038  
0.026  
0.013  
0.050  
0.105  
0.028  
0.003  
0.007  
A
B
C
D
E
F
6.35  
5.05  
3.95  
0.45  
0.72  
0.72  
0.97  
0.67  
0.32  
1.26  
2.66  
0.70  
0.08  
0.17  
0.246  
0.189  
0.152  
0.014  
0.027  
0.027  
0.037  
0.025  
0.011  
0.044  
0.100  
0.023  
0.001  
0.003  
G
H
J
K
L
M
N
P
DirectFET™ Part Marking  
8
www.irf.com  
IRF6668  
DirectFET™ Tape & Reel Dimension (Showing component orientation).  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4800 parts. (ordered as IRF6668). For 1000 parts on 7" reel,  
order IRF6668TR1  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4800)  
TR1 OPTION (QTY 1000)  
METRIC  
MAX  
IMPERIAL  
METRIC  
MAX  
IMPERIAL  
CODE  
MIN  
MIN  
MAX  
N.C  
MIN  
MIN  
6.9  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.937  
N.C  
330.0  
20.2  
12.8  
1.5  
N.C  
N.C  
13.2  
N.C  
N.C  
18.4  
14.4  
15.4  
177.77 N.C  
0.75  
0.53  
0.059  
2.31  
N.C  
N.C  
19.06  
13.5  
1.5  
N.C  
0.520  
N.C  
12.8  
N.C  
100.0  
N.C  
N.C  
58.72  
N.C  
N.C  
0.724  
0.567  
0.606  
13.50  
12.01  
12.01  
G
H
0.488  
0.469  
0.47  
0.47  
12.4  
11.9  
11.9  
11.9  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE  
MIN  
0.311  
MAX  
0.319  
0.161  
0.484  
0.219  
0.209  
0.264  
N.C  
MIN  
7.90  
3.90  
11.90  
5.45  
5.10  
6.50  
1.50  
1.50  
MAX  
A
B
C
D
E
F
8.10  
4.10  
12.30  
5.55  
5.30  
6.70  
N.C  
0.154  
0.469  
0.215  
0.201  
0.256  
0.059  
0.059  
G
H
1.60  
0.063  
Data and specifications subject to change without notice.  
This product has been designed and qualified for the Consumer market.  
Qualification Standards can be found on IR’s Web site.  
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105  
TAC Fax: (310) 252-7903  
Visit us at www.irf.com for sales contact information.11/05  
www.irf.com  
9

相关型号:

IRF6668PBF

DirectFET Power MOSFET
INFINEON

IRF6668TRBF

DirectFET Power MOSFET
INFINEON

IRF6668TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6674PBF

DirectFETPower MOSFET
INFINEON

IRF6674TR1PBF

Compatible with existing Surface Mount Techniques
INFINEON

IRF6674TRPBF

Benchmark MOSFETs Product Selection Guide
INFINEON

IRF6674TRPBF_08

DirectFETPower MOSFET
INFINEON

IRF6678

DirectFET Power MOSFET
INFINEON

IRF6678PBF

DirectFET Power MOSFET
INFINEON

IRF6678TR1

Power Field-Effect Transistor, 30A I(D), 30V, 0.0022ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, ISOMETRIC-3
INFINEON

IRF6678TRPBF

DirectFET Power MOSFET
INFINEON

IRF6691

HEXFET Power MOSFET plus Schottky Diode
INFINEON